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Abstract. In this work we describe a novel statistical video representa-
tion and modeling scheme. Video representation schemes are needed to
enable segmenting a video stream into meaningful video-objects, useful
for later indexing and retrieval applications. In the proposed method-
ology, unsupervised clustering via Guassian mixture modeling extracts
coherent space-time regions in feature space, and corresponding coher-
ent segments (video-regions) in the video content. A key feature of the
system is the analysis of video input as a single entity as opposed to a
sequence of separate frames. Space and time are treated uniformly. The
extracted space-time regions allow for the detection and recognition of
video events. Results of segmenting video content into static vs. dynamic
video regions and video content editing are presented.

1 Introduction

Video search in large archives is a growing research area. Advanced video rep-
resentation schemes are needed to provide for compact video storage as well
as a concise model for indexing and retrieval applications. Segmenting an in-
put video stream into interesting “events” is becoming an important research
objective. The goal is to progress towards content-based functionalities, such as
search and manipulation of objects, semantic description of scenes (e.g., “indoor”
vs. “outdoor”), detection of unusual events and recognition of objects. This work
focuses on video data, video representation and segmentation.

As a first step in organizing video data, a given video clip is parsed in the
temporal domain into short video shots, each of which contains consistent visual
content. A video shot can be considered as a basic unit of video data. Since
visual information is similar in each shot, global image features such as color,
texture and motion can be extracted and used for the search and retrieval of
similar video shots.

In order to further exploit the video content, a video shot needs to be decom-
posed into meaningful regions and objects, so that search, retrieval and content
manipulation based on object characteristics, activities, and relationships are
possible. Video indexing is concerned with segmenting the video stream into
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meaningful video-objects that may be useful for later indexing and retrieval
applications.

Video has both spatial and temporal dimensions and hence a good video
index should capture the spatio-temporal contents of the scene. Video objects
(otherwise termed, “space-time objects” [B], “subobjects” [7]) are generally ex-
tracted via a two-stage processing framework consisting of frame-by-frame spa-
tial segmentation followed by temporal tracking of information across frames. In
the presented work a novel statistical framework is proposed for modeling and
segmenting video content into coherent space-time segments within the video
frames and across frames. We term such segments “video-regions”. Unsuper-
vised clustering, via Gaussian mixture modeling (GMM), enables the extraction
of space-time clusters, or “blobs”, in the representation space, and the extrac-
tion of corresponding video-regions in the segmentation of the video content. An
important differentiation from existing work is that the video is modeled as a
single entity, as opposed to a sequence of separate frames. Space and time are
treated uniformly in a single-stage modeling framework.

The paper is organized as follows. Section [ describes related work in the
literature. Section [3] focuses on the representation phase of the proposed frame-
work in which we transition from pixels to coherent regions in feature space,
via Gaussian mixture modeling. A space-time video representation model is de-
scribed. Section [ discusses the extension to probabilistic video segmentation.
The probabilistic representation enables the definition and detection of events
in video. Experimental results of video event detection are presented in section
A discussion concludes the paper in Section

2 Previous Work on Video Representation and
Segmentation

Research in content-based video retrieval focused initially on ways of searching
video clips based on global similarities, such as color, texture, and motion (e.g.,
[6], [10], [12], [14], [20], [21], [15], [19]). A separate set of works has started to
address localized, regional representations that enable spatio-temporal segmen-
tation for object-based video retrieval (e.g., [, [3], [2], [16]).

Spatio-temporal segmentation has been a very challenging research problem,
and many algorithms are proposed in the literature ([§], [3], [12], [17]). Many
approaches use optical flow methods (e.g., [TI1], [I3]) to estimate motion vectors
at the pixel level, and then cluster pixels into regions of coherent motion to
obtain segmentation results. Due to the complexity of object motion in general
videos, pure motion-based algorithms cannot be used to automatically segment
and track regions through image sequences. The drawbacks include the fact that
optical flow does not cope well with large motion, and the fact that regions of
coherent motion may contain multiple objects and need further segmentation
for object extraction.
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In works that incorporate spatial segmentation into motion segmentation, it
is commonly the case that the spatio-temporal segmentation task is decomposed
into two separate tasks of spatial segmentation (based on in-plane features such
as color and texture) within each frame in the sequence, or within a selected
frame of the sequence, followed by a motion segmentation phase. In [3] color and
edge features are used to segment a frame into regions. Optical flow, computed
for each pair of frames, is utilized to project and track color regions through
a video sequence. Given color regions and the generated optical flow, a linear
regression algorithm is used to estimate the affine motion for each region. In [7]
a six-parameter two-dimensional (2-D) affine transformation is assumed for each
region in the frame, and is estimated by finding the best match in the next frame.
Multiple objects with the same motion are separated by spatial segmentation.

The challenge in video indexing is to utilize the representation model and
the segmentation ability towards the definition of meaningful regions and ob-
jects for future content analysis. The shift to regions and objects is commonly
accomplished by two-phase processing: a segmentation process followed by the
tracking of regions across segmented frames. In [3] a region is defined as a con-
tiguous set of pixels that is homogeneous in the features that we are interested
in (such as color, texture, shape). A video object is then defined as a collection
of video regions that have been grouped together under some criteria across
several frames. Namely, a video object is a collection of regions exhibiting con-
sistency across several frames in at least one feature. A hierarchical description
of video content is discussed in [7]. A video shot is decomposed into a set of
sub-objects. The sub-objects consist of a sequence of tracked regions, with the
regions obtained by segmentation.

This paper belongs to the family of works (as cited above) that propose a
regional video content description, and provide a means for finding information
in the video without any high-level understanding of the actual content. The
focus is on extracting video-regions as coherent space-time video segments. A key
feature of the current work is the use of a statistical methodology for describing
the video content. The video content is modeled in a continuous and probabilistic
space. No geometrical modeling constraints (e.g., planarity), or object rigidity
constraints need to be imposed as part of the motion analysis. No separate
segmentation and motion-based tracking schemes are used.

3 Learning a Probabilistic Model in Space-Time

The modeling phase is accomplished in the feature space. A transition is made
from the pixel representation to a mid-level representation of an image, in which
the image is represented as a set of coherent regions in feature space. Unsu-
pervised clustering using a Gaussian mixture model (GMM) is pursued to form
meaningful groupings in feature space and a corresponding localized space-time
representation in the image plane.
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3.1 Feature Extraction

In this work we use the color and relative color layout, as the main characteristics
of the representation. Color features are extracted by representing each pixel
with a three-dimensional color descriptor in the L % a % b color space, which
was shown to be approximately perceptually uniform; thus distances in this
space are meaningful [1§]. In order to include spatial information, the (z,y)
position of the pixel is appended to the feature vector. Including the position
generally decreases oversegmentation and leads to smoother regions. The time
feature (t) is added next. The time descriptor is taken as an incremental counter:
1,...,number of frames in shot. Each of the features is normalized to have a
value between 0 and 1.

Following the feature extraction stage, each pixel is represented with a six-
dimensional feature vector, and the image-sequence as a whole is represented
by a collection of feature vectors in the six-dimensional space. Note that the
dimensionality of the feature vectors, and the feature space, is dependent on the
features chosen and may be augmented if additional features are added.

3.2 Grouping in the Space-Time Domain

In this stage, pixels are grouped into homogeneous regions, by grouping the
feature vectors in the selected six-dimensional feature space. The underlying as-
sumption is that the image colors and their space-time distribution are generated
by a mixture of Gaussians. The feature space is searched for dominant clusters
and the image samples in feature space are then represented via the modeled
clusters. Note that although image pixels are placed on a regular (uniform) grid,
this fact is not relevant to the probabilistic clustering model in which the affil-
iation of a pixel to the model clusters is of interest. In general, a pixel is more
likely to belong to a certain cluster if it is located near the cluster centroid. This
observation implies a unimodal (Gaussian) distribution of pixel positions within
a cluster. Each homogeneous region in the image plane is thus represented by
a Gaussian distribution, and the set of regions in the image is represented by a
Gaussian mixture model. Learning a Gaussian mixture model is in essence an
unsupervised clustering task.

The Expectation-Maximization (EM) algorithm is used [5], to determine the
maximum likelihood parameters of a mixture of k& Gaussians in the feature space.
The image is then modeled as a Gaussian mixture distribution in feature space.
We briefly describe next the basic steps of the EM algorithm for the case of
Gaussian mixture model. The distribution of a random variable X € R? is a
mixture of k Gaussians if its density function is:

k
(1) = ;ajmexp{—;x RS T SN Y

such that the parameter set 6 = {ay, p;, ;}5_, consists of:
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k
—Oéj>0 , ijlaj:1

— U € R% and Y)j is a dxd positive definite matrix.

Given a set of feature vectors 1, ..., x,, the maximum likelihood estimation of
0 is :
Omr = argmgmxf(xl, coes Tp|0) (2)

The EM algorithm is an iterative method to obtain €,;;,. Given the current
estimation of the parameter set 6, The first step in applying the EM algorithm
to the problem at hand is to initialize the mixture model parameters. The K-
means algorithm [9] is utilized to extract the data-driven initialization. The
iterative updating process is repeated until the log-likelihood is increased by
less than a predefined threshold from one iteration to the next. In this work
we choose to converge based on the log-likelihood measure and we use a 1%
threshold. Other possible convergence options include using a fixed number of
iterations of the EM algorithm, or defining target measures, as well as using
more strict convergence thresholds. We have found experimentally that the above
convergence methodology works well for our purposes. Using EM, the parameters
representing the Gaussian mixture are found.

An optimality criterion for k is based on a tradeoff between performance
and number of parameters used for describing the mixture distribution. The
Minimum Description Length (MDL) [4] is such a criterion that has been used
for selecting among values of k in still image processing [I]. Using the MDL
principle, the K-Means and EM are calculated for a range of k values, k > 1,
with k& corresponding to the model size. The model for which the MDL criterion
is maximized is chosen. When models using two values of k fit the data equally
well, the simpler model will be chosen.

3.3 Model Visualization

For model visualization purposes we start with showing a still image example,
Figure [I. The representation in the space-time domain is shown, for a single
blob, in Figure 2 In Figure [[I the GMM model is learned for a given static
image in a five-dimensional feature space (color and spatial features). The input
image is shown (top) and a set of localized Gaussians representing the image for
differing mixtures (different &k values), bottom. In this visualization each localized
Gaussian mixture is shown as a set of ellipsoids. Each ellipsoid represents the
support, mean color and spatial layout, of a particular Gaussian in the image
plane.

The transition to the space-time domain is more difficult to visualize. Figure
shows two scenarios of a particular blob from within a GMM in the space-
time domain (the shown blob represents a car in varying segments of the video
sequence shown in Figure B). In this case we use a three-dimensional space to
represent the ellipsoid support and spatial layout in space-time. The mean color
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k=3 k=5

Fig. 1. Example of a still input image (top) with the corresponding set of representative
Gaussian mixtures (bottom). The mixtures are composed of k = 3 and 5 components.
Each ellipsoid represents the support, mean color and spatial layout, of a particular
Gaussian in the image plane.

of the ellipsoid indicates the region color characteristics. Planes are superim-
posed to show the connection between the six-dimensional space-time space and
the five-dimensional image space without the time feature. The planes are posi-
tioned at specific frame time-slots. Projection of the six-dimensional blob onto
a plane corresponds to a reduced model, in the image plane, similar to the ex-
ample shown in Figure[ll Space-time characteristics of each Gaussian (blob) can
be extracted from the generated model, in particular, from the covariance ma-
trix of each Gaussian. These characteristics are evident within the visualization
scheme. A blob representing a static video-region is shown in Figure 2(a). Note
that no correlation is evident between the space (z,y) and the time () axis. A
blob representing a dynamic video-region is shown in Figure [2(b). In this case,
a strong positive correlation exists in the x and ¢ dimensions. The projection of
the blob onto the planes positioned at differing time intervals (or frame num-
bers) demonstrates the shifts of the blob cross-sections in the x,t direction. As ¢
increases (corresponding to increasing frame number in the video sequence), the
spatial support shift horizontally. Such a correlation indicates horizontal move-
ment. Thus, the model extracted indicates space-time characteristics such as the
differentiation between static and moving blobs. The GMM generated for a given
video sequence can be visualized as a set of such elongated ellipsoids (“bubbles”)
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(b) .

Fig.2. A space-time elongated blob from a GMM in 6-dimensional feature space.
The ellipsoid support and spatial layout in space-time is presented in 3D. The mean
color of the ellipsoid indicates the region color characteristics. (a) a blob representing
a static video-region. (b) a blob representing a dynamic video-region. In this case, a
strong positive correlation exists in the « and ¢ dimensions. Such a correlation indicates
horizontal movement. Planes are superimposed to demonstrate the shifts of the blob
cross-sections in the x, ¢ direction.

within the three-dimensional space-time domain. The characteristics of the in-
dividual Gaussians within the model can be used for detection and recognition
of video events, as will be further on explored in Section [l

4 Probabilistic Video Segmentation

The six-dimensional GMM of color, space and time represents coherent regions
in the combined space-time domain. A correspondence is now made between the
coherent regions in feature space and localized temporally connected regions in
the image plane of an individual frame and across frames in the video sequence.
We segment the video sequence by assigning each pixel of each frame to the most
probable Gaussian cluster, i.e. to the component of the model that maximizes
the a-posteriori probability, as shown next.

The labeling of each pixel is done in the following manner: Suppose that the
parameter set that was trained for the image is 6 = {¢;, 5, X };?:1 Denote:

fi(wlag, pj, Xj) = (3)
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1 T y—1
ajWeXp{_i(x —p)" X (@ — 115)}
Equation (B) provides a probabilistic representation for the affiliation of each
input sample, x, to the Gaussian components that comprise the learned model.
The probabilistic representation is complete, in that no information is lost.

It is often desired to proceed with a decision phase that is based on the
extracted probabilities and provides a “hard-decision” map of pixel affiliations
into the predefined categories. The labeling of a pixel related to the feature
vector x is chosen as the maximum a-posteriori probability, as follows:

Label(z) = arg max f;(z|aj, pj, Xj) (4)
J

In addition to the labeling, a confidence measure can be computed. The
confidence measure is a probabilistic label that indicates the uncertainty that
exists in the labeling of the pixel. The probability that a pixel z is labeled j is:

p(Label(z) = j) = W

with the denominator as defined in equation ().

Equations BlE) show that the video segmentation is probabilistic. For each
frame, each sample feature vector (per pixel), z, is labeled and the label is
projected down to the image plane. This method is applied frame by frame. A
unique set of blobs is used for modeling the entire frame-sequence. Thus, the
same blobs are used to segment each frame of the sequence. A by-product of
the segmentation process is therefore the temporal tracking of individual frame
regions. Each Gaussian or blob in feature space corresponds to a video-region.
A video-region is linked to the properties of the corresponding blob.

An example of the GMM representation extracted per input frame sequence,
along with the corresponding probabilistic segmentation results, can be seen in
the top rows of Figure B row (a) presents a selection of input frames from the
video sequence, row (b) presents a visualization of the space-time model, as
related to the corresponding input frame, and row (c) shows the segmentation
results projected down to each individual frame in the sequence. Each pixel from
the original image is displayed with the color of the most-probable corresponding
Gaussian. The segmentation results provide a visualization tool for better un-
derstanding the image model. Uniformly colored regions represent homogeneous
regions in feature space. The associated pixels are all linked (unsupervised) to
the corresponding Gaussian characteristics.

The EM algorithm ensures a Gaussian mixture in color, space and time. In
essence, we have found the most dominant colors in the video sequence, as present
in homogeneous localized regions in space-time, making up the video composi-
tion. Incorporating the spatial information into the feature vector does not only
supply local information. It is also imposing a correlation between adjacent pix-
els such that pixels that are not far apart tend to be associated (labeled) with

()
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the same Gaussian component. The segmentation results discussed above clearly
demonstrate this fact, as can be seen in the smooth nature of the segmentation
that results in labeling each individual frame according to the GMM.

5 Detection and Recognition of Events in Video

So far we have focused on the model generation process. In this section we inves-
tigate the model parameters further and show the connection between blobs and
video events. A close look at the covariance matrix that represents each indi-
vidual Gaussian blob in the Gaussian mixture model reveals several parameters
that are space-time dependent. In Figure Bl we show a typical six-dimensional
covariance matrix, along with three parameters of interest: C; ., C , and Cy .

We have defined a video-region as a particular sub-object segment in the
video sequence that corresponds to a given Gaussian. Large values of C; , indi-
cate a strong correlation between the video-region horizontal position and time.
In other words a horizontal movement of the region through the video sequence
(note that horizontal and vertical directions refer to the z and y dimensions of
the image plane, respectively). Similarly, C;, reflects vertical movement. Small
values of Cy, and C}, suggest that the blob, and corresponding video-region
is static. The time variance, Cy, represents the dispersion of the blob in the
time domain (around the mean time coordinate, i.e. the time coordinate of the
considered Gaussian’ s center). A large Cy, value, for instance, indicates that
the video-region is of extended duration, or is present in a majority of the frames
that comprise the video sequence.

The correlation coefficient is defined as follows:

017]
R;; mm, 1<R;; <1 (6)

The range of the covariance parameters is bounded, thus enabling a comparison
and thresholding process for detecting events of interest. The detection of static
vs. dynamic blobs as well as the magnitude of motion in the image plane, is
extracted via a thresholding process on the absolute values of R;, and R ,.
The direction of motion is extracted via the sign of R, and Ry .

The actual blob motion (pixels per frame) can be extracted using linear
regression models in space and time, as shown in equation ([7):

Cx t

Exlt=t)=F —_—
(alt = 1) = Bo + &

(ti — Ey) (7)
In this equation, horizontal velocity of the blob motion in the image plane is
extracted as the ratio between the respective covariance parameters. Similar
formalism allows for the modeling of any other linear motion in the image plane.
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# 7]
L]

Fig.3. A typical six-dimensional covariance matrix, along with three parameters of
interest: th,ct,y, and Ct,t~

5.1 Experimental Results

We show next a set of experiments in which we interact with video content, detect
and recognize video events, all within the Gaussian mixture model representation
framework. The sequences experimented with vary in length. In each example
shown, a subset of the frames from the sequence is shown.

Blob editing. With the learned representation it is possible to edit blob char-
acteristics and to project that to the image plane. The segmentation of the video
sequence that follows the model generation, ensures that each blob is linked to
pixels within a set of frames, and the pixels affiliated with a particular blob are
linked to the blob characteristics. Any change in the blob characteristics will
automatically be transmitted to the corresponding pixels within the respective
frames in the video sequence. An equivalence may be seen with automatic an-
notation techniques in which a label is to be attached automatically to linked
frames containing a particular object of interest.

We start with an experiment in which the goal is to perform blob deletion.
In the specific scenario presented, the objective is to detect a moving car and
replace the car-body region with static background. For this purpose we need
to identify the blob associated with the desired video-region. An assumption for
horizontal movement is used. The detection criterion therefore is based on the
R, ., correlation coefficient. The correlation coefficient for the car blob (car-body
region) is close to 1 while for the other blobs, that represent static background
regions, it is an order of magnitude smaller. Once the moving blob is detected,
the video sequence segmentation maps are used to generate a list of frames in
which pixels are linked to the particular blob of interest. We term this list the
“moving-blob frame list”. A second list is made, “stationary-blob frame list”,
of frames that do not include pixels linked to the blob of interest. The blob
deletion procedure involves replacing the pixels of the selected video region, in
each frame belonging to the “moving-blob frame list”, with pixels of same spatial
coordinates extracted from a frame belonging to the “stationary-blob frame list”.

Figure [ shows a sequence of frames in which we see the original video data
(a), followed in consecutive rows, with the sequence representation model (b),
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segmentation maps (c), and final output of a new video sequence without the
moving car-body region (d). In this experiment an input sequence of 8 frames
was used. A 12-Gaussian mixture was used for the representation. In the output
video sequence, the car-region has successfully been replaced with background
information. The wheels have been preserved and thus remain as the only moving
objects in the scene. A slight variation would lead to the wheels removal along
with the car-body region.

Fig. 4. Movement detection. The objective is to detect the cars as they enter the field-
of-view and to distinguish left-to-right from right-to-left motion. A 21 frame sequence
is used. The model size is 37 Gaussians. (a) The original video data; (b) The sequence
segmentation maps; (c) Moving objects (dynamic blobs) are detected. The left-to-right
motion and right-to-left motion are indicated with corresponding arrows.

Motion directionality detection. In the second experiment presented, the
goal is to utilize the video representation model for the detection of events in-
volving motion, and the recognition of the directionality of each such event. The
scenario used is a sequence with moving cars on a static background, as shown
in Figure @l A 21 frame sequence is used. The objective is to detect the cars
as they enter the field-of-view and to distinguish left-to-right from right-to-left
motion. The model size used is 37 Gaussians. The detection and identification
of the events are based on thresholding as follows: R;, > 0.3 detects motion
and identifies as positive, the motion from left-to-right. Similarly, R, , > —0.3
is the rule used to detect motion in the right-to-left direction. In the presented
results (bottom row), the moving objects (dynamic blobs) are detected. The
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left-to-right motion and right-to-left motion are indicated with corresponding
arrows. The output results accurately reflect the scene dynamics.

Using the space-time blob characteristics the system is able to automatically
detect the moving objects in the field of view and to recognize the objects’
directionality. The shot is analyzed globally (as a single entity) to extract the
representative model. Within the model, each blob’s temporal characteristics
provide the set of frames within which a moving region is present, from its
appearance to its disappearance. The framework proposed is able to cope with
short-term occlusion scenarios. As long as there is a sufficient pixel representation
for a particular object, before and after the occlusion, the learning phase is
able to cluster the feature space into a single cluster. The global analysis thus
enables to associate a single blob to the occluded object, therefore overcoming
the occlusion.

6 Conclusions and Future Work

In this paper we have described a novel uniform approach for video represen-
tation and space-time segmentation of video data. Unsupervised clustering, via
Gaussian mixture model (GMM), enables the extraction of video segments, or
space-time blobs. An interesting differentiation from existing work in video, is
that space and time are treated uniformly, and the video is treated as a single
entity as opposed to a sequence of separate frames.

The modeling and the segmentation are combined to enable the extraction of
video-regions that represent coherent regions across the video sequence, other-
wise termed video-objects or sub-objects. Coherency is achieved in the combined
feature space, currently consisting of color, spatial location and time. If motion
characteristics on a pixel level are available as a-priori information (e.g. via opti-
cal flow), they can be integrated within the proposed framework, as an additional
feature (two additional dimensions). Other features, such as texture, shape, etc.
can be similarly added to augment region characteristics.

Extracting video regions provides for a compact video content description,
that may be useful for later indexing and retrieval applications. Video events are
detected and recognized using the GMM and related video-regions. Some exper-
imental results are provided to demonstrate the feasibility of our approach. Each
example can be developed into a particular application domain (for example, di-
rection detection for automatic vehicle monitoring). Currently, thresholds were
chosen heuristically. Complete systems built with the concepts thus presented
will require more in-depth study of the particular application domain, and the
relevant initialization procedures, event detection and recognition criteria.

The model proposed assumes a static camera scenario or motion-stabilized
frames. The current framework is limited to the description of simple linear mo-
tion of a blob, or space-time region, with the analyzed sequence. We therefore
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(d)

Fig. 5. Blob deletion event. The objective is to detect a moving car and replace the
car-body region with static background. (a) The original video data; (b) The sequence
representation model; (c) sequence segmentation maps; (d) Output sequence without
the moving car-body region. In this experiment an input sequence of 8 frames was
used. A 12-Gaussian mixture was used for the representation.

take care to use short time sequences in which motion can be approximated
linearly. We are currently extending the methodology to include successive mod-
eling of overlapping short time sequences. This will produce a piece-wise linear
approximation of non linear motion trajectories.
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