MONOTONICITY FOR COMPLETE GRAPHS AND SYMMETRIC COMPLETE BIPARTITE GRAPHS

N. EATON, W. KOOK, L. THOMA

Abstract

Given a graph G, let f_{k} be the number of forests of cardinality k in G. Then the sequence $\left(f_{k}\right)$ has been conjectured to be unimodal for any graph G. In this paper we confirm this conjecture for K_{n} and $K_{n, n}$ by showing that the sequence for K_{n} is strictly increasing (when $n \geq 4$) and the sequence for $K_{n, n}$ is strictly increasing except for the very last term. As a corollary we also confirm the conjecture for the complete graphs with multiple edges allowed.

1. Introduction

Let G be a finite graph with N vertices and let $0 \leq k \leq N-1$. A spanning forest of cardinality k in G is a subgraph F with $V(F)=V(G)$ such that each component of F is a tree and the number of edges in F is k. Let $f_{k}(\mathrm{G})$ (or simply f_{k}) denote the number of spanning forests of cardinality k in G and we define the f-sequence of G, denoted by f_{G}, to be the sequence $\left(f_{0}, f_{1}, \ldots, f_{N-1}\right)$. In matroid theoretic terms this is the sequence of independent set numbers of the cycle matroid of G. (Refer to [4] for definitions from matroid theory.)

It has been conjectured that f_{G} for any finite graph G is unimodal. Refer to [3] and [5] for this conjecture and a matroid theoretic generalization of this. From [1], one can deduce that f_{G} for any graph G with at most 9 vertices will be unimodal. In [2] it was shown that f_{G} for any planar graph G is unimodal.

In this paper we establish the unimodality of f_{G} when G is the complete graph K_{n} or the symmetric complete bipartite graph $K_{n, n}$ as follows. Define f_{G} to be (monotone) increasing and strictly increasing if $f_{k} \leq f_{k+1}$ and $f_{k}<f_{k+1}$, respectively, for all $0 \leq k \leq N-2$. We will show that $f_{K_{n}}$ is monotone increasing for $n \geq 1$ and strictly increasing for $n \geq 4$, and that $f_{K_{n, n}}$ is strictly increasing except for the very last term for $n \geq 1$. In particular we will have shown that $f_{K_{n}}$ and $f_{K_{n, n}}$ are unimodal. As a corollary we will also show via deletion-contraction recursions for f-sequences that allowing multiple edges in K_{n} will preserve the monotonicity of the f-sequence. Now we will fix some notations and terminology that will be used throughout the paper.

Notations and terminology.

1. For $0 \leq k \leq N-1, \mathcal{F}_{k}(G)$, or \mathcal{F}_{k} when G is understood, will denote the set of all spanning forests of cardinality k in G. Hence $f_{k}=f_{k}(G)=\left|\mathcal{F}_{k}(G)\right|$.
2. For $0 \leq k \leq N-2, B_{k}(G)$ will denote the bipartite graph with the bipartition $\mathcal{F}_{k} \cup \mathcal{F}_{k+1}$ where $F \in \mathcal{F}_{k}$ and $F^{\prime} \in \mathcal{F}_{k+1}$ are adjacent if and only if F is a subgraph of F^{\prime}.

[^0]3. For each $F \in \mathcal{F}_{k}, \delta(F)$ will denote the degree of F in $B_{k}(G)$. Then $\delta(F)$ equals the number of edges e in G such that $F \cup e \in \mathcal{F}_{k+1}$. Note that for every $F^{\prime} \in \mathcal{F}_{k+1}$ the degree of F^{\prime} in $B_{k}(G)$ is always $k+1$. It follows that
$$
(k+1) f_{k+1}=\sum_{F \in \mathcal{F}_{k}} \delta(F) .
$$

2. Monotonicity for complete graphs

Let $K_{n}(n \geq 1)$ be the complete graph with the vertex set $[n]=\{1,2, \ldots, n\}$. We see that $f_{K_{n}}$ is monotone increasing for $n=1,2$, and 3 from $f_{K_{1}}=(1), f_{K_{2}}=(1,1)$, and $f_{K_{3}}=(1,3,3)$. The main result of this section will show that $f_{K_{n}}$ is strictly increasing for $n \geq 4$. Therefore we will have shown that the $f_{K_{n}}$ is unimodal for all $n \geq 1$. In this section we assume $\mathcal{F}_{k}=\mathcal{F}_{k}\left(K_{n}\right)$ for $0 \leq k \leq n-1$. Also for $F \in \mathcal{F}_{k}$, $\delta(F)$ will be the degree of F in $B_{k}\left(K_{n}\right)$.

Lemma 1. Let $0 \leq k \leq n-2$. Then $\delta(F) \geq n-1$ for all $F \in \mathcal{F}_{k}$.
Proof. Given $F \in \mathcal{F}_{k}$, let C be a component of F and let $c=|V(C)|$. Since $k \leq n-2, F$ has at least two components and we must have $1 \leq c \leq n-1$. Let e be an arbitrary edge between a vertex in $V(C)$ and a vertex $V\left(K_{n}\right) \backslash V(C)$. Then clearly we have $F \cup e \in \mathcal{F}_{k+1}$ and F is adjacent to $F \cup e$ in $B_{k}\left(K_{n}\right)$. Therefore $\delta(F)$ is at least $c(n-c)$. Now we note that $c(n-c) \geq(n-1)$ for $1 \leq c \leq n-1$ and the lemma follows.
Examples. $f_{K_{4}}=(1,6,15,16), f_{K_{5}}=(1,10,45,110,125)$, and $f_{K_{6}}=(1,15,105,435,1080,1296)$.

Theorem 2. The sequence $f_{K_{n}}$ is monotone increasing for $1 \leq n \leq 3$ and strictly increasing for $n \geq 4$. In particular, $f_{K_{n}}$ is unimodal for all $n \geq 1$.

Proof. We have already checked the cases for $1 \leq n \leq 3$. So assume $n \geq 4$. Clearly we have $1=f_{0}<f_{1}=\binom{n}{2}$. So assume $1 \leq k \leq n-2$. Since we have $(k+1) f_{k+1}=\sum_{F} \delta(F)$, where the sum is over all $F \in \mathcal{F}_{k}$, it suffices to show $\sum_{F} \delta(F)>(n-1) f_{k}$ to prove the theorem. However, we have $\sum_{F} \delta(F) \geq(n-1) f_{k}$ by Lemma 1. To obtain strict inequality, we will show that there is some $F \in \mathcal{F}_{k}$ with $\delta(F)>n-1$. Since $k \leq n-2$, every $F \in \mathcal{F}_{k}$ has at least two components. Now let $F \in \mathcal{F}_{k}$ be any forest in which one of the components has exactly two vertices. Then since $n \geq 4$, we have $\delta(F) \geq 2(n-2)>n-1$ by a similar argument as in the proof of Lemma 1 .

Now that the monotonicity of $f_{K_{n}}(n \geq 1)$ is proved by counting methods, it is natural to ask if there is a combinatorial proof for this. We will answer this question affirmatively by constructing injective mappings $L: \mathcal{F}_{k} \rightarrow \mathcal{F}_{k+1}$ for $0 \leq k \leq n-2$. Given $F \in \mathcal{F}_{k}$, we define $L(F) \in \mathcal{F}_{k+1}$ as follows (see Figures 1 and 2 below):
Case 1. Suppose the vertices 1 and 2 do not belong to the same component of F. Then define $L(F)=F \cup e$ where e is the edge $\{1,2\}$. Clearly we have $L(F) \in \mathcal{F}_{k+1}$. Case 2. If the vertices 1 and 2 belong to the same component C of F, then there will be a unique path P in C from 1 to 2 . Let $e_{1}=\{1, v\}$ be the unique edge in P that is incident to 1 . Since $k \leq n-2, F$ has at least two components and $[n] \backslash V(C) \neq \emptyset$. Now let v^{\prime} be the minimum vertex in $[n] \backslash V(C)$. Then define $L(F)=\left(F-e_{1}\right) \cup\left(e^{\prime} \cup e^{\prime \prime}\right)$ where $e^{\prime}=\left\{1, v^{\prime}\right\}$ and $e^{\prime \prime}=\left\{v^{\prime}, v\right\}$. In other words we lift the first edge e_{1} to $e^{\prime} \cup e^{\prime \prime}$ via the vertex v^{\prime}. In this case we also have $L(F) \in \mathcal{F}_{k+1}$
because deleting e_{1} divides C into two components and adjoining e^{\prime} and $e^{\prime \prime}$ simply connects each of these component to another component of F.

Note that every $F^{\prime} \in \mathcal{F}_{k+1}$ which is in the image $L\left(\mathcal{F}_{k}\right)$ has vertices 1 and 2 in the same component. Now we check that L is injective. Indeed if $F^{\prime}=L(F)$ for some $F \in \mathcal{F}_{k}$, then one can recover the unique preimage F of F^{\prime} by deleting the edge e in case 1 and that in case 2 by unlifting the first two edges of the unique path from 1 to 2 in $L(F)$, i.e. deleting e^{\prime} and $e^{\prime \prime}$ from $L(F)$ and adjoining e_{1} back.

Figure 1. Mapping L : case 1 - vertices 1 and 2 are in distinct components

Figure 2. Mapping L : case 2 - vertices 1 and 2 are in the same component
We now proceed to extend the result of Theorem 2 to the following classes of graphs. Let $\mathcal{K}_{n}(n \geq 1)$ denote the set of all finite graphs G with the vertex set $[n]$ that are obtained from K_{n} by allowing multiple edges, but no loops.
Corollary 3. Let $G \in \mathcal{K}_{n}(n \geq 1)$. Then f_{G} is increasing, hence unimodal.
Proof. The proof is by double induction on n and the number of edges in G. The result is clear for $n=1$. Let $G \in \mathcal{K}_{n}$ for $n>1$, and assume f_{H} is increasing for any $H \in \mathcal{K}_{r}(1 \leq r<n)$. Suppose $|E(G)|=\binom{n}{2}$. Then $G=K_{n}$ and f_{G} is increasing by Theorem 2. Now suppose $|E(G)|>\binom{n}{2}$ and let e be an edge in $G \backslash K_{n}$. Let $G-e$ be the graph obtained by deleting the edge e and G / e the graph obtained by contracting e. Then since e is neither an isthmus nor a loop, we have the following deletion-contraction recursions

$$
f_{i}(G)=f_{i}(G-e)+f_{i-1}(G / e)
$$

for all $0 \leq i \leq n-1$, where $f_{-1}(G)=0$ for any graph G. However, we have $G / e \in$ \mathcal{K}_{n-1} and by the induction hypothesis on $n, f_{G / e}=\left(f_{0}(G / e), \ldots, f_{n-2}(G / e)\right)$ is increasing. Moreover, by the induction hypothesis on the number of edges, $f_{G-e}=$ $\left(f_{0}(G-e), \ldots, f_{n-1}(G-e)\right)$ is also increasing. Therefore f_{G}, being the "sum" of two increasing sequences, is also increasing and the proof is complete.

It is also worth noting the monotonicity in the case of rooted forests in K_{n}. A rooted forest in K_{n} with t components $(1 \leq t \leq n)$ is a pair $R=(F, \mathbf{v})$ where the support F of R is a forest in \mathcal{F}_{n-t} and the roots \mathbf{v} is the set of t vertices, exactly one vertex from each component of F. We denote the set of all such rooted forests by \mathcal{R}_{t} and $r_{t}:=\left|\mathcal{R}_{t}\right|$. Note that r_{t} is also the number of spanning trees in K_{n+1} in which the degree of the vertex $n+1$ is t. From this one can show that r_{t} is the t-th term in the following binomial expansion for the number of spanning trees in $K_{n+1}:(n+1)^{n-1}=\sum_{t=1}^{n}\binom{n-1}{t-1} n^{n-t}$. For example, $r_{1}=n^{n-1}$ and $r_{n}=1$. It follows that for $n \geq 1$ the sequence of the number of rooted forests in K_{n}, which we will denote by $r_{K_{n}}$, is strictly monotone decreasing: $r_{1}>r_{2}>\cdots>r_{n}$.

3. Unimodality for $K_{n, n}$

The main result of this section will show that the sequence $f_{0}, f_{1}, \ldots f_{2 n-2}$, for $K_{n, n}$ (i.e., the f-sequence of $K_{n, n}$ except the very last term) is strictly increasing. We remark that $f_{2 n-2}<f_{2 n-1}$ is not true. In fact, we believe $f_{2 n-2} \geq f_{2 n-1}$ in general. For example, $K_{2,2}$ is the cycle of length 4 , and $f_{K_{2,2}}=(1,4,6,4)$. In any case we will see that $f_{K_{n, n}}$ is unimodal for $n \geq 1$. In this section we assume $\mathcal{F}_{k}=\mathcal{F}_{k}\left(K_{n, n}\right)$ for $0 \leq k \leq 2 n-1$. Also for every $F \in \mathcal{F}_{k}, \delta(F)$ denotes the degree of F in $B_{k}\left(K_{n, n}\right)$.

Lemma 4. Let $n \geq 3$ and $0 \leq k \leq 2 n-3$. Then $\delta(F) \geq 2 n-2$ for every $F \in \mathcal{F}_{k}$.
Proof. Suppose the two partite sets of $K_{n, n}$ are A and B with $|A|=|B|=n$. Let $F \in \mathcal{F}_{k}$ and let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of F. For all $i \in[t]$, let $A_{i}=C_{i} \cap A$ and $B_{i}=C_{i} \cap B$, and let $a_{i}=\left|A_{i}\right|$ and $b_{i}=\left|B_{i}\right|$. Assume without loss of generality that for $s_{i}=a_{i}+b_{i}$ we have that $1 \leq s_{1} \leq s_{2} \leq s_{3} \leq \cdots \leq s_{t}$. Clearly we have $s_{1}+\cdots+s_{t}=2 n$. Furthermore, since $k \leq 2 n-3$ implies $t \geq 3$, it follows that $s_{1}, s_{2}<n$. Recall that $\delta(F)$ is the number of edges $e \in E\left(K_{n, n}\right)$ such that $F \cup e \in \mathcal{F}_{k+1}$. Now let $d(F)$ be the number of edges $e=\{v, w\}$ such that $F \cup e \in \mathcal{F}_{k+1}$ and at least one of v and w belongs to $V\left(C_{1}\right) \cup V\left(C_{2}\right)$. Clearly we have $\delta(F) \geq d(F)$ and one can check that

$$
d(F)=b_{1}\left(n-a_{1}\right)+a_{1}\left(n-b_{1}\right)+b_{2}\left(n-a_{2}\right)+a_{2}\left(n-b_{2}\right)-a_{1} b_{2}-b_{1} a_{2}
$$

We will prove the lemma by showing that $d(F) \geq 2 n-2$.
Case 1: $s_{1}=s_{2}=1$.
Using $s_{i}=a_{i}+b_{i}(i=1,2)$, one can rewrite $d(F)=\left(s_{1}+s_{2}\right) n-2\left(a_{1} b_{1}+a_{2} b_{2}\right)-$ $\left(a_{1} b_{2}+a_{2} b_{1}\right)$. Since $s_{1}=1$, we have either $a_{1}=0$ or $b_{1}=0$, hence $a_{1} b_{1}=0$. Similarly, $s_{2}=1$ implies $a_{2} b_{2}=0$. Moreover it is easy to check that $a_{1} b_{2}+a_{2} b_{1}$ is at most 1 in this case. Therefore $d(F) \geq 2 n-1$.
Case 2: $2 \leq s_{2} \leq n-1$.
First we will rewrite $d(F)=D_{1}+D_{2}$, where $D_{1}=b_{1}\left(n-a_{1}\right)+a_{1}\left(n-b_{1}\right)-a_{1} b_{2}-b_{1} a_{2}$ and $D_{2}=b_{2}\left(n-a_{2}\right)+a_{2}\left(n-b_{2}\right)$. Now, we have $D_{1}=b_{1}\left(n-\left(a_{1}+a_{2}\right)\right)+a_{1}(n-$ $\left(b_{1}+b_{2}\right)$), which is easily seen to be non-negative. Therefore, it suffices to show that $D_{2} \geq 2 n-2$. However we have $D_{2}=s_{2} n-2 a_{2} b_{2} \geq s_{2} n-s_{2}^{2} / 2$, where the last inequality follows because the maximum of $a_{2} b_{2}$ is obtained when $a_{2}=b_{2}=s_{2} / 2$.

Furthermore one checks easily that when $n \geq 3, s_{2} n-s_{2}^{2} / 2$ is monotone increasing for $2 \leq s_{2} \leq n-1$, hence its minimum is obtained when $s_{2}=2$. Now it follows that $D_{2} \geq 2 n-2$.
Theorem 5. Let $n \geq 2$ and let f_{k} denote the number of forests with k edges in $K_{n, n}$ for $0 \leq k \leq 2 n-1$. Then $f_{k}<f_{k+1}$ for all $0 \leq k \leq 2 n-3$. In particular the sequence $f_{K_{n, n}}=\left(f_{0}, f_{1}, \ldots, f_{2 n-1}\right)$ is unimodal.
Proof: We have already seen the case for $n=2$. So assume $n \geq 3$. Since we have $(k+1) f_{k+1}=\sum_{F} \delta(F)$ for $0 \leq k \leq 2 n-3$, where the sum is over all $F \in \mathcal{F}_{k}$, it suffices to show $\sum_{F} \delta(F)>(2 n-2) f_{k}$. However, we have $\sum_{F} \delta(F) \geq(2 n-2) f_{k}$ by Lemma 4 . Moreover we saw in Case 1 of Lemma 4 that there is a forest $F \in \mathcal{F}_{k}$ with $\delta(F) \geq d(F) \geq 2 n-1$. Therefore we have the strict inequality $\sum_{F} \delta(F)>$ $(2 n-2) f_{k}$, which completes the proof.

References

[1] T. Dowling, On the Independent Set Numbers of a Finite Matroid, Ann. Discrete Math. (1980), pp. 21-28.
[2] C. Mahoney, On the unimodality of the independent set numbers of a class of matroids J. Comb. Theory (B) 39 (1985), pp. 77-85.
[3] J. H. Mason Matroids: Unimodal conjectures and Motzkin's theorem, in Combinatorics (Proceedings Conference on Combinatorial Math., Math. Institute of Oxford), Inst. Math. Appl., Southend-on-Sea, England (1972) pp. 207-220.
[4] J. Oxley, Matroid Theory, Oxford University Press, 1992.
[5] D. Welsh Combinatorial Problems in Matroid Theory, in Combinatorial Mathematics and its application, Academic Press, 1971.
E-mail address: eaton@math.uri.edu, andrewk@math.uri.edu, thoma@math.uri.edu
Department of Mathematics, University of Rhode Island, Kingston, RI 02881

[^0]: Key words and phrases. complete (bipartite) graphs, unimodal sequences.

