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Abstract. Given a graph G, let fk be the number of forests of cardinality k
in G. Then the sequence (fk) has been conjectured to be unimodal for any
graph G. In this paper we confirm this conjecture for Kn and Kn,n by showing
that the sequence for Kn is strictly increasing (when n ≥ 4) and the sequence
for Kn,n is strictly increasing except for the very last term. As a corollary
we also confirm the conjecture for the complete graphs with multiple edges
allowed.

1. Introduction

Let G be a finite graph with N vertices and let 0 ≤ k ≤ N−1. A spanning forest
of cardinality k in G is a subgraph F with V (F ) = V (G) such that each component
of F is a tree and the number of edges in F is k. Let fk(G) (or simply fk) denote
the number of spanning forests of cardinality k in G and we define the f -sequence
of G, denoted by fG, to be the sequence (f0, f1, . . . , fN−1). In matroid theoretic
terms this is the sequence of independent set numbers of the cycle matroid of G.
(Refer to [4] for definitions from matroid theory.)

It has been conjectured that fG for any finite graph G is unimodal. Refer to [3]
and [5] for this conjecture and a matroid theoretic generalization of this. From [1],
one can deduce that fG for any graph G with at most 9 vertices will be unimodal.
In [2] it was shown that fG for any planar graph G is unimodal.

In this paper we establish the unimodality of fG when G is the complete graph
Kn or the symmetric complete bipartite graph Kn,n as follows. Define fG to be
(monotone) increasing and strictly increasing if fk ≤ fk+1 and fk < fk+1, respec-
tively, for all 0 ≤ k ≤ N−2. We will show that fKn is monotone increasing for n ≥ 1
and strictly increasing for n ≥ 4, and that fKn,n is strictly increasing except for the
very last term for n ≥ 1. In particular we will have shown that fKn and fKn,n are
unimodal. As a corollary we will also show via deletion-contraction recursions for
f -sequences that allowing multiple edges in Kn will preserve the monotonicity of
the f -sequence. Now we will fix some notations and terminology that will be used
throughout the paper.

Notations and terminology.
1. For 0 ≤ k ≤ N − 1, Fk(G), or Fk when G is understood, will denote the set of
all spanning forests of cardinality k in G. Hence fk = fk(G) = |Fk(G)|.
2. For 0 ≤ k ≤ N − 2, Bk(G) will denote the bipartite graph with the bipartition
Fk ∪Fk+1 where F ∈ Fk and F ′ ∈ Fk+1 are adjacent if and only if F is a subgraph
of F ′.
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3. For each F ∈ Fk, δ(F ) will denote the degree of F in Bk(G). Then δ(F ) equals
the number of edges e in G such that F ∪ e ∈ Fk+1. Note that for every F ′ ∈ Fk+1

the degree of F ′ in Bk(G) is always k + 1. It follows that

(k + 1)fk+1 =
∑

F∈Fk

δ(F ) .

2. Monotonicity for complete graphs

Let Kn (n ≥ 1) be the complete graph with the vertex set [n] = {1, 2, . . . , n}. We
see that fKn

is monotone increasing for n = 1, 2, and 3 from fK1 = (1), fK2 = (1, 1),
and fK3 = (1, 3, 3). The main result of this section will show that fKn

is strictly
increasing for n ≥ 4. Therefore we will have shown that the fKn

is unimodal for all
n ≥ 1. In this section we assume Fk = Fk(Kn) for 0 ≤ k ≤ n− 1. Also for F ∈ Fk,
δ(F ) will be the degree of F in Bk(Kn).

Lemma 1. Let 0 ≤ k ≤ n− 2. Then δ(F ) ≥ n− 1 for all F ∈ Fk.

Proof. Given F ∈ Fk, let C be a component of F and let c = |V (C)|. Since
k ≤ n− 2, F has at least two components and we must have 1 ≤ c ≤ n− 1. Let e
be an arbitrary edge between a vertex in V (C) and a vertex V (Kn) \ V (C). Then
clearly we have F ∪ e ∈ Fk+1 and F is adjacent to F ∪ e in Bk(Kn). Therefore
δ(F ) is at least c(n − c). Now we note that c(n − c) ≥ (n − 1) for 1 ≤ c ≤ n − 1
and the lemma follows. 2

Examples. fK4 = (1, 6, 15, 16), fK5 = (1, 10, 45, 110, 125), and
fK6 = (1, 15, 105, 435, 1080, 1296).

Theorem 2. The sequence fKn is monotone increasing for 1 ≤ n ≤ 3 and strictly
increasing for n ≥ 4. In particular, fKn is unimodal for all n ≥ 1.

Proof. We have already checked the cases for 1 ≤ n ≤ 3. So assume n ≥ 4.
Clearly we have 1 = f0 < f1 =

(
n
2

)
. So assume 1 ≤ k ≤ n − 2. Since we

have (k + 1)fk+1 =
∑

F δ(F ), where the sum is over all F ∈ Fk, it suffices to show∑
F δ(F ) > (n−1)fk to prove the theorem. However, we have

∑
F δ(F ) ≥ (n−1)fk

by Lemma 1. To obtain strict inequality, we will show that there is some F ∈ Fk

with δ(F ) > n − 1. Since k ≤ n − 2, every F ∈ Fk has at least two components.
Now let F ∈ Fk be any forest in which one of the components has exactly two
vertices. Then since n ≥ 4, we have δ(F ) ≥ 2(n− 2) > n− 1 by a similar argument
as in the proof of Lemma 1. 2

Now that the monotonicity of fKn (n ≥ 1) is proved by counting methods, it is
natural to ask if there is a combinatorial proof for this. We will answer this question
affirmatively by constructing injective mappings L : Fk → Fk+1 for 0 ≤ k ≤ n− 2.
Given F ∈ Fk, we define L(F ) ∈ Fk+1 as follows (see Figures 1 and 2 below):
Case 1. Suppose the vertices 1 and 2 do not belong to the same component of F .
Then define L(F ) = F ∪e where e is the edge {1, 2}. Clearly we have L(F ) ∈ Fk+1.
Case 2. If the vertices 1 and 2 belong to the same component C of F , then there
will be a unique path P in C from 1 to 2. Let e1 = {1, v} be the unique edge
in P that is incident to 1. Since k ≤ n − 2, F has at least two components and
[n] \ V (C) 6= ∅. Now let v′ be the minimum vertex in [n] \ V (C). Then define
L(F ) = (F − e1) ∪ (e′ ∪ e′′) where e′ = {1, v′} and e′′ = {v′, v}. In other words we
lift the first edge e1 to e′∪e′′ via the vertex v′. In this case we also have L(F ) ∈ Fk+1
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because deleting e1 divides C into two components and adjoining e′ and e′′ simply
connects each of these component to another component of F .

Note that every F ′ ∈ Fk+1 which is in the image L(Fk) has vertices 1 and 2 in
the same component. Now we check that L is injective. Indeed if F ′ = L(F ) for
some F ∈ Fk, then one can recover the unique preimage F of F ′ by deleting the
edge e in case 1 and that in case 2 by unlifting the first two edges of the unique
path from 1 to 2 in L(F ), i.e. deleting e′ and e′′ from L(F ) and adjoining e1 back.
2
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Figure 1. Mapping L: case 1 – vertices 1 and 2 are in distinct components
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Figure 2. Mapping L: case 2 – vertices 1 and 2 are in the same component

We now proceed to extend the result of Theorem 2 to the following classes of
graphs. Let Kn (n ≥ 1) denote the set of all finite graphs G with the vertex set [n]
that are obtained from Kn by allowing multiple edges, but no loops.

Corollary 3. Let G ∈ Kn (n ≥ 1). Then fG is increasing, hence unimodal.

Proof. The proof is by double induction on n and the number of edges in G. The
result is clear for n = 1. Let G ∈ Kn for n > 1, and assume fH is increasing for any
H ∈ Kr (1 ≤ r < n). Suppose |E(G)| =

(
n
2

)
. Then G = Kn and fG is increasing

by Theorem 2. Now suppose |E(G)| >
(
n
2

)
and let e be an edge in G \ Kn. Let

G− e be the graph obtained by deleting the edge e and G/e the graph obtained by
contracting e. Then since e is neither an isthmus nor a loop, we have the following
deletion-contraction recursions

fi(G) = fi(G− e) + fi−1(G/e)
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for all 0 ≤ i ≤ n− 1, where f−1(G) = 0 for any graph G. However, we have G/e ∈
Kn−1 and by the induction hypothesis on n, fG/e = (f0(G/e), . . . , fn−2(G/e)) is
increasing. Moreover, by the induction hypothesis on the number of edges, fG−e =
(f0(G − e), . . . , fn−1(G − e)) is also increasing. Therefore fG, being the “sum” of
two increasing sequences, is also increasing and the proof is complete. 2

It is also worth noting the monotonicity in the case of rooted forests in Kn. A
rooted forest in Kn with t components (1 ≤ t ≤ n) is a pair R = (F,v) where the
support F of R is a forest in Fn−t and the roots v is the set of t vertices, exactly
one vertex from each component of F . We denote the set of all such rooted forests
by Rt and rt := |Rt|. Note that rt is also the number of spanning trees in Kn+1

in which the degree of the vertex n + 1 is t. From this one can show that rt is the
t-th term in the following binomial expansion for the number of spanning trees in
Kn+1: (n + 1)n−1 =

∑n
t=1

(
n−1
t−1

)
nn−t. For example, r1 = nn−1 and rn = 1. It

follows that for n ≥ 1 the sequence of the number of rooted forests in Kn, which
we will denote by rKn

, is strictly monotone decreasing: r1 > r2 > · · · > rn.

3. Unimodality for Kn,n

The main result of this section will show that the sequence f0, f1, . . . f2n−2, for
Kn,n (i.e., the f -sequence of Kn,n except the very last term) is strictly increasing.
We remark that f2n−2 < f2n−1 is not true. In fact, we believe f2n−2 ≥ f2n−1 in
general. For example, K2,2 is the cycle of length 4, and fK2,2 = (1, 4, 6, 4). In
any case we will see that fKn,n is unimodal for n ≥ 1. In this section we assume
Fk = Fk(Kn,n) for 0 ≤ k ≤ 2n−1. Also for every F ∈ Fk, δ(F ) denotes the degree
of F in Bk(Kn,n).

Lemma 4. Let n ≥ 3 and 0 ≤ k ≤ 2n− 3. Then δ(F ) ≥ 2n− 2 for every F ∈ Fk.

Proof. Suppose the two partite sets of Kn,n are A and B with |A| = |B| = n.
Let F ∈ Fk and let C1, C2, . . . , Ct be the components of F . For all i ∈ [t], let
Ai = Ci ∩ A and Bi = Ci ∩ B, and let ai = |Ai| and bi = |Bi|. Assume without
loss of generality that for si = ai + bi we have that 1 ≤ s1 ≤ s2 ≤ s3 ≤ · · · ≤ st.
Clearly we have s1 + · · ·+ st = 2n. Furthermore, since k ≤ 2n− 3 implies t ≥ 3, it
follows that s1, s2 < n. Recall that δ(F ) is the number of edges e ∈ E(Kn,n) such
that F ∪ e ∈ Fk+1. Now let d(F ) be the number of edges e = {v, w} such that
F ∪ e ∈ Fk+1 and at least one of v and w belongs to V (C1) ∪ V (C2). Clearly we
have δ(F ) ≥ d(F ) and one can check that

d(F ) = b1(n− a1) + a1(n− b1) + b2(n− a2) + a2(n− b2)− a1b2 − b1a2 .

We will prove the lemma by showing that d(F ) ≥ 2n− 2.
Case 1: s1 = s2 = 1.
Using si = ai + bi (i = 1, 2), one can rewrite d(F ) = (s1 + s2)n− 2(a1b1 + a2b2)−
(a1b2 + a2b1). Since s1 = 1, we have either a1 = 0 or b1 = 0, hence a1b1 = 0.
Similarly, s2 = 1 implies a2b2 = 0. Moreover it is easy to check that a1b2 + a2b1 is
at most 1 in this case. Therefore d(F ) ≥ 2n− 1.
Case 2: 2 ≤ s2 ≤ n− 1.
First we will rewrite d(F ) = D1+D2, where D1 = b1(n−a1)+a1(n−b1)−a1b2−b1a2

and D2 = b2(n− a2) + a2(n− b2). Now, we have D1 = b1(n− (a1 + a2)) + a1(n−
(b1 + b2)), which is easily seen to be non-negative. Therefore, it suffices to show
that D2 ≥ 2n− 2. However we have D2 = s2n− 2a2b2 ≥ s2n− s2

2/2, where the last
inequality follows because the maximum of a2b2 is obtained when a2 = b2 = s2/2.
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Furthermore one checks easily that when n ≥ 3, s2n− s2
2/2 is monotone increasing

for 2 ≤ s2 ≤ n − 1, hence its minimum is obtained when s2 = 2. Now it follows
that D2 ≥ 2n− 2. 2

Theorem 5. Let n ≥ 2 and let fk denote the number of forests with k edges in
Kn,n for 0 ≤ k ≤ 2n− 1. Then fk < fk+1 for all 0 ≤ k ≤ 2n− 3. In particular the
sequence fKn,n

= (f0, f1, . . . , f2n−1) is unimodal.

Proof: We have already seen the case for n = 2. So assume n ≥ 3. Since we have
(k + 1)fk+1 =

∑
F δ(F ) for 0 ≤ k ≤ 2n − 3, where the sum is over all F ∈ Fk, it

suffices to show
∑

F δ(F ) > (2n − 2)fk. However, we have
∑

F δ(F ) ≥ (2n − 2)fk

by Lemma 4. Moreover we saw in Case 1 of Lemma 4 that there is a forest F ∈ Fk

with δ(F ) ≥ d(F ) ≥ 2n − 1. Therefore we have the strict inequality
∑

F δ(F ) >
(2n− 2)fk, which completes the proof. 2
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