
Structures for Manipulating Proposed Updates

In Object-Oriented Databases�

Michael Doherty, Richard Hull and Mohammed Rupawalla

Computer Science Department, University of Colorado

fdoherty, hull, mohammedg@cs.colorado.edu

Abstract

Support for virtual states and deltas between them is useful
for a variety of database applications, including hypothetical

database access, version management, simulation, and

active databases. The Heraclitus paradigm elevates delta

values to be \�rst-class citizens" in database programming

languages, so that they can be explicitly created, accessed

and manipulated.
A fundamental issue concerns the trade-o� between the

\accuracy" or \robustness" of a form of delta representation,

and the ease of access and manipulation of that form. At
one end of the spectrum, code-blocks could be used to

represent delta values, resulting in a more accurate capture

of the intended meaning of a proposed update, at the cost

of more expensive access and manipulation. In the context

of object-oriented databases, another point on the spectrum

is \attribute-granularity" deltas which store the net changes

to each modi�ed attribute value of modi�ed objects.

This paper introduces a comprehensive framework for

specifying a broad array of forms for representing deltas for

complex value types (tuple, set, bag, list, o-set and dictio-
nary). In general, the granularity of such deltas can be ar-

bitrarily deep within the complex value structure. Applica-

tions of this framework in connection with hypothetical ac-
cess to, and \merging" of, proposed updates are discussed.

1 Introduction

Support for virtual database states and deltas between
them is useful for a variety of database applications,
including hypothetical access to proposed updates,
version management, active databases, and simulation.
The Heraclitus paradigm [HJ91, JH91, GHJ96] elevates
delta values to be \�rst-class citizens" in database
programming languages (DBPLs), so that programmers
can explicitly create, access and manipulate them. A

�This researchwas supported in part by NSF grant IRI-931832,
and ARPA grants BAA-92-1092 and 33825-RT-AAS.

relational version of Heralictus called Heraclitus[Alg,C]
has been implemented [GHJ+93, GHJ96]. We are
currently implementing a version of Heraclitus for
object-oriented databases (OODBs); this is called the
Heraclitus[OO] DBPL, abbreviated as \H2O DBPL"
[BDD+95, DHDD95].

To illustrate, we consider how Heraclitus provides

hypothetical access to proposed updates. Suppose that
the current database state is DB, and that � is an
expression denoting an update. The delta�cation of �
is the expression `[< � >]'. Consider the expression
`d = [< � >]', where d is a variable ranging over

deltas. Evaluating this expression in state DB makes
no changes to DB, and assigns to d a delta that
corresponds to the net e�ect on DB that executing �

would have. The when operator in Heraclitus permits
hypothetical access to a database. For example, if
is a side-e�ect free expression (e.g., a query), then the
expression ` when d' yields the value that would take
in the state that would result from applying the value
of d to DB (i.e., the result of executing � on DB). This
permits relatively e�cient hypothetical access to the
e�ect of update �, without modifying the underlying
database state.

As an example of the application of Heraclitus func-
tionality, consider how a telephone company might sup-
port requests from customers to change their telephone
service. Such service orders are typically made on one
date, to become e�ective at some future date. Several
pending service orders might be related in some way.
In current systems it can be quite expensive to detect
conicts between related service orders, because the net
e�ect of a service order is buried in code and ad hoc

representations. As detailed in Section 2 below, if the
net e�ect of each service order is represented as a delta,
then such conicts can be detected in a relatively e�-
cient manner. Furthermore, in some cases there may be
ways to \resolve" the conicts by using special merge
operators on deltas.

A fundamental issue in the Heraclitus paradigm
concerns how delta values associated with a proposed
update are represented. Suppose that � is the value

306

associated with [< � >] when evaluated in state DB.
As detailed in Sections 2 and 4 below, � may become
\out of date", or \lose its intended meaning", if the
underlying state is changed. That is, if state DB is
updated to state DB0, then applying � to DB0 may
not have the same e�ect as executing � in state DB0.
There is a trade-o� between the expressive power (i.e.,
the ability to retain intended meaning) of a form of delta
representation and the ease of access and manipulation
of that form. One end of the spectrum is to use code-
blocks to represent delta values; in this case the delta
value accurately captures the intended meaning of a
proposed update even if the underlying database state is
changed. However, access to and manipulation of code-
block delta values can be prohibitively expensive. In the
context of object-oriented databases (OODBs) another
point on the spectrum is \attribute-granularity" deltas.
Speaking loosely, in an attribute-granularity delta,
changes to an object are represented by giving the new

values for modi�ed attributes. It is much cheaper to
access and manipulate attribute-granularity deltas than
code-block deltas, but they may lose their intended
meaning if the underlying database state is changed.

This paper introduces a comprehensive framework for
specifying a broad array of forms of delta representa-
tions in the context of OODBs. The focus is on delta
representations that are data-like (i.e., sets of concrete
structured values) rather than code-like (e.g., code-
blocks or expressions). Primary emphasis is given to
complex value types, for which the granularity of delta
representations can be at an arbitrarily deep level within
the complex value.

Section 2 gives more detail concerning how the Her-
aclitus paradigm can be used in connection with the
access and manipulation of proposed updates and in-
formally presents several forms of delta representa-
tion. Section 3 gives background about the Heracli-
tus paradigm and briey considers the prototype H2O

DBPL currently being implemented. Section 4 presents
the framework for specifying a broad array of forms of
delta representation for complex value types.

2 Motivating Examples

This section illustrates certain aspects of the Heraclitus
framework, to provide background and motivation for
the research presented here. We extend the discussion
of the Introduction by considering four scenarios based
on the detection of conicts between telephone service
orders (see also [DDD+96]). Scenarios 1 and 2 show
how deltas systematically provide hypothetical access
to future states of the system and how such access
is helpful in detecting conicts between service orders
as early as possible. These scenarios use a relatively
coarse but e�cient form of delta. Scenarios 3 and
4 introduce delta forms that are more semantically

Line (o17 : h cust : 'Molly'; number : '555';

features : f'vm'g i);
Line (o23 : h cust : 'Tom'; number : '123';

features : f'vm'g i);
Line (o48 : h cust : 'Sam'; number : '987';

features : f'vm'g i);
Line (o52 : h cust : 'Gwen'; number : '432';

features : f g i)

Figure 1: Four objects in database state DBa

expressive. These forms provide a natural mechanism
for computing the net e�ect of two proposed updates
through a mechanical \merging" operation on deltas,
thus yielding more e�ciency. An additional short
example illustrates how arithmetic functions can be
incorporated into a delta form.
For the scenarios, we suppose that the database

schema1 consists of a single class Line, instances
of which represent phone lines, with the following

speci�cation2:

Line: tuple (cust: string,

number: string,

features: set(string))

where cust holds a customer name and features holds
the set of features that the line currently supports (e.g.,
custom-ringing (cr), call-screening (cs), call-forwarding
(cf) and voice-mail (vm)).
A portion of the database state (DBa) representing

the situation at the beginning of the scenarios (Day 0)
is given in Figure 1. In this depiction, we list some of
the objects of class Line, along with their values.
We now consider the four scenarios in turn. The �rst

scenario illustrates the usefulness of deltas to support
hypothetical queries against proposed updates.

Scenario 1: [Conicts Due to Future Commitments]
Suppose that the features custom ringing and call
screening are incompatible. Consider the following se-
quence of events regarding Molly's line (number 555):
Day 0: Molly has voice mail
Day 10: She requests custom ringing, e�ective Day 30

Day 20: She requests call screening, e�ective Day 40

Day 30: Custom ringing installed
Day 40: Attempt to install call screening fails

When Day 40 arrives, the conict between custom ring-
ing and call screening is detected and the installation of
call screening fails. At this point the phone company

1This schema and the corresponding database state are

obviously quite simpli�ed for the purpose of illustration. Much
larger and more intricate examples arise in telecommunications
and other applications where proposed updates do not take

e�ect immediately (e.g., scheduling of transportation or ow of
inventory).

2In this paper we use a pidgin form of the O2 language to
specify types.

307

must inform Molly that she cannot have call screening
after all.

The outcome of this scenario is unfortunate, because
the phone company had all of the relevant information
on Day 20, when Molly placed the second request.
However, in many application environments the impacts
of proposed updates are buried in code and/or ad hoc

representations, and not easily accessible. 2

We now describe one approach by which the conict
between the two requests can be detected on Day 20,
when the second request is made. As mentioned in the
Introduction, an arbitrary expression � can be delta�ed

as `[< � >]'. Evaluation of this expression in a given
database state DB yields a delta value that captures
the intent of � (at least in the context of state DB), but
does not change the state DB.

Scenario 1 (continued): [Using Look-ahead to Prevent
Conicts] Let �1 be the expression that modi�es the
database state to reect the installation of custom
ringing to Molly's line, and �2 be analogous for call
screening. On Day 10, when Molly makes her �rst
request, the system can compute �og

1 = [< �1 >] in
the current state, namely in state DBa (see Figure
1). Under a very simple and inexpensive form of delta
representation, called \object-granularity" (indicated
by the og superscript), this yields the �rst delta value
shown in Figure 2. This delta indicates how the value of
o17 needs to be changed in order to reect the proposed
update �1.

Suppose that q is a query that checks whether a
customer request r applied to the current database state
will lead to a constraint violation. On Day 20, if q is
evaluated with r corresponding to the request for call
screening, the answer will be \no conict", because �1
has not yet been executed against the state. On the
other hand, the query q when �

og

1 , which corresponds
to asking q against the hypothetical future state of Day
30 or later, will yield \conict". Furthermore, because
�og

1 is stored essentially as a data value, the answer to
q when �og

1 is typically much cheaper to compute than
performing some computation involving q and �1. 2

The preceding scenario shows in principle the useful-
ness of providing hypothetical access to the future states
of the system, based on proposed updates (i.e., service
orders) that have been made to date. We now illustrate
how deltas can be used to provide systematic support
for hypothetical access against more than one proposed
update.

Scenario 2: [Look-ahead with Multiple Deltas] Consider
the following sequence of events with respect to Tom's
line (number 123):

Day 0: Tom has voice mail

Day 10: He requests call screening, e�ective Day 30

Day 20: He requests to change his number (to 999),
e�ective Day 40

Day 30: Call screening installed

Day 40: Number changed to 999

Let �3 be the expression that calls for adding call screen-
ing to Tom's line, and �4 be the expression that changes
his phone number to 999. We can compute

�og

3 = [< �3 >]

�og

4 = [< �4 >] when �og

3

We use [< �4 >] when �
og

3 rather than the simpler
[< �4 >], because �4 will be executed on Day 40, in
the context of all updates that occurred before then,
i.e., in the context of the update �3, the net e�ect of
which is captured by �

og

3 .
Continuing with object-granularity deltas, the values

of �
og

3 and �
og

4 are shown in Figure 2. These two deltas
can be used to ask hypothetical queries against the fu-
ture as reected by proposed updates in the system as
follows:

On Days 10-20; For Days 30+: when �og

3

On Days 20-30; For Days 30-40: when �og

3

For Days 40+: when �
og

3 !�
og

4

After Day 30; For Days 40+: when �og

4

(The binary operator smash, denoted `!', corresponds
to a form of composition of deltas, and is discussed
in Sections 3 and 4. In this very trivial example,
�

og

3 !�
og

4 = �
og

4 .) 2

The advantage of object-granularity deltas is their
conceptual simplicity and computational e�ciency. How-
ever, they are quite limited in terms of expressive power.
The next scenario illustrates this and shows how this
limitation can be overcome by using more \precise"
delta forms.

Scenario 3: [Loss of Intended Meaning] For this sce-
nario, consider the following sequence of events concern-
ing Sam's line (number 987):
Day 0: Sam has voice mail
Day 10: He requests call screening, e�ective Day 40

Day 20: He requests a new number (111),

e�ective Day 30
Day 30: Number changed to 111

Day 40: Custom screening installed

Let us �rst attempt a naive application of the approach
used in the previous example. Let �5 be an expression
that will add call screening to Sam's line, and �6 an
expression that changes his phone number to 111. Fol-
lowing the previous example, we might compute

�og

5 = [< �5 >]

�og

6 = [< �6 >]

(See Figure 2.) Here [< �6 >] is not evaluated under a

308

Scenario 1:

�
og

1
=
�

mod Line :
�

mod o17 : h cust : 'Molly'; number : '555'; features : f'vm', 'cr'gi
	 	

Scenario 2:

�og

3
=
�

mod Line :
�

mod o23 : h cust : 'Tom'; number : '123'; features : f'vm', 'cs'gi
	 	

�
og

4
=
�

mod Line :
�

mod o23 : h cust : 'Tom'; number : '999'; features : f'vm', 'cs'gi
	 	

Scenario 3:

�og

5
=
�

mod Line :
�

mod o48 : h cust : 'Sam'; number : '987'; features : f'vm', 'cs'gi
	 	

�og

6
=
�

mod Line :
�

mod o48 : h cust : 'Sam'; number : '111'; features : f'vm'gi
	 	

�
ag

5 =
�

mod Line
�

mod o48 :
�

mod features : f'vm', 'cs'g)
	 	 	

�ag

6 =
�

mod Line :
�

mod o48 :
�

mod number : '111'
	 	 	

�ag

5 ! �ag

6 = �ag

6 ! �ag

5 =

�
mod Line :

�
mod o48 :

�
mod number : '111'
mod features : f'vm', 'cs'g

� � �

Scenario 4:

�ag

7
=
�

mod Line :
�

mod o52 :
�

mod features : f'vm'g
	 	 	

�ag

8 =
�

mod Line :
�

mod o52 :
�

mod features : f'cs'g
	 	 	

�ag

7
! �ag

8
= �ag

8
6= �ag

7
= �ag

8
! �ag

7

�sag

7 =
�

mod Line :
�

mod o52 :
�

mod features : fins 'vm'g
	 	 	

�sag

8 =
�

mod Line :
�

mod o52 :
�

mod features : fins 'cs'g
	 	 	

�sag

7 ! �sag

8 = �sag

8 ! �sag

7 =
�

mod Line :
�

mod o52 :
�

mod features : fins 'vm'; ins 'cs'g
	 	 	

Figure 2: Deltas associated with the four scenarios3

when, because �6 is to be applied on Day 30, before Day
40 when �5 is to be evaluated.
Under this approach, these object-granularity deltas

will not always give the correct hypothetical view of the
future. Suppose that on Day 35 the query \what is
Sam's phone number on Day 45?" is asked. Following
the approach of the previous example, we would ask the
query \what is Sam's phone number?" when �og

6 !�og

5 .
The value of the number attribute of o48 under the clause
when �6 !�

og

5 is 987 (see Figure 2), and so the answer
to this query is 987. However, if we trace through the
sequence of steps in the actual scenario, we see that
Sam's phone number on Day 45 will actually be 111.
The problem is that �og

5 is the value of [< �5 >] on
state DBa, but it is not the value of [< �5 >] on the state
of the database on Day 39, just before �5 is to be applied.
This is the price of using a value-based delta value such
as �og

5 rather than simply storing the expression �5: a
value-based delta value may \become out of date", or
\lose its intended meaning" if the underlying database
changes. To correct this, �og

5 should be replaced by

�og0

5 = [< �5 >] when �
og

6

after �og

6 is created on Day 20. 2

In this scenario, [< �5 >] had to be recomputed
because it became \out of date" due to the changes

3The deltas shown here modify a single object from a single
class. In general, a delta may modify several classes, and include

insertions, deletions, and modi�cations to more than one object
in those classes.

to the database state represented by �
og

6 . In this case,
we say that �og

5 conicts with �og

6 . Although the issue
of conict detection is beyond the scope of this paper
(see [DH95, DHDD95]), a conservative test for conict
is provided by smash commutativity (as will be seen in
Section 3). In particular, if �a ! �b 6= �b ! �a, then
�a and �b conict. Thus, �og

5 and �og

6 are viewed as
conicting.
Intuitively, the updates represented by �5 and �6 do

not conict, since they a�ect independent pieces of
data. However, �og

5 and �og

6 do interfere, because they
carry superuous information that is not relevant to
the corresponding update. We continue this example
by introducing a more \precise" delta form called
attribute-granularity that carries less superuous data,
and is therefore less likely to introduce spurious update
conicts.

Scenario 3 (continued): [Attribute-granularity Deltas]
The values of the attribute-granularity deltas

�
ag

5 = [< �5 >]

�
ag

6 = [< �6 >]

are shown in Figure 2. In this case, �
ag

5 ! �
ag

6 =
�ag

6 ! �ag

5 , and so they do not interfere with each
other. (The value of this smash is also shown in Figure
2.) Thus, if using attribute-granularity, the expression
[< �5 >] does not need to be re-evaluated on Day 20 of
Scenario 3. 2

In the �nal scenario, we illustrate the usefulness of an

309

even more re�ned form for deltas.

Scenario 4: [Structured Attribute-granularity] Consider
the following sequence of events with respect to Gwen's
line (number 432):
Day 0: Gwen has basic service

Day 10: She requests voice mail, e�ective Day 40
Day 20: She requests call screening, e�ective Day 30

Day 30: Call screening installed
Day 40: Voice mail installed

This is similar to Scenario 3, except that in this case
both requested updates a�ect the set of features as-
sociated with Gwen's phone. Let �7 (respectively �8)
be an expression that adds voice mail (call screening)
to Gwen's line. If using attribute-granularity deltas,
we would compute �

ag

7 = [< �7 >] on Day 10 and
�

ag

8 = [< �8 >] on Day 20. These values are shown
in Figure 2. Their smash does not commute, and they
conict with each other. To maintain up-to-date deltas,
the value �ag0

7 = [< �7 >] when �8 would need to be
computed on Day 20.

Similar to Scenario 3, the basic operations involved
(adding voice mail and adding call screening) are inde-
pendent. This suggests a further re�nement of the form
of delta values that is called, generically, \structured-
attribute-granularity". In this form, modi�cations to
the features attribute can be speci�ed in terms of in-
dividual insertions and deletions to the set. Deltas �

sag

7

and �
sag

8 with this form corresponding to [< �7 >] and
[< �8 >] are shown in Figure 2. These deltas do not
conict, and so �sag

7 does not need to be recomputed.
2

The following example illustrates that delta forms
might make use of various modi�cation functions, as
appropriate for a particular data type.

Example 2.1: [Attribute-granularity with Arithmetic]
Assume for this example that a Terminal Box (Tbox) is

a router that can route up to 100 lines. Suppose now
that the class Tbox has the following speci�cation:

Tbox: tuple (id: string,

slots_reserved: int,

slots_active: int,

slots_total: int)

Here, a slot is reserved if it will be used to support
a line that has been promised for some future date.
For this example, an appropriate form for deltas is to
permit arithmetic expressions of the form +n or �n for
the three integer �elds of Tbox. The following delta
corresponds to making three previously reserved lines
active:8<
:

mod Tbox :�
mod o84 :

�
mod slots active : +3
mod slots reserved : �3

� �
9=
;

Operation Algebra Language

creation

delta�cation trace(�; PS;DB) [< � >]

access

application apply(DB;�) apply �;

hypothetical � when �

combination

smash �1 ! �2 �1 smash �2

merge �1 & �2 �1 merge �2

Figure 3: Some of the Core Algebraic and Language
Operators of the H2O DBPL

In general, if +n occurs in a delta of this form, it
indicates that the function f(x) = x+n is to be applied
to the appropriate �eld of the speci�ed object.

As with the use of structured attribute-granularity
in connection with set-valued attributes, the use of
arithmetic expressions increases the ability of deltas
to preserve intended meaning. In this example, the
deltas will commute with other deltas that add or
subtract active and/or reserved lines (subject to the
constraint that slots active + slots reserved �

slots total). 2

3 The Framework of the H2O DBPL

A prototype implementation of the H2O DBPL is
currently being developed [BDD+95, DHDD95]. To
provide a context for the discussion of the current
paper, this section provides an overview of the syntax
and semantics of the language (in Subsections 3.1 and
3.2, respectively). Subsection 3.3 formally de�nes the
notion of \delta form", and lists several requirements
and desires in connection with choosing delta forms.
Subsection 3.4 illustrates the de�nition of a delta form
by specifying an object-granularity delta form.

3.1 The syntax of the H2O DBPL

The H2O DBPL is de�ned by incorporating a set of

algebraic operators for manipulating delta values and
database states into an existing DBPL. In the current
prototype we extend the standard ODMG [Cat93]
languages. Figure 3 shows some of the core algebraic
and language-based operators present in the H2O DBPL
(see [DHDD95] for other H2O DBPL operators).

As shown in the �gure, there are three basic groups of
delta operators, for creating, accessing, and combining
delta values. The language expression [< � >], if
evaluated in program state PS and database state3

3In this paper we distinguish between the program state,
which holds non-persistent data, and the database state, which
holds persistent data. Deltas range exclusively over the database

state. This distinction is motivated by our interest in database
applications; other variations are possible.

310

DB, yields trace(�; PS;DB), in the form of a delta
value which can be manipulated as a �rst-class object.
The value of trace(�; PS;DB) captures the sequence of
changes to the objects in the database that would occur
if the expression were actually executed. The resulting
delta value is dependent on the types of the a�ected
objects and the delta form being used (as explained
in Section 4). Although not considered in this paper,
the H2O DBPL also supports a reverse delta�cation

operator; this executes an expression � against the
database state, and returns a delta that would get back
to the original database state.

The �rst way to access a delta value is to apply it
(realize the change it represents to the database state).
The second way is hypothetically, via the when operator
in the language. The when operator has no equivalent
in the algebra, essentially because the algebra does not
support arbitrary expressions. The H2O DBPL also
supports an operator peek, that permits explicit access
to the internal value of a delta; this is not addressed
here.

The smash and merge operators for combining deltas
are discussed in the next two subsections.

3.2 The semantics of the H2O DBPL

A complete formal semantics of the H2O DBPL with
object-granularity deltas is given in [DHR96]; see also
[DHDD95]. We indicate here the elements of that
semantics that are needed for the discussion of this
paper. In particular, we introduce the valuation
functions that specify the meaning of the language
operators in terms of the underlying algebraic operators.
As will be shown below, the choice of the algebraic
operators is variable, allowing the same core language
constructs to be used in connection with a variety of
delta forms.

The semantics of some of the core H2O DBPL
operators are given by the valuation functions in Figure

4. The expression valuation function, E [[�]], maps
expressions from the syntactic domain of the H2O
DBPL to the semantic domain of algebraic objects.

States are viewed to be pairs (PS;DB) where PS

denotes the program state and DB denotes the database

state. Since the H2O DBPL is based on the ODMG
languages that extend C++, we follow the convention
that expressions can have side-e�ects on the state.
Thus,

E : Expression ! (ps � db)! (val � (ps � db))

Under E each expression yields a mapping from a state
to a value (the result of the expression) and a new state.
Similarly, statements are treated as expressions that
yield the null value. We use Eval[[�]], Eps[[�]], and Edb[[�]]
to give the value, program state, and database state
components of the output of E [[�]], respectively.

E[[[< � >]]](PS;DB) =
let (V; (PS0

;DB
0)) = E[[�]](PS;DB) in

(trace(�; PS;DB); (PS0

;DB))

E[[apply � ;]](PS;DB) =

let (�; (PS0

;DB
0)) = E[[�]](PS;DB) in

(NULL; (PS0

; apply(DB
0

;�)))

E[[� when �]](PS;DB) =

let (�; (PS0

;DB
0)) = E[[�]](PS;DB) in

let (V; (PS00

;DB
00)) = E[[�]](PS0

; apply(DB
0

;�)) in

(V; (PS00

;DB
0))

E[[�1 smash �2]](PS;DB) =

let (�1; (PS
0

;DB
0)) = E[[�1]](PS;DB) in

let (�2; (PS
00

;DB
00)) = E[[�2]](PS

0

;DB
0) in

(�1!�2; (PS
00

;DB
00))

Figure 4: Semantics of some H2O DBPL operators

Consider now the equation in Figure 4 giving the
semantics of delta�cation. First, the value of evaluating
[< � >] is a delta value capturing the e�ect the
expression � would have on the database state if
executed. The program state PS will change, exactly as
if � had been executed. The database state DB remains
unchanged, except possibly for the consumption of
\new" OIDs. The consumption of OIDs does not
materially a�ect a database state, and so it is ignored
in this paper.

The semantics of apply, when and smash are also
shown in Figure 4. (For when, the database state might
change because the evaluation of a delta expression may
consume OIDs, and because of other technical issues

beyond the scope of this paper; see [DHR96]).

3.3 Delta forms, requirements, and desires

In this subsection, we give a formal de�nition for delta
forms, which gives the basic structure for the framework
for specifying deltas for di�erent data types. We
then state three Requirements that a delta form must
satisfy, as well as several informal \desires" concerning
properties of delta forms.

A delta form over a type � is a �ve tuple

D = (D; [< >]D; applyD; smashD ;mergeD)

where

� D is a family of syntactic objects which includes fail.
(This is the set of delta values of the form.)

� [< � >]D : expressions ! (ps � db) ! D maps
expressions in the host language, in the context of a
program state and database state, into deltas.

311

� applyD : db � D ! (db [error), such that for all
states db, applyD(db; fail) = error. (This allows
each element � ofD to be viewed as a function from
database states to database states.)

� smashD : D�D ! D such that smashD(fail;�) =
smashD(�; fail) = fail for each � 2 D.

� mergeD : D �D ! D such that mergeD(fail ;�) =
mergeD(�; fail) = fail for each � 2 D.

The above de�nition is focused on structure rather
than implicit semantics. We now present some funda-
mental requirements placed on delta forms by the Her-
aclitus paradigm (see also [GHJ96]). The �rst focuses
on the relationship between delta�cation and apply:

Requirement 1 For each expression �,

Edb[[apply([< � >])]] = Edb[[�]]:

Intuitively, this states that evaluating the delta expres-
sion [< � >] to obtain a delta value � and then applying
� has the same e�ect on the database state as simply
executing �. Importantly, this is weaker than insisting
that for all pairs (PS;DB); (PS0; DB0) of states

apply(DB0; Eval[[[< � >]]](PS;DB)) = Edb[[�]](PS;DB0)

which would require that the delta value [< � >]

preserve the meaning of the expression � in all contexts,
not only the context in which [< � >] was computed.
In order to support this stronger condition, the delta
values would essentially have to be code-blocks, which
would violate Desire 1 below.

The next requirement states that combining deltas
using the smash (!) operator is, in a sense, equivalent
to sequential application:

Requirement 2 For each database state DB and pair

�1;�2 of delta values,

apply(DB;�1!�2) = apply(apply(DB;�1);�2):

The merge operator is intented to be used to combine
pairs of \non-conicting" or \non-interfering" deltas.
In general, a variety of application-dependent semantic
issues might be involved in choosing a merge operator
for a given context. Here, we focus on de�ning a natural
and simple merge operator de�ned by the following
requirement:

Requirement 3

�1 & �2 =

�
�1 ! �2 if �1 ! �2 = �2 ! �1

fail otherwise
:

We now informally present three \desires" which
describe desirable, but not required, properties for delta
forms. These desires can be used to design and select
\good" delta forms. The �rst desire states that deltas
should permit relatively e�cient hypothetical access to
proposed updates.

Desire 1 Suppose that variable d holds a delta variable.

Then the expense of evaluating an expression � when d

in a state DB should be comparable to the expense of

evaluating � in DB.

The next desire expresses the intuition that because
our deltas are primarily value-based, distinct deltas
should correspond to di�erent mappings from state to
state.

Desire 2 if 8 database states DB apply(DB;�1) =

apply(DB;�2), then �1 = �2.

The third desire attempts to enforce a strong semantic
correspondence between an expression � and the delta
associated with [< � >].

Desire 3 If � is a command that does not involve any

reads to the database, then the value of [< � >] is

independent of the database state.

3.4 Delta forms for object-granularity

To illustrate the notion of delta form, we now de�ne the
delta form for object-granularity deltas.
Let C be a class associated with a type � in some

OODB schema. We will de�ne a delta form

D
og = (Dog ; [< >]og ; applyog ; smashog ;mergeog)

to support the object-granularity semantics over C.
(This can be generalized to create deltas over the full
OODB schema, by viewing the schema as a tuple of
classes.)
Each element � of Dog is either fail or it is a possibly

empty �nite set containing: modi�cation atoms of the
form mod o : v where v 2 dom(�); insertion atoms of
the form ins o : v where v 2 dom(�); and deletion atoms

of the form del o. Object-granularity deltas are subject
to the following consistency condition: an OID o cannot
appear in two distinct atoms.
The value of the delta�cation operator [< � >]og in

state (PS;DB) is de�ned as traceog(�; PS;DB). An
informal description of this trace function is as follows:
� is executed in hypothetical mode. For each OID o

of type � mentioned by �, atomic commands to insert,
delete, or modify the value of o are recorded. The net
e�ect of � on o is incorporated into the �nal delta value.
The semantics of the algebraic apply and smash

operators for the object-granularity form of deltas are
given in tabular form in Figure 5. The information in

312

presence of o in

extent of C in DB

occurrence of o in �

absent mod(o : v2) ins(o : v2) del(o)

absent absent absent (o : v2) absent
(o : v1) (o : v1) (o : v2) (o : v2) absent

(a) Semantics of apply

occurrence of

o in �1

occurrence of o in �2

absent mod(o : v2) ins(o : v2) del(o)

absent absent mod(o : v2) ins(o : v2) del(o)

mod(o : v1) mod(o : v1) mod(o : v2) ins(o : v2) del(o)

ins(o : v1) ins(o : v1) ins(o : v2) ins(o : v2) del(o)

del(o) del(o) del(o) ins(o : v2) del(o)

(b) Semantics of smash (`!')

Figure 5: Semantics of apply and smash for object-granularity deltas

the three tables is essentially \pointwise", describing
what to do for each individual object or pair of objects
in the operands. This is possible because any particular
OID can be referenced by at most one element in a valid
delta.

Consider Figure 5(a), which de�nes applyog (DB;�).
A particular OID o is either absent from the extent
of class C in state DB, or present with value v1. In
the former case, o is present in the resulting state
apply(DB;�) only if ins(o : v2) 2 � for some v2. The
case where (o : v1) is present andmod(o : v2) 2 � is self-
explanatory. Suppose now that (o : v1) is in the extent
of C in DB and ins(o : v2) 2 �. Intuitively, in this case
we view the ins operator as having two components:
�rst insert the object if necessary, and then modify its

value.

The smash operator (�1!�2) for object-granularity
deltas is given in Figure 5(b). Smash is computed by
combining the elements of each delta which refer to the
same OID. If a particular OID is referenced in only one
delta, then the element from that delta appears in the
result. If the same OID is referenced by elements in
both deltas, the element which will appear in the result
is computed according to the table, which essential gives
precedence to the second delta in cases where there are
conicting operations.

The merge operator (�1&�2) for object-granularity
deltas is de�ned using a table analogous to Figure 5(b),
and satis�es Requirement 3 (see [DHR96]).

It is easy to verify that this delta form satis�es the
three requirements of Subsection 3.3. It is also relatively
straightforward to verify that it satis�es Desires 2 and
3. Current experiments with the prototype H2O DBPL
indicate that Desire 1 is also satis�ed by this delta form.

4 Deltas for Complex Value Types

This section presents a systematic and recursive frame-
work for specifying forms of deltas over complex value
types, which mirrors the internal, nested structure of
those types. These complex value types can be de�ned
using the usual type constructors, tuple, set, bag, and
list, and two additional constructors, o-set and dictio-

nary. Due to space limitations, set and list are omitted
from this paper; see [DHR96] for the complete speci�-
cation including these constructors.

In our framework, there are two dimensions involved
in the speci�cation of a delta form for a given complex
value type. The �rst involves the depth into the
internal structure of the type at which the delta value is
computed. The second involves the family of functions
that can be used in the delta value to specify how values
are modi�ed (as illustrated by Example 2.1).

For each type, including the base types, we permit the
user to specify a family (or several families) of functions
that can be used on values of that type. A proper family

of functions (PFF) over type � is a familyF of functions
from dom(�) to dom(�) that is closed under composition
and includes all constant functions. We write f � g

to denote the composition of applying f followed by
applying g. For any type � , the set of all constant
functions over � is a PFF over � . As another example, a
PFF over type integer is all constant functions and all
functions of the form f(x) = c1�x+c2, where c1; c2 are
integers. In some delta forms, a PFF might be de�ned
over a non-leaf subtype of a type.

Subsection 4.1 describes the individual constructors
used in our complex value types. Subsection 4.2
describes, for each constructor a canonical \template"
for constructing delta forms. Subsection 4.3 describes
how the templates can be combined to create a variety
of nested delta forms for arbitrary complex value types.

313

Theoretical results concerning these delta forms are also
presented.

4.1 A family of complex value types

To illustrate our framework for deltas we will use a
family of complex value types that captures many of
the data structures that arise frequently in OODBs. In
general, we assume that an OODB schema (i.e., class
hierarchy) is de�ned, where the type associated with
each class is a complex value type. (See, e.g., [AHV95]
for a discussion of how complex values are incorporated
into OODB schemas.)

A complex value type (which we will generally refer

to simply as type) is a tree � = (V;E; �) where V is
the set of nodes, E the set of edges, and � maps the
nodes in V to base types or type constructors. Each
leaf node is mapped by � to a base type (e.g., integer,
oat or string) or to a class in the OODB schema. Each
non-leaf node is mapped by � to a complex-value type
constructor, which may be one of ftuple, set, bag, list,
o-set, dict[b]g, where b ranges over base types. All nodes
mapped to set, bag, list, o-set, or dict[b] have exactly
one child. For a type � , dom(�) denotes the domain of
� , i.e., the set of values having type � . If � is a type and
n a node of � , then subtype(�; n) denotes the subtype
of � with root n.

Each base type is considered to be a complex-value
type. We now consider four of the constructors for
complex-value types, and then indicate how OODB
schemas are represented in our framework.

tuple: A type with tuple as the root type has the form
� = tuple(a1 : �1; : : : ; an : �n) where �i is a complex
value type for each i. Instances of this type have the
form ha1 : val1; : : : ; an : valni. The operators supported
for tuple types include the ability to change the value
of a coordinate by applying a function f to it (which
might be a constant function).

bag: Instances of types with form � = bag(�) have the
form f[v1 : cnt1; : : : ; vn : cntn]g where n � 0, each vi is a
distinct element of dom(�), and each cnti is a positive
integer. This bag has cnti copies of value vi in it. We
write cnt(T; vi) = cnti for each i, and cnt(T; v) = 0 for
each v such that v 62 fv1; : : : ; vng. Supported operations
on bags are to add or delete elements. Deleting an
element which is not present in a bag is a no-op.

o-set: We use an \o-set" type to model the structure
of OODB classes. We assume an in�nite set of object
identi�ers (OIDs), and the ability to consume distinct,
unused OIDs on demand. If an OODB class C has
associated type �, then the extent of C is an o-set of
type o-set(�).

An instance of type � = o-set(�) is a set S of pairs
having the form (o : v) where o is a distinct OID and
v 2 dom(�). The operators supported on o-sets of type

o-set(�) are (a) to insert a new element (o : v) where
o is a newly consumed OID, (b) to delete an element
(indicated simply by naming the OID to be deleted), or
(c) to modify the value of an element (o; v) by applying
some function f , i.e., to replace (o; v) by (o; f(v)) for
some function f : � ! �. Deletion of o for some o not
in the o-set is a no-op, as is modi�cation of (o; v) for o
not in the o-set.

dictionary: A dictionary (also called \map" or \as-
sociative array") is a binary relation whose �rst coor-
dinate has some base type and is a key. Instances of
types with form � = dict[b](�) are sets of pairs (s : v)
where s 2 dom(b) and v 2 dom(�). The dictionary can
be modi�ed by inserting or deleting pairs (subject to
the functional dependency), or by modifying the second
coordinate of a pair. (An o-set can be viewed as a spe-
cial kind of dictionary, where the elements of the �rst
coordinate are system generated.)

representing OODB schemas: Suppose now that
S is an OODB schema, consisting of a set of classes
C1; : : : ; Cn, each with associated types T1; : : : ; Tn. (For
the discussion here we ignore subtyping and inheritance
relationships between the classes.) An instance I of
S is de�ned to be a mapping that associates to each
class Ci an o-set of type o-set(Ti). Thus, we view the
topmost structure of instances of S to be of the form
tuple(C1 : o-set(T1); : : : ; Cn : o-set(Tn)).

4.2 Templates for delta forms

This subsection speci�es delta form \templates" for the
four complex value type constructors discussed here.
(Due to space limitations, some of these speci�cations
are incomplete, see [DHR96] for complete speci�cations,
as well as the templates for sets and lists). These
templates are combined to build nested delta forms in
the next subsection.

A template for type constructor is a �ve-tuple

C = (C; [< >]C; applyC ; smashC ;mergeC)

If is one of o-set, list, or dict[b], then such a
template takes as input a type � and a PFF F over
�. The output, denoted C(�;F), is a delta form
D for type (�). For tuple, such a template takes
as input a vector (�1; : : : ; �n) of types and vector
(F1; : : : ;Fn) of PFFs for these types. The output,
denoted C((�1; : : : ; �n); (F1; : : : ;Fn)), is a delta form
for type tuple(a1 : �1; : : : ; an : �n). Finally, if is set
or bag, such a template takes as input a type �. The
output, denoted C(�) is a delta form for type (�).

For each constructor under consideration we now
describe its canonical template, denoted as C .

o-set: Let � = o-set(�) for some �, and let F be a PFF
over �. In Co-set(�;F), a delta value over � is either

314

presence of o in

instance T of �

occurrence of o in �

absent mod(o : f) ins(o : v2) del(o)

absent absent absent (o : v2) absent
(o : v1) (o : v1) (o : f(v1)) (o : v2) absent

(a) Semantics of apply

occurrence of

o in �1

occurrence of o in �2

absent mod(o : g) ins(o : v2) del(o)

absent absent mod(o : g) ins(o : v2) del(o)

mod(o : f) mod(o : f) mod(o : f � g) ins(o : v2) del(o)

ins(o : v1) ins(o : v1) ins(o : g(v1)) ins(o : v2) del(o)

del(o) del(o) del(o) ins(o : v2) del(o)

(b) Semantics of smash (`!')

Figure 6: Semantics of apply and smash for canonical template for o-sets

fail or a �nite set containing: modi�cation atoms of the
form mod o : f where f 2 F ; insertion atoms of the
form ins o : v where v 2 dom(�); and deletion atoms

of the form del o, subject to the following consistency
condition: an OID o cannot appear in two distinct
atoms.

In order to compute the delta associated with [< � >]

on an o-set T of type � = o-set(�), � is executed
in hypothetical mode. For each OID o of type � ,
� can be viewed as a sequence of atomic operations,
�1; : : : ; �n. Let c1; : : : ; cn be the sequence of values of
the object with OID o, where ci is the value after the
(hypothetical) execution of �i. We can than compute a
sequence of atomic deltas, �1; : : : ; �n, as follows:

if �i is an insertion, then �i = ins o : ci
else if �i is a deletion, then �i = del o

else �i = mod o : fi, where
if �i is expressible as some f 2 F , then fi = f

otherwise fi = the constant function ci.

The single atom which will appear in the resulting delta
for OID o is computed by smashing the atomic deltas
�1 : : : �n in sequence. For modi�cation atoms, this
corresponds to taking the composition of the functions
fi. If any fi is a constant function, then the resulting
function will also be a constant function.

The semantics for apply and smash for delta form
Co-set(�;F) are shown in Figure 6. In that �gure,
symbols `f ' and `g' range over elements of F . The
semantics for merge can be derived from the semantics
of smash and Requirement 3.

Note that the operators associated with object-
granularity deltas as described in Section 2 (see Figure
5) correspond to a special case of the algebraic operators
for o-sets, in which the family F is chosen to be the
family of constant functions.

dictionary: Let � = dict[b](�) and let F be a PFF
over �. In Cdict[b](�;F), a delta over � is either fail or a
set of modi�cation atoms, insertion atoms, and deletion

atoms, analogous to deltas for o-sets. The semantics
for apply, smash, merge and delta�cation are essentially
identical to the semantics for o-sets, except that the
variable o ranging over OIDs is replaced by a variable s
ranging over b.

As an aside, we note that the semantics of delta
operators for dictionaries can also be used to provide
a delta form for conventional relations constrained by
one key dependency.

bag: Let � = bag(�). In Cbag(�), a delta is either the
special value fail or a set of pairs

� = fhdel(v1) :cnt
d

1; ins(v1) :cnt
i

1i; : : : ;

hdel(vk) :cnt
d

k
; ins(vk) :cnt

i

k
ig

where each vj is distinct, each cntd
j
and cnti

j
is a non-

negative integer, and cntd
j
+ cnti

j
> 0 for each j.

When applying � to value T , for each vj we �rst
perform minfcntd

j
; cnt(T; vj)g deletions of vj, followed

by cnti
j
insertions of vj.

The semantics for smash for bag deltas is given in
Figure 7. The semantics for merge has been omitted for
space considerations, it is given in [DHR96].

In order to compute the delta for [< � >] on bag T for
delta from Cbag(�), � is executed in hypothetical mode
and for each v of type �, each atomic command to insert
or delete v into T is recorded. This yields, for each v, a
sequence of commands c1; c2; : : : ; ck;. This sequence is
rewritten using the rule ins(v); del(v) 7! empty-string
until there are no consecutive pairs of this form. This
yields a sequence ((del(v);)n (ins(v);)m) with n;m � 0.
If n+m 6= 0 then hdel(v) :n; ins(v) :mi is included in the
delta, otherwise no pair for v is included in the delta.

315

occurrence of
v in �1

occurrence of v in �2

absent hdel(v) :d2; ins(v) : i2i

absent absent hdel(v) :d2; ins(v) : i2i

hdel(v) :d1; hdel(v) :d1; i1 > d2 : hdel(v) :d1; ins(v) : i2 + (i1 � d2)i
ins(v) : i1i ins(v) : i1i i1 = d2 : hdel(v) :d1; ins(v) : i2i

i1 < d2 : hdel(v) :d1 + (d2 � i1); ins(v) : i2i

(b) Semantics of smash (`!')

Figure 7: Semantics of smash for canonical template for bags

tuple: Let � = tuple(a1 : �1; : : : ; an : �n). Let
Fi be a PFF over �i for i 2 [1; n]. Deltas for
Ctuple((�1; : : : ; �n); (F1; : : : ;Fn)) have the form

� = fai1 :fi1; : : : ; aik :fikg

where i1; : : : ; ik is a subsequence of 1; : : : ; n and fij 2

Fij
for each j. The semantics for apply, smash, and

merge are de�ned in the natural manner.

4.3 Nested delta forms

This subsection describes how the templates for individ-
ual constructors can be combined to create nested delta
forms. Also, several theoretical results are presented
that demonstrate the soundness of our framework.
Let � be a complex value type. A frontier of � is a

set F of nodes such that each path from root to leaf
contains exactly one node in F . A frontier is proper if
for each node n in F , each node in the path from the
root to n, except possibly for n itself, has one of the
following labels: o-set, tuple, dict[b], or list. (Sets and
bags are not permitted as internal nodes of the path,
because the canonical templates for these do not permit
modi�cations to individual elements of sets or bags.)
An annotated type is a triple

A = (�; F; fFn
j n 2 F 0

g)

where F is a proper frontier of type � , and F 0 is the set
of nodes in F not labeled by set or bag, and for each
node n 2 F 0, Fn is a PFF for the type subtype(�; n).
We now give a recursive de�nition of the canonical

delta form

D[A] = (D[A]; [< >]A; applyA; smashA;mergeA)

of an annotated type A = (�; F; fFn
j n 2 F 0

g).

Base cases: Suppose that F = froot(�)g. There are
three subcases:
� = set(�): In this case D[A] = Cset(�).
� = bag(�): In this case D[A] = Cbag(�).
Otherwise: In this case a PFF F is speci�ed for the root
r of � , and we set

D[A] = (F ; [< >]A; applyA; smashA;mergeA)

where in the �rst coordinate F is viewed as a set of
syntactic objects, applyA(v; f) = f(v), smashA(f; g) =
f � g, and mergeA(f; g) = f � g if f � g = g � f and is
fail otherwise. Finally, [< � >]A is de�ned by taking the
trace of � hypothetically executed in a state (PS;DB),
and expressing the net e�ect as a member of F , in a
manner analogous to the semantics for [< � >] in the

canonical template for o-sets.

We now consider the cases where F 6= froot(�)g.

o-set, dictionary, list: Suppose � = o-set(�). Let F 0

be the set of nodes in F that are not labeled by set or

bag. Then D[A] = Co-set(�;D[(�; F; fFn j n 2 F 0g)]).
The cases of dictionary and list are analogous.

tuple: Suppose � = tuple(a1 :�1; : : : ; am :�m). Let Fi

be the portion of F that is below (ai :�i) in � , and F 0

i

the set of nodes in Fi that are not labeled by set or bag.
Then

D[A] = Ctuple((�1; : : : ; �m);
(D[(�1; F1; fF

n j n 2 F 0

1g)]; : : : ;
D[(�m; Fm; fF

n j n 2 F 0

m
g)]))

We now present four results concerning canonical
delta forms (see [DHR96] for detailed proofs). The �rst
result ensures the validity of the recursive construction
just given.

Proposition 4.1: Suppose that � = o-set(�), and
let F be a PFF over �. Let n be the root of �. Let
A = (�; fng; fFng) and D[A] = (D[A]; [< >]A; : : :).
Let F 0 be the set D[A], where each � 2 D[A] is viewed
as a function over � according to the semantics speci�ed
by applyA. Then F

0 is a PFF over � . The analogous
results hold for types with root set, bag, list, tuple, and
dict[b].

Proof: This follows because the smash operator is
de�ned for the canonical template for each constructor,
and satis�es Requirement 2. 2

We now state:

Theorem 4.2: If D is a canonical nested delta form,
then D satis�es Requirements 1, 2, and 3.

316

The remaining results concern the ability of di�erent
delta forms to retain their intended meaning as the
underlying database state changes, and relate this to
structural characteristics.

De�nition: Delta form D1 semantically dominates

delta form D2, denoted D1 � D2, if for each expression
�, program state PS, and pair DBa; DBb of database
states,

apply(DBb ; E
D2

val
[[[< � >]]](PS;DBa))

= Edb[[�]](PS;DBb)

implies

apply(DBb ; E
D1

val
[[[< � >]]](PS;DBa))

= Edb[[�]](PS;DBb)

Intuitively, if D1 � D2, then deltas from D1 preserve
their intended meaning whenever deltas from D2 do.

De�nition: Let � be a type, and let Di =
D[(�; Fi; fF

n

i
j n 2 F 0

i
g)] be a nested delta form for

i 2 [1; 2]. Then D1 frontier dominates D2 if F1 is
\below" F2, in the sense that no node of F2 is a
descendant of a node of F1 in � .

The following presents a characterization of semantic
dominance, for a restricted family of delta forms.

Theorem 4.3: Let D1 and D2 be canonical nested

delta forms over type � . Suppose that for each non-set,
non-bag frontier node n, the PFF used is the family of
all constant functions over subtype(�; n). Then D1 �

D2 if and only if D1 frontier dominates D2

This result can be strengthened by permitting arbi-
trary PFFs at leaf nodes of � , under the assumption
that if the frontiers of both annotated types include a
leaf node n, then the PFF at n of D1 contains the PFF
at n of D2. The result cannot be extended to permit
arbitrary PFFs at frontier nodes. The next result gives
a su�cient condition for semantic dominance, when ar-
bitrary PFFs are used.

Theorem 4.4: Let Di = D[(�; Fi; fF
n

i
j n 2 F 0

i
g)] be

a canonical nested delta form for i 2 [1; 2]. Then D1

� D2 if (a) D1 frontier dominates D2, and (b) for each
node p 2 F2 the following holds: If � = subtype(�; p)
and F

p

1 is the set of nodes of F1 occurring in �, then the
family Fp

2 is contained in D[(�; F p

1 ; fF
q

1 j q 2 F
p

1

0

g)].

Acknowledgements

We are grateful to Dean Jacobs, Omar Boucelma, Jean-
Claude Franchitti, Roger King, and Gang Zhou, for
many interesting discussions on Heraclitus for object-
oriented databases and related topics. Also, we are
very thankful to Marcia Derr and Jacques Durand
for numerous discussions concerning the Heraclitus
paradigm and practical examples of its usefulness.

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison-Wesley, Reading, MA, 1995.

[BDD+95] O. Boucelma, J. Dalrymple, M. Doherty, J. C.

Franchitti, R. Hull, R. King, and G. Zhou. Incorporating

Active and Multi-database-state Services into an OSA-
Compliant Interoperability Framework. In The Collected

Arcadia Papers, Second Edition. University of California,

Irvine, May 1995.

[Cat93] R.G.G. Cattell. The Object Database Standard:

ODMG-93. Morgan Kaufmann Publishers, San Mateo,
California, 1993.

[DDD+96] M. Derr, J. Durand, M. Doherty, R. Hull, and
M. Rupawalla. Applications of Heraclitus in telecommu-

nications information processing. Technical report, Uni-

versity of Colorado, Boulder, 1996.

[DH95] M. Doherty and R. Hull. Towards a framework for

e�cient management of potentially conicting database
updates. In Proc. IFIP WG2.6 Sixth Working Conference

on Database Semantics (DS-6), 1995. to appear.

[DHDD95] M. Doherty, R. Hull, M. Derr, and J. Durand.

On detecting conict between proposed updates. In Proc.

of Intl. Workshop on Database Programming Languages,

September 1995. To appear.

[DHR96] M. Doherty, R. Hull, and M. Rupawalla. A

framework for manipulating proposed updates in object-

oriented databases, 1996. Technical report in preparation.

[GHJ+93] S. Ghandeharizadeh, R. Hull, D. Jacobs, et al. On

implementing a language for specifying active database

execution models. In Proc. of Intl. Conf. on Very Large

Data Bases, pages 441{454, 1993.

[GHJ96] S. Ghandeharizadeh, R. Hull, and D. Jacobs.

Heraclitus: Elevating deltas to be �rst-class citizens in

a database programming language. ACM Trans. on

Database Systems, 1996. To appear.

[HJ91] R. Hull and D. Jacobs. Language constructs for

programming active databases. In Proc. of Intl. Conf.

on Very Large Data Bases, pages 455{468, 1991.

[JH91] D. Jacobs and R. Hull. Database programming

with delayed updates. In Intl. Workshop on Database

Programming Languages, pages 416{428, San Mateo,

Calif., 1991. Morgan-Kaufmann, Inc.

317

