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Abstract. We consider the sabotage modal logic SML which was sug-

gested by van Benthem. SML is the modal logic equipped with a ‘transi-

tion-deleting’ modality and hence a modal logic over changing models.

It was shown that the problem of uniform model checking for this logic

is PSPACE-complete. In this paper we show that, on the other hand,

the formula complexity and the program complexity are linear, resp.,

polynomial time. Further we show that SML lacks nice model-theoretic

properties such as bisimulation invariance, the tree model property, and

the finite model property. Finally we show that the satisfiability problem

for SML is undecidable. Therefore SML seems to be more related to FO

than to usual modal logic.

1 Introduction

In [1] van Benthem considered ‘sabotage modal logics’ which are modal logics
over changing models. He introduced a cross-model modality referring to sub-
models from which objects have been removed. SML is modal logic equipped
with a ‘transition-deleting’ modality. This logic is capable of expressing changes
of transition systems itself in contrast to the usual specifications for systems,
where only properties of a static system are expressed. As an application one
can consider computer or traffic networks where connections may break down.
One can express problems related to this situation by first order specifications,
but then one has to put up with the high complexity of FO. So SML seems
to be a moderate strengthening of modal logic for this kind of problems. In
Sec. 2 we repeat the formal definition of the sabotage modal logic SML which is
interpreted over edge-labelled transition systems.

Two main questions arise in this context: the model checking problem and
the synthesis problem for SML. The model checking problem is the question,
given a transition system and a system specification expressed in SML, does
the system satisfy the specification? The synthesis problem asks, given a system
specification, whether there is a transition system which satisfies the specifica-
tion. In [5] we showed that the problem of uniform model checking for SML is
PSPACE-complete. But in many cases one of the inputs for the model checking
problem is fixed, either a single property is specified by a formula and one wants
to check it for several systems; or there are different properties which should



be verified for a single system. For modal and temporal logics these two views
of the complexity are usually referred to as program complexity and formula
complexity of the model checking problem. In Sec. 3 we show that the formula
complexity for SML is linear in the size of the formula and the program com-
plexity for SML is polynomial in the size of the transition system. This result
is in contrast to many other logics like LTL and CTL∗ where the formula com-
plexity is as hard as the combined model checking complexity (cf. [6]). On the
other hand, this result constitutes an interesting advantage over first order logic,
since model checking for FO with a fixed transition system is PSPACE-complete
(cf. [3]). Before we deal with the synthesis problem, we show in Sec. 4 that SML,
in contrast to modal logic, lacks nice model-theoretic properties such as bisim-
ulation invariance, the tree model property, and the finite model property. In
Sec. 5 we split the synthesis problem into three questions: given a system spec-
ification expressed as an SML-formula, the satisfiability problem asks whether
there is a transition system at all which satisfies the specification, i.e. the sys-
tem might be finite or infinite. The finite satisfiability problem asks for finite
systems as models of the formula. And finally, the infinity axiom problem is the
question whether a given formula has only infinite models. We will show that for
SML all three problems are undecidable. We do that by reducing appropriate
modifications of Post’s correspondence problem to these problems.

We would like to thank Johan van Benthem for several ideas and comments
on the topic.

2 Sabotage Modal Logic

In this section we repeat the formal definition of the sabotage modal logic SML
with a ‘transition-deleting’ modality. We interpret the logic over edge-labelled
transition systems. Let Prop = {p, p′, p′′, . . .} be a set of unary predicate symbols.
A (finite) transition system T is a tuple (S,Σ,R,L) with a finite set of states S,
a finite alphabet Σ, a ternary transition relation R ⊆ S ×Σ ×S and a labelling
function L : S → 2Prop. Let p ∈ Prop and a ∈ Σ. Formulae of the sabotage modal
logic SML over transition systems are inductively defined by the grammar

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | ♦aϕ | ♦- aϕ.

As usual, ⊥ is an abbreviation for ¬>. The dual modalities are defined by ¤aϕ :=
¬♦a¬ϕ and ¤- aϕ := ¬♦- a¬ϕ. Let T = (S,Σ,R,L) be a transition system. To
define the semantics of SML and for later use we define the transition system
TE for a set E ⊆ R as TE := (S,Σ,R \ E,L).

For a given state s ∈ S we define the semantics of SML inductively by

(T , s) |= > for all T and all s ∈ S,

(T , s) |= p iff p ∈ L(s),

(T , s) |= ¬ϕ iff not (T , s) |= ϕ,

(T , s) |= ϕ ∨ ψ iff (T , s) |= ϕ or (T , s) |= ψ,



(T , s) |= ♦aϕ iff there is s′ ∈ S with (s, a, s′) ∈ R and (T , s′) |= ϕ,

(T , s) |= ♦- aϕ iff there is (t, a, t′) ∈ R with (T{(t,a,t′)}, s) |= ϕ.

A measure for the complexity of an SML-formula ϕ is the number of nested
sabotage operators. We call this the sabotage depth sd(ϕ) of ϕ and define induc-
tively

sd(>) := sd(p) := 0, sd(ϕ1 ∨ ϕ2) := max{sd(ϕ1), sd(ϕ2)},

sd(¬ψ) := sd(♦aψ) := sd(ψ), sd(♦- aψ) := sd(ψ) + 1.

In the next section we will see that the sabotage depth of a formula is the main
factor in the complexity of the model checking problem for SML.

3 Model Checking for SML

In this section we consider the model checking problem for SML. The general
question in model checking is whether a given structure is a model of a given for-
mula. The model checking problem for modal logic (ML) over transition systems
is known to be solvable in polynomial time (cf. [2]).

Proposition 1. The model checking problem for ML is PTIME-complete and
can be solved in time O(|ϕ| · |T |), where |ϕ| is the size of the given ML-formula
ϕ and |T | is the size of the given transition system T . ut

The combined complexity of model checking for SML, i.e., the complexity mea-
sured in terms of the size of the formula and in the size of the structure, was
already settled in [5].

Theorem 2. Model checking for SML is PSPACE-complete. ut

In many cases one of the inputs for the model checking problem is fixed. If
one wants to verify a single property for several systems the formula is fixed
and if there are different properties that have to be verified for a single system
the structure is fixed. For modal and temporal logics these two views of the
complexity are usually referred to as program complexity and formula complexity
of the model checking problem.

In the following we show that the model checking problem for SML with one
of the inputs fixed (either the transition system or the formula) can be solved in
linear, resp., in polynomial time. For this purpose we reduce the model checking
problem for SML to the model checking problem for ML and show that this
reduction can be done in linear, resp., in polynomial time if either the transition
system or the formula is fixed.

Let T = (S,Σ,R,L) be a transition system. We define a new transition sys-
tem T sab = (Ssab, Σsab, Rsab, Lsab) that encodes all possible ways of sabotaging
T :

Σsab :=Σ ∪̇ {ā | a ∈ Σ}, Ssab := S × 2R,



Rsab :={((s1, E), a, (s2, E)) | (s1, a, s2) ∈ R \ E} ∪

{((s,E1), ā, (s,E2)) | ∃s1, s2 ∈ S (E2 = E1 ∪̇ {(s1, a, s2)})},

Lsab(s,E) :=L(s) for each s ∈ S and E ⊆ R.

Over this system one can express the sabotage operator ♦- a by traversing an
ā edge, i.e., by the modal operator ♦ā. This motivates the following inductive
definition of the ML-formula ϕ̂ for a given SML-formula ϕ:

ϕ̂ =





ϕ if ϕ = > or ϕ = p,

ϕ̂1 ∨ ϕ̂2 if ϕ = ϕ1 ∨ ϕ2,

¬ψ̂ if ϕ = ¬ψ,

♦aψ̂ if ϕ = ♦aψ,

♦āψ̂ if ϕ = ♦- aψ.

If the sabotage depth of a formula ϕ is small then we do not need the complete
transition system T sab to evaluate ϕ̂. So, for n ∈ N, we define T sab

n to be the
transition system T sab restricted to the states (s,E) with |E| ≤ n. Note that
T sab

0 is isomorphic to T and T sab
n = T sab for n ≥ |R|.

Lemma 3. Let T = (S,Σ,R,L) be a transition system and ϕ be an SML-
formula. Then (T , s) |= ϕ iff (T sab

sd(ϕ), (s, ∅)) |= ϕ̂.

Proof. We show by induction on the structure of ϕ that for each E ⊆ R:

(TE , s) |= ϕ ⇔ (T sab
sd(ϕ)+|E|, (s,E)) |= ϕ̂.

For E = ∅ we obtain the desired property. The only interesting case for this
induction is for ϕ = ♦- aψ. The definitions of the semantics of the sabotage
operator and the structure TE imply that (TE , s) |= ♦- aψ iff there exists an edge
(s1, a, s2) ∈ R \ E such that (TE′ , s) |= ψ for E′ = E ∪̇ {(s1, a, s2)}. By the

induction hypothesis this holds iff (T sab
sd(ψ)+|E′|, (s,E

′)) |= ψ̂. Since sd(ψ)+ |E′| =

(sd(ϕ) − 1) + (|E| + 1) = sd(ϕ) + |E| and since there is an ā-edge from (s,E)

to (s,E′) we get (T sab
sd(ψ)+|E′|, (s,E

′)) |= ψ̂ iff (T sab
sd(ϕ)+|E|, (s,E)) |= ♦āψ̂. This

implies the claim because ϕ̂ = ♦āψ̂. ut

This reduction can be used to determine the formula complexity and the program
complexity of SML model checking.

Theorem 4. The model checking problem for SML with a fixed transition sys-
tem can be solved in linear time in the size of the formula (formula complexity).
The model checking problem for a fixed SML-formula can be solved in polynomial
time in the size of the transition system (program complexity).

Proof. By Proposition 1 and Lemma 3 we can solve the model checking problem
for ϕ and T in time O(|ϕ̂| · |T sab

sd(ϕ)|). From the definition of ϕ̂ we get |ϕ̂| = |ϕ|.

For a fixed transition system T we can estimate the size of T sab
sd(ϕ) by |T sab

sd(ϕ)| ∈

O(|T | · 2|T |). Hence the formula complexity is in O(|ϕ|).



Since the number of subsets E ⊆ R with |E| ≤ sd(ϕ) is in O(|T |sd(ϕ))
we obtain for a fixed SML-formula |T sab

sd(ϕ)| ∈ O(|T |sd(ϕ)+1). So the program

complexity is polynomial in |T |. ut

4 Model-Theoretic Properties of SML

For many logics, e.g. temporal logics like CTL, CTL∗, and LTL, satisfiability can
be shown to be decidable using the small model property. A logic has the small
model property if a formula from this logic is satisfiable iff it has a model of
size bounded by a computable function of the size of the formula. To decide the
satisfiability problem, provided that the model checking problem is decidable, it
is sufficient to check all structures up to this bounded sized. Modal logic even
has the small tree model property, i.e., for each satisfiable ML-formula there
exists a small tree that is a model of the formula. In this section we analyse
model-theoretic properties of this kind for SML.

In the sequel let T = (S,Σ,R,L) be a transition system and s ∈ S. For any
subset A ⊆ Σ we fix the SML-formula

σA :≡ ♦A> ≡
∨

a∈A

♦a>

expressing that there is an a-successor of the current state for some a ∈ A.
For a single letter we write σa instead of σ{a}. For a word α = a1 . . . ak we set
σα :≡ ♦a1

. . . ♦ak
>. Since we deal with pointed transition systems (T , s) we use

the notation ‘a-successor’ without a reference to a state as an abbreviation for
‘a-successor of the origin s’. For later use we define the following SML-formulae.
For a ∈ Σ and n ∈ N let

γ0,a :≡ ¬σa, γ1,a :≡ σa ∧ ♦- a¬σa, γn+2,a :≡ ¤- n+1
a σa ∧ ♦- n+2

a ¬σa

We write γa as an abbreviation for γ1,a. It is easy to see that we can fix the
number of a-successors for a given state by the SML-formula γn,a:

Lemma 5. (T , s) |= γn,a iff state s has exactly n different a-successors. ut

In contrast to modal logic, SML lacks the tree model property, i.e., there are
satisfiable SML-formulae which do not have a tree model.

Lemma 6. The logic SML does not have the acyclic model property. In particu-
lar it does not have the tree model property and it is not bisimulation-invariant.

Proof. Consider the SML-formula ϕ :≡ σaa ∧ ¤- a¬σa. Then every transition
system T with (T , s) |= ϕ has only one a-transition which starts and ends in
state s. The last property holds since every bisimulation-invariant logic over
transition systems has the tree model property. ut

Another difference to modal logic is that each satisfiable ML-formula has a finite
model, whereas for SML this property does not hold.



Theorem 7. The logic SML does not have the finite model property.

Proof. Let ϕ be the following SML-formula:

♦g¬σa ∧ ♦- g¤gσa ∧ (M1)

¤g♦- a¬σa ∧ (M2)

¤gγh ∧ (M3)

¤g¤aγh ∧ (M4)

¬σ{a,h} ∧ ¤g¬σg ∧ (M5)

¤- h♦g(σh ∧ ♦a¬σh) (M6)

Then every transition system T with (T , s) |= ϕ has the following properties. By
M1: there is exactly one g-successor which has no a-successors and all other g-
successors have an a-successor. In particular there is a g-successor. By M2: each
g-successor has at most one a-successor. By M3: each g-successor has exactly one
h-successor. In particular there is an h-transition. By M4: each g-a-successor has
exactly one h-successor. By M5: the origin has no a- or h-successors and there
are no g-g-successors. Finally M6 expresses that for every deleted h-transition
there is a g-successor in the corresponding submodel which has an h-successor v

and an a-successor w such that w has no h-successors (maybe with v = w).
It is easy to see that the transition system depicted in Fig. 1 is an infinite

model of ϕ (if pointed at state s). For the last property notice that, if the nth
h-transition from the left is deleted, then the n + 1th g-transition from the left
satisfies M6.
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Fig. 1. An infinite model of ϕ

In the sequel the unique g-successor without a-successors is called the sink state
and is displayed as I. Further we omit all g- and h-transitions. This means that
in the figures all displayed vertices are g-successors from the origin and have
h-transitions leading to a separate vertex.

We have to show that ϕ has only infinite models. For that we claim:

Claim 1. For every model T with (T , s) |= ϕ we have that every h-transition
starts in a g-a-successor of s.

Proof (of Claim 1). Assume that there is an h-transition which starts in a state
which is not a g-a-successor of s. After deleting this h-transition, M4 is still
valid, i.e., there is no g-a-successor of s without an h-successor contradicting the
second part of M6.



Claim 2. For every model T with (T , s) |= ϕ the state s has infinitely many
g-successors.

Proof (of Claim 2). Assume that s has only k many g-successors for some k ∈ N.
Because of M1 and M2 state s has at most k − 1 many g-a-successors. Hence
there exists a g-successor v of s which is not a g-a-successor of s. Due to Property
M3 state v has an h-successor, but then – by Claim 1 – state v has to be a g-a-
successors of s, contradiction.

This completes the proof of the theorem. ut

Note that not all given conjuncts are necessary to obtain an infinite model, but
we need this construction below. Further the middle part of a model does not
need to be a single chain which is only unbounded to the right. For example we
could have further chains which are unbounded to both sides. Other models are
‘inverse infinite trees’.

5 Undecidability of Satisfiability for SML

In this section we show that the satisfiability problem for SML is undecidable. To
be more precise, we show that the problems of deciding whether a given formula
1. has a model (Satisfiability), 2. has a finite model (Finite Satisfiability), and 3.
is satisfiable, but has only infinite models (Infinity Axiom) are undecidable. To
that aim we first define three variants of Post’s Correspondence Problem (cf. [4])
that will be reduced to the mentioned problems.

We fix an alphabet Σ with |Σ| ≥ 2. Given two lists ᾱ = (α1, . . . , αn) and
β̄ = (β1, . . . , βn) of non-empty words over Σ with n ≥ 2 we formulate the
following correspondence problems:

1. (ᾱ, β̄) ∈ PCP∗ iff there is a finite sequence (i1, . . . , ik) in {2, . . . , n} such that
the finite words α1αi1 . . . αik

and β1βi1 . . . βik
are the same,

2. (ᾱ, β̄) ∈ PCPω iff (ᾱ, β̄) 6∈ PCP∗ and there is a infinite sequence (i1, i2, . . .) in
{2, . . . , n} such that the ω-words α1αi1αi2 . . . and β1βi1βi2 . . . are the same,

3. PCP∞ := PCP∗ ∪ PCPω.

We require that both decompositions start with α1, resp., β1 and that the index
1 does not occur again. The sequence (i1, . . . , ik), resp., (i1, i2, . . .) is called then
a finite, resp., an infinite solution. Note that there are two different sorts of
infinite solutions: regular solutions where the sequence is ultimately periodic
and irregular solutions. The usual proof of undecidability of (modified) PCP
can be easily adapted to show the undecidability of these three correspondence
problems (cf. [4]).

Given an instance (ᾱ, β̄) of the correspondence problems let Γ := Σ ∪ {#},
I := {1, . . . , n} and ∆ := Γ ∪I∪{g, h} (w.l.o.g. Σ∩I = ∅ and Σ∩{g, h,#} = ∅).
To show the undecidability of the satisfiability problems we code solutions of the
correspondence problems within a transition system over the alphabet ∆ which
is SML-definable. The models are similar to the ones of Theorem 7, but in



contrast to them they may be finite: we can interrupt the building process by an
‘end marker’ #. The idea is to represent a solution on the middle chain of the
models, reading it from right to left starting at the marker #. The words of the
first list ᾱ start and end in vertices with an I-successor, the corresponding words
of the second list β̄ start and end in vertices, which are appropriate I-successors.
Figure 2 shows as an example the representation of the finite solution (1, 3, 2)
for the lists ᾱ = (ab, b, abaab) and β̄ = (aba, abb, ba). Note that all words are
read from right to left. If the solution is finite both decompositions end in the
unique I-vertex and the complete model can be made finite. If the solution is
infinite the decomposition never ends and we have an infinite model.
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Fig. 2. Representation of a finite solution

Before we give the SML-specifications to realise this idea we introduce some
auxiliary notations. For non-empty words α over Σ and an SML-formula ψ

we define inductively δα(ψ) by δa(ψ) := ♦aψ and δaα′(ψ) := ♦a(¬σI ∧ δα′(ψ))
(a ∈ Σ, α′ ∈ Σ+). For example δabb(>) expresses that there is an a-b-b-successor,
but neither an a-I- nor an a-b-I-successor. For a non-empty word β = b1 . . . bk

over Σ and an SML-formula ψ let δ′β(ψ) := ♦b1 . . . ♦bk
ψ.

To code solutions of the correspondence problems let ϕᾱ,β̄ be the following
SML-formula (we explain the several subformulae below):

♦g¬σΓ ∧ ♦- g¤gσΓ ∧ (S1)

¤g♦- Γ¬σΓ ∧ ¤g♦- I¬σI ∧ (S2)

¤gγh ∧ ¤g¤Γ γh ∧ ¤- h♦g¬σh ∧ (S3)

¬σ∆\{g} ∧ ¤g¬σg ∧ (S4)

¤- h♦g

(
(σ# ∧ ¬σh) ∨ (σh ∧ ♦Γ¬σh)

)
∧ (S5)

σg#1 ∧ ¤- #¤g¬σ# ∧ ¬σgΓ# ∧ (S6)

♦g(σ11 ∧ ¤- 1¬σ1) ∧ (S7)

¤g

[ ∧

i∈I

[
σi →

[(
δαi

(¬σΓ ) ∧ ♦iδ
′
βi

(¬σΓ )
)
∨

∨

j∈I,j 6=1

(
δαi

(σjh) ∧ ♦iδ
′
βi

(σh) ∧ ♦- h

(
δαi

(♦j¬σh) ∧ ♦iδ
′
βi

(¬σh)
))]]]

.
(S8)

S1 expresses that there is exactly one g-successor which has no Γ -successors
and all other g-successors have a Γ -successor, whereas S2 ensures that each g-



successor has at most one Γ -successor and at most one I-successor. S3 requires
that each g-successor and each g-Γ -successor has exactly one h-successor and
every h-transition starts at a g-successor. S4 expresses that the origin has only
g-successors and that there are no g-g-successors. If S5 is true then for every
deleted h-transition there is a g-successor in the corresponding submodel which
either has a #-successor, but no h-successors; or has an h-successor and a Γ -
successor v such that v has no h-successors. The next formula S6 ensures that
each model has a g-#-successor w, but only one #-transition at all and that
there is no g-Γ -#-successor. Further S6 and S7 require that there is exactly one
1-transition which starts and ends in w.

Notice that we do not need to have a finite Σ-chain starting from the (unique)
g-#-successor. Finally, S8 expresses (together with the previous formulae) that
for every g-successor v, whenever v has an i-successor for some i ∈ I then either
one reaches the unique sink state of the model by both words αi and i · βi (see
Fig. 3) or there is some j ∈ I, j 6= 1 such that one reaches the same g-successor
by both words αi · j and i · βi (see Fig. 4). Further, while reading the word αi,
there are no I-successors except for the first and the last vertex.
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Fig. 3. First case for S8
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Fig. 4. Second case for S8

In the sequel we show some properties which are valid for every transition system
T with state s ∈ S such that (T , s) |= ϕᾱ,β̄ .

Property 1. (1) Every g-successor with an I-successor has a Σ-successor as well.
(2) Each g-Γ -successor is also a g-successor. (3) There is a unique g-#-successor
v. (4) The unique sink state has no I-successors. In particular the g-#-successor
is distinct from the sink state.

Proof. (1) If g-successor v has an i-successor then, due to S8, δαi
(>) is true.

In particular ♦ai
1
> holds, if αi = ai

1 . . . (αi is non-empty). Hence v has an

ai
1-successor. (2) By S3 every g-Γ -successor has an h-successor, but every h-

transition starts at a g-successor. (3) S6 ensures the existence and, since there
is only one #-transition at all, the uniqueness of v. (4) Immediately by (1) and
since the g-#-successor has a 1-successor. ut

Now we inductively define a (finite or infinite) sequence vk of vertices which can
be found in every model of ϕᾱ,β̄ . Let v0 be the unique g-successor that has a #-
successor and let v1 be this #-successor (well-defined by Prop. 1.3). By Prop. 1.2,



v1 is also a g-successor. Further we have v0 6= v1 (otherwise σgΓ# holds which
violates S6). Assume that vk for k ≥ 1 is already defined such that vk is the
unique Γ -successor of vk−1. In particular vk is a g-successor by Prop. 1.2. Case
1 : vk has no Σ-successor. Due to ¬σgΓ#, vk has no #-successor as well. Since
the sink state is the unique g-successor without a Γ -successor we have that vk

is the sink state. In this case let κ := k + 1. Case 2 : vk has a Σ-successor. Let
vk+1 be this Σ-successor which is unique by S2.

If vk is defined for all k ∈ ω then set κ := ω. Note that the vk’s do not
need to be pairwise distinct, since we may have a loop in the Σ-chain. Now we
extract those vk’s which have I-successors. For that we inductively define the
sequence jk. Let j0 := 1. Assume that jk is already defined such that vjk

has an
I-successor. If there is m with jk < m < κ such that vm has an I-successor then
let jk+1 be the minimal m with this property. Otherwise let λ := k + 1.

Again, if jk is defined for all k ∈ ω then set λ := ω. For all k < λ we have: the
I-successor of vjk

is unique by S2. Hence we set ik = i if vjk
has an i-successor.

Property 2. κ < ω iff λ < ω.

Proof. (⇒) This is clear by the definition of the jk’s. (⇐) If λ < ω let m = λ−1
(note that λ ≥ 1 by definition). Then vjm

is the last vertex in the sequence
v1, v2, . . . which has an I-successor. But for vjm

the last disjuncts of S8 cannot
be satisfied, since otherwise – after |αim

| steps – we would reach vjm+|αim | which
must have an j-successor for some j ∈ I, j 6= 1. So only the first disjunct is
satisfied and vjm+|αim | is the sink state, i.e., κ = jm + |αim

| + 1. ut

If λ < ω we set jλ := κ − 1, i.e., in this case vjλ
is the sink state.

Property 3. (1) j0 = 1 and jk ∈ {2, . . . , n} for all k ≥ 1. For all k < λ the
following holds: (2) jk < jk+1, (3) vjk

has αik
-successor vjk+1

, and (4) for all
jk < m < jk+1, vm has no I-successors. (5) The ik-successor of vjk

is equal to
vm for some 1 ≤ m < κ.

Proof. (1) By the definition of the jk’s and by S8. (2) is clear by the definition
of the jk’s. (3) and (4) immediately follow from S8 and the definition of δα. We
show (5) by induction. We have j0 = 1 and i0 = 1. S6 and S7 ensure that the
1-successor of v1 is v1 itself. Assume now that the property is already given for k

and that k+1 < λ. S8 guarantees that we reach from vertex vjk
the same vertex

by the words αik
·ik+1 and ik ·βik

. Since by (3), the αik
-successor of vjk

is exactly
vjk+1

this means that the ik+1-successor of vjk+1
is equal to the ik ·βik

-successor
of vjk

. By induction the ik-successor of vjk
is equal to vm for some 1 ≤ m < κ,

hence the ik+1-successor of vjk+1
is equal to vm′ with m′ = m + |βik

| < κ. ut

The last property ensures that we stay on the Σ-chain starting at v1 if we follow
the I-transitions and that we do not change to other parts, resp., branches within
the model. Now we can define the sequence lk for k < λ by lk = m, if vm is the
(unique) ik-successor of vjk

. Again, if λ < ω we set lλ := κ − 1. Then we have:

Property 4. (1) l0 = 1. For all k < λ the following holds: (2) lk < lk+1, and (3)
vlk has βik

-successor vlk+1
.



Proof. The 1-successor of v1 is v1, hence (1) holds. By Prop. 3.3 and the definition
of lk the ik-successor of vjk

is vlk and the αik
· ik+1-successor of vjk

is vlk+1
. On

the other hand, by S8, the ik · βik
-successor of vjk

is vlk+1
as well. This shows

(3) and, since βik
is non-empty, also (2). ut

Finally, we state the main property (we denote the prefix of a word α of length
k by α[k]):

Property 5. (1) If κ < ω then α1αi1 . . . αiλ−1
= β1βi1 . . . βiλ−1

. (2) If κ = ω then
(α1αi1αi2 . . .)[m] = (β1βi1βi2 . . .)[m] for all m ∈ ω.

Proof. (1) By Prop. 2 we also have λ < ω, in particular jλ and lλ are defined.
Since vj0 = v1 and vjλ

is the sink state, by Prop. 3.3 we have that α1αi1 . . . αiλ−1

is exactly the Σ-word between the vertices v1 and the sink state. On the other
hand, since vl0 = v1 and vlλ is the sink state, by Prop. 4.3 we have that
β1βi1 . . . βiλ−1

also is the Σ-word between the vertices v1 and the sink state.
In particular the two words are identical.

(2) For m = 0 this is clear. For m > 0 let µm := max{k | jk ≤ m} and νm :=
max{k | lk ≤ m}. Again by Prop. 3.3, the word between the vertices v1 and vm+1

is exactly the Σ-word α1 . . . αiµm−1
· (αiµm

[m + 1 − jµm
]) = (α1αi1αi2 . . .)[m].

On the other hand, again by Prop. 4.3, this word also is β1 . . . βiνm−1
· (βiνm

[m+
1 − lνm

]) = (β1βi1βi2 . . .)[m]. ut

Now we are ready to show the main theorem:

Theorem 8. The following holds:

1. (ᾱ, β̄) ∈ PCP∗ iff ϕᾱ,β̄ has a finite model,

2. (ᾱ, β̄) ∈ PCPω iff ϕᾱ,β̄ has an infinite, but no finite model,

3. (ᾱ, β̄) ∈ PCP∞ iff ϕᾱ,β̄ is satisfiable.

Proof. (1) (⇒) Let (i1, . . . , ik) be a finite solution. Then the appropriate finite
chain analogous to the one depicted in Fig. 2 together with the corresponding
g- and h-transition as depicted in Fig. 1 is a finite model of ϕᾱ,β̄ (if pointed at
vertex s). (⇐) If ϕᾱ,β̄ has a finite model then for that model we have κ < ω.
By Prop. 3.1 and Prop. 5.1 this means that (i1, . . . , iλ−1) is a finite solution and
therefore (ᾱ, β̄) ∈ PCP∗.

(2) (⇒) Let (i1, i2, . . .) be an infinite solution and let a ∈ Σ be arbitrary.
Then the transition system depicted in Fig. 5 is a model of ϕᾱ,β̄ (together with
the corresponding g- and h-transitions). The upper infinite chain is labelled with
a’s and the vertices have no I-successors. The lower infinite chain is labelled with
the word α1αi1αi2 . . . (from right to left starting from the g-#-successor) and
has appropriate I-transitions as described above. By definition of PCPω we have
(ᾱ, β̄) 6∈ PCP∗ and therefore by (1), ϕᾱ,β̄ has no finite model. (⇐) If ϕᾱ,β̄ has
a infinite model then for that model we have κ = ω. Since there are no finite
models we have (ᾱ, β̄) 6∈ PCP∗ by (1). By Prop. 3.1 and Prop. 5.2 this means
that (i1, i2, . . .) is an infinite solution and therefore (ᾱ, β̄) ∈ PCPω.

(3) This is immediate by (1) and (2). ut
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Fig. 5. An infinite model

Applying the undecidability of the correspondence problems we immediately
obtain the desired result:

Theorem 9. The problems Satisfiability, Finite Satisfiability, and Infinity Ax-
iom for SML are undecidable. ut

6 Conclusion and Outlook

We have considered the sabotage modal logic SML, an extension of modal logic
that is capable of describing elementary changes of structures. Modal logic itself
is one of the simplest logics for specifying properties of transition systems. We
have shown that operators that capture basic changes of the structure, namely
the removal of edges, already strengthen modal logic in such a way that all the
nice algorithmic and model-theoretic properties of modal logic get lost. In fact,
from the viewpoint of complexity and model theory SML much more resembles
first-order logic than modal logic, except for the linear time formula complexity
of model checking.

There are some open questions related to SML. For example one may restrict
the global power of the sabotage operator (e.g., the deleted transition has to
start at the current state). Model checking of SML for unary alphabets is still
PSPACE-complete (cf. [5]), but it is open whether satisfiability is then decidable.
Also, it would be nice to have a characteristic notion of bisimulation for SML
and to know more about valid principles, e.g. interaction laws between ordinary
and sabotage modalities.
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