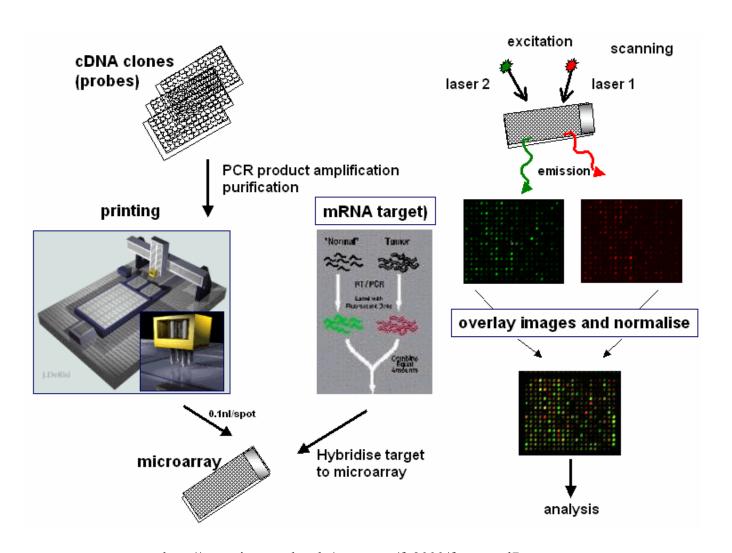
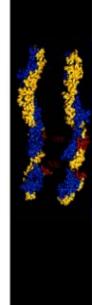
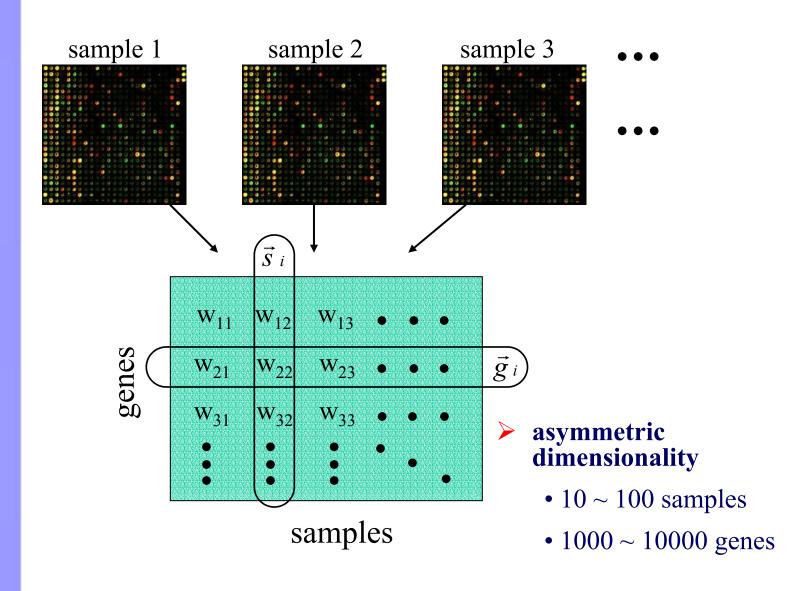


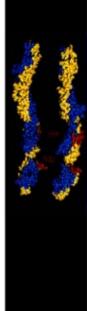
Mining Phenotypes and Informative Genes from Gene Expression Data


Chun Tang, Aidong Zhang and Jian Pei Department of Computer Science and Engineering State University of New York at Buffalo

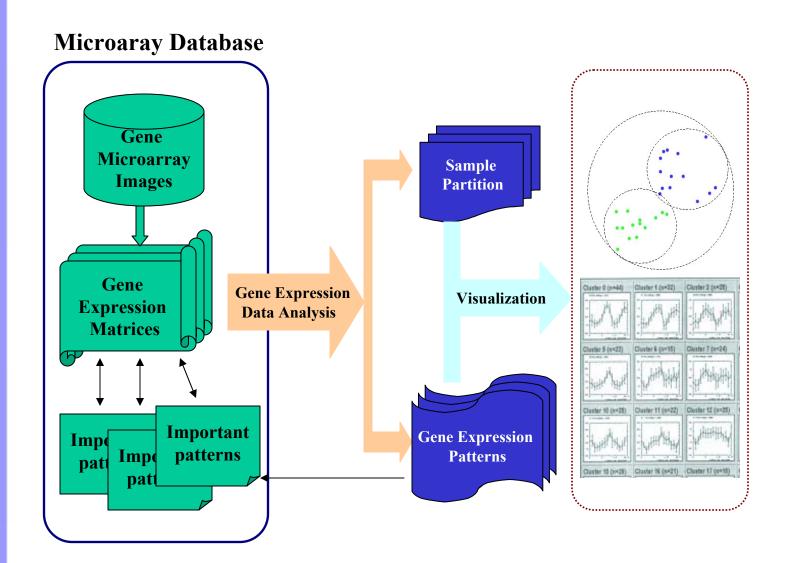


cDNA Microarray Experiment

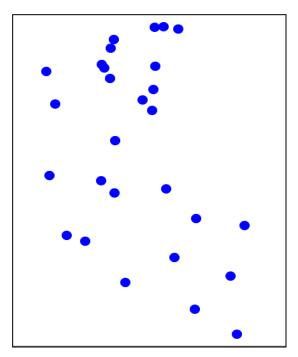

http://www.ipam.ucla.edu/programs/fg2000/fgt_speed7.ppt

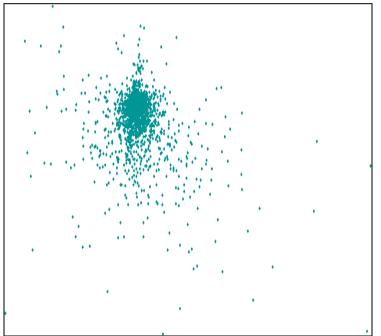


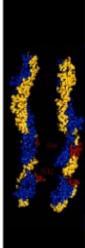
Microarray Data



Scope and Goal

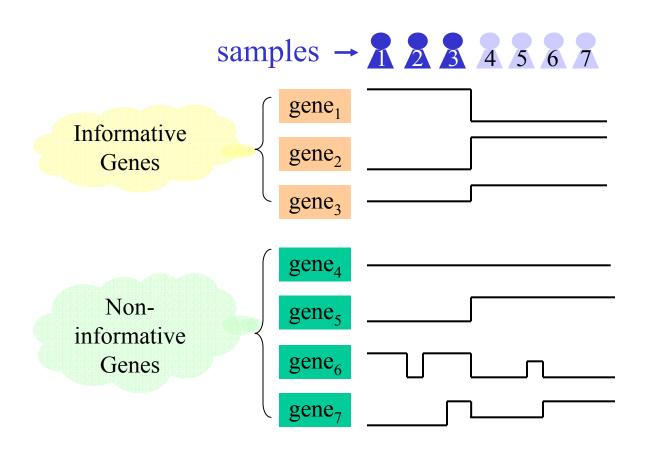


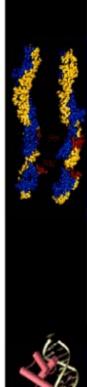



Microarray Data Analysis

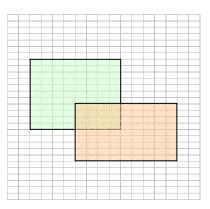
Analysis from two angles

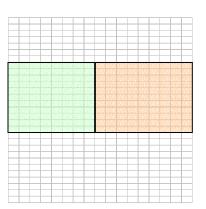
- □ sample as object, gene as attribute
- ☐ gene as object, sample/condition as attribute

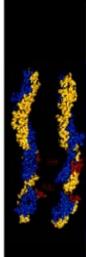




Sample-based Analysis


Related Work


■ New tools using traditional methods :

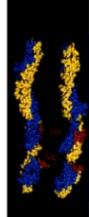

TreeView
CLUTO
CIT
SOTA
GeneSpring
J-Express
CLUSFAVOR

- SOM
- K-means
- Hierarchical clustering
- Graph based clustering
- PCA

- **□** Clustering with feature selection:
- **□** Subspace clustering

Quality Measurement

☐ Intra-phenotype consistency:

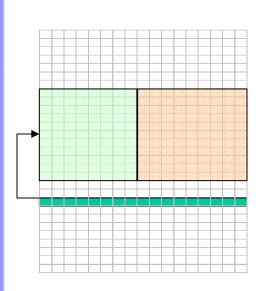

$$Con (G', S') = \frac{1}{|G'| \bullet (|S'| - 1)} \sum_{\vec{g}_{i \in G}} \sum_{\vec{s}_{j \in S'}} (w_{i,j} - \overline{w}_{i,S'})^{2}$$

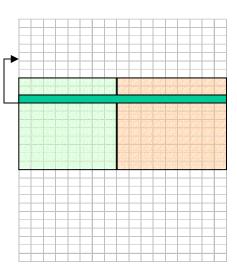
☐ Inter-phenotype divergency:

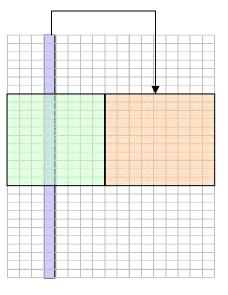
$$Div (G', S_1, S_2)) = \frac{\sum_{\vec{g}_i \in G'} |\overline{w}_{i,S_1} - \overline{w}_{i,S_2}|}{|G'|}$$

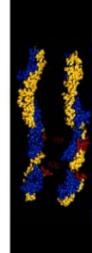
☐ The quality of phenotype and informative genes:

$$\Omega = \frac{1}{\sum_{S_{i}, S_{j} (1 \leq i, j \leq K; i \neq j)} \frac{\sqrt{Con (G', S_{i}) + Con (G', S_{j})}}{Div (G', S_{i}, S_{j})}}$$

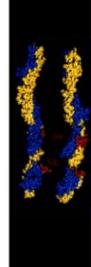







Heuristic Searching

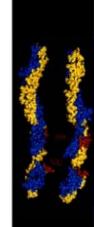
- ☐ Starts with a random K-partition of samples and a subset of genes as the candidate of the informative space.
- ☐ Iteratively adjust the partition and the gene set toward the optimal solution.
 - o for each gene, try possible insert/remove
 - o for each sample, try best movement.



Mutual Reinforcing Adjustment

- Divide the original matrix into a series of exclusive sub-matrices based on partitioning both the samples and genes.
- Post a partial or approximate phenotype structure called a reference partition of samples.
 - o compute reference degree for each sample groups;
 - o select *k* groups of samples;
 - o do partition adjustment.
- Adjust the candidate informative genes.
 - o compute W for reference partition on G
 - o perform possible adjustment of each genes
- Refinement Phase

Reference Partition Detection

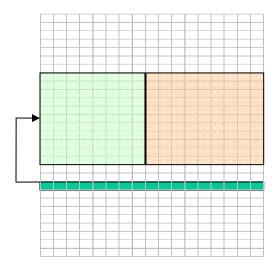

☐ Reference degree: measurement of a sample group over all gene groups

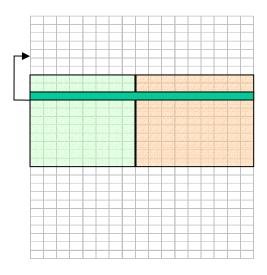
$$ref(S_j) = \log |S_j| \sum_{G_i \in G} \frac{1}{Con(G_i, S_j)}$$

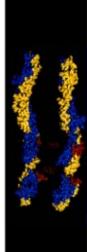
☐ The sample group having the highest reference degree $-S_{p0}$, S_{p1} , S_{p2} ... S_{px} ,...

Ran
$$(S_{px}) = \log |S_{px}| \sum_{G_{i \in G}} \frac{\sum_{t=0}^{x-1} Div (G_i, S_{px}, S_{pt})}{Con (G_i, S_{px})}$$

Partition adjustment: check the missing samples

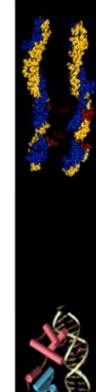




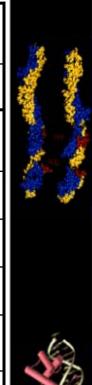


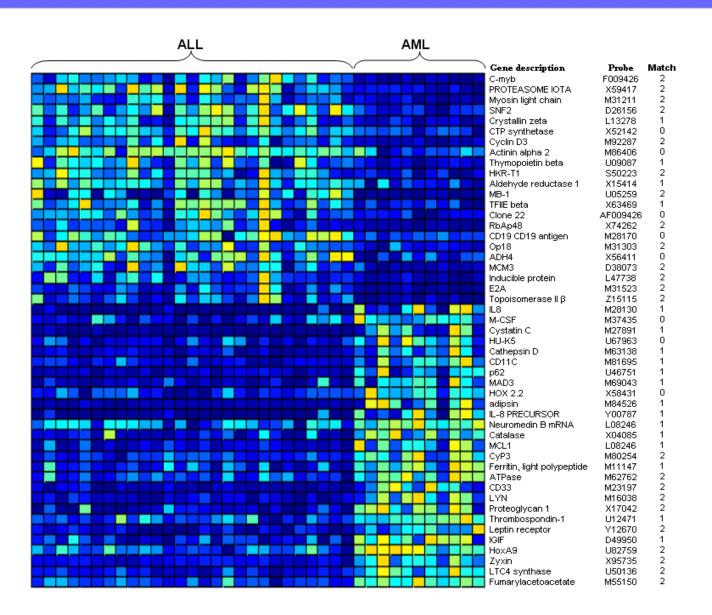
Gene Adjustment

☐ For each gene, try possible insert/remove



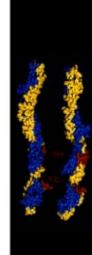
Refinement Phase


- ☐ The partition corresponding to the best state may not cover all the samples.
- □ Add every sample not covered by the reference partition into its *matching* group the phenotypes of the samples.
- ☐ Then, a gene adjustment phase is conducted. We execute all adjustments with a positive quality gain informative space.
- ☐ Time complexity $O(n*m^2*I)$


Phenotype Detection

			ī	1		,
Data Set	MS-IFN	MS-CON	Leukemia- G1	Leukemia- G2	Colon	Breast
Data Size	4132*28	4132*30	7129*38	7129*34	2000*62	3226*22
J-Express	0.4815	0.4851	0.5092	0.4965	0.4939	0.4112
SOTA	0.4815	0.4920	0.6017	0.4920	0.4939	0.4112
CLUTO	0.4815	0.4828	0.5775	0.4866	0.4966	0.6364
Kmeans/PCA	0.4841	0.4851	0.6586	0.4920	0.4966	0.5844
SOM / PCA	0.5238	0.5402	0.5092	0.4920	0.4939	0.5844
δ-cluster	0.4894	0.4851	0.5007	0.4538	0.4796	0.4719
Heuristic	0.8052	0.6230	0.9761	0.7086	0.6293	0.8638
Mutual	0.8387	0.6513	0.9778	0.7558	0.6827	0.8749

Informative Gene Selection



References

- Agrawal, Rakesh, Gehrke, Johannes, Gunopulos, Dimitrios and Raghavan, Prabhakar. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, pages 94–105, 1998.
- Ben-Dor A., Friedman N. and Yakhini Z. Class discovery in gene expression data. In Proc. Fifth Annual Inter. Conf. on Computational Molecular Biology (RECOMB 2001), pages 31–38. ACM Press, 2001.
- ☐ Cheng Y., Church GM. Biclustering of expression data. Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB), 8:93–103, 2000.
- □ Golub T.R., Slonim D.K., Tamayo P., Huard C., Gassenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield D.D. and Lander E.S. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, Vol. 286(15):531–537, October 1999.
- Xing E.P. and Karp R.M. Cliff: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics, Vol. 17(1):306–315, 2001.

