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Microarray Data Analysis
Analysis from two angles 

sample as object, gene as attribute
gene as object, sample/condition as attribute



Sample-based Analysis
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Related Work
New tools using traditional methods :

Clustering with feature selection:

Subspace clustering

CLUTO

CIT

SOTA

CLUSFAVOR

J-Express

GeneSpring

TreeView • SOM

• K-means

• Hierarchical clustering

• Graph based clustering

• PCA



Quality Measurement
Intra-phenotype consistency:
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Inter-phenotype divergency:
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The quality of phenotype and informative genes:
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Heuristic Searching
Starts with  a random K-partition of samples and a 
subset of genes as the candidate of the informative 
space.
Iteratively adjust the partition and the gene set toward 
the optimal solution. 
o for each gene, try possible insert/remove
o for each sample,  try best movement.



Mutual Reinforcing Adjustment
Divide the original matrix into a series of exclusive 
sub-matrices based on partitioning both the samples 
and genes.
Post a partial or approximate phenotype structure 
called a reference partition of samples.
o compute reference degree for each sample groups;
o select k groups of samples;
o do partition adjustment.

Adjust the candidate informative genes.
o compute W for reference partition on G
o perform possible adjustment of each genes

Refinement Phase



Reference Partition Detection
Reference degree: measurement of a sample group 
over all gene groups 

The sample group having the highest reference degree 
− Sp0 , Sp1 , Sp2 … Spx ,…

Partition adjustment: check the missing samples
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Gene Adjustment

For each gene, try possible insert/remove



The partition corresponding to the best state may not 

cover all the samples. 

Add every sample not covered by the reference 

partition into its matching group − the phenotypes of 

the samples. 

Then, a gene adjustment phase is conducted. We 

execute all adjustments with a positive quality gain −

informative space.

Time complexity O(n*m2*I)

Refinement Phase



Phenotype Detection

0.41120.49390.49200.60170.49200.4815SOTA

0.6827

0.6293

0.4796

0.4939

0.4966

0.4966

0.4939

2000*62

Colon

0.7558

0.7086

0.4538

0.4920

0.4920

0.4866

0.4965

7129*34

Leukemia-
G2

0.9778

0.9761

0.5007

0.5092

0.6586

0.5775

0.5092

7129*38

Leukemia-
G1

0.86380.62300.8052Heuristic

0.47190.48510.4894δ-cluster

0.41120.48510.4815J-Express

0.87490.65130.8387Mutual

BreastMS-CONMS-IFNData Set

3226*224132*304132*28Data Size

0.63640.48280.4815CLUTO

0.58440.54020.5238SOM / PCA

0.58440.48510.4841Kmeans/PCA



Informative Gene Selection
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