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Abstract.  In this paper, we shall address three closely-related conjectures due to
van Emde Boas, W D Gao and Kemnitz on zero-sum problen®,ad Z ,. We prove

a number of results including a proof of the conjecture of Gao for the ppime 7
(Theorem 3.1). The conjecture of Kemnitz is also proved (Propositions 4.6, 4.9, 4.10)
for many classes of sequences.
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1. Introduction and notations

Davenport [5] raised the following question for any finite Abelian graup/Nhat is the
smallest constanb(G) for which given an arbitrary sequenea, ap, ... , a; in G with

t > D(G), there exists a subsequence whose sum is zef?irEvidently, we have
D(Z,) = n. Davenport’s constant is connected with algebraic number theory as follows.
Let K be a number field (i.e., a finite extension@f andOg be its ring of integers. Let
C(K) be its class group. Let € Ok be an irreducible element. A8k is a Dedekind
domain, the ideal

xOg = lL['Pi
i=1

whereP; are prime ideals if¥g not necessarily distinct(K) is a finite Abelian group
and if D is its Davenport constant, then in the prime ideal factorization of the integral ideal
xOg at mostD prime ideals can occur. The precise valudxis) is known only in very
special cases (see [10]).
To describe various conjectures and results pertainiig(t®) and other problems, we
need to recall the following precise definitions.
Let G be a finite Abelian group. TheG =Z,, & --- ® Z,,, with 1 < nq|n2|-- - |n,,
wheren, = exp(G) is the exponent of; andr is the rank ofG. Most of our discussion
will be centered around the grodp=2,, & Z,,.
Let 7(G) denote the free Abelian monoid with bagis The elements of (G) will be
calledsequences. The monoid homomorphism
4 14
0:.7:(G)—>Gbya<S= gv)=2gu
=1 v=1

V=
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maps a sequence to the sum of its elements SLet Hﬁzl gv € F(G) be a sequence.
ThensS has a unique representation of the form

s=[]e&*® e F©),
geG

wherev, (S) is the number of timeg appears in§ and|S| = dec ve(S) =L e Nis
called thelength of S. We say tha € F(G) is a subsequence &fand we writeT|S,
if ve(T) < vg(S) for everyg € G. As usual, we say thel, 7’ € F(G) are disjoint
subsequences o, if their productTT’ is a subsequence . The identity element
1 € F(G) will be called theempty sequence, and we havel| = 0. WheneverT|S,
the elemeni® = ST~ € F(G) denotes the sequence withdeleted froms. Clearly,
RT = §. We say that the sequeng§ds

azero sequence, if o(S) = Zﬁzl g =0,

azero-free sequence, i does not have any zero subsequences,

a minimal zero sequence, if it is a zero sequence and each proper subsequence is
zero-free,

ashort zero sequence, if it is a zero sequence with & |S| < exp(G).

The set of all zero sequences is a submonoi@ @f). Its irreducible elements are the
minimal zero sequences (see [2-4]).

We study the following constants associated with a finite Abelian gr@upet n(G)
(respectivelyf (G)) denote the least positive integesuch that any sequenéec F(G)
with |S| > r contains a nonempty zero subsequefia# S of length at most (respectively
equal to) expG). Evidently,n(G) < f(G). Typically, there are two types of conjecturesin
this subject — one predicts the valuengts) or f(G) and, the other asserts that a sequence
of length one less than the (predicted) value;0f) or f(G) must have a certain very
restricted form.

The main results of this paper are Theorem 3.1 which proves Gao’s Conjecture on
Z,® Z, for p = 7and Theorem 2.5 which addresses Emde Boas’s Conjecture. Several
partial results related to Kemnitz's Conjecture are obtaine@4n(Propositions 4.6, 4.9
and 4.10).

2. Sequences of length at mos(G)

The results of this section will be used in the next one as well. In this section, we study
sequences of length atmesgG) for G = Z,$Z,,. We obtain results related to a conjecture

of Emde Boas which addresses the structure of sequences of kef@ih— 1. These
methods also yield new proofs of certain results of Davenport, Olson, Alon and Dubiner.
Our proofs are based on the well-known:

Chevalley—Warning Theorem.Let f1, f>... , f, be homogeneous polynomials:imari-
ables ovelZ , such that sum of their degrees is strictly less than the numbévariables.
Then, all thef; have a nonzero simultaneous solution o¥gt

We start with the following general result.
Theorem 2.1.

(@) If G =z, thenD(G) =d(p — 1) + 1.
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(b) LetS = [];a; € ]-“(Zf,) with |S| = (d + 1)(p — 1) + 1. Then, there exists a zero
subsequencg of S such thaf7| = 0 (mod p).

(c) Let2<d < p.LetS € ]—'(Z‘j,) with S = (d + 1)(p — 1) + 1. Then there exists a zero
subsequencg of S suchthatl < |T| < (d — 1)p.

A result stronger than (a) was proved already in 1969 by Olson [15] but this version is
sufficient for our purpose.

Proof of(a). Fori < d, the set of elements

e; =(0,0,...,0,1, 0,...,0)
N — e’ N— —
i—1 times d—i+1 times

of G, each repeated — 1 times, shows thab(G) > d(p — 1).
Leta; = (ai1,ai2, ... ,aiq); L <i <d(p—1) + 1 be elements of;. Consider the
polynomials

d(p—1+1 1
fiXa, ..., Xap-p+1) = Z ainip for j <d.
i=1

The Chevalley—Warning Theorem ensures that there is a nontrivial common solution
X1,X2, ..., Xi(p—1+1Modp. Evidently, one has therefofe; .; a; = 0 wherel = {i :
xi # 0}. Thus,D(G) =d(p — 1) + 1.

Proof of(b). Write a; = (a1, ai2, ... ,a;q) and putr = (d + 1)(p — 1). Leta be a
quadratic nonresidue modujo For 1< j < d, consider the polynomials

r+1 r+1

-1 -1
[0 =Y ayx!Tt=>"x!
i=1 i=1

inr + 1 variablesX = (X1, X2..., X,41) and

r+1 2 r+1 2
fa(X) = (Z aidx;"l> —a (Z X,.”‘l) )
i=1 i=1

Thesed homogeneous polynomials are considered @grAs the sum of their degrees
is (d +1)(p — 1) = r which is less than the number of variables, the Chevalley—Warning
Theorem implies that they have a common nontrivial zero &grlLet us fix such a

solutionys, yo,... ,y,+1. If I = {i : 0 # y; € Z,}, then! is nonempty and the last
equality f4(y;) = 0 gives|/| =0 (mod p) aswell asy_;_; ais = 0inZ,. Therefore, we
get) ;.;aij = 0inZ, for eachj < d. This just means that_,_.; a; = (0,0, ... ,0).

] ) d times
This completes this proof.

Proof of(c). Leta; = (ai1,...,aiq),1 <i < (d+ 1(p — 1) + 1 be a sequence in
Z;’,. Let us write? = (d + 1)(p — 1) + 1 for simplicity of notation. Consider theé + 1
homogeneous polynomials

¢
fiX) = Zaijx,pfl, l<j<d
i=1
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and
¢

foX) =X 1<j<d
i=1

inX = (X1, Xo,..., Xy) £ variables.

By the Chevalley—Warning Theorem there exists azemo subsequereof length rp for
somel < r < d.If thelengh is < (d — 1)p, we are done Sq, let us assune that
I C{l2,....tysuhtha|l| =dpand) ;. a = (0,0,...,0)inZ4%. By renaming,

d times
wemay takeI =1{1,2,...,dp}. Letusnow look at thed + 1 polynomials

dp—1
—1 .
gi(X) = E a; X', 1<j=<d
i=1

and
4

go(X) =Y X'

i=dp

Again, by the Chevalley—Warning Theoremtherreis anontiivial solution x; satisfiel by all
theg;, j = 0. Writing J = {i : x; # 0}, J is anonempy subseof {1, 2, ... , £}. Sine go
isasunof lesthan pterms JN{dp, dp+1, ... , ¢}isempy.ThusJ C {1,2,... ,dp—1}
and) ;.;a; = 0. If |[J| < (d — Dp, wearedone If |[J| > (d — 1)p, then clearly,
Jo = I'\ J hascardinality betwea 1ard p — 1and2ie]O a; =(0,0,...,0)in Zj’,. Thus,

) d times
the theorem is proved.

COROLLARY 2.2

(8 (Erdés—Ginburg—Ziv Theorem)Let S € F(Z,) with |S| = 2n — 1. Then there exists
azeaosubsequereT of S of lengh n.
(b) NZp®Zy) =3n -2

Prodf. For (a), taked = 1 in Theoren 2.1(b to obtan it for primes ard then aftrivial
induction completes the proof.

Taking d = 2 in the alove theoren gives n(Z, ® Z,) < 3p — 2 for aprime p. Itis
trivial to see tha the uppe bourd for primesimplies the uppe bourd for generan. If we
conside S = (0, )" (1,0 (1, 1"t € F(Z, ® Z,), then clearly S does nat have
any shot zemw subsequence3hereforen(Z, ® Z,) > 3n — 2.

Part (b) wasfirst proved by Olson [15] and EmdeBoas[18]). A moregeneraapplication
analogos to the E-G-Z theoren for afinite group had been conjecture by Olson [15]
and was obtainal in [16].

Corollay 2.2(b isactuall equvalert to the a priori, stronger:

PROPOSITICN 2.3

Let k be apositive integer satisfyirg 0 < k < |n/2]. Let S € F(Z, & Z,) with |S| =
3n — 2+ k. Thenthere exists ashott zeao subsequereT of S swchthatk+1 < |T| < n.
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Prodf. Let S € F(Z, @ Z,) with |S| = 3n — 2 + k. By Corollaly 2.2(b) there exists
ashot zem subsequereT suhtha 1 < |T| < n. Choo® T sud tha T has maximal
lengh less than or equa to n. If |T| < k, conside the deletel sequene ST 1. Then
IST~Y > 3n—2+k—|T| > 3n — 2. Thereforeby Corollaly 2.2(b) there exists ashort
zemo subsequereTy of ST 1. Notethat by maximality of |T|, wehave |T1| < |T| < k <
[n/2]. Notethat |T1| + |T| < n. This contradics the maximality of |T|, sina we would
have chose Th U T asour T inthefirst step itself. Therefoe |T| > k + 1.

Thefoll owing propositicmmwassuggesteé by theanaymousrefereeltisproved completely
similarly and will be usel in the prod of Lemma 3.2.

PROPOSITION 2.3

Let k bean integer satisfyig0 < k < [n/2].Let S € F(Z,, ® Z,) with |S| = 3n — 3+ k.
Then eithe there exists a shott zero subsequereT of S withk + 1 < |T| < n, or there
is a subsequereW of S of lengh 3n — 3 which does nat contan any shoit zeo-sum
subsequere

Using the above methodswe have a new and shot prod of the foll owing resut due to
Alon ard Dubine [1]:

PROPOSITICN 2.4

IfSeF(Z,®Z,) isazaosequenewith|S| = 3p, then S contairs a zeo subsequence
T with |T| = p.

Proof. If S = {s; = (a;,b;) : 1 < i < 3p}with Y7, 5; = (0,0), then the Che\alley—

. _ - -2 -1
Warning Theoren ensure the existen@ of anontivial comman zero for Z?:pl a; X',

l
Y P hxP Y and Y 2 xP T Thisgives I € (1,2, ..., 3p)with |1 = por 1] =
2p sudthat)_; s; = (0, 0). In the latter casethe complemens = {1,2,... ,3p}\
has cardinaliyy p and gives agaih a zero subsequereof S.

Aswe noticed earlier, S = (0, 1)"1 (1,01 (1, 1)" 1 € F(Z, ® Z,) does nat have
any shot zem subsequence®ne may wonde if the sane kind of structue mug prevail
for any sequene of lengh 3n — 3 which does not have shot zeo subsequenceshis has
bean conjecturd to be so by van Emcde Boas.

Conjectwel [18]. Let S € F(Z, & Z,) with |S| = 3n — 3. If S does nat contan any
shot zew subsequencethen S = "~ 16" 1"~ whera, b, c € Z, ® Z, are distinct
elements.

Van Emdehimsef [18] verified the conjectuefor the primes2, 3, 5ard 7using acompute.
Later, Gao [9] proved that the conjectueis ‘multiplicative’, i.e,, if itistrue for n = k and
n = m, thenitistruefor n = km. Thus it suffices to prove this conjectue for all primes.
The following theoren proves sone properties that a sequene S € F(Z, © Z,) with
|S| = 3p — 3 mud possesif it does not contah any shot zem subsequence.

Theorem 25. Let S =[]; x; € F(Z, ® Z,,) with|S| = 3p — 3 and suppos S does not
contain any shott zeo subsequere Then

(8) there existsa minimd zeo subsequereTy of S with |Th| = 2p — 2,

(b) thereexistsa minimd zero subsequereeT, of S with |T2| = 2p — 1,

(c) thereisno zeo subsequereof cardinality at leag 2p.
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Proof. Write x; = (a;, b)) € Z, ® Z,,. We shall start by proving (c). We divide into two
parts — first, we prove the nonexistence of zero subsequences of any3e?gth 1 and
then do the 2 case.

SupposeX is a subset of1,2,...,3p — 3} such that),_, x; = (0,0) and|K| >
2p + 1. Consider the B elementsy;; 1 < i < 3p where

) X ifi e K
Yi= (0, 0), otherwise °

As Z?ﬁl v; = (0, 0), by Proposition 2.4, there is a zero subsequdnuéth |T| = p and
the index sef of T is asubsetofl, 2, ... ,3p}. As|K| > 2p+ 1, we have p — |[K| <
p—1.Then,J = INK has cardinality between 1apdThus) ,.; yi = > _,c; xi = (0,0)
which contradicts the hypothesis. Hence there is no zero subsequence of length at least
2p+1.
Suppose now that there is a zero subsequence of lengttR@name and assume
that Z,-zﬁlxi = (0,0). Consider the three polynomials inp3- 2 variablesX =
(X1, X2,...,X3p-2) defined by

3p-3 1 3p-3 1 3p-2 .
FOO =Y aX! (X)) =Y biX[ hX)= ) X[
i=1 i=1 i=2p

Note thatk involves onlyX,, onwards. By the Chevalley—Warning Theorem, there is a
common nontrivial zero, sas, o, ... , 3,—2. The last polynomial shows thgt = 0

for i > 2p. In other words, there is a nonempty subgebf {1, 2,...,2p — 1} with
Ziell a = 0= Zie]l b;, i.e., Ziellxi = (0,0). Note that/ = {1,2,...,2p}\ 1

is nonempty (as2 ¢ I1) and)_; x; = (0, 0). By hypothesis, botli; andJ must have
cardinality more tham, which is an impossibility. Hence (c) is proved fop 2lso.

We shall prove (b) now. Puty = (0, 0) and applying Proposition 2.4 to thep3- 2
elementsy;; 0 < i < 3p — 3, one has a zero subsequerdgef lengthp or 2p. Let the
index set ofTp be Ip. Takel = Ip \ {0}; then|I| = p or p — 1 or 2p or 2p — 1. The first
two have been ruled out by hypothesis and the third one has been ruled out gy part
Thereforell| = 2p — 1. This proves (b).

Let us prove (a) now. Takes, > = — Z?ﬁ[s x;. We know already thatz,_» # (0, 0)
from (c); here a separate argument needs to be givep for3, since (c) does not apply
hereasd —3 < 2p + 1.

Let p > 5 be any odd prime and we can takg,_» = — Zf’:”f x; # (0,0). Write
x;i = (a;, b;) for 1 < i < 3p — 2. Consider the three polynomials ip 3- 2 variables
X =(X1,X2,...,X3p-2) defined by

3p-2 1 3p-2 1 3p-2 1
F(X) = Z aX!™", G(X) = Z X', H(X) = Z xP=
i=1 i=1 i=1
By Proposition 2.4, there is a subgetc {1, 2, ... ,3p — 2} such that/;| = p or 2p and
Yien i = (0,0).

Casel. (When|I1| = 2p)
f3p—2€ Ih,lookatl = 11\ {3p—2}. Then, c {1,2,...,3p—3}, |I|=2p—1
andd ., xi = —x3,_2 = Z?ﬁfx,-. Then,J = {1,2,...,3p — 3} \ I has cardinality
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p — 2 and satisfied ;. ; x; = (0, 0). This contradicts the hypothesis. Thug,3 2 ¢ I;.
But, thenx;; i € I is a zero subsequencext i < 3p — 3 of length Z». We have ruled
it out already by part (c). Thus, Case 1 cannot occur.

Case2. (When|I1] = p)

Then 3 — 2 must belong ta; by hypothesis. Consider = I3 \ {3p — 2}. Then,
Ici{12...,3p-3, Il =p—1andy,,x = —x3p2 = 321 °x. Then,
J={1,2,...,3p —3}\ I has cardinality 2 — 2 and satisfie} ,_; x; = (0, 0).

For p = 3, do separately as follows. We hawe xo, ... , xg. If they sum to(0, 0), take
ve = y7 = (0, 0) and look at the elements, ... , x5, yg, y7. Since theyare@—2 =7
elements, by Proposition 2.4, there is a zero subsequence which has length either 3 or 6.
So, there is a zero subsequencerqf. .. , x5 of length either 1 or 2 or 3 or 4 or 5. The
first three are ruled out by hypothesis. In the last two cases, look at their complements
in {x1,...,xg}. These are zero subsequences of length either 1 or 2 which once again
contradicts the hypothesis[ﬁ?=l x; # (0, 0), then proceed as in the general case.

3. Gao’s conjecture

Consider the least numbegi(Z, @ Z,) such that anys € F(Z, & Z,) with |S]| =
f(Z, ® Z,) has a zero subsequentewhose|T| = p. Its value is predicted by the
following conjecture first made by Kemnitz [13] and suggested, independently, by N.
Zimmerman and Y. Peres:

Conjecture2. f(Z,®Z,) =4p —3.
One can easily see th#(Z, ® Z,) > 4p — 3. For, consider

§=(0,0710, )"0 Ly te FZ, 0 2)).

Clearly, S does not contain a zero subsequence of lengtfihe results known about
Conjecture 2 and our results on it will be discussed in the next section.

This section deals with the following conjecture due to Gao [9] which predicts that a
sequence of lengthpd— 4 which does not contain a zero sequence of lepgthZ , © Z ),
must look like the above example.

Conjecture3. If S € F(Z,®Z,) with |S| = 4p — 4 such thalS does not contain any zero
subsequences of length thensS = a?~1p?~1cP=1qP=1 wherea, b,c,d € Z,®Z, are
all distinct elements.

Gao proved that if Conjecture 3 is true for all primes, then it is true for all natural
numbers. He also verified this conjecture foe 2, 3 and 5We shall prove this conjecture
for the primep = 7 now.

Theorem 3.1. LetS =[], a; € F(Z7®Z7) with|S| = 24. Suppose does not contain a
zero subsequence of lengthiThens = a®5:84% wherea, b, ¢, d € Z7 ® Z7 are distinct
elements. In other words, Conjecture 3 is true wheg 7.

For the proof of Theorem 3.1, we need the following lemma.

Lemma3.2. LetS € F(Z7®Z7) with|S| = 24such thatS does not contain any zero sub-
sequence of length Suppose € Z7® Z7 with v, (S) > 3. ThenS satisfies Conjecture 3.
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Proof. Supposer € Z7 @ Z7 with v,(S) = s. We may assume thatis the maximum
number of times that some element occurs. Without loss of generality, we may also assume
thata = (0, 0) (otherwise we conside§ — a instead ofS). SetR = S((0, 0)~%). Then,

|R| = 24 — s. It follows from Proposition ' that eitherR contains a short zero-sum
subsequencg of length 7— s < |T| < 7, or R contains a subsequen#é of length 18

which does not contain any short zero-sum subsequence. If the first option holds, then
contains a zero-sum subsequence of length 7 of the #ai@n0)*, a contradiction. Thus,

the second option holds and, applying (f8) the fact that Conjecture 1 is true fpr= 7,

we get thatW contains three distinct elements each appearing six times. This forces (by
maximality ofs) thats = 6 and the proof is complete.

Proof of Theoren8.1 If some element of is repeated at least — 1)/2 = 3 times, then
the result holds by Lemma 3.2.

If the sequence € F(Z7 & Z7) has at least 13 distinct elements modulo 7, then, by
Kemnitz [13], it follows thatS contains a zero subsequence of length 7 which leads to a
contradiction of our assumption. Therefore at most 12 distinct elemets @fZ; can
appear inS.

Assume that at least one of the elementS sfrepeated exactly twice (we have covered
all the other cases already). Once again by the same result of Kemnitz, it will imply that
contains 12 distinct elements @f & Z7 each of them repeated exactly twice. Hence we
can assume that= (0, 0)?[];2, a? € F(Z7 ® Z7).

SetS* = ]'[ilil al?. By Corollary 2.2(b), there exists a short zero-sum subsequEnce
of §*. We assert that we must have

|T1| = 4. )

SinceS = §*(0, 0)2, andS contains no zero-sum subsequence of lengtfi],< 4. But
S* does not contain0, 0). Therefore, 2< |T1| < 4.1f |T1| = 2 or 3, then|S*Tl‘1| =20
or 19. Since Conjecture 1 is true fpr= 7, Proposition 2’ implies thatS*Tl_1 contains
a short zero-sum subsequerieewith 3 < |T»| < 7. Once again, (sincéd, 0)2 occurs
in S), we get 3< |T»| < 4. ThereforeI = T1T» is a zero-sum subsequenceSsfwith
5 < |T| < 7, and similarly above one can derive a contradiction. Theref@i¢,= 4.
This proves the assertion.

Claim. If a appears inS* then —a, a/2, —a/2, 2a, —2a cannot appear ir§*. It fol-
lows assertion (1) thata cannot appear is*. If a/2 appears irs*, thenS — a/2 =
((0,0), (0,0),a/2,a/2, —a/2, —a/2)S1 for someS;. The proof of assertion (1) shows
also that(S — a/2)((0, 0)~2) contains no zero-sum subsequence of length 2 or 3. But
(S — a/2)((0,0)%)~1 contains the subsequen¢e/2, —a/2), a contradiction. If—a/2
appearsirs*, thenS* contains subsequen¢e —a/2, —a/2), a contradiction of assertion
(1) again. If 2 appears irs*, thenS — a = ((0, 0), (0, 0), a, a, —a, —a)S1. Exactly, as

in the case ofi/2 one can derive a contradiction.-H2a appears irs*, thenS* contains
the subsequenag, a, —2a), a contradiction of assertion (1). This proves the claim. As
a,—a,a/2,—a/2,2a, —2a are the nonzero multiples of an elemenn F(Z; & Z7), a
simple counting gives Us*| < 2x (72—1)/(7—1) = 16, a contradiction. This completes
the proof of the theorem.

Since Conjecture 3 is ‘multiplicative’ [9], it follows immediately that:
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COROLLARY 3.3

Conjectue 3istruefor all positiveinteger n of theformn = 2¢3°5°7¢ for all (a, b, ¢, d) €
N*\{(0, 0,0, 0)}.

Remak 3.4. It mug be noted tha there are sequenceof lengh 4n — 4inZ, @ Z,, which
aremack up of four distinad elemensrepeatd n — 1 times ead which may contan azero-
sum subsequereof lengh n. In othe words the candidats appearig in the conclusion
of Conjectue 3are sonmewha restricted For examplg if (0, 0), (a, b), (—a, —b) arethree
of the four elementsthereis always azero-sun sequene of lengh n. Similarly, if n = 5,
theelemens (0, 2), (2, 0), (1, 1) occurrirg four times ead gives azero-sun subsequence
of lengh 5.

4. Zero subsequencsof lengthninzZ, @ Z,

Inthissectionweshal proveresulsabou sequencginZ,, & Z,, whichmug contan azero
subsequereof lengh n. In particula, we obtan sone resuls pertainirg to Conjectue 2
of Kemnit for thegrow Z, & Z,.

It is trivial to see that if the conjectue holds goad for two integersm ard n, it is also
true for mn. So, if one provesit for all primes then it holds goad for all naturd numbers.
For our convenienceinsteal of writing f(Z, ® Z,), wewritesimply f(p).

Harborth [12] considerd afunction g(n) which isrelated to f(n). To defire g(n), let
usdefirean elemen S = [[,a; € F(Z, ® Z,) to be square-free, if 4;'s are pairwise
distinainZ, ®Z,,. Then g(n) isdefinal to bethelead posiiveinteger suc tha given any
square-fre S € F(Z, & Z,) contairs a zeo subsequereof lengh n. Harborh proved
tha g(3) = 5 ard usd thisto prove f(3) = 9. Then Kemnitz [13] utilized the special
valuesof g(p) = 2p — 1for p = 5,7 to prove f(p) = 4p — 3for p = 5,7. A bound
known for all primes p is, dueto Kemnitz [13]:

2p—1<g(p)<4p-3

We shal prove on the one hard that the lower bourd 2p — 1 istight for many classes
of sequenceand on the othe hand we improve the uppe bourd for many classe of
sequences$n 1996 Gao [7] proved that if f(n) = 4n —3ardn > ((3m —4)(m — Lym? +
3)/4m withm > 2, then f(nm) = 4nm — 3. Thes resuls were improved upan by the
secoml autha of thispape in[17] wherit hasinfact been provedthat if S € F(Z,®Z,)
with |S| = 4n — 3 ard T = 4° as its subsequerewith s > |n/2], then S satisfies
Conjectue 2ard tha if f(n) = 4n —3ardn > (2m3 — 3m? + 3)/4m, withm > 2, then
f(nm) = 4nm — 3. In 1995 Alon and Dubine [1] gave the uppe bourd f(n) <6n —5
for all n € N. Later thiswasimproved upan for all primesto f(p) < 5p — 1 by Gao [8].
In 200Q Roényai [14] proved that f(p) < 4p — 2 for all primes p. From this bound he
conclude tha f(n) < (41/10)n. Recenty, Gao [11] has proved tha f(p*) < 4p* — 2
for all primes p and k > 1. Many of thes proofs use gragh theoly ard are quite different
from our methods.

We stat with the obsevation:

Lemma4.l If S € F(Z,®Z,) with|S| = 4p — 3suchthat thereisno zeo subsequence
T of Swith |T| = 2p, then S mug contan a zeo subsequerexof lengh p, i.e, S satisfies
Conjectue 2.
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Prodf. Theprod followsby puttingd = 2inTheoren2.1(b and applying Propositian 2.4.

PROPOSITION 4.2

(@) Letk beaninteger sichthat 0 < k < |n/2].Let S € F(Z, ® Z,) with |S| = 4n — 3.
Suppos T = a" 1% isa subsequereof S for sonea € Z, ® Z,. Then there exists
azeao subsequereRr of S with |R| = n.

(b) Let ¢ and k betwo integerssuchthat 0 < ¢ < k < |n/2]. Let S € F(Z, & Z,) with
|S| = 4n — 3 — £. Suppos T = (0, 0)" % is a subsequereof S. Then S contairs a
zeo subsequereR withn — £ < |R| < n.

Proof of (a). Without loss of generaliy we can assunetha 7 = (0, 0)"~ 1%, Let §* =
ST 1 be the subsequereof S. Clearly |S*| = 4n —3—n+1+4+k = 3n — 2+ k. By
Proposition 2.3 there existsazem subsequerel of $* withk+1 < |U| < n. Thusthere
existsazero subsequereRr of TU with |R| = n.

Proof of (b). Let §* = ST~! bethesubsequereof S with [S*| =4n —3— € —n+k =
3n — 2+ (k — £ — 1). Therefoe by Proposition 2.3, there exists azeo subsequereTy
of $* with k — ¢ < |T1| < n. Therefoe there exists a zeo subsequereRr of 7Ty with
n—+{¢<|R|<n.

Remak 4.3 One can prove tha if f(n) = 4n — 3 ardn > (3m® — m? + 6)/8m for
sone positve integer m, then f(nm) = 4nm — 3. The prod of this is quite similar to
the correspondig resut proved in [17], except that one uses f (n) < (41/10)n instea of
f(n) <5n—4

Hereis aresut abou thegrowp Z,, ® Z,,.

PROPOSITICN 4.4

Let S € F(Z,, ® Z,) with |S| = 2n + (21/10)m wheae m|n. Then S contairs a zeo
subsequereof lengh 7.

Prodf. Sine 2n + (21/10m = (2n/m — 2)m + (41/10m ard we know f(m) <
(41/10)m, wecan extrad 2n/m — 1 disjoint subsequensssy, Sa, ... , S2,/m—1 Of S with
lengh m who®suniszemoinZz, & Z,,. Sincee we have the following exad sequence

0—Zym —2Zn®Zy, — 2, ®Z,, — 0

ard by the E-G—Z theoren (Corollary 2.2(g here) we know ther is asubsequereof the

sequene {Si}izi/lm_l of lengh n/m whees; € Z,/, suhthas; :=1/m Z’;;l,aijes,« aij
unde the exad sequenceLet s1, s, ... , s,/m be the zew subsequereeof {s;}>}" " of
lengh n/m. This means
n n m
D si=) > aj=0
i=1 i=1j=1

inZ, ®Z,wherq;; € S;forj=12,... mandfori=1,2,... ,n/m.
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Remak 4.5 If S =[], a;i € F(Z, ® Z,) issquae free with |S| = 2n — 1, then all the
first (or secondl co-ordinats of the ¢;’s cannd be distind in Z,,. Also, nore of the first
(secondl co-ordinate can be repeatd more than n times sinae the correspondig second
(first) co-ordinats run throuch O ton — 1. If n is odd and one of the first (secondl co-
ordinak repeas exactly n times then the correspondig secoml (first) co-ordinaé runs
throughOton — 1 and we pick upthosa; in S to produe azem subsequereof lengh .
Hene we can always assune tha if n isodd, then in any sud sequencgasingle residue
class modub n isrepeatd at mog n — 1 times amory the first (secondl co-ordinates.

Now, we can prove two qualitatve resuls both of which exemplify the tightnes of the
lower bourd g(p) > 2p — 1.

PROPOSITION 4.6

(@) Letn be aprimeandlet S = [[;a; € F(Z, ® Z,) be asquae-free elemen with
|S| = 2n — 1. Suppos the first co-ardinates of the a;’s run through all the different
n residie classs modub n such that n — 1 different residwe classas modub n are
repeate exactly twice. Then there exists a zero subsequereT of S with |T| = n.

(b) Let n be aprimeandlet S = [[;a; € F(Z, ® Z,) be asquae-free elemen with
|S| = 2n — 1. Supposthefirst co-ardinates of thea; runthrough threedistind residue
classa modub n such that two of the residie classes repea n — 1 times Then there
exists a zao subsequereT of S with |[T| = n.

The following lemma will be useal in the prod of (a) as well as later in the prod of
Propositian 4.9.

Lemna4.7. Letn be aprimeandlet S =[], a; € F(Z, ® Z,) be asquae-free element
with|S| =2n — 1. Leta; = (x;, y;) and a1 = (x;,z;) fori =1,2,...n — Lwheae

v; Zz; (mod n) for all i andag,—1 = (b, ¢). Ifx1 +x2+ -+ x,—1+ b =0 (mad n),

then there exists a zao subsequereT of S with |T| = n.

Proof. Let K = y1+y2+ -+ yp—1+c (modn) and ey, = z; — y¢ (Mmod n) for all
¢=1,2...,n— 1 Clearly, e, # 0 (mod n) becaus y; # z; (mod n) for all i. If we
form all the partid suns of ¢,’'swe get all the distind residie classe modub n (Thiscan
be doreby simpleinduction se=for instan@[6]) . Thereforethere exists aposiiveinteger
m sudtha K + e;; + e, + -+ + ¢;,, = 0 (mod n) which implies

YitoooF Y1+ Zig F Y1 o+ Vi, -1+ Ziy,
+ Yig+1+ -+ yp—1+c=0 (modn).

Then the following subsequereof S
(-xl7 yl)v L a(-xl'l—la yil—l)a (-xilv Zil)v (xil-"-la yl1+1)7 .. 7(-xn—ls Yn—l)» (b’ C)
produce the required zero subsequereof lengh n

Proof of Propositicn 4.6(a) Let S € F(Z, & Z,) bethe given square-fre elemen satis-
fying the hypothesisLet uslist the elemens of S as follows:

ai = (x;,y;) foralli=21,2...,n—-1
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and
Ajtn-1= (x;,z;) foralli=12,...,n—-1

wherez; # y; (modn) foralli =1,2,... ,n — 1andx; # x; (modn) for everyi # j.
Also, letas,—1 = (b, ¢) such thab # x; (mod n) foreveryi =1, 2,...,n — 1. Clearly,
we have a zero-sum of lengthas follows:

x1+x2+---+x,-1+b=0 (modn).
Now, the result follows from lemma 4.7.

Proof of(b). LetS € F(Z, & Z,) be a square-free element wit$] = 2n — 1 satisfying
the hypothesis. We shall list the elementssah the following manner. Let

ai=(,y) fori=12...,n—1 wherey; #y; (modn)
and
Giyn—1=(y,z;) fori=12-... n—-1 wherez #z; (modn)

andx # y (modn). Also, we letaz,—1 = (b, c) whereb # x (modn) andb # y
(mod n). ConsideR = x"~1y"~1p € F(Z,) with |R| = 2n—1. Therefore, by the Exis—
Ginzburg—Ziv theorem, there exists a zero subsequé&naé R with |T1| = n. Clearly,
b appears irfy. Thus, we haveTy = x"y‘b € F(Z,) such that + m + 1 = n where
,m > 1.

Supposdy; }'—i and{z;}"_{ missr ands residue classes modutarespectively. If- =
s = c(mod n), then we can choose, by relabeling indices,y2, ..., y¢, 21,22, - -+ » Zm
such thaty; # z;(modn) foralli =1,2,... ,£andj = 1,2,... ,m. We are in the
following situation:

(x’)’l), sy ('x’ }’6), (y’ Z1)7 LA} (szm), (b7 C)

such that its sum is zero modutosinceys, ... , ye, 21, - - - Zm, ¢ runs through all distinct
residue modula.
If r £ s (mod n), then we can choosg, ... , y¢, z1, . . - Zm, ¢ runs through all distinct

residue modula. Therefore again we can produce a zero-sum subsequea# t#ngth
n

'Ifr = s # c(mod n), then we do the following. Let = s = a (mod n). Let us take
Z,=1{0,1,2,...,.a—1,a,a+1,... ,6,L+1,...,c—1c, ..., n—1}.
Then we choose the sequences
iY_1:0,23,...,a-La+la+2..,6+1
and
{ZjVicgia+L€+2€+3,...,c—Lec+1l...,n—2n-1
Then we see that

vi+y2+--+y+z1+z2+-+zm+c=0(modn).
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Thus we have the following zero subsequereT of S of length n

(. y1), (x, y2), -5 (0, y0), (0, 20)5 -5 (95 2Zm), (B, ©)

inZ, ®7Z,.
Our lag two resuls go to indicate tha the uppe bourd g(p) < 4p — 3 can be strength-
endl in sone casesln the proof, we shal neal to use the so-called:

Cauchy—Davenparinequality. Let A ard B betwo nonempy subsetof Z,. If wedenote
the cardinaliy of A by |A| ard of B by | B|, then

|A+ B| = min{p, |A] + |B| — 1},

where A + B stand for the sum-sé of thes two subsets.

An induction argumert easily gives If Ay, Ay, ..., A, are nonempy subses of Z ,,
then

h
| A1+ Az + -+ Ap| = min(p, Y |Ai| — h +1).
i=1

Remak 4.8 Let S € F(Z, ® Z,) be asquare-fre elemenwith |S| > 3n — 3. We know
that if n isodd ard S does not contan azem subsequereof lengh #, then no single
residie class can occu as thefirst co-ordinaé more than n — 1 times Therefore the first
co-ordinate of the elemeng of S run through at leas four distind residwe classs modulo
n insud acase.

PROPOSITICN 4.9

Let s beaninteger swchthat4 <s < p. Let S =[[;a; € F(Z, ® Z,) beasquae-free
elemenwith |S| = 4p — 2 — 5. Assune that the first co-ardinates of the a;'s run through
exactly s differert residie classas modub p and that each differert residue class modulo
p repeas an odd numbe of times Then thereisa zao subsequereT of S with |T| = p.

Proof. LetS =[];a; € F(Z, ®Zp) bethegiven elemet satisfyirg the hypothesisBy
hypothesisthe first co-ordinats of the elemensa; run throudh s differert residie classes
modub p and ead of thes residie classs repeas an odd numbe of times Sorre of the
residus may appeaonly once The numbe of suc residuesisat mod s. Now, let uslist
the elemens of S asfollowsif necessarby relabelirg the indices

ai = (bj,c;) fori=21,2,...,s

wherb; # b; (mod p) fori # j. Alsoamorgtheb;’swe put thosresiduswhichappear
only oneein S. Therefoe the remainirg residus will be appearig as pairs Sa, let

aiys = (x;,y) fori=12,...,2p—1—5s
and
aiyop-1=(x;,z;) fori=212...,2p—1-s

wher y; # z;(mod p) foralli = 1,2,...,2p — 1 —s. Thiskind of listing is possible
becaus of the assumptia on the first co-ordinats of theelemensa; € Z, ® Z,.
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Now we partition the x;; i = 1,2,...,2p — 1 — s into nonempy classes
A1, Ay, ..., Ap_1 sudh that ead A; consiss of differert residus modub p. This is
possibé becaus no single residie class can be repeatd more than p — 1times Set

Ap ={b1, by, ..., by}

Cleary A; Cc Z,fori =1,2,..., p. Conside thesum A; 4+ Ay + --- + A,. Cauchy—
Davenpot inequaliy implies now that

p
|A1+---+Ap| =min <P72|Ai| -r+ 1) =min(p, 2p—1-s+s—p+1)=p.
i=1

Thismeans0 € Z, canbewrittenassumof p elementsi.e., x1+x2+---+x,_1+b, =0
wherex; € A;fori =1,2,...,p—1andb, € A, (Herewe have relabele the indices
of x; )

Now we have the foll owing situation.

(-xlv )’1)» (-x23 )’Z)s cer (xp—lv )’p—l)a (brs Cr)

and
(x1,z1), (x2,22), ..., (Xp—1,2p-1)

wheexi +x24+---+x,_1+b, =0(mod p)andy; £ z; forali =21,2,...,p -1
An application of Lemma 4.7 now yields the result.

For generan, with an additiond assumptia on the first co-ordinateswe prove:

PROPOSITION 4.10

LetO<s <[(n—1)/2] beaninteger. Let S = [[; a; € F(Z, DZ,) With|S| = 3n—2+5

be a squae-free elementAssune that the first co-ardinates of the a;’s run through n — s

differert residie classes modub n and each residie class occurs an odd numbe of times
with at lead s + 1 different residwe classes modub » which are repeate at lead three
times Then there exists a zero subsequereT of S with |T'| = n.

Proof. Let S = ]_[j aj € F(Z, ® Z,) be the given square-fre elemen satisfyirg the
hypothesisBy our assumptiopall the first co-ordinate of the a;'s appeaan odd number
of timesasdifferert residusmodub . Itisclea tha thenumbe of residuswhich appear
exactly once canna exceeal n-s-3, sinee any residie modub n can be repeatd at most
n — 1times Therefoe othe than thes residuesevery othe residie is repeatd at least
threetimes.

Now, let uslist theelemensg of thegiven sequene S asfoll ows, if necessarby relabeling
theindices

ai = (x;,y;) fori=21,2,... ., n—1+s

and
Qjin—s = (xj,z;) fori=1,2,... ,n—1+s

wherey; # z;(mod n) foralli =1,2,... ,n — 1+ s. Also,

Ai+2n—14s5) = (bi,c;) fori=1,2,... ., n—s
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wherb; # b; (mod n) fori # j. Any reside tha is repeatd only once has been put in
the class of the b;’s. This kind of listing is possibé becaue of the assumptia over the
first co-ordinats of the elemens$a; € Z, ® Z,,.

Sinee s + 1 distind residie classe modub n repea at leag three times we can take
themtobe x,_1, x,, ... , x,—145. Othe thanthe® x;’sfori = 1,2,... ,n — 1+ s, we
have b;'s which run throuch n — s differert residie classe modub r.

LetY""2x;+x; =djfor j=n—1n,...,n—1+s. Sincethe sequene {—d;}
of lengh s 4+ lissud tha d; # di (mod n) for j # k, there exists one b, amoryg the
bi’ssuththa —d; = b, for sone j, since the sequene {h;} canna miss s + 1 different
residie class modub n. Hence we have

x1+x2+---+x_2+x; + b =0 (mod n).

Supposgby relabelingwelet x; = x,,_1 for our convenienceNow we have the foll owing
situation:

(x1, y1), (x2, ¥2), ..., (Xu—1, Yn-1), (br, cy)

and

(x1,z1), (x2,22), ..., (Xp—1, Zn—1)

wheex; +x2+---+x,-1+b, =0 (mod n) ard y; # z; (mod n) foralli = 1,2, ...,
n — 1. Once again an application of Lemma 4.7 provesthe result.

COROLLARY 4.11

Let » beaninteger swchthat0 < r < 3. Let S =[], a; € F(Z, & Z,,) be asquae-free
elemenwith |S| = 3n — 2 + r. Suppos the first co-ardinates of a;’s run through n — r

differert residie classs modub » such that each residie classisrepeatée an odd number
of times Then there exists a zeo subsequereT of S with |T| = n.

Prodf. Itisenoud to provetha ther exist r + 1 differert residwe classe modub » which
are repeatd at leag three times Then the corollaly foll ows from the theorem Since we
havetotally n — r differert residwe classe modub 7, at leag four differert residie classes
modub n have to repeda minimum of threetimes Hence the corollaly is proved.
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