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Abstract. In this paper, we shall address three closely-related conjectures due to
van Emde Boas, W D Gao and Kemnitz on zero-sum problems onZp ⊕ Zp. We prove
a number of results including a proof of the conjecture of Gao for the primep = 7
(Theorem 3.1). The conjecture of Kemnitz is also proved (Propositions 4.6, 4.9, 4.10)
for many classes of sequences.
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1. Introduction and notations

Davenport [5] raised the following question for any finite Abelian groupG. What is the
smallest constantD(G) for which given an arbitrary sequencea1, a2, . . . , at in G with
t ≥ D(G), there exists a subsequence whose sum is zero inG? Evidently, we have
D(Zn) = n. Davenport’s constant is connected with algebraic number theory as follows.
Let K be a number field (i.e., a finite extension ofQ) andOK be its ring of integers. Let
C(K) be its class group. Letx ∈ OK be an irreducible element. AsOK is a Dedekind
domain, the ideal

xOK =
r∏

i=1

Pi

wherePi are prime ideals inOK not necessarily distinct.C(K) is a finite Abelian group
and ifD is its Davenport constant, then in the prime ideal factorization of the integral ideal
xOK at mostD prime ideals can occur. The precise value ofD(G) is known only in very
special cases (see [10]).

To describe various conjectures and results pertaining toD(G) and other problems, we
need to recall the following precise definitions.

Let G be a finite Abelian group. ThenG = Zn1 ⊕ · · · ⊕ Znr with 1 < n1|n2| · · · |nr,

wherenr = exp(G) is the exponent ofG andr is the rank ofG. Most of our discussion
will be centered around the groupG = Zn ⊕ Zn.

Let F(G) denote the free Abelian monoid with basisG. The elements ofF(G) will be
calledsequences. The monoid homomorphism

σ : F(G) −→ G by σ

(
S =

∏̀
ν=1

gν

)
=
∑̀
ν=1

gν

399



400 B Sury and R Thangadurai

maps a sequence to the sum of its elements. LetS = ∏`
ν=1 gν ∈ F(G) be a sequence.

ThenS has a unique representation of the form

S =
∏
g∈G

gvg(S) ∈ F(G),

whereνg(S) is the number of timesg appears inS and|S| = ∑
g∈G vg(S) = ` ∈ IN is

called thelength of S. We say thatT ∈ F(G) is a subsequence ofS and we writeT |S,

if vg(T ) ≤ vg(S) for everyg ∈ G. As usual, we say thatT , T ′ ∈ F(G) are disjoint
subsequences ofS, if their productT T ′ is a subsequence ofS. The identity element
1 ∈ F(G) will be called theempty sequence, and we have|1| = 0. WheneverT |S,

the elementR = ST −1 ∈ F(G) denotes the sequence withT deleted fromS. Clearly,
RT = S. We say that the sequenceS is

azero sequence, if σ(S) = ∑`
k=1 gk = 0,

azero-free sequence, ifS does not have any zero subsequences,
a minimal zero sequence, if it is a zero sequence and each proper subsequence is

zero-free,
ashort zero sequence, if it is a zero sequence with 1≤ |S| ≤ exp(G).

The set of all zero sequences is a submonoid ofF(G). Its irreducible elements are the
minimal zero sequences (see [2–4]).

We study the following constants associated with a finite Abelian groupG. Let η(G)

(respectivelyf (G)) denote the least positive integerr such that any sequenceS ∈ F(G)

with |S| ≥ r contains a nonempty zero subsequenceT of S of length at most (respectively
equal to) exp(G). Evidently,η(G) ≤ f (G). Typically, there are two types of conjectures in
this subject – one predicts the value ofη(G) orf (G) and, the other asserts that a sequence
of length one less than the (predicted) value ofη(G) or f (G) must have a certain very
restricted form.

The main results of this paper are Theorem 3.1 which proves Gao’s Conjecture on
Zp ⊕ Zp for p = 7 and Theorem 2.5 which addresses Emde Boas’s Conjecture. Several
partial results related to Kemnitz’s Conjecture are obtained in§4 (Propositions 4.6, 4.9
and 4.10).

2. Sequences of length at mostη(G)

The results of this section will be used in the next one as well. In this section, we study
sequences of length at mostη(G) for G = Zn⊕Zn. We obtain results related to a conjecture
of Emde Boas which addresses the structure of sequences of lengthη(G) − 1. These
methods also yield new proofs of certain results of Davenport, Olson, Alon and Dubiner.
Our proofs are based on the well-known:

Chevalley–Warning Theorem.Letf1, f2 . . . , fr be homogeneous polynomials inn vari-
ables overZp such that sum of their degrees is strictly less than the numbern of variables.
Then, all thefi have a nonzero simultaneous solution overZp.

We start with the following general result.

Theorem 2.1.

(a) If G ∼= Zd
p, thenD(G) = d(p − 1) + 1.
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(b) Let S = ∏
i ai ∈ F(Zd

p) with |S| = (d + 1)(p − 1) + 1. Then, there exists a zero
subsequenceT of S such that|T | ≡ 0 (mod p).

(c) Let2 ≤ d < p. LetS ∈ F(Zd
p) with S = (d + 1)(p − 1) + 1. Then there exists a zero

subsequenceT of S such that1 ≤ |T | ≤ (d − 1)p.

A result stronger than (a) was proved already in 1969 by Olson [15] but this version is
sufficient for our purpose.

Proof of(a). For i ≤ d, the set of elements

ei = (0, 0, . . . , 0,︸ ︷︷ ︸
i−1 times

1, 0, . . . , 0︸ ︷︷ ︸
d−i+1 times

)

of G, each repeatedp − 1 times, shows thatD(G) > d(p − 1).

Let ai = (ai1, ai2, . . . , aid); 1 ≤ i ≤ d(p − 1) + 1 be elements ofG. Consider the
polynomials

fj (X1, . . . , Xd(p−1)+1) =
d(p−1)+1∑

i=1

aijX
p−1
i for j ≤ d.

The Chevalley–Warning Theorem ensures that there is a nontrivial common solution
x1, x2, . . . , xd(p−1)+1 modp. Evidently, one has therefore

∑
i∈I ai = 0 whereI = {i :

xi 6= 0}. Thus,D(G) = d(p − 1) + 1.

Proof of(b). Write ai = (ai1, ai2, . . . , aid) and putr = (d + 1)(p − 1). Let a be a
quadratic nonresidue modulop. For 1≤ j < d, consider the polynomials

fj (X) =
r+1∑
i=1

aijX
p−1
i −

r+1∑
i=1

X
p−1
i

in r + 1 variablesX = (X1, X2 . . . , Xr+1) and

fd(X) =
(

r+1∑
i=1

aidX
p−1
i

)2

− a

(
r+1∑
i=1

X
p−1
i

)2

.

Thesed homogeneous polynomials are considered overZp. As the sum of their degrees
is (d + 1)(p − 1) = r which is less than the number of variables, the Chevalley–Warning
Theorem implies that they have a common nontrivial zero overZp. Let us fix such a
solutiony1, y2, . . . , yr+1. If I = {i : 0 6= yi ∈ Zp}, thenI is nonempty and the last
equalityfd(yi) = 0 gives|I | ≡0 (mod p) as well as

∑
i∈I aid = 0 in Zp. Therefore, we

get
∑

i∈I aij = 0 in Zp for eachj ≤ d. This just means that
∑

i∈I ai = (0, 0, . . . , 0︸ ︷︷ ︸
d times

).

This completes this proof.

Proof of(c). Let ai = (ai1, . . . , aid), 1 ≤ i ≤ (d + 1)(p − 1) + 1 be a sequence in
Zd

p. Let us write` = (d + 1)(p − 1) + 1 for simplicity of notation. Consider thed + 1
homogeneous polynomials

fj (X) =
∑̀
i=1

aijX
p−1
i , 1 ≤ j ≤ d
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and

f0(X) =
∑̀
i=1

X
p−1
i , 1 ≤ j ≤ d

in X = (X1, X2, . . . , X`) ` variables.
By the Chevalley–Warning Theorem, there exists azero subsequence of length rp for

some 1 ≤ r ≤ d. If the length is ≤ (d − 1)p, we are done. So, let us assume that
I ⊂ {1, 2, . . . , `} such that |I | = dp and

∑
i∈I ai = (0, 0, . . . , 0︸ ︷︷ ︸

d times

) in Zd
p. By renaming,

wemay take I = {1, 2, . . . , dp}. Let us now look at thed + 1 polynomials

gj (X) =
dp−1∑
i=1

aijX
p−1
i , 1 ≤ j ≤ d

and

g0(X) =
∑̀
i=dp

X
p−1
i .

Again, by theChevalley–Warning Theorem, thereis anontrivial solutionxi satisfied by all
thegj , j ≥ 0. Writing J = {i : xi 6= 0}, J is anonempty subset of {1, 2, . . . , `}. Sinceg0
isasumof lessthanp terms,J∩{dp, dp+1, . . . , `} isempty.Thus,J ⊆ {1, 2, . . . , dp−1}
and

∑
i∈J ai = 0. If |J | ≤ (d − 1)p, we are done. If |J | > (d − 1)p, then, clearly,

J0 = I \J hascardinality between 1andp−1 and
∑

i∈J0
ai = (0, 0, . . . , 0︸ ︷︷ ︸

d times

) in Zd
p. Thus,

the theorem is proved.

COROLLARY 2.2

(a) (Erd̋os–Ginzburg–Ziv Theorem). Let S ∈ F(Zn) with |S| = 2n − 1. Then thereexists
a zero subsequenceT of S of length n.

(b) η(Zn ⊕ Zn) = 3n − 2.

Proof. For (a), take d = 1 in Theorem 2.1(b) to obtain it for primes and then a trivial
induction completes theproof.

Taking d = 2 in the above theorem gives η(Zp ⊕ Zp) ≤ 3p − 2 for a prime p. It is
trivial to see that theupper bound for primes implies theupper bound for general n. If we
consider S = (0, 1)n−1(1, 0)n−1(1, 1)n−1 ∈ F(Zn ⊕ Zn), then clearly S does not have
any short zero subsequences. Therefore, η(Zn ⊕ Zn) ≥ 3n − 2.

Part (b) wasfirst provedby Olson, [15] andEmdeBoas[18]).A moregeneral application
analogous to the E–G–Z theorem for a finite group had been conjectured by Olson [15]
and was obtained in [16].

Corollary 2.2(b) is actually equivalent to the, a priori , stronger:

PROPOSITION 2.3

Let k be a positive integer satisfying 0 ≤ k ≤ bn/2c. Let S ∈ F(Zn ⊕ Zn) with |S| =
3n − 2+ k. Then thereexists ashort zero subsequenceT of S such that k + 1 ≤ |T | ≤ n.
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Proof. Let S ∈ F(Zn ⊕ Zn) with |S| = 3n − 2 + k. By Corollary 2.2(b), there exists
a short zero subsequence T such that 1 ≤ |T | ≤ n. Choose T such that T has maximal
length less than or equal to n. If |T | ≤ k, consider the deleted sequence ST −1. Then
|ST −1| ≥ 3n − 2+ k − |T | ≥ 3n − 2. Therefore, by Corollary 2.2(b), thereexistsashort
zero subsequenceT1 of ST −1. Notethat, by maximality of |T |, wehave |T1| ≤ |T | ≤ k ≤
bn/2c. Note that |T1| + |T | ≤ n. This contradicts the maximality of |T |, since we would
havechosen T1 ∪ T as our T in thefirst step itself. Therefore |T | ≥ k + 1.

Thefollowingpropositionwassuggestedby theanonymousreferee. It isprovedcompletely
similarly and wil l beused in theproof of Lemma3.2.

PROPOSITION 2.3′

Let k bean integer satisfying 0 ≤ k ≤ [n/2]. Let S ∈ F(Zn ⊕ Zn) with |S| = 3n − 3+ k.
Then, either there exists a short zero subsequenceT of S with k + 1 ≤ |T | ≤ n, or there
is a subsequence W of S of length 3n − 3 which does not contain any short zero-sum
subsequence.

Using theabovemethods, wehaveanew and short proof of the following result due to
Alon and Dubiner [1]:

PROPOSITION 2.4

If S ∈ F(Zp ⊕ Zp) isa zero sequencewith |S| = 3p, then S containsa zero subsequence
T with |T | = p.

Proof. If S = {si = (ai, bi) : 1 ≤ i ≤ 3p} with
∑3p

i=1 si = (0, 0), then the Chevalley–

Warning Theorem ensures theexistenceof anontrivial common zero for
∑3p−2

i=1 aiX
p−1
i ,∑3p−2

i=1 biX
p−1
i , and

∑3p−2
i=1 X

p−1
i . This gives I ⊂ {1, 2, . . . , 3p} with |I | = p or |I | =

2p such that
∑

I si = (0, 0). In the latter case, the complement J = {1, 2, . . . , 3p} \ I

has cardinality p and gives again azero subsequenceof S.

As we noticed earlier, S = (0, 1)n−1 (1, 0)n−1 (1, 1)n−1 ∈ F(Zn ⊕ Zn) does not have
any short zero subsequences. One may wonder if the same kind of structure must prevail
for any sequenceof length 3n − 3 which doesnot haveshort zero subsequences. Thishas
been conjectured to beso by van EmdeBoas.

Conjecture1 [18]. Let S ∈ F(Zn ⊕ Zn) with |S| = 3n − 3. If S does not contain any
short zero subsequences, then S = an−1bn−1cn−1, where a, b, c ∈ Zn ⊕ Zn are distinct
elements.

VanEmdehimself [18] verifiedtheconjecturefor theprimes2, 3, 5and 7using acomputer.
Later, Gao [9] proved that theconjecture is ‘multiplicative’, i.e., if it is true for n = k and
n = m, then it is true for n = km. Thus, it suffices to prove thisconjecture for all primes.
The following theorem proves some properties that a sequence S ∈ F(Zp ⊕ Zp) with
|S| = 3p − 3 must possess if it does not contain any short zero subsequence.

Theorem 2.5. Let S = ∏
i xi ∈ F(Zp ⊕ Zp) with |S| = 3p − 3 and supposeS doesnot

contain any short zero subsequence. Then
(a) thereexists a minimal zero subsequenceT1 of S with |T1| = 2p − 2,

(b) thereexists a minimal zero subsequenceT2 of S with |T2| = 2p − 1,

(c) there is no zero subsequenceof cardinality at least 2p.
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Proof. Write xi = (ai, bi) ∈ Zp ⊕ Zp. We shall start by proving (c). We divide into two
parts – first, we prove the nonexistence of zero subsequences of any length≥2p + 1 and
then do the 2p case.

SupposeK is a subset of{1, 2, . . . , 3p − 3} such that
∑

i∈K xi = (0, 0) and |K| ≥
2p + 1. Consider the 3p elementsyi; 1 ≤ i ≤ 3p where

yi =
{

xi, if i ∈ K

(0, 0), otherwise
.

As
∑3p

i=1 yi = (0, 0), by Proposition 2.4, there is a zero subsequenceT with |T | = p and
the index setI of T is a subset of{1, 2, . . . , 3p}. As |K| ≥ 2p + 1, we have 3p − |K| ≤
p−1.Then,J = I∩K has cardinality between 1 andp.Thus

∑
i∈J yi = ∑

i∈J xi = (0, 0)

which contradicts the hypothesis. Hence there is no zero subsequence of length at least
2p + 1.

Suppose now that there is a zero subsequence of length 2p. Rename and assume
that

∑2p

i=1 xi = (0, 0). Consider the three polynomials in 3p − 2 variablesX :=
(X1, X2, . . . , X3p−2) defined by

f (X) =
3p−3∑
i=1

aiX
p−1
i , g(X) =

3p−3∑
i=1

biX
p−1
i , h(X) =

3p−2∑
i=2p

X
p−1
i .

Note thath involves onlyX2p onwards. By the Chevalley–Warning Theorem, there is a
common nontrivial zero, sayt1, t2, . . . , t3p−2. The last polynomial shows thatti = 0
for i ≥ 2p. In other words, there is a nonempty subsetI1 of {1, 2, . . . , 2p − 1} with∑

i∈I1
ai = 0 = ∑

i∈I1
bi , i.e.,

∑
i∈I1

xi = (0, 0). Note thatJ = {1, 2, . . . , 2p} \ I1
is nonempty (as 2p 6∈ I1) and

∑
J xi = (0, 0). By hypothesis, bothI1 andJ must have

cardinality more thanp, which is an impossibility. Hence (c) is proved for 2p also.
We shall prove (b) now. Putx0 = (0, 0) and applying Proposition 2.4 to the 3p − 2

elementsxi; 0 ≤ i ≤ 3p − 3, one has a zero subsequenceT0 of lengthp or 2p. Let the
index set ofT0 beI0. TakeI = I0 \ {0}; then|I | = p or p − 1 or 2p or 2p − 1. The first
two have been ruled out by hypothesis and the third one has been ruled out by part(c).

Therefore|I | = 2p − 1. This proves (b).
Let us prove (a) now. Takex3p−2 = −∑3p−3

i=1 xi . We know already thatx3p−2 6= (0, 0)

from (c); here a separate argument needs to be given forp = 3, since (c) does not apply
here as 3p − 3 < 2p + 1.

Let p ≥ 5 be any odd prime and we can takex3p−2 = −∑3p−3
i=1 xi 6= (0, 0). Write

xi = (ai, bi) for 1 ≤ i ≤ 3p − 2. Consider the three polynomials in 3p − 2 variables
X := (X1, X2, . . . , X3p−2) defined by

F(X) =
3p−2∑
i=1

aiX
p−1
i , G(X) =

3p−2∑
i=1

biX
p−1
i , H(X) =

3p−2∑
i=1

X
p−1
i .

By Proposition 2.4, there is a subsetI1 ⊂ {1, 2, . . . , 3p − 2} such that|I1| = p or 2p and∑
i∈I1

xi = (0, 0).

Case1. (When|I1| = 2p)
If 3p − 2 ∈ I1, look atI = I1 \ {3p − 2}. Then,I ⊂ {1, 2, . . . , 3p − 3}, |I | = 2p − 1

and
∑

i∈I xi = −x3p−2 = ∑3p−3
i=1 xi . Then,J = {1, 2, . . . , 3p − 3} \ I has cardinality
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p − 2 and satisfies
∑

i∈J xi = (0, 0). This contradicts the hypothesis. Thus, 3p − 2 6∈ I1.
But, thenxi; i ∈ I1 is a zero subsequence ofxi; i ≤ 3p − 3 of length 2p. We have ruled
it out already by part (c). Thus, Case 1 cannot occur.

Case2. (When|I1| = p)
Then 3p − 2 must belong toI1 by hypothesis. ConsiderI = I1 \ {3p − 2}. Then,

I ⊂ {1, 2, . . . , 3p − 3}, |I | = p − 1 and
∑

i∈I xi = −x3p−2 = ∑3p−3
i=1 xi . Then,

J = {1, 2, . . . , 3p − 3} \ I has cardinality 2p − 2 and satisfies
∑

i∈J xi = (0, 0).
Forp = 3, do separately as follows. We havex1, x2, . . . , x6. If they sum to(0, 0), take

y6 = y7 = (0, 0) and look at the elementsx1, . . . , x5, y6, y7. Since they are 3p − 2 = 7
elements, by Proposition 2.4, there is a zero subsequence which has length either 3 or 6.
So, there is a zero subsequence ofx1, . . . , x5 of length either 1 or 2 or 3 or 4 or 5. The
first three are ruled out by hypothesis. In the last two cases, look at their complements
in {x1, . . . , x6}. These are zero subsequences of length either 1 or 2 which once again
contradicts the hypothesis. If

∑6
i=1 xi 6= (0, 0), then proceed as in the general case.

3. Gao’s conjecture

Consider the least numberf (Zp ⊕ Zp) such that anyS ∈ F(Zp ⊕ Zp) with |S| =
f (Zp ⊕ Zp) has a zero subsequenceT whose|T | = p. Its value is predicted by the
following conjecture first made by Kemnitz [13] and suggested, independently, by N.
Zimmerman and Y. Peres:

Conjecture2. f (Zp ⊕ Zp) = 4p − 3.

One can easily see thatf (Zp ⊕ Zp) ≥ 4p − 3. For, consider

S = (0, 0)p−1(0, 1)p−1(1, 0)p−1(1, 1)p−1 ∈ F(Zp ⊕ Zp).

Clearly, S does not contain a zero subsequence of lengthp. The results known about
Conjecture 2 and our results on it will be discussed in the next section.

This section deals with the following conjecture due to Gao [9] which predicts that a
sequence of length 4p −4 which does not contain a zero sequence of lengthp in Zp ⊕Zp

must look like the above example.

Conjecture3. If S ∈ F(Zp ⊕Zp) with |S| = 4p−4 such thatS does not contain any zero
subsequences of lengthp, thenS = ap−1bp−1cp−1dp−1, wherea, b, c, d ∈ Zp ⊕Zp are
all distinct elements.

Gao proved that if Conjecture 3 is true for all primes, then it is true for all natural
numbers. He also verified this conjecture forp = 2, 3 and 5. We shall prove this conjecture
for the primep = 7 now.

Theorem 3.1. LetS = ∏
i ai ∈ F(Z7 ⊕Z7) with |S| = 24. SupposeS does not contain a

zero subsequence of length7. ThenS = a6b6c6d6 wherea, b, c, d ∈ Z7 ⊕ Z7 are distinct
elements. In other words, Conjecture 3 is true whenp = 7.

For the proof of Theorem 3.1, we need the following lemma.

Lemma3.2. LetS ∈ F(Z7⊕Z7) with |S| = 24such thatS does not contain any zero sub-
sequence of length7. Supposea ∈ Z7 ⊕Z7 with va(S) ≥ 3. ThenS satisfies Conjecture 3.
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Proof. Supposea ∈ Z7 ⊕ Z7 with va(S) = s. We may assume thats is the maximum
number of times that some element occurs. Without loss of generality, we may also assume
thata = (0, 0) (otherwise we considerS − a instead ofS). SetR = S((0, 0)−s). Then,
|R| = 24 − s. It follows from Proposition 2.3′ that eitherR contains a short zero-sum
subsequenceT of length 7− s ≤ |T | ≤ 7, orR contains a subsequenceW of length 18
which does not contain any short zero-sum subsequence. If the first option holds, thenS

contains a zero-sum subsequence of length 7 of the formT (0, 0)∗, a contradiction. Thus,
the second option holds and, applying (forW ) the fact that Conjecture 1 is true forp = 7,
we get thatW contains three distinct elements each appearing six times. This forces (by
maximality ofs) thats = 6 and the proof is complete.

Proof of Theorem3.1. If some element ofS is repeated at least(7− 1)/2 = 3 times, then
the result holds by Lemma 3.2.

If the sequenceS ∈ F(Z7 ⊕ Z7) has at least 13 distinct elements modulo 7, then, by
Kemnitz [13], it follows thatS contains a zero subsequence of length 7 which leads to a
contradiction of our assumption. Therefore at most 12 distinct elements ofZ7 ⊕ Z7 can
appear inS.

Assume that at least one of the elements ofS is repeated exactly twice (we have covered
all the other cases already). Once again by the same result of Kemnitz, it will imply thatS

contains 12 distinct elements ofZ7 ⊕ Z7 each of them repeated exactly twice. Hence we
can assume thatS = (0, 0)2∏11

i=1 a2
i ∈ F(Z7 ⊕ Z7).

SetS∗ = ∏11
i=1 a2

i . By Corollary 2.2(b), there exists a short zero-sum subsequenceT1
of S∗. We assert that we must have

|T1| = 4. (1)

SinceS = S∗(0, 0)2, andS contains no zero-sum subsequence of length 7,|T1| ≤ 4. But
S∗ does not contain(0, 0). Therefore, 2≤ |T1| ≤ 4. If |T1| = 2 or 3, then|S∗T −1

1 | = 20
or 19. Since Conjecture 1 is true forp = 7, Proposition 2.3′ implies thatS∗T −1

1 contains
a short zero-sum subsequenceT2 with 3 ≤ |T2| ≤ 7. Once again, (since(0, 0)2 occurs
in S), we get 3≤ |T2| ≤ 4. Therefore,T = T1T2 is a zero-sum subsequence ofS∗ with
5 ≤ |T | ≤ 7, and similarly above one can derive a contradiction. Therefore,|T1| = 4.
This proves the assertion.

Claim. If a appears inS∗ then −a, a/2, −a/2, 2a, −2a cannot appear inS∗. It fol-
lows assertion (1) that−a cannot appear inS∗. If a/2 appears inS∗, thenS − a/2 =
((0, 0), (0, 0), a/2, a/2, −a/2, −a/2)S1 for someS1. The proof of assertion (1) shows
also that(S − a/2)((0, 0)−2) contains no zero-sum subsequence of length 2 or 3. But
(S − a/2)((0, 0)2)−1 contains the subsequence(a/2, −a/2), a contradiction. If−a/2
appears inS∗, thenS∗ contains subsequence(a, −a/2, −a/2), a contradiction of assertion
(1) again. If 2a appears inS∗, thenS − a = ((0, 0), (0, 0), a, a, −a, −a)S1. Exactly, as
in the case ofa/2 one can derive a contradiction. If−2a appears inS∗, thenS∗ contains
the subsequence(a, a, −2a), a contradiction of assertion (1). This proves the claim. As
a, −a, a/2, −a/2, 2a, −2a are the nonzero multiples of an elementa in F(Z7 ⊕ Z7), a
simple counting gives us|S∗| ≤ 2×(72−1)/(7−1) = 16, a contradiction. This completes
the proof of the theorem.

Since Conjecture 3 is ‘multiplicative’ [9], it follows immediately that:
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COROLLARY 3.3

Conjecture 3istruefor all positiveinteger n of theformn = 2a3b5c7d for all (a, b, c, d) ∈
N4\{(0, 0, 0, 0)}.
Remark 3.4. It must benoted that therearesequencesof length 4n − 4 in Zn ⊕ Zn which
aremadeup of four distinct elementsrepeatedn−1 timeseach which may contain azero-
sum subsequence of length n. In other words, the candidates appearing in the conclusion
of Conjecture 3aresomewhat restricted. For example, if (0, 0), (a, b), (−a, −b) arethree
of the four elements, there isalways azero-sum sequenceof length n. Similarly, if n = 5,
theelements (0, 2), (2, 0), (1, 1) occurring four timeseach gives azero-sum subsequence
of length 5.

4. Zero subsequences of length n in Zn ⊕ Zn

In thissection, weshall proveresultsabout sequencesinZn⊕Zn whichmust contain azero
subsequence of length n. In particular, we obtain some results pertaining to Conjecture 2
of Kemnitz for thegroup Zp ⊕ Zp.

It is trivial to see that if the conjecture holds good for two integers m and n, it is also
true for mn. So, if oneproves it for all primes, then it holdsgood for all natural numbers.
For our convenience, instead of writing f (Zp ⊕ Zp), wewritesimply f (p).

Harborth [12] considered afunction g(n) which is related to f (n). To define g(n), let
us define an element S = ∏

i ai ∈ F(Zn ⊕ Zn) to be square-free, if ai ’s are pairwise
distinct in Zn ⊕Zn. Theng(n) isdefined to betheleast positiveinteger such that given any
square-free S ∈ F(Zn ⊕ Zn) contains a zero subsequence of length n. Harborth proved
that g(3) = 5 and used this to prove f (3) = 9. Then Kemnitz [13] utilized the special
values of g(p) = 2p − 1 for p = 5, 7 to prove f (p) = 4p − 3 for p = 5, 7. A bound
known for all primesp is, due to Kemnitz [13]:

2p − 1 ≤ g(p) ≤ 4p − 3.

We shall prove on the one hand that the lower bound 2p − 1 is tight for many classes
of sequences and, on the other hand, we improve the upper bound for many classes of
sequences. In 1996, Gao [7] proved that if f (n) = 4n−3 andn ≥ ((3m−4)(m−1)m2 +
3)/4m with m ≥ 2, then f (nm) = 4nm − 3. These results were improved upon by the
secondauthor of thispaper in [17] whereit has, in fact, beenproved that if S ∈ F(Zn⊕Zn)

with |S| = 4n − 3 and T = as as its subsequence with s ≥ bn/2c, then S satisfies
Conjecture 2and that if f (n) = 4n − 3 and n > (2m3 − 3m2 + 3)/4m, with m ≥ 2, then
f (nm) = 4nm − 3. In 1995, Alon and Dubiner [1] gave theupper bound f (n) ≤ 6n − 5
for all n ∈ N. Later thiswas improved upon for all primes to f (p) ≤ 5p − 1 by Gao [8].
In 2000, Rónyai [14] proved that f (p) ≤ 4p − 2 for all primes p. From this bound, he
concluded that f (n) ≤ (41/10)n. Recently, Gao [11] has proved that f (pk) ≤ 4pk − 2
for all primesp and k ≥ 1. Many of theseproofsusegraph theory and arequitedifferent
from our methods.

Westart with theobservation:

Lemma 4.1. If S ∈ F(Zp ⊕Zp) with |S| = 4p −3 such that thereisno zero subsequence
T of S with |T | = 2p, then S must contain a zero subsequenceof length p, i.e., S satisfies
Conjecture2.
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Proof. Theproof followsby puttingd = 2inTheorem2.1(b) andapplyingProposition2.4.

PROPOSITION 4.2

(a) Let k bean integer such that 0 ≤ k ≤ bn/2c. Let S ∈ F(Zn ⊕ Zn) with |S| = 4n − 3.

SupposeT = an−1−k is a subsequence of S for somea ∈ Zn ⊕ Zn. Then there exists
a zero subsequenceR of S with |R| = n.

(b) Let ` and k be two integers such that 0 ≤ ` < k ≤ bn/2c. Let S ∈ F(Zn ⊕ Zn) with
|S| = 4n − 3 − `. Suppose T = (0, 0)n−k is a subsequence of S. Then S contains a
zero subsequenceR with n − ` ≤ |R| ≤ n.

Proof of (a). Without loss of generality we can assume that T = (0, 0)n−1−k. Let S∗ =
ST −1 be the subsequence of S. Clearly |S∗| = 4n − 3 − n + 1 + k = 3n − 2 + k. By
Proposition 2.3, thereexistsazero subsequenceU of S∗ with k+1 ≤ |U | ≤ n. Thusthere
exists azero subsequenceR of T U with |R| = n.

Proof of (b). Let S∗ = ST −1 bethesubsequenceof S with |S∗| = 4n − 3− ` − n + k =
3n − 2 + (k − ` − 1). Therefore by Proposition 2.3, there exists azero subsequence T1
of S∗ with k − ` ≤ |T1| ≤ n. Therefore there exists a zero subsequence R of T T1 with
n − ` ≤ |R| ≤ n.

Remark 4.3. One can prove that if f (n) = 4n − 3 and n ≥ (3m3 − m2 + 6)/8m for
some positive integer m, then f (nm) = 4nm − 3. The proof of this is quite similar to
thecorresponding result proved in [17], except that oneusesf (n) ≤ (41/10)n instead of
f (n) ≤ 5n − 4.

Here is aresult about thegroup Zm ⊕ Zn.

PROPOSITION 4.4

Let S ∈ F(Zm ⊕ Zn) with |S| = 2n + (21/10)m where m|n. Then S contains a zero
subsequenceof length n.

Proof. Since 2n + (21/10)m = (2n/m − 2)m + (41/10)m and we know f (m) ≤
(41/10)m, wecan extract 2n/m−1 disjoint subsequencesS1, S2, . . . , S2n/m−1 of S with
length m whosesum is zero in Zm ⊕ Zm. Sincewehave the following exact sequence

0 −→ Zn/m −→ Zm ⊕ Zn −→ Zm ⊕ Zm −→ 0

and by theE–G–Z theorem (Corollary 2.2(a) here), weknow thereis asubsequenceof the
sequence {si}2n/m−1

i=1 of length n/m where si ∈ Zn/m such that si := 1/m
∑m

j=1,aij ∈Si
aij

under the exact sequence. Let s1, s2, . . . , sn/m be the zero subsequence of {si}2n/m−1
i=1 of

length n/m. This means

n∑
i=1

si =
n∑

i=1

m∑
j=1

aij = 0

in Zm ⊕ Zn whereaij ∈ Si for j = 1, 2, . . . , m and for i = 1, 2, . . . , n/m.



Gao’s conjectureon zero-sum sequences 409

Remark 4.5. If S = ∏
i ai ∈ F(Zn ⊕ Zn) is square free with |S| = 2n − 1, then all the

first (or second) co-ordinates of the aj ’s cannot be distinct in Zn. Also, none of the first
(second) co-ordinatescan be repeated more than n times, since thecorresponding second
(first) co-ordinates run through 0 to n − 1. If n is odd and, one of the first (second) co-
ordinate repeats exactly n times, then the corresponding second (first) co-ordinate runs
through 0 ton−1 and wepick up thoseaj inS to produceazero subsequenceof lengthn.

Hencewecan alwaysassumethat if n isodd, then, in any such sequence, asingle residue
class modulo n is repeated at most n − 1 times among thefirst (second) co-ordinates.

Now, wecan prove two qualitative resultsboth of which exemplify the tightnessof the
lower bound g(p) ≥ 2p − 1.

PROPOSITION 4.6

(a) Let n be a prime and let S = ∏
i ai ∈ F(Zn ⊕ Zn) be a square-free element with

|S| = 2n − 1. Suppose the first co-ordinates of the aj ’s run through all the different
n residue classes modulo n such that n − 1 different residue classes modulo n are
repeated exactly twice. Then thereexists a zero subsequenceT of S with |T | = n.

(b) Let n be a prime and let S = ∏
i ai ∈ F(Zn ⊕ Zn) be a square-free element with

|S| = 2n−1. Supposethefirst co-ordinatesof theaj run through threedistinct residue
classes modulo n such that two of the residue classes repeat n − 1 times. Then there
exists a zero subsequenceT of S with |T | = n.

The following lemma wil l be used in the proof of (a) as well as later in the proof of
Proposition 4.9.

Lemma 4.7. Let n be aprimeand let S = ∏
i aj ∈ F(Zn ⊕ Zn) be asquare-freeelement

with |S| = 2n − 1. Let ai = (xi, yi) and ai+n−1 = (xi, zi) for i = 1, 2, . . . n − 1 where
yi 6≡ zi (mod n) for all i and a2n−1 = (b, c). If x1 + x2 + · · · + xn−1 + b ≡ 0 (mod n),

then, thereexists a zero subsequenceT of S with |T | = n.

Proof. Let K ≡ y1 + y2 + · · · + yn−1 + c (mod n) and e` = z` − y` (mod n) for all
` = 1, 2, . . . , n − 1. Clearly, e` 6≡ 0 (mod n) because yi 6≡ zi (mod n) for all i. If we
form all thepartial sumsof e`’sweget all thedistinct residueclassesmodulo n (Thiscan
bedoneby simpleinduction, seefor instance[6]). Therefore, thereexists apositiveinteger
m such that K + ei1 + ei2 + · · · + eim ≡ 0 (mod n) which implies

y1 + · · · + yi1−1 + zi1 + yi1+1 + · · · + yim−1 + zim

+ yim+1 + · · · + yn−1 + c ≡ 0 (mod n).

Then, the following subsequenceof S

(x1, y1), . . . ,(xi1−1, yi1−1), (xi1, zi1), (xi1+1, yi1+1), . . . ,(xn−1, yn−1), (b, c)

produces the required zero subsequenceof length n

Proof of Proposition 4.6(a). Let S ∈ F(Zn ⊕ Zn) be thegiven square-freeelement satis-
fying thehypothesis. Let us list theelements of S as follows:

ai = (xi, yi) for all i = 1, 2, . . . , n − 1
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and
ai+n−1 = (xi, zi) for all i = 1, 2, . . . , n − 1

wherezi 6≡ yi (mod n) for all i = 1, 2, . . . , n − 1 andxi 6≡ xj (mod n) for everyi 6= j.

Also, leta2n−1 = (b, c) such thatb 6≡ xi (mod n) for everyi = 1, 2, . . . , n − 1. Clearly,
we have a zero-sum of lengthn as follows:

x1 + x2 + · · · + xn−1 + b ≡ 0 (mod n).

Now, the result follows from lemma 4.7.

Proof of(b). Let S ∈ F(Zn ⊕ Zn) be a square-free element with|S| = 2n − 1 satisfying
the hypothesis. We shall list the elements ofS in the following manner. Let

ai = (x, yi) for i = 1, 2, . . . , n − 1 whereyi 6≡ yj (mod n)

and

ai+n−1 = (y, zi) for i = 1, 2, · · · , n − 1 wherezi 6≡ zj (mod n)

andx 6≡ y (mod n). Also, we leta2n−1 = (b, c) whereb 6≡ x (mod n) andb 6≡ y

(mod n). ConsiderR = xn−1yn−1b ∈ F(Zn) with |R| = 2n−1. Therefore, by the Erd̋os–
Ginzburg–Ziv theorem, there exists a zero subsequenceT1 of R with |T1| = n. Clearly,
b appears inT1. Thus, we have,T1 = xmy`b ∈ F(Zn) such that̀ + m + 1 = n where
`, m ≥ 1.

Suppose{yi}n−1
i=1 and{zi}n−1

i=1 missr ands residue classes modulon respectively. Ifr ≡
s ≡ c (mod n), then we can choose, by relabeling indices,y1, y2, . . . , y`, z1, z2, . . . , zm

such thatyi 6≡ zj (mod n) for all i = 1, 2, . . . , ` andj = 1, 2, . . . , m. We are in the
following situation:

(x, y1), . . . , (x, y`), (y, z1), . . . , (y, zm), (b, c)

such that its sum is zero modulon, sincey1, . . . , y`, z1, . . . zm, c runs through all distinct
residue modulon.

If r 6≡ s (mod n), then we can choosey1, . . . , y`, z1, . . . zm, c runs through all distinct
residue modulon. Therefore again we can produce a zero-sum subsequence ofS of length
n.

If r ≡ s 6≡ c (mod n), then we do the following. Letr ≡ s ≡ a (mod n). Let us take

Zn = {0, 1, 2, . . . , a − 1, a, a + 1, . . . , `, ` + 1, . . . , c − 1, c, . . . , n − 1} .

Then we choose the sequences

{yi}`i=1 : 0, 2, 3, . . . , a − 1, a + 1, a + 2, . . . , ` + 1

and

{zj }mj=1 : a + 1, ` + 2, ` + 3, . . . , c − 1, c + 1, . . . , n − 2, n − 1.

Then we see that

y1 + y2 + · · · + y` + z1 + z2 + · · · + zm + c ≡ 0 (mod n).
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Thus, wehave the following zero subsequenceT of S of length n

(x, y1), (x, y2), . . . , (x, y`), (y, z1), . . . , (y, zm), (b, c)

in Zn ⊕ Zn.

Our last two resultsgo to indicate that theupper bound g(p) ≤ 4p − 3 can bestrength-
ened in somecases. In theproof, weshall need to use theso-called:

Cauchy–Davenport Inequality. Let A andB betwo nonempty subsetsof Zp. If wedenote
thecardinality of A by |A| and of B by |B|, then

|A + B| ≥ min{p, |A| + |B| − 1},
whereA + B stands for thesum-set of these two subsets.

An induction argument easily gives: If A1, A2, . . . , Ah are nonempty subsets of Zp,

then

|A1 + A2 + · · · + Ah| ≥ min(p,

h∑
i=1

|Ai | − h + 1).

Remark 4.8. Let S ∈ F(Zn ⊕ Zn) be asquare-freeelement with |S| > 3n − 3. Weknow
that if n is odd and S does not contain a zero subsequence of length n, then no single
residue class can occur as the first co-ordinate more than n − 1 times. Therefore, the first
co-ordinatesof theelementsof S run through at least four distinct residueclassesmodulo
n in such acase.

PROPOSITION 4.9

Let s be an integer such that 4 ≤ s ≤ p. Let S = ∏
i ai ∈ F(Zp ⊕ Zp) be a square-free

element with |S| = 4p − 2 − s. Assumethat thefirst co-ordinatesof theaj ’s run through
exactly s different residue classes modulo p and that each different residue class modulo
p repeatsan odd number of times. Then there isa zero subsequenceT of S with |T | = p.

Proof. Let S = ∏
j aj ∈ F(Zp ⊕ Zp) bethegiven element satisfying thehypothesis. By

hypothesis, thefirst co-ordinatesof theelementsaj run through s different residueclasses
modulo p and each of these residue classes repeats an odd number of times. Some of the
residuesmay appear only once. Thenumber of such residues isat most s. Now, let us list
theelements of S as follows if necessary by relabeling the indices

ai = (bi, ci) for i = 1, 2, . . . , s

wherebi 6≡ bj (mod p) for i 6= j. Alsoamong thebi ’sweput thoseresidueswhichappear
only once in S. Therefore the remaining residues wil l beappearing as pairs. So, let

ai+s = (xi, yi) for i = 1, 2, . . . , 2p − 1 − s

and

ai+2p−1 = (xi, zi) for i = 1, 2, . . . , 2p − 1 − s

where yi 6≡ zi (mod p) for all i = 1, 2, . . . , 2p − 1 − s. This kind of listing is possible
becauseof theassumption on thefirst co-ordinates of theelementsai ∈ Zp ⊕ Zp.
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Now we partition the xi; i = 1, 2, . . . , 2p − 1 − s into nonempty classes
A1, A2, . . . , Ap−1 such that each Ai consists of different residues modulo p. This is
possiblebecauseno single residueclass can be repeated more than p − 1 times. Set

Ap = {b1, b2, . . . , bs}.
Clearly Ai ⊂ Zp for i = 1, 2, . . . , p. Consider the sum A1 + A2 + · · · + Ap. Cauchy–
Davenport inequality implies now that

|A1+· · ·+Ap| ≥min

(
p,

p∑
i=1

|Ai | − p + 1

)
= min(p, (2p − 1 − s + s − p + 1)) = p.

Thismeans, 0 ∈ Zp canbewrittenassumof p elements, i.e., x1+x2+· · ·+xp−1+br = 0
wherexi ∈ Ai for i = 1, 2, . . . , p − 1 and br ∈ Ap (Here we have relabeled the indices
of xi .)

Now wehave the following situation.

(x1, y1), (x2, y2), . . . , (xp−1, yp−1), (br , cr )

and
(x1, z1), (x2, z2), . . . , (xp−1, zp−1)

where x1 + x2 + · · · + xp−1 + br ≡ 0(mod p) and yi 6≡ zi for all i = 1, 2, . . . , p − 1.

An application of Lemma4.7 now yields the result.

For general n, with an additional assumption on thefirst co-ordinates, weprove:

PROPOSITION 4.10

Let 0 ≤ s ≤ [(n−1)/2] bean integer. Let S = ∏
i ai ∈ F(Zn ⊕Zn) with |S| = 3n−2+ s

bea square-freeelement. Assume that thefirst co-ordinatesof theaj ’s run through n − s

different residue classes modulo n and each residue class occurs an odd number of times
with at least s + 1 different residue classes modulo n which are repeated at least three
times. Then thereexists a zero subsequenceT of S with |T | = n.

Proof. Let S = ∏
j aj ∈ F(Zn ⊕ Zn) be the given square-free element satisfying the

hypothesis. By our assumption, all thefirst co-ordinatesof theaj ’sappear an odd number
of timesasdifferent residuesmodulon. It isclear that thenumber of residueswhichappear
exactly once cannot exceed n-s-3, since any residue modulo n can be repeated at most
n − 1 times. Therefore other than these residues, every other residue is repeated at least
three times.

Now, let uslist theelementsof thegivensequenceS asfollows, if necessary by relabeling
the indices

ai = (xi, yi) for i = 1, 2, . . . , n − 1 + s

and
ai+n−s = (xi, zi) for i = 1, 2, . . . , n − 1 + s

whereyi 6≡ zi (mod n) for all i = 1, 2, . . . , n − 1 + s. Also,

ai+2(n−1+s) = (bi, ci) for i = 1, 2, . . . , n − s
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wherebi 6≡ bj (mod n) for i 6= j. Any residue that is repeated only once has been put in
the class of the bi ’s. This kind of listing is possible because of the assumption over the
first co-ordinates of theelementsai ∈ Zn ⊕ Zn.

Since s + 1 distinct residue classes modulo n repeat at least three times, we can take
them to be xn−1, xn, . . . , xn−1+s . Other than these xi ’s for i = 1, 2, . . . , n − 1 + s, we
havebi ’s which run through n − s different residueclasses modulo n.

Let
∑n−2

i=1 xi + xj = dj for j = n − 1, n, . . . , n − 1 + s. Since the sequence {−dj }
of length s + 1 is such that dj 6≡ dk (mod n) for j 6= k, there exists one br among the
bi ’s such that −dj = br for some j, since the sequence {bj } cannot miss s + 1 different
residueclass modulo n. Hencewehave

x1 + x2 + · · · + xn−2 + xj + br ≡ 0 (mod n).

Suppose, by relabeling, welet xj = xn−1 for our convenience. Now wehavethefollowing
situation:

(x1, y1), (x2, y2), . . . , (xn−1, yn−1), (br , cr )

and

(x1, z1), (x2, z2), . . . , (xn−1, zn−1)

wherex1 + x2 + · · · + xn−1 + br ≡ 0 (mod n) and yi 6≡ zi (mod n) for all i = 1, 2, . . . ,

n − 1. Onceagain, an application of Lemma4.7 proves the result.

COROLLARY 4.11

Let r be an integer such that 0 ≤ r ≤ 3. Let S = ∏
i ai ∈ F(Zn ⊕ Zn) be asquare-free

element with |S| = 3n − 2 + r. Suppose the first co-ordinates of aj ’s run through n − r

different residueclassesmodulo n such that each residueclass isrepeated an odd number
of times. Then thereexists a zero subsequenceT of S with |T | = n.

Proof. It isenough to provethat thereexist r +1 different residueclassesmodulon which
are repeated at least three times. Then, the corollary follows from the theorem. Since we
havetotally n− r different residueclassesmodulo n, at least four different residueclasses
modulo n have to repeat aminimum of three times. Hence thecorollary is proved.
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