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Abstract that the CSA cannot be regarded as a model of
computation in the sense that Turing machines, for

David Chalmers has defended an account of whatfd@ri example, are. This does not show that Chalmers’uamtco

a physical system to implement a computation. Thef implementation is inadequate, but it may makiess

account appeals to the idea of a “combinatorigkstaattractive than it would be if the CSA were a fildldged

automaton” or CSA. It is unclear whether Chalmemnodel of computation.

intends the CSA to be a computational model inuheal

sense, or merely a convenient formalism into which Chalmerson Implementation

instances of other models can be translated. leatiyat ) )

the CSA is not a computational model in the usease Chalmers (1996a) provides several proofs that s

because CSAs do not perspicuously represent digwit deflnltlon_s of mplemt_an_taﬂon for some comp_utanbna

are too powerful both in that they can perform angp_odels,_ln particular finite-state automata e@mh or

computation in a single step and in that withoutfao Without input and output, make implementations ttay

unspecified restrictions they can “compute” th&aSy to come by, thus trivializing the notion o th

uncomputable, and are too loosely related to physidMPlementation of a computation and partially

implementations. vindicating the critiques of Putnam and Searle.
Keywords Combinatorial-state automaton, computationdf/nere exactly does the problem lie? Chalmers sugges
model, implementation, Turing machine. that the root of the problem is that finite-stat¢canata

are too simple and unstructured. Chalmers writEseh
simple FSAs with inputs and outputs are not comstth
enough to capture the kind of complex structuret tha
It is a commonly held view in the cognitive sciesd¢kat computation and cognition involve. The troublehattthe
cognition is essentially computation. If this idsato be internal states of these FSAs amnadic lacking any
explanatorily useful, however, there must be arabje internal structure, whereas the internal statesmobt
account of when a physical process implements @mputational and cognitive systems have all softs
particular computation. Philosophers such as Hilargomplex structure.”

Putnam and John R. Searle have questioned whethier SChalmers then introduces a model to attempt toucapt

an ac'count is possible. Searle has (aised twc_)ecblatthis internal structure, the model of the “combamn&t-
objections (Searle 1992, Chapter 9): first, thaysital state automaton,” or ('ZSA. The CSA can be descrifbed

facts do not suffice to determine what computation exactly the same way as an FSA, except that et in
process  implements - ("physics does - not determins ate yinternal state yand output ’state F?’;lre destris
syntax’), and second, that computation is an oleserv vecto’rs rather than étructureleZS states; thataish state
relative property of physical processes, not annisic is regarded as being composed of substates. A given

property. The second point requires the first, siifce . ) )
physics constrained the computations a system doeild '”te”‘?" state S W.'" be viewed as a vec®1 B, . . ., 31]
and similarly for input and output stateEor a physical

interpreted as performing so tightly that only ag# system to implement a CSA, it must have states with

interpretation was possible, there would not betiplel substates that map to substates of the CSA. ate+ sta
possible interpretations for observers to selerhfr ransition rules in the CSA must correspond toatsé
David Chalmers has responded to these criticisms lopusal dependencies in the physical system. More
developing an account of implementation according tprecisely, to again quote Chalmers,

which it is an objective relation between a physica
system and an abstract model (Chalmers 1994, 1996a,
1996b). The account relies on the notion of a
“Combinatorial-State Automaton” or CSA. | will argu

1 Introduction

A physical systenf? implements a CSM if there is
a decomposition of internal states @& into
componentssf, .. .91, and a mapping from the
substatess into corresponding substatés of M,
along with similar decompositions and mappings for
inputs and outputs, such that for every state-
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transition rule (%, . . .,I'[S, .. .,S]) — ([S% ..., computation without commitment to any specific kinfd

S7,[0Y .. .,0) of M: if Pis in internal statesf, . . physical implementation.
., 9 and receiving inputif, . . .,i] which map to
formal state and inputsf,. . ., ST and I*. . .,Il 31 First Problem: Lack of Perspicuity

respectively, this reliably causes it to enter an

internal state and produce an output that magto.[ If we consider how to translate a TM descriptioroiat
.., S" and [O.. . ., O] respectively (Chalmers CSA description, however, we may start to wonder

1996b: 318, with one small typo corrected). Wheth_er someth_ing has gone wrong. Con_sider the
following very simple two-state Turing machine. If
Chalmers offers this as a general account @jfarted on the leftmost of a block of one or mdrekes,
implementation: any abstract computation can b will move to the right, add a stroke, and theove
redescribed in terms of CSA state-transitions,hs the  back to the left to halt on the first blank spaeéobe the
above definition of implementation can be appliedny strokes. We could think of it as computing the fiowc
abstract computation whatsoever. And the new modgh) =n + 1. (For simplicity | ignore the usual convention

avoids the triviality proofs for implementations fiffite-  that the machine must end on the leftmost strokthef
state automata. resulting block.)

3 Against the CSA asa Computational M odel 1R 1L

There are two ways one might interpret the CSA model

First, it could be intended to be a general model o

computation, in the same way that Turing machines or Bl

register machines are models of computation. Seaond

could be intended, not as a computational modetsin

own right, but merely as a convenient formalism for

redescribing computations from a variety of specifi Figure 1: Simple Turing Machine

models, in order to be able to state conditions on

imp|ementation in a way that will app|y to all dfam. | How should this Turing machine be described in t8AC
will argue that the CSA cannot play the former raled formalism? A state of the CSA that represents T

that, although it may be able to serve the latieoye Will be a vector with components for each squarehef

modest role, this may not be as advantageous fastit TM and a component for the internal state of the Thl.
appears. keep things simple, let us restrict our TM to a tapih

) ) only three squares. Each square will either be blank
In many ways the former interpretation of the C88,a ¢ontain a 1, and any combination of blanks and illbe

full-fledged computational model, is a very _att'rmtone. a possible state of the tape. This gives us eigasiple
There have been many proposals for making the @bstriates so far. States must also have a component to
idea of a computation precise, including Turingepresent the internal state of the TM; since our [ad
machines, register machines, abacus machines, PgQgh possible internal states, we now have 8 * 26= 1
production systems, and more. All of these haveetlir giates. Finally, a CSA state needs to indicateptisition

out to be equivalent, in the sense that they campate  of the TM's read/write head. The head must be on one
exactly the same functions. In another sense, thabhey 5.4 only one square of the tape, so we have a dgeaid

are not equivalent: although a Turing machine and & 16 * 3 = 48 distinct states the CSA can b2 in.
register machine can each compute, $@9, = x!, the

procedures used to compute the function will beequiln the general case, CSAs may have inputs and tsuisu
different in the two cases. Each specific model otell asinternal states. But this is not requiredeipresent
computation suggests a fairly restrictive physica® Turing machine. There is no output aside fronfitied
implementation; for example, a Turing machine istate of the tape. Chalmers suggests that the TM be
thought of as having a read/write head that trabeisk regarded as having input only once, when it statswe

and forth on a tape that is divided into squares itlea Ccan equally well regard it as having no input &tfave

of a CSA could be seen as abstracting away frorh sutf€at every state as a starting state, since fhe is also
details, offering a completely general account o$imply a distribution of symbols on the tape.

computation that is not restricted to any partickiad of Finally, in addition to state vectors (and input autput

physical implementation. On this interpretatiors WSA  eciors if necessary), a CSA must have a stateitiam
would have two important characteristics: (a) itudb

respect the differences between different compnati

models: the CSA transcription of a TM that compudes
given function will be different from the CSA 2 The simplest way to represent the position of thadhwould
transcription of a register machine that compufes t be to add another component to the state vectoruaadt to
same function. But, unlike the familiar models, (b) indicate the number of the square on which the heatated.
would be general enough to encompass them all. A TRut this would not work if we allowed infinite veety which
cannot in any natural way be represented as ateegisVe need to fully represent a TM. Chalmers suggestsg the
machine (although it could be simulated by one); pgemponents for squares of the tape be ordered @laérsymbol
either can be represented as a CSA. So the CSAssleemand a yes/no value indicating whether the head ithe square.

. : . If we do this we need to add a restriction speoiyihat only
provide an attractive way of expressing the coreaof o square can have the value “yes.”




function. Since we do not need inputs and output®@ir  represents what Turing called a “complete configandt
TM representation, we can regard this function agpli  of the machine, and what is now often called th&éesdf a
a function from state vectors to state vectors. st computation. The state transition rules relate cetepl
obvious way to represent such a function, and thg wcomputational states, and taken as a whole thegifgpe
that is standard for other computational modeldhsag every possible course the computation could taketh8
Turing machines or FSAs, is simply an exhaustiie As state transition function in a sense gives us dselts of
function is simply a set of ordered pairs, so we kst applying an algorithm rather than the algorithmalits
every such pair. Equivalently, we can regard gmihas

a rule stating that the first member of the pairstibe 3.2 Second Problem: Excessive Power

followed by the second member. Call a descriptiba o

CSA by means of such a complete list an exhaustiv¥ithout severe unspecified restrictions, the CSA is
listing. In the present case we will have 48 sudbs; one SIMPly too powerful to count as a computational eiod
for each state of the CSA. There are at least two ways to see this point. ,Fiesall

that Turing machines and other computational models
The first thing to notice about this listing is thaseems were originally introduced to try to provide a psec
rather long as a way of characterizing a Turing e interpretation of the idea of an effective procedar
that we could describe very briefly and simply! €TiM  algorithm for computing a function. Turing machines
formalism itself requires only three state-trawsitrules.) (and other models) have the following propertywé can
And of course this is the description for a machirith a  find a Turing machine that computes a given fumgtio
tape only three squares long; every additional jo& then we have found an effective procedure for cdingu
tape will double the number of possible stateshsd to  the function, and the TM description is a descriptad
represent a machine with a tape of, say, 1000 eguae this procedure. But this is simply not true for GSih
will need more than 8 states, or around I, and a general. There will always be a CSA which finds the
s_injilar number of state-transition rules in an exive value of a function for any argument in some fimaage
listing. in a single step. For instance, in the case offuhetion

Now, what is the significance of this example? Let uf(®) =X+ 1, which our simple Turing machine computes,

consider two cases, first the case of a finite GBgh as W€ could dispense with the component that lists the

the example we have been considering, and secand, RSition of the T™M h?aﬁ’ keepingdthi n componemr':s th
infinite CSA that represents the TM with an infiniepe. SPrésent squares of the tape and the componethéor

In the finite case it is tempting to say that th8ACdoes 1M state. For every CSA state in which the TM state

not represent a general algorithm at all in the tay the component s hl'l ar;]dn consecu;ivil taEe cor;i‘;:i)ﬂor}ents
TM does, because information is actually lost in thgontain ones while the rest contain blanks, we suiiiply

redescription of a TM as a CSA. If you extend thetaf 1ave & state-transition rule stating that the sylset
the TM, the very same TM description will now State of the CSA ham + 1 ones on an otherwise blank
characterize a machine that computes the sameigancti@P€ and the TM-state component is 2. Thus all tbw
over a larger domain. But you cannot deduce from tHS done in state 1; state 2 is simply a haltingestahe
state-transition function of a CSA how it shouldaee if 'e€Sulting CSA is no longer a Turing machine, sin@& w
we add more substates to represent additional egudr 12ve dispensed with the head and can change mame th
tape. We could say that the state-transition fonctif the gn]f:' square of the tape atr? tlmhe. E]Ut It .St'ltlfﬁm dgihe
CSA does not determine what mathematical functien t d€finition of a CSA, even though what it is doingrdly
CSA is computing. It is true that we could try todf the seems o count as computation at all. (It amouats t
simplest description of the general principles @A is looking up th? answer in a lookup tablez except tha
applying, and then use those general principlazdgect Iooku.p table is stored in the state-transition sulather
how the CSA should behave if extended to repreaentin@n in some sort of memory.)

larger tape. But the state-transition functionlitsides Second, consider the case of a CSA whose statesamav
not determine this. infinite number of components. Chalmers explicitly

If we have an infinite CSA representing our TM with ~ 2llows this, as indeed he must if it is to be pulssio
infinite tape, then we will have all the informatiove Nave @& CSA transcription of a TM with an infinitepéa

need to determine what mathematical function isiei But now the state-transition function will needb® able
computed. In this case, it may still be reasonableay o f[ake infinitely many arguments (so that af.‘.e"““
that the CSA does not represent an algorithm at alfSting would have infinitely many state-transitionles).
certainly it does not represent one perspicuouEhe But once we allow the state-transition functionhtave
information about the TM algorithm is present omiythe Nfinitely many arguments, it is hard to see how to

same way that the laws of motion and gravitatiomubdo prevent .CSAS from being able to “compute” functions
be present in a complete description of all thesfs that are in fact not computable! And clearly a mMddat

trajectories of objects in the universe. We have REMMItS “computation” of uncomputable functionsict a
complete listing of what the TM will do under every900d candidate for a model of computation. (A dipse
possible circumstance, but we have no easy or aitom related observation is that without further resimits, a

way to determine the general principles that utieler| diagonalization argument vv_iII show that the CSA has
these actions nondenumerably many possible states.)

A closely related way to look at the matter is ttice
that a state of the CSA that describes the Turiaghime



| hesitate to place too much weight on this paogiice that there is no action at a distance (Fredkin Ewitbli,
Chalmers only briefly mentions infinite CSAs, and h 1982). But nothing like this constraint is buitito the
does state that “restrictions have to be placedthen CSA model. For instance, we could write CSA rulest t
vectors and dependency rules, so that these dencotle would correspond to an extended TM that could change
an infinite amount of information” (Chalmers n.d.:squares very distant from the one the head is oifgro
section 2.1). Chalmers does not state what the#ieat matter could change arbitrarily large numbefs
restrictions might be, though he says that spewfyhem squares at once. The computation this CSA represent
“is not too difficult.” Clearly one way to specifyuch may well be implementable in some way, but it waubd
restrictions would be to require that the CSA comfdco be straightforwardly implementable as a TM whose
the limitations of a Turing machine: the only squérat read/write head can act at a distance! So unlikerot
can change is the one the head is on, and theégmsit abstract computational devices, the fact that argi@SA

the head can only change by one square at a tiotev® exists gives us no guidance about how it might be
certainly do not want to impose the constraintcjgeto  implemented.

Turing machines on the general notion of a CSA,esinc

this would deprive it of its ability to transcribether 4  The CSA asa Transcription Device

computational models as well. ,
| have argued that the CSA does not constitute a

In some ways the most natural way to limit the €£leé computational model in its own right, at least esspntly
CSAs to those that compute functions that ar@escribed. (It is possible that a revised versioth w
“computable” in the usual sense might be to reqtlied  restrictions imposed on the allowable states and
there be a way to give a finite specification of 8tate- transitions might be.) It is entirely possible, fewer, that
transition function. More precisely, it would betmal to it was not Chalmers’ intention to provide such an
require that the state-transition function be @ity account. It may be that he intends the second
computable -- for instance, by requiring that it benterpretation mentioned above, construing the CSA
definable from very basic functions by compositionmerely as a convenient formalism into which more
primitive recursion, and minimization. But this 8Bbn  specific abstract machines can be translated.

would seem to rob the CSA formalism itself of igerest
as a computational model, since the work of guasing
that what the CSA is doing is computable wouldantf
be done by an independent conception of computabili

If this were the case, then, since each TM statesitiian

rule (for instance) corresponds to a large numib&EA
state-transitions (in fact an infinite number if veee
representing a TM with an infinite tape), we could
The problem of excessive power can be put in anothgbandon the exhaustive listing as a way of chatairtg

way. Traditional computational models begin with @& CSA, and translate each TM rule by a universal
highly restricted set of abilities, and then shtwattmore quantification over CSA states. (Some sentences in
and more complex tasks can be performed bghalmers 1996a: section 6 may be read as suggesting
combinations of these basic abilities. It is prelyishat  something like this.)

fact that complex tasks can be accomplished by m
applications of simple abilities that shows that tAsks
are computable. However, the CSA model in a sen
moves in the exact opposite direction. It beginghie
ability to move from absolutely any state to abssiu
any other state, so that to guarantee that onlypatable

P For the example we have been considering, we csayd
that the function that maps a st&ento its successor S'
is the unique function such that:

1. (Vi:l<i<n(S=‘B AS"™=iAS*=1)-

functions can be captured, we have to impose céistrs. (S'="1' AS™=iAS"=2)
, 2.(Viil<i<n)((S=1T AS™=iaAS*=1)~
3.3 Third Problem: Aloofness from (S™ =i +1 A S™2= 1))

Implementational Details 3. (Viil<i<n)(S=1 AS7t=irS™=2)—

A third problem with viewing the CSA as a model of (S*=i1 A S™2=2))
computation is that it is too aloof from implemeiaaal
details. This may seem odd, since it is precisalyetel
of abstraction that is intended to be its chiefadsage. If we took this approach, then constructing infotive
But precisely this level of abstraction removes ofithe descriptions of rules underlying the state traositi
chief attractions of models like the TM, namely thay function would be straightforward, since they would
show us how a computation could be accomplished bysimply transcribe the general rules guiding the emor
system we have a good idea how to implement. Fgr aspecific abstract machine. We could be sure thaivere
set of TM instructions, it is easy to imagine anuatt considering only CSAs representing computable
physical implementation of a system that followssth
instructions. On the other hand, the CSA would séam
provide us with the possibility of describing congtions
or pseudocomputations that there might be no nauay

.Of Ilmplen;.entm?' I(I)r Fperha[;s ever'1: nngOESIbIe way components of the state vector as representingtétes of the
implementing at all. For instance, Fredkin has estep tape'sn squares, the next component as representing tle in

that the fact that a TM can change only the squAtRED  f the square the head is currently over, anditte éomponent
tape that is under the head reflects the physidatiple  as representing the current internal state of e T

4. In all other respect§ is identical toS>

% nis the number of squares on the TM tape -- thirethe case
e have been considering. This description trefags first n



functions, since they would all be transcribed frother
models which guarantee computability. But we would
entirely lose the attractive idea of the CSA as adeh
that represents the concept of computability in a
completely general way.

Moreover, once we lose the idea that a physicaksys
implements a computation if and only if there iI€8A
that it implements, it becomes less clear what the
advantage of using CSAs to define implementatioRrds

on this more limited understanding of the significa of

the CSA, we will need to decide how to translatehea
more specific computational model into a CSA, &tas
which may prove to be just as difficult as defining
implementation directly for each specific model.dAne

will not have a completely general account of
computation unless and until we have discoveredyeve
possible computational model in the full-fledgechss
and provided a way to translate each of them irB&AE
This is not only a challenging project, it is pooggough
defined that it is not clear what would count ascess!

So abandoning the idea of the CSA as a general, all
purpose model of computation removes some of the
attractiveness of regarding it even as merely a&oient
formalism.

5 Conclusion

It would be delightful to have a general account of
computation, an account fine-grained enough to
distinguish between different ways of computing the
same function, and general enough that it can ibescr
any abstract computation. It is possible that when
Chalmers provides details that were only hintedh dtis
earlier papers, in particular about the restricdidghat
need to be placed on allowable CSA states, the WA

in fact turn out to be such a model. But it canyet be
regarded in that light.
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