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Abstract* 

David Chalmers has defended an account of what it is for 
a physical system to implement a computation. The 
account appeals to the idea of a “combinatorial-state 
automaton” or CSA. It is unclear whether Chalmers 
intends the CSA to be a computational model in the usual 
sense, or merely a convenient formalism into which 
instances of other models can be translated. I argue that 
the CSA is not a computational model in the usual sense 
because CSAs do not perspicuously represent algorithms, 
are too powerful both in that they can perform any 
computation in a single step and in that without so far 
unspecified restrictions they can “compute” the 
uncomputable, and are too loosely related to physical 
implementations. 

Keywords: Combinatorial-state automaton, computational 
model, implementation, Turing machine. 

1 Introduction 

It is a commonly held view in the cognitive sciences that 
cognition is essentially computation. If this idea is to be 
explanatorily useful, however, there must be an objective 
account of when a physical process implements a 
particular computation. Philosophers such as Hilary 
Putnam and John R. Searle have questioned whether such 
an account is possible. Searle has raised two related 
objections (Searle 1992, Chapter 9): first, that physical 
facts do not suffice to determine what computation a 
process implements (“physics does not determine 
syntax”), and second, that computation is an observer-
relative property of physical processes, not an intrinsic 
property. The second point requires the first, since if 
physics constrained the computations a system could be 
interpreted as performing so tightly that only a single 
interpretation was possible, there would not be multiple 
possible interpretations for observers to select from.  

David Chalmers has responded to these criticisms by 
developing an account of implementation according to 
which it is an objective relation between a physical 
system and an abstract model (Chalmers 1994, 1996a, 
1996b). The account relies on the notion of a 
“Combinatorial-State Automaton” or CSA. I will argue 
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that the CSA cannot be regarded as a model of 
computation in the sense that Turing machines, for 
example, are. This does not show that Chalmers’ account 
of implementation is inadequate, but it may make it less 
attractive than it would be if the CSA were a full-fledged 
model of computation. 

2 Chalmers on Implementation 

Chalmers (1996a) provides several proofs that plausible 
definitions of implementation for some computational 
models, in particular finite-state automata either with or 
without input and output, make implementations far too 
easy to come by, thus trivializing the notion of the 
implementation of a computation and partially 
vindicating the critiques of Putnam and Searle. 

Where exactly does the problem lie? Chalmers suggests 
that the root of the problem is that finite-state automata 
are too simple and unstructured. Chalmers writes: “Even 
simple FSAs with inputs and outputs are not constrained 
enough to capture the kind of complex structure that 
computation and cognition involve. The trouble is that the 
internal states of these FSAs are monadic, lacking any 
internal structure, whereas the internal states of most 
computational and cognitive systems have all sorts of 
complex structure.” 

Chalmers then introduces a model to attempt to capture 
this internal structure, the model of the “combinatorial-
state automaton,” or CSA. The CSA can be described in 
exactly the same way as an FSA, except that each input 
state, internal state, and output state are described as 
vectors rather than structureless states; that is, each state 
is regarded as being composed of substates. A given 
internal state S will be viewed as a vector [S1, S2, . . .,  Sn], 
and similarly for input and output states.1 For a physical 
system to implement a CSA, it must have states with 
substates that map to substates of the CSA, and state-
transition rules in the CSA must correspond to reliable 
causal dependencies in the physical system. More 
precisely, to again quote Chalmers, 

A physical system P implements a CSA M if there is 
a decomposition of internal states of P into 
components [s1, . . ., sn], and a mapping f from the 
substates sj into corresponding substates Sj of M, 
along with similar decompositions and mappings for 
inputs and outputs, such that for every state-
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transition rule ([I1, . . ., Ik],[S1, . . ., Sn]) → ([S'1, . . ., 
S'n],[O1, . . ., Ol]) of M: if P is in internal state [s1, . . 
., sn] and receiving input [i1, . . ., ik] which map to 
formal state and input [S1,. . ., Sn] and [I1,. . ., Ik] 
respectively, this reliably causes it to enter an 
internal state and produce an output that map to [S'1, . 
. ., S'n] and [O1,. . ., Ol] respectively (Chalmers 
1996b: 318, with one small typo corrected). 

Chalmers offers this as a general account of 
implementation: any abstract computation can be 
redescribed in terms of CSA state-transitions, so that the 
above definition of implementation can be applied to any 
abstract computation whatsoever. And the new model 
avoids the triviality proofs for implementations of finite-
state automata. 

3 Against the CSA as a Computational Model 

There are two ways one might interpret the CSA model. 
First, it could be intended to be a general model of 
computation, in the same way that Turing machines or 
register machines are models of computation. Second, it 
could be intended, not as a computational model in its 
own right, but merely as a convenient formalism for 
redescribing computations from a variety of specific 
models, in order to be able to state conditions on 
implementation in a way that will apply to all of them. I 
will argue that the CSA cannot play the former role, and 
that, although it may be able to serve the latter, more 
modest role, this may not be as advantageous as it first 
appears. 

In many ways the former interpretation of the CSA, as a 
full-fledged computational model, is a very attractive one. 
There have been many proposals for making the abstract 
idea of a computation precise, including Turing 
machines, register machines, abacus machines, Post 
production systems, and more. All of these have turned 
out to be equivalent, in the sense that they can compute 
exactly the same functions. In another sense, though, they 
are not equivalent: although a Turing machine and a 
register machine can each compute, say, f(x) = x!, the 
procedures used to compute the function will be quite 
different in the two cases. Each specific model of 
computation suggests a fairly restrictive physical 
implementation; for example, a Turing machine is 
thought of as having a read/write head that travels back 
and forth on a tape that is divided into squares. The idea 
of a CSA could be seen as abstracting away from such 
details, offering a completely general account of 
computation that is not restricted to any particular kind of 
physical implementation. On this interpretation, the CSA 
would have two important characteristics: (a) it would 
respect the differences between different computational 
models: the CSA transcription of a TM that computes a 
given function will be different from the CSA 
transcription of a register machine that computes the 
same function. But, unlike the familiar models, (b) it 
would be general enough to encompass them all. A TM 
cannot in any natural way be represented as a register 
machine (although it could be simulated by one), but 
either can be represented as a CSA. So the CSA seems to 
provide an attractive way of expressing the core of a 

computation without commitment to any specific kind of 
physical implementation. 

3.1 First Problem: Lack of Perspicuity 

If we consider how to translate a TM description into a 
CSA description, however, we may start to wonder 
whether something has gone wrong. Consider the 
following very simple two-state Turing machine.  If 
started on the leftmost of a block of one or more strokes, 
it will move to the right, add a stroke, and then move 
back to the left to halt on the first blank space before the 
strokes. We could think of it as computing the function 
f(n) = n + 1. (For simplicity I ignore the usual convention 
that the machine must end on the leftmost stroke of the 
resulting block.) 

 

Figure 1: Simple Turing Machine 

How should this Turing machine be described in the CSA 
formalism? A state of the CSA that represents this TM 
will be a vector with components for each square of the 
TM and a component for the internal state of the TM. To 
keep things simple, let us restrict our TM to a tape with 
only three squares. Each square will either be blank or 
contain a 1, and any combination of blanks and 1s will be 
a possible state of the tape. This gives us eight possible 
states so far. States must also have a component to 
represent the internal state of the TM; since our TM has 
two possible internal states, we now have 8 * 2 = 16 
states. Finally, a CSA state needs to indicate the position 
of the TM's read/write head. The head must be on one 
and only one square of the tape, so we have a grand total 
of 16 * 3 = 48 distinct states the CSA can be in.2 

In the general case, CSAs may have inputs and outputs as 
well as internal states. But this is not required to represent 
a Turing machine. There is no output aside from the final 
state of the tape. Chalmers suggests that the TM be 
regarded as having input only once, when it starts, but we 
can equally well regard it as having no input at all if we 
treat every state as a starting state, since the input is also 
simply a distribution of symbols on the tape. 

Finally, in addition to state vectors (and input and output 
vectors if necessary), a CSA must have a state-transition 
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function. Since we do not need inputs and outputs for our 
TM representation, we can regard this function as simply 
a function from state vectors to state vectors. The most 
obvious way to represent such a function, and the way 
that is standard for other computational models such as 
Turing machines or FSAs, is simply an exhaustive list. A 
function is simply a set of ordered pairs, so we can list 
every such pair.  Equivalently, we can regard each pair as 
a rule stating that the first member of the pair must be 
followed by the second member. Call a description of a 
CSA by means of such a complete list an exhaustive 
listing. In the present case we will have 48 such rules, one 
for each state of the CSA. 

The first thing to notice about this listing is that it seems 
rather long as a way of characterizing a Turing machine 
that we could describe very briefly and simply! (The TM 
formalism itself requires only three state-transition rules.) 
And of course this is the description for a machine with a 
tape only three squares long; every additional square of 
tape will double the number of possible states, so that to 
represent a machine with a tape of, say, 1000 squares, we 
will need more than 21000 states, or around 10300, and a 
similar number of state-transition rules in an exhaustive 
listing. 

Now, what is the significance of this example? Let us 
consider two cases, first the case of a finite CSA such as 
the example we have been considering, and second, an 
infinite CSA that represents the TM with an infinite tape. 
In the finite case it is tempting to say that the CSA does 
not represent a general algorithm at all in the way that the 
TM does, because information is actually lost in the 
redescription of a TM as a CSA. If you extend the tape of 
the TM, the very same TM description will now 
characterize a machine that computes the same function 
over a larger domain. But you cannot deduce from the 
state-transition function of a CSA how it should behave if 
we add more substates to represent additional squares of 
tape. We could say that the state-transition function of the 
CSA does not determine what mathematical function the 
CSA is computing. It is true that we could try to find the 
simplest description of the general principles the CSA is 
applying, and then use those general principles to project 
how the CSA should behave if extended to represent a 
larger tape. But the state-transition function itself does 
not determine this. 

If we have an infinite CSA representing our TM with an 
infinite tape, then we will have all the information we 
need to determine what mathematical function is being 
computed. In this case, it may still be reasonable to say 
that the CSA does not represent an algorithm at all; 
certainly it does not represent one perspicuously. The 
information about the TM algorithm is present only in the 
same way that the laws of motion and gravitation would 
be present in a complete description of all the possible 
trajectories of objects in the universe. We have a 
complete listing of what the TM will do under every 
possible circumstance, but we have no easy or automatic 
way to determine the general principles that underlie 
these actions. 

A closely related way to look at the matter is to notice 
that a state of the CSA that describes the Turing machine 

represents what Turing called a “complete configuration” 
of the machine, and what is now often called the state of a 
computation. The state transition rules relate complete 
computational states, and taken as a whole they specify 
every possible course the computation could take. So the 
state transition function in a sense gives us the results of 
applying an algorithm rather than the algorithm itself. 

3.2 Second Problem: Excessive Power 

Without severe unspecified restrictions, the CSA is 
simply too powerful to count as a computational model. 
There are at least two ways to see this point. First, recall 
that Turing machines and other computational models 
were originally introduced to try to provide a precise 
interpretation of the idea of an effective procedure or 
algorithm for computing a function. Turing machines 
(and other models) have the following property: if we can 
find a Turing machine that computes a given function, 
then we have found an effective procedure for computing 
the function, and the TM description is a description of 
this procedure. But this is simply not true for CSAs in 
general. There will always be a CSA which finds the 
value of a function for any argument in some finite range 
in a single step. For instance, in the case of the function 
f(x) = x + 1, which our simple Turing machine computes, 
we could dispense with the component that lists the 
position of the TM head, keeping the n components that 
represent squares of the tape and the component for the 
TM state. For every CSA state in which the TM state 
component is 1 and m consecutive tape components 
contain ones while the rest contain blanks, we will simply 
have a state-transition rule stating that the subsequent 
state of the CSA has m + 1 ones on an otherwise blank 
tape and the TM-state component is 2. Thus all the work 
is done in state 1; state 2 is simply a halting state. The 
resulting CSA is no longer a Turing machine, since we 
have dispensed with the head and can change more than 
one square of the tape at a time. But it still satisfies the 
definition of a CSA, even though what it is doing hardly 
seems to count as computation at all. (It amounts to 
looking up the answer in a lookup table, except that the 
lookup table is stored in the state-transition rules rather 
than in some sort of memory.) 

Second, consider the case of a CSA whose states have an 
infinite number of components. Chalmers explicitly 
allows this, as indeed he must if it is to be possible to 
have a CSA transcription of a TM with an infinite tape. 
But now the state-transition function will need to be able 
to take infinitely many arguments (so that an exhaustive 
listing would have infinitely many state-transition rules). 
But once we allow the state-transition function to have 
infinitely many arguments, it is hard to see how to 
prevent CSAs from being able to “compute” functions 
that are in fact not computable! And clearly a model that 
permits “computation” of uncomputable functions is not a 
good candidate for a model of computation. (A closely 
related observation is that without further restrictions, a 
diagonalization argument will show that the CSA has 
nondenumerably many possible states.) 

 



I hesitate to place too much weight on this point, since 
Chalmers only briefly mentions infinite CSAs, and he 
does state that “restrictions have to be placed on the 
vectors and dependency rules, so that these do not encode 
an infinite amount of information” (Chalmers n.d.: 
section 2.1). Chalmers does not state what these 
restrictions might be, though he says that specifying them 
“is not too difficult.” Clearly one way to specify such 
restrictions would be to require that the CSA conform to 
the limitations of a Turing machine: the only square that 
can change is the one the head is on, and the position of 
the head can only change by one square at a time. But we 
certainly do not want to impose the constraints specific to 
Turing machines on the general notion of a CSA, since 
this would deprive it of its ability to transcribe other 
computational models as well. 

In some ways the most natural way to limit the class of 
CSAs to those that compute functions that are 
“computable” in the usual sense might be to require that 
there be a way to give a finite specification of the state-
transition function. More precisely, it would be natural to 
require that the state-transition function be effectively 
computable -- for instance, by requiring that it be 
definable from very basic functions by composition, 
primitive recursion, and minimization. But this solution 
would seem to rob the CSA formalism itself of its interest 
as a computational model, since the work of guaranteeing 
that what the CSA is doing is computable would in fact 
be done by an independent conception of computability. 

The problem of excessive power can be put in another 
way. Traditional computational models begin with a 
highly restricted set of abilities, and then show that more 
and more complex tasks can be performed by 
combinations of these basic abilities. It is precisely that 
fact that complex tasks can be accomplished by complex 
applications of simple abilities that shows that the tasks 
are computable. However, the CSA model in a sense 
moves in the exact opposite direction. It begins with the 
ability to move from absolutely any state to absolutely 
any other state, so that to guarantee that only computable 
functions can be captured, we have to impose restrictions. 

3.3 Third Problem: Aloofness from 
Implementational Details 

A third problem with viewing the CSA as a model of 
computation is that it is too aloof from implementational 
details. This may seem odd, since it is precisely its level 
of abstraction that is intended to be its chief advantage. 
But precisely this level of abstraction removes one of the 
chief attractions of models like the TM, namely that they 
show us how a computation could be accomplished by a 
system we have a good idea how to implement. For any 
set of TM instructions, it is easy to imagine an actual 
physical implementation of a system that follows these 
instructions. On the other hand, the CSA would seem to 
provide us with the possibility of describing computations 
or pseudocomputations that there might be no natural way 
of implementing, or perhaps even no possible way of 
implementing at all. For instance, Fredkin has suggested 
that the fact that a TM can change only the square of the 
tape that is under the head reflects the physical principle 

that there is no action at a distance (Fredkin and Toffoli, 
1982).  But nothing like this constraint is built into the 
CSA model. For instance, we could write CSA rules that 
would correspond to an extended TM that could change 
squares very distant from the one the head is on, or for 
that matter could change arbitrarily large numbers of 
squares at once. The computation this CSA represents 
may well be implementable in some way, but it would not 
be straightforwardly implementable as a TM whose 
read/write head can act at a distance! So unlike other 
abstract computational devices, the fact that a given CSA 
exists gives us no guidance about how it might be 
implemented. 

4 The CSA as a Transcription Device 

I have argued that the CSA does not constitute a 
computational model in its own right, at least as presently 
described. (It is possible that a revised version with 
restrictions imposed on the allowable states and 
transitions might be.) It is entirely possible, however, that 
it was not Chalmers’ intention to provide such an 
account. It may be that he intends the second 
interpretation mentioned above, construing the CSA 
merely as a convenient formalism into which more 
specific abstract machines can be translated. 

If this were the case, then, since each TM state-transition 
rule (for instance) corresponds to a large number of CSA 
state-transitions (in fact an infinite number if we are 
representing a TM with an infinite tape), we could 
abandon the exhaustive listing as a way of characterizing 
a CSA, and translate each TM rule by a universal 
quantification over CSA states. (Some sentences in 
Chalmers 1996a: section 6 may be read as suggesting 
something like this.) 

For the example we have been considering, we could say 
that the function that maps a state S onto its successor S' 
is the unique function such that:  

1. (∀i: 1 ≤ i ≤ n)((Si = ‘B’ ∧ Sn+1 = i ∧ Sn+2 = 1) →  

(S'i = ‘1’ ∧ S'n+1 = i ∧ S'n+2 = 2)) 

2. (∀i: 1 ≤ i < n) ((Si = ‘1’ ∧ Sn+1 = i ∧ Sn+2 = 1) →  

(S'n+1 = i +1 ∧ S'n+2 = 1)) 

3. (∀i: 1 < i ≤ n) ((Si = ‘1’ ∧ Sn+1 = i ∧ S'n+2 = 2) →  

(Sn+1 = i-1 ∧ S'n+2 = 2)) 
4. In all other respects, S' is identical to S.3  

If we took this approach, then constructing informative 
descriptions of rules underlying the state transition 
function would be straightforward, since they would 
simply transcribe the general rules guiding the more 
specific abstract machine. We could be sure that we were 
considering only CSAs representing computable 
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functions, since they would all be transcribed from other 
models which guarantee computability. But we would 
entirely lose the attractive idea of the CSA as a model 
that represents the concept of computability in a 
completely general way.  

Moreover, once we lose the idea that a physical system 
implements a computation if and only if there is a CSA 
that it implements, it becomes less clear what the 
advantage of using CSAs to define implementation is. For 
on this more limited understanding of the significance of 
the CSA, we will need to decide how to translate each 
more specific computational model into a CSA, a task 
which may prove to be just as difficult as defining 
implementation directly for each specific model. And we 
will not have a completely general account of 
computation unless and until we have discovered every 
possible computational model in the full-fledged sense, 
and provided a way to translate each of them into CSAs. 
This is not only a challenging project, it is poorly enough 
defined that it is not clear what would count as success! 
So abandoning the idea of the CSA as a general, all-
purpose model of computation removes some of the 
attractiveness of regarding it even as merely a convenient 
formalism. 

5 Conclusion 

It would be delightful to have a general account of 
computation, an account fine-grained enough to 
distinguish between different ways of computing the 
same function, and general enough that it can describe 
any abstract computation. It is possible that when 
Chalmers provides details that were only hinted at in his 
earlier papers, in particular about the restrictions that 
need to be placed on allowable CSA states, the CSA will 
in fact turn out to be such a model. But it cannot yet be 
regarded in that light. 
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