
Implementation and Indeterminacy

Curtis Brown
Department of Philosophy

Trinity University
One Trinity Place, San Antonio, TX 78212, USA

cbrown@trinity.edu

Abstract*

David Chalmers has defended an account of what it is for
a physical system to implement a computation. The
account appeals to the idea of a “combinatorial-state
automaton” or CSA. It is unclear whether Chalmers
intends the CSA to be a computational model in the usual
sense, or merely a convenient formalism into which
instances of other models can be translated. I argue that
the CSA is not a computational model in the usual sense
because CSAs do not perspicuously represent algorithms,
are too powerful both in that they can perform any
computation in a single step and in that without so far
unspecified restrictions they can “compute” the
uncomputable, and are too loosely related to physical
implementations.

Keywords: Combinatorial-state automaton, computational
model, implementation, Turing machine.

1 Introduction

It is a commonly held view in the cognitive sciences that
cognition is essentially computation. If this idea is to be
explanatorily useful, however, there must be an objective
account of when a physical process implements a
particular computation. Philosophers such as Hilary
Putnam and John R. Searle have questioned whether such
an account is possible. Searle has raised two related
objections (Searle 1992, Chapter 9): first, that physical
facts do not suffice to determine what computation a
process implements (“physics does not determine
syntax”), and second, that computation is an observer-
relative property of physical processes, not an intrinsic
property. The second point requires the first, since if
physics constrained the computations a system could be
interpreted as performing so tightly that only a single
interpretation was possible, there would not be multiple
possible interpretations for observers to select from.

David Chalmers has responded to these criticisms by
developing an account of implementation according to
which it is an objective relation between a physical
system and an abstract model (Chalmers 1994, 1996a,
1996b). The account relies on the notion of a
“Combinatorial-State Automaton” or CSA. I will argue

* Copyright © 2004, Australian Computer Society, Inc. This paper

appeared at the Computing and Philosophy Conference,
Canberra. Conferences in Research and Practice in Information
Technology, Vol. 37. J. Weckert and Y. Al-Saggaf, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

that the CSA cannot be regarded as a model of
computation in the sense that Turing machines, for
example, are. This does not show that Chalmers’ account
of implementation is inadequate, but it may make it less
attractive than it would be if the CSA were a full-fledged
model of computation.

2 Chalmers on Implementation

Chalmers (1996a) provides several proofs that plausible
definitions of implementation for some computational
models, in particular finite-state automata either with or
without input and output, make implementations far too
easy to come by, thus trivializing the notion of the
implementation of a computation and partially
vindicating the critiques of Putnam and Searle.

Where exactly does the problem lie? Chalmers suggests
that the root of the problem is that finite-state automata
are too simple and unstructured. Chalmers writes: “Even
simple FSAs with inputs and outputs are not constrained
enough to capture the kind of complex structure that
computation and cognition involve. The trouble is that the
internal states of these FSAs are monadic, lacking any
internal structure, whereas the internal states of most
computational and cognitive systems have all sorts of
complex structure.”

Chalmers then introduces a model to attempt to capture
this internal structure, the model of the “combinatorial-
state automaton,” or CSA. The CSA can be described in
exactly the same way as an FSA, except that each input
state, internal state, and output state are described as
vectors rather than structureless states; that is, each state
is regarded as being composed of substates. A given
internal state S will be viewed as a vector [S1, S2, . . ., Sn],
and similarly for input and output states.1 For a physical
system to implement a CSA, it must have states with
substates that map to substates of the CSA, and state-
transition rules in the CSA must correspond to reliable
causal dependencies in the physical system. More
precisely, to again quote Chalmers,

A physical system P implements a CSA M if there is
a decomposition of internal states of P into
components [s1, . . ., sn], and a mapping f from the
substates sj into corresponding substates Sj of M,
along with similar decompositions and mappings for
inputs and outputs, such that for every state-

1 To capture the full power of a Turing machine, the internal
states must be allowed to have infinitely many components, but
Chalmers considers primarily the finite case.

transition rule ([I1, . . ., Ik],[S1, . . ., Sn]) → ([S'1, . . .,
S'n],[O1, . . ., Ol]) of M: if P is in internal state [s1, . .
., sn] and receiving input [i1, . . ., ik] which map to
formal state and input [S1,. . ., Sn] and [I1,. . ., Ik]
respectively, this reliably causes it to enter an
internal state and produce an output that map to [S'1, .
. ., S'n] and [O1,. . ., Ol] respectively (Chalmers
1996b: 318, with one small typo corrected).

Chalmers offers this as a general account of
implementation: any abstract computation can be
redescribed in terms of CSA state-transitions, so that the
above definition of implementation can be applied to any
abstract computation whatsoever. And the new model
avoids the triviality proofs for implementations of finite-
state automata.

3 Against the CSA as a Computational Model

There are two ways one might interpret the CSA model.
First, it could be intended to be a general model of
computation, in the same way that Turing machines or
register machines are models of computation. Second, it
could be intended, not as a computational model in its
own right, but merely as a convenient formalism for
redescribing computations from a variety of specific
models, in order to be able to state conditions on
implementation in a way that will apply to all of them. I
will argue that the CSA cannot play the former role, and
that, although it may be able to serve the latter, more
modest role, this may not be as advantageous as it first
appears.

In many ways the former interpretation of the CSA, as a
full-fledged computational model, is a very attractive one.
There have been many proposals for making the abstract
idea of a computation precise, including Turing
machines, register machines, abacus machines, Post
production systems, and more. All of these have turned
out to be equivalent, in the sense that they can compute
exactly the same functions. In another sense, though, they
are not equivalent: although a Turing machine and a
register machine can each compute, say, f(x) = x!, the
procedures used to compute the function will be quite
different in the two cases. Each specific model of
computation suggests a fairly restrictive physical
implementation; for example, a Turing machine is
thought of as having a read/write head that travels back
and forth on a tape that is divided into squares. The idea
of a CSA could be seen as abstracting away from such
details, offering a completely general account of
computation that is not restricted to any particular kind of
physical implementation. On this interpretation, the CSA
would have two important characteristics: (a) it would
respect the differences between different computational
models: the CSA transcription of a TM that computes a
given function will be different from the CSA
transcription of a register machine that computes the
same function. But, unlike the familiar models, (b) it
would be general enough to encompass them all. A TM
cannot in any natural way be represented as a register
machine (although it could be simulated by one), but
either can be represented as a CSA. So the CSA seems to
provide an attractive way of expressing the core of a

computation without commitment to any specific kind of
physical implementation.

3.1 First Problem: Lack of Perspicuity

If we consider how to translate a TM description into a
CSA description, however, we may start to wonder
whether something has gone wrong. Consider the
following very simple two-state Turing machine. If
started on the leftmost of a block of one or more strokes,
it will move to the right, add a stroke, and then move
back to the left to halt on the first blank space before the
strokes. We could think of it as computing the function
f(n) = n + 1. (For simplicity I ignore the usual convention
that the machine must end on the leftmost stroke of the
resulting block.)

Figure 1: Simple Turing Machine

How should this Turing machine be described in the CSA
formalism? A state of the CSA that represents this TM
will be a vector with components for each square of the
TM and a component for the internal state of the TM. To
keep things simple, let us restrict our TM to a tape with
only three squares. Each square will either be blank or
contain a 1, and any combination of blanks and 1s will be
a possible state of the tape. This gives us eight possible
states so far. States must also have a component to
represent the internal state of the TM; since our TM has
two possible internal states, we now have 8 * 2 = 16
states. Finally, a CSA state needs to indicate the position
of the TM's read/write head. The head must be on one
and only one square of the tape, so we have a grand total
of 16 * 3 = 48 distinct states the CSA can be in.2

In the general case, CSAs may have inputs and outputs as
well as internal states. But this is not required to represent
a Turing machine. There is no output aside from the final
state of the tape. Chalmers suggests that the TM be
regarded as having input only once, when it starts, but we
can equally well regard it as having no input at all if we
treat every state as a starting state, since the input is also
simply a distribution of symbols on the tape.

Finally, in addition to state vectors (and input and output
vectors if necessary), a CSA must have a state-transition

2 The simplest way to represent the position of the head would
be to add another component to the state vector and use it to
indicate the number of the square on which the head is located.
But this would not work if we allowed infinite vectors, which
we need to fully represent a TM. Chalmers suggests letting the
components for squares of the tape be ordered pairs of a symbol
and a yes/no value indicating whether the head is on the square.
If we do this we need to add a restriction specifying that only
one square can have the value “yes.”

function. Since we do not need inputs and outputs for our
TM representation, we can regard this function as simply
a function from state vectors to state vectors. The most
obvious way to represent such a function, and the way
that is standard for other computational models such as
Turing machines or FSAs, is simply an exhaustive list. A
function is simply a set of ordered pairs, so we can list
every such pair. Equivalently, we can regard each pair as
a rule stating that the first member of the pair must be
followed by the second member. Call a description of a
CSA by means of such a complete list an exhaustive
listing. In the present case we will have 48 such rules, one
for each state of the CSA.

The first thing to notice about this listing is that it seems
rather long as a way of characterizing a Turing machine
that we could describe very briefly and simply! (The TM
formalism itself requires only three state-transition rules.)
And of course this is the description for a machine with a
tape only three squares long; every additional square of
tape will double the number of possible states, so that to
represent a machine with a tape of, say, 1000 squares, we
will need more than 21000 states, or around 10300, and a
similar number of state-transition rules in an exhaustive
listing.

Now, what is the significance of this example? Let us
consider two cases, first the case of a finite CSA such as
the example we have been considering, and second, an
infinite CSA that represents the TM with an infinite tape.
In the finite case it is tempting to say that the CSA does
not represent a general algorithm at all in the way that the
TM does, because information is actually lost in the
redescription of a TM as a CSA. If you extend the tape of
the TM, the very same TM description will now
characterize a machine that computes the same function
over a larger domain. But you cannot deduce from the
state-transition function of a CSA how it should behave if
we add more substates to represent additional squares of
tape. We could say that the state-transition function of the
CSA does not determine what mathematical function the
CSA is computing. It is true that we could try to find the
simplest description of the general principles the CSA is
applying, and then use those general principles to project
how the CSA should behave if extended to represent a
larger tape. But the state-transition function itself does
not determine this.

If we have an infinite CSA representing our TM with an
infinite tape, then we will have all the information we
need to determine what mathematical function is being
computed. In this case, it may still be reasonable to say
that the CSA does not represent an algorithm at all;
certainly it does not represent one perspicuously. The
information about the TM algorithm is present only in the
same way that the laws of motion and gravitation would
be present in a complete description of all the possible
trajectories of objects in the universe. We have a
complete listing of what the TM will do under every
possible circumstance, but we have no easy or automatic
way to determine the general principles that underlie
these actions.

A closely related way to look at the matter is to notice
that a state of the CSA that describes the Turing machine

represents what Turing called a “complete configuration”
of the machine, and what is now often called the state of a
computation. The state transition rules relate complete
computational states, and taken as a whole they specify
every possible course the computation could take. So the
state transition function in a sense gives us the results of
applying an algorithm rather than the algorithm itself.

3.2 Second Problem: Excessive Power

Without severe unspecified restrictions, the CSA is
simply too powerful to count as a computational model.
There are at least two ways to see this point. First, recall
that Turing machines and other computational models
were originally introduced to try to provide a precise
interpretation of the idea of an effective procedure or
algorithm for computing a function. Turing machines
(and other models) have the following property: if we can
find a Turing machine that computes a given function,
then we have found an effective procedure for computing
the function, and the TM description is a description of
this procedure. But this is simply not true for CSAs in
general. There will always be a CSA which finds the
value of a function for any argument in some finite range
in a single step. For instance, in the case of the function
f(x) = x + 1, which our simple Turing machine computes,
we could dispense with the component that lists the
position of the TM head, keeping the n components that
represent squares of the tape and the component for the
TM state. For every CSA state in which the TM state
component is 1 and m consecutive tape components
contain ones while the rest contain blanks, we will simply
have a state-transition rule stating that the subsequent
state of the CSA has m + 1 ones on an otherwise blank
tape and the TM-state component is 2. Thus all the work
is done in state 1; state 2 is simply a halting state. The
resulting CSA is no longer a Turing machine, since we
have dispensed with the head and can change more than
one square of the tape at a time. But it still satisfies the
definition of a CSA, even though what it is doing hardly
seems to count as computation at all. (It amounts to
looking up the answer in a lookup table, except that the
lookup table is stored in the state-transition rules rather
than in some sort of memory.)

Second, consider the case of a CSA whose states have an
infinite number of components. Chalmers explicitly
allows this, as indeed he must if it is to be possible to
have a CSA transcription of a TM with an infinite tape.
But now the state-transition function will need to be able
to take infinitely many arguments (so that an exhaustive
listing would have infinitely many state-transition rules).
But once we allow the state-transition function to have
infinitely many arguments, it is hard to see how to
prevent CSAs from being able to “compute” functions
that are in fact not computable! And clearly a model that
permits “computation” of uncomputable functions is not a
good candidate for a model of computation. (A closely
related observation is that without further restrictions, a
diagonalization argument will show that the CSA has
nondenumerably many possible states.)

I hesitate to place too much weight on this point, since
Chalmers only briefly mentions infinite CSAs, and he
does state that “restrictions have to be placed on the
vectors and dependency rules, so that these do not encode
an infinite amount of information” (Chalmers n.d.:
section 2.1). Chalmers does not state what these
restrictions might be, though he says that specifying them
“is not too difficult.” Clearly one way to specify such
restrictions would be to require that the CSA conform to
the limitations of a Turing machine: the only square that
can change is the one the head is on, and the position of
the head can only change by one square at a time. But we
certainly do not want to impose the constraints specific to
Turing machines on the general notion of a CSA, since
this would deprive it of its ability to transcribe other
computational models as well.

In some ways the most natural way to limit the class of
CSAs to those that compute functions that are
“computable” in the usual sense might be to require that
there be a way to give a finite specification of the state-
transition function. More precisely, it would be natural to
require that the state-transition function be effectively
computable -- for instance, by requiring that it be
definable from very basic functions by composition,
primitive recursion, and minimization. But this solution
would seem to rob the CSA formalism itself of its interest
as a computational model, since the work of guaranteeing
that what the CSA is doing is computable would in fact
be done by an independent conception of computability.

The problem of excessive power can be put in another
way. Traditional computational models begin with a
highly restricted set of abilities, and then show that more
and more complex tasks can be performed by
combinations of these basic abilities. It is precisely that
fact that complex tasks can be accomplished by complex
applications of simple abilities that shows that the tasks
are computable. However, the CSA model in a sense
moves in the exact opposite direction. It begins with the
ability to move from absolutely any state to absolutely
any other state, so that to guarantee that only computable
functions can be captured, we have to impose restrictions.

3.3 Third Problem: Aloofness from
Implementational Details

A third problem with viewing the CSA as a model of
computation is that it is too aloof from implementational
details. This may seem odd, since it is precisely its level
of abstraction that is intended to be its chief advantage.
But precisely this level of abstraction removes one of the
chief attractions of models like the TM, namely that they
show us how a computation could be accomplished by a
system we have a good idea how to implement. For any
set of TM instructions, it is easy to imagine an actual
physical implementation of a system that follows these
instructions. On the other hand, the CSA would seem to
provide us with the possibility of describing computations
or pseudocomputations that there might be no natural way
of implementing, or perhaps even no possible way of
implementing at all. For instance, Fredkin has suggested
that the fact that a TM can change only the square of the
tape that is under the head reflects the physical principle

that there is no action at a distance (Fredkin and Toffoli,
1982). But nothing like this constraint is built into the
CSA model. For instance, we could write CSA rules that
would correspond to an extended TM that could change
squares very distant from the one the head is on, or for
that matter could change arbitrarily large numbers of
squares at once. The computation this CSA represents
may well be implementable in some way, but it would not
be straightforwardly implementable as a TM whose
read/write head can act at a distance! So unlike other
abstract computational devices, the fact that a given CSA
exists gives us no guidance about how it might be
implemented.

4 The CSA as a Transcription Device

I have argued that the CSA does not constitute a
computational model in its own right, at least as presently
described. (It is possible that a revised version with
restrictions imposed on the allowable states and
transitions might be.) It is entirely possible, however, that
it was not Chalmers’ intention to provide such an
account. It may be that he intends the second
interpretation mentioned above, construing the CSA
merely as a convenient formalism into which more
specific abstract machines can be translated.

If this were the case, then, since each TM state-transition
rule (for instance) corresponds to a large number of CSA
state-transitions (in fact an infinite number if we are
representing a TM with an infinite tape), we could
abandon the exhaustive listing as a way of characterizing
a CSA, and translate each TM rule by a universal
quantification over CSA states. (Some sentences in
Chalmers 1996a: section 6 may be read as suggesting
something like this.)

For the example we have been considering, we could say
that the function that maps a state S onto its successor S'
is the unique function such that:

1. (∀i: 1 ≤ i ≤ n)((Si = ‘B’ ∧ Sn+1 = i ∧ Sn+2 = 1) →

(S'i = ‘1’ ∧ S'n+1 = i ∧ S'n+2 = 2))

2. (∀i: 1 ≤ i < n) ((Si = ‘1’ ∧ Sn+1 = i ∧ Sn+2 = 1) →

(S'n+1 = i +1 ∧ S'n+2 = 1))

3. (∀i: 1 < i ≤ n) ((Si = ‘1’ ∧ Sn+1 = i ∧ S'n+2 = 2) →

(Sn+1 = i-1 ∧ S'n+2 = 2))
4. In all other respects, S' is identical to S.3

If we took this approach, then constructing informative
descriptions of rules underlying the state transition
function would be straightforward, since they would
simply transcribe the general rules guiding the more
specific abstract machine. We could be sure that we were
considering only CSAs representing computable

3 n is the number of squares on the TM tape -- three, in the case
we have been considering. This description treats the first n
components of the state vector as representing the states of the
tape's n squares, the next component as representing the index
of the square the head is currently over, and the final component
as representing the current internal state of the TM.

functions, since they would all be transcribed from other
models which guarantee computability. But we would
entirely lose the attractive idea of the CSA as a model
that represents the concept of computability in a
completely general way.

Moreover, once we lose the idea that a physical system
implements a computation if and only if there is a CSA
that it implements, it becomes less clear what the
advantage of using CSAs to define implementation is. For
on this more limited understanding of the significance of
the CSA, we will need to decide how to translate each
more specific computational model into a CSA, a task
which may prove to be just as difficult as defining
implementation directly for each specific model. And we
will not have a completely general account of
computation unless and until we have discovered every
possible computational model in the full-fledged sense,
and provided a way to translate each of them into CSAs.
This is not only a challenging project, it is poorly enough
defined that it is not clear what would count as success!
So abandoning the idea of the CSA as a general, all-
purpose model of computation removes some of the
attractiveness of regarding it even as merely a convenient
formalism.

5 Conclusion

It would be delightful to have a general account of
computation, an account fine-grained enough to
distinguish between different ways of computing the
same function, and general enough that it can describe
any abstract computation. It is possible that when
Chalmers provides details that were only hinted at in his
earlier papers, in particular about the restrictions that
need to be placed on allowable CSA states, the CSA will
in fact turn out to be such a model. But it cannot yet be
regarded in that light.

6 References

Chalmers, D. (1994): On Implementing a Computation.
Minds and Machines 4: 391-402.

Chalmers, D. (1996a): Does a Rock Implement Every
Finite-State Automaton? Synthese 108: 309-333.

Chalmers, D. (1996b): The Conscious Mind. Oxford,
Oxford University Press.

Chalmers, D. (n.d.): A Computational Foundation for the
Study of Cognition. http://www.u.arizona.edu/
~chalmers/papers/computation.html. Accessed 20 Feb
2004.

E. Fredkin and T. Toffoli (1982): Conservative Logic.
International Journal of Theoretical Physics 21: 219-
253.

Putnam, H. (1998): Representation and Reality.
Cambridge, MIT Press.

Searle, J. (1992): The Rediscovery of the Mind.
Cambridge, MIT Press.

