
1

Article

On Being Systematically Connectionist

LARS F. NIKLASSON TIM VAN GELDER

1 Introduction

In 1988 Fodor and Pylyshyn issued a challenge to the newly-popular connectionism: explain the
systematicity of cognition without merely implementing a so-called classical architecture. Since
that time quite a number of connectionist models have been put forward, either by their designers
or by others, as in some measure demonstrating that the challenge can be met (e.g., Pollack, 1988,
1990; Smolensky, 1990; Chalmers, 1990; Niklasson and Sharkey, 1992; Brousse, 1993). Unfortu-
nately, it has generally been unclear whether these models actually do have this implication (see,
for instance, the extensive philosophical debate in Smolensky, 1988; Fodor and McLaughlin,
1990; van Gelder, 1990, 1991; McLaughlin, 1993a, 1993b; Clark, 1993). Indeed, we know of no
major supporter of classical orthodoxy who has felt compelled, by connectionist models and argu-
ments, to concede in print that connectionists have in fact delivered a non-classical explanation of
systematicity.

Why has it been so unclear whether these models actually show that connectionism meets the
challenge? Our view (apparently shared by Matthews, (forthcoming)) is that the most important
reason has been obscurity in the concept of systematicity itself. In their 1988 paper Fodor and
Pylyshyn discussed systematicity at length, but provided no succinct and precise characterization
of it; at best, they gestured at the phenomenon with hints, analogies and anecdotal observations.
They claimed that the systematicity argument in favor of the classical approach is a traditional
one, but provided no references to previous occurrences, and as far as we can determine there is
no occurrence of the argument or the concept in the cognitive science literature before 19881,
except for the appendix of (Fodor, 1987). Consequently, despite the controversy created by the
paper, there was simply no clear concept of systematicity available, and it was entirely unclear
what kind of modeling, if any, could demonstrate systematicity.

In short, Fodor and Pylyshyn had set up a hurdle and challenged connectionists to jump it, but
nobody knew quite where the top of the hurdle was. To make matters worse, subsequent attempts
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by defenders of Fodor and Pylyshyn to clarify the concept of systematicity (e.g., McLaughlin,
1993a) not only failed to do so in any way that was of much practical help to connectionists, but to
some extent shifted the ground. The hurdle was not only hard to see, it was moving as well.

Most connectionist models that were subsequently claimed to show that the systematicity chal-
lenge can be met did not have as their primary explanatory target the phenomenon of systemati-
city - and no wonder, since that phenomenon was so ill-defined to begin with! Consequently,
suggestions that a particular model may have implications for the systematicity debate were usu-
ally made as an addition to the main arguments of the work, and typically did not involve detailed
attention to exactly what systematicity is and what it would take for a connectionist model to
explain it. It is thus not surprising that defenders of the classical approach remained unconvinced
by connectionist claims to be explaining systematicity.

In this suffocating fog of vagueness and confusion, Robert Hadley's work has arrived like a
gust of fresh air. Hadley has paid very close attention to exactly what systematicity is and what it
would take for connectionist models to achieve it. He has given what is perhaps the first compre-
hensive, precise analysis of what a good number of the most well-known connectionist models in
this area have really achieved in this regard. In particular, he has argued plausibly that we have no
reason to believe that existing connectionist models have exhibited anything more than what he
terms 'quasi-systematicity,' whereas humans exhibit at least 'strong systematicity'.

We have no quarrels with any of Hadley's major conclusions. Rather, we find Hadley's work a
useful springboard into the continued investigation of human cognitive capacities and the power
of connectionist models. In particular, Hadley is to be commended for clarifying systematicity to
the point where it is a relatively straightforward modeling exercise to demonstrate beyond any
question that non-classical connectionist networks can exhibit an interesting form of systemati-
city. In this commentary we will briefly describe one such model, which successfully handles
Hadley's strong case.

Before proceeding, however, we wish to point out that it is by no means clear thatclassical
architectures are capable of explaining the actual empirical facts of systematicity. There is no
question that classical architectures exhibit systematicity of some form, and there is no question
that human cognitive capacities exhibit systematicity of some form;but are these forms the same?
Determining whether or not classical architectures explain the actual empirical facts requires (1)
very close attention to psychological data to obtain a clear idea the exact way in which human
cognitive capacities are systematic, and (2) careful comparison of the empirical facts with the
kind of systematicity that is entailed by classical cognitive architectures. In (van Gelder and Nik-
lasson, 1994) we argued that because steps (1) and (2) have not been carried out for most aspects
of cognition, we do not now know that classical architectures do explain systematicity; further, in
at least one area (a form of simple deductive inference) classical architectures manifestlyfail to

1. The term 'systematicity' has appeared very occasionally, but when it did it meant something
else entirely; see, e.g., Pylyshyn 1984 chapter 1. Note also that one component of the 1988 con-
cept of systematicity, namely productivity, is of course very familiar; but a concept has not
appeared merely because a component of it has, and Fodor and Pylyshyn explicitly declined to
rely on productivity component.
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explain the actual empirical facts. More generally, classical architectures appear to have a prob-
lem which might be expressed this way: while, as Hadley points out in section 2, connectionist
architectures may be too sensitive to context to explain the empirical phenomena, classical archi-
tectures may not be sensitive enough, since the actual empirical facts do indicate some measure of
what might be thought of as context-sensitivity. The upshot is that while it is an interesting open
question whether connectionism can explain, in detail, the empirical facts of systematicity, it is
also an interesting open question whether classical architectures can do so; further, any failure of
connectionism in this regard does not automatically lend support to the classical competitor.

2 Kinds and Levels of Systematicity.

The moment Hadley attempts to render Fodor and Pylyshyn's vague, amorphous notion rigorous
and precise, he finds it fractures into a number of kinds and levels. Thus, while the initial notion of
systematicity was not tied to learning in any particular way - it asserted merely that cognitive
capacities always come in 'clumps' (Fodor and McLaughlin, 1990) - Hadley found that to turn the
systematicity challenge into a specific modeling problem for connectionists, it had to be reformu-
lated as a learning problem: given that a system can acquire some capacities in a clump, does it
automatically acquire other capacities in that clump? The precise nature of these clumps then
becomes of paramount interest. Hadley precisely defines three 'levels' of systematicity in terms of
the relationship between the capacities explicitly learnt by the network and the further capacities
thereby acquired 'for free': weak, quasi- and strong systematicity. Additionally, at the end of his
paper he describes informally a fourth level (or kind?), semantic systematicity.

In fact, there simply is no true, core notion of systematicity; one can precisely define a wide
variety of kinds, levels and degrees of systematicity to suit one's theoretical purposes. For each
notion of systematicity one defines, it then becomes an interesting theoretical question whether
classical or connectionist architectures entail or at least are capable of exhibiting systematicity of
that form, especially if that notion is closely tied to known empirical facts. While there is nothing
intrinsically wrong with Hadley's selection of levels, we think there is an alternative set of levels
which is more useful in the context of the learning capacities of connectionist models, a classifica-
tion which is both simpler and more comprehensive.

We assume that the task before a connectionist network is to process sentences in some way or
other that depends on the sentence's structure. Further, we assume that the network is trained on
some subset of the relevant sentences, and can learn to handle every sentence in that subset per-
fectly; the network will exhibit systematicity if, in acquiring the ability to handle sentences in the
training set, it also thereby automatically acquires the ability to handlenovel sentences that are
systematically structurally related to those in the training set. We then say that a connectionist net-
work is systematic at level N if it is capable of successfully processing test sentences which are
novel in the sense that:

Level 0. No novelty. Every test sentence appears in the training set.

Level 1. Novel Formulae. The test sentences themselves never appear in the training set, but all
their atomic constituents appear in the same syntactic position somewhere in the training set.
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Level 2. Novel Positions. The test sentences contain at least one atomic constituent appearing in
some syntactic position in which it never appeared in the training set.

Level 3. Novel Constituents. The test sentences contain at least one atomic constituent which did
not appear anywhere in the training set.

Level 4. Novel Complexity. The test sentences have a different level of complexity (embedding)
than all sentences in the training set.

Level 5. Novel Constituents at Novel Complexity. The test sentences contain at least one novel
constituent at a novel level of complexity.

Strictly speaking, there is no exact correspondence between any of these levels and Hadley's
levels of weak, quasi- and strong systematicity. In particular, our level 3 ('NvG3') requires that the
system is able to correctly process sentences containing some constituent that never appeared at
all anywhere in the training set, whereas Hadley's level of strong systematicity ('HSS') requires
that the constituent did appear somewhere in the training set, though not in the same syntactic
position as in the test sentences. It is our belief that it is a more challenging task for a network to
satisfy NvG3 than HSS, and this has been borne out in our modeling experience. Still, in order
that there be no residual doubts at all, in what follows we describe a connectionist model that sat-
isfies both NvG3 and HSS.

3 The Task

One sentence-processing task that obviously requires sensitivity to syntactic structure is transfor-
mation of formulae of propositional logic according to inference rules such as de Morgan's law.
Any system that can perform such a task in a non-classical manner must do so without relying on
the causal role of tokens of constituents in the tokens of the formulae being transformed (van
Gelder, 1990). In other words, it must transform representations which have a compositional
structure, but which are not constructed via concatenation. This has implications for both the
choice of representation and the mode of composition. It would be trivial to have a connectionist
network transforming, say, ’A & B’ into ’A v B’ if pools of 3 dedicated units (e.g., for ’p’, ’q’ and
’r’) had been used in positions ’A’ and ’B’, and a pool of 2 units for the connectives. The transfor-
mation is then reduced to a process that is sensitive to one constituent (i.e., the representation over
the 2 units in the ’connective pool’) of the representation for the formulae. However, this approach
suffers from two main problems; first of all it is open to the criticism of Fodor and Pylyshyn since
it is nothing else than a concatenative mode of combination of the representations for the constit-
uents, and secondly, as a result of the concatenative style of composition, it runs into problems
with variable length representations, when embedded formulae are introduced.

To overcome the first problem, one can concentrate on the hidden layer representation in con-
nectionist networks. This type of representation is adistributed representation, generated by non-
concatenative composition of the combination of the representations presented at the input, and it
has therefore no tokened constituents that could be used for structure sensitive operations. The
model presented in the following is based on a special kind of connectionist architecture; a so
called recursive architecture. This type of architecture allows that the distributed hidden layer rep-
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resentation for a combination of inputs (e.g., ’p’ and ’&’) could be copied back to the input and
there be combined with representations for other constituents; atomic (e.g., ’q’) or complex (e.g.,
’q v r’). This means that it also can overcome the second problem, mentioned above, i.e., generate
finite length representations for complex expressions.

The heart of our model is a connectionist network (the Transformation Network, TN) which
transforms distributed, non-concatenative representations of variable length logical formulae. It is
this Transformation Network which is able to transform representations of formulae containing
novel constituents with complete success.

The formulae to be transformed are constructed according to the following syntax:

        A :: {p | q | r | s}

        B :: {A | A v A | A -> A}

The transformation that the network is required to perform is the following:

        A -> B          <==>    ~A v B

Thus, typical transformations the network is expected to perform are:

        p -> q          <==>    ~p v q

        p -> (q v r)    <==>    ~p v (q v r)

Now, the difference between HSS and NvG3 will mean that the training sets for the models,
aiming to solve these levels, will differ. In both cases we will assume that the 's' is the symbol
causing the novelty; in HSS it will not be allowed to appear to the left of the '->' or 'v' symbols
(neither in simple nor embedded formulae). In NvG3 it will not be allowed anywhere in the train-
ing set. In this preliminary comparison, the differences meant that the training set for NvG3 con-
tained:

        (3 * 3) * 2  = 18

        (3 * (3 * 2 * 3)) * 2 = 108

Total number of formulae: 126

while the training set for HSS contained:

        (3 * 4) * 2 = 24

        (3 * (3 * 2 * 4)) * 2  = 144

Total number of formulae:  168

and the total domain, also equalling the test set, contained 288 formulae.

After training, the two networks successfully processed all the formulae in the test sets. The
exercise was repeated 5 times, with different sets of random initial weights, with the same suc-
cessful result.
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Since Hadley agrees (personal communication) that this modeling is indeed an example of
HSS, but had some objections to the small set of symbols, an extended exercise was defined. The
set of propositional symbols was extended with two symbols; giving a training set for NvG3 and
HSS of 550 and 660 formulae, respectively, and a 936 formulae test set. After completed training
the networks solved the task with full accuracy. Naturally, this second exercise required that the
representational resources available to the network were increased (more on this in the next sec-
tion). We see no reason in principle why this basic modeling approach cannot be extended to arbi-
trarily large domains.

4 The Model

In these exercises, distributed representations upon which the TN operated were formed by means
of the Recursive Auto-Associative Memory (RAAM) architecture devised by Pollack (1988,
1990). The architecture is thus closely related to ones previously used by Chalmers, (1990);
Chrisman, (1991); and Niklasson and Sharkey, (1992). The current model combines a RAAM and
a Transformation Network (TN) into one architecture, shown in fig. 1.

Fig. 1 The Combined Architecture

We will keep the description of this architecture to minimum; for a more detailed description
see Niklasson, (1993); and Niklasson and van Gelder, (1994).

4.1 Training

Each pass through the training file of this combined architecture has two stages. First each for-
mula in the training set is presented to the RAAM. This is a multi-step process for each individual
formula. The network is first trained to encode/decode the combination of the representations for
two atomic constituents, e.g. 'p' and '->'. The resulting activation on the hidden layer is then used
as a distributed representation for this combination. This distributed representation is (at the input
of the same RAAM) combined with representations for other atomic or complex constituents,

Encoder

Decoder

Recursive Auto-Associative Memory

Transformation
Network
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e.g., 'q' or '(qvr)'. When all the constituents of a formula have been presented at the input, the acti-
vation on the hidden units in the last step of the process, is saved as a distributed representation for
the actual formula, e.g. 'p->q' or 'p->(qvr)'. After each presentation of all the formulae to the
RAAM, it is time for their presentations to the TN. The distributed representations for all the for-
mulae are transformed from the hidden layer of the RAAM to the output of the TN.

Both parts of the architecture are trained using the backpropagation algorithm, and they co-
evolve since both of them are trained on increasingly 'better' representations. Also, the distributed
representations at the hidden layer of the RAAM (i.e. the representations for the complex constit-
uents and complete formulae) are affected by both the encoding/decoding and the transformation
processes, since the errors in both the RAAM and the TN are propagated to the Encoder.

4.2 Testing

After completed training (within about 4000 passes through the training set), the test set is pre-
sented. When the distributed representation for a formula is presented to the input of TN, there are
basically two ways the results (i.e. the resulting output from the TN) can be evaluated; (i) compare
the distributed representations generated at the output, with the distributed representations for all
the formulae (and sub-parts of formulae) in the domain, by using Euclidean Distance in metric
space, or (ii) present the output from the TN to the decoder part of the RAAM, and decode the
representation for the complex expression back into its atomic constituents. This approach
demands some way of separating a representation referring to an atomic constituent from one
referring to a complex one.

Since this model is using distributed representations for both atomic and complex constituents,
it has been extended with a facility that is (as a result of training) able to separate them automati-
cally. This has been achieved by adding one unit to the representations for the constituents (activa-
tion 0 for atomic constituents and 1 for complex constituents). If the trained decoder signals an
atomic constituent, the decoded representation is compared (by using ED) with the representa-
tions for all constituents (i.e., both atomic and complex) and complete formulae in the domain,
and the closest one is chosen. If it, instead, signals a complex constituent, the representation is
copied back to the hidden layer, for further decomposition. Since (ii) is harder to achieve, it is the
approach we have chosen to use to evaluate our modeling exercises, but (i) is also evaluated
simultaneously. When we, in the previous section, claimed success, the model correctly encoded,
transformed and decoded (i.e., both (i) and (ii) above) all the constituents in the domain.

4.3 Representations

It would be impossible for a network to correctly process a sentence containing a novel constitu-
ent if it had no information at all concerning the syntactic category of that constituent. (This
would be like somebody asking you to use the word 'pilk' correctly in English sentences without
even telling you whether it is a noun or a verb.) How then do we ask the network to handle a novel
constituent correctly, given its type, without training it on sentences involving that constituent?
One way of handling this problem is to carefully choose, by hand, basic representations for the
atomic constituents which reflect their syntactic category. Our solution to the problem is slightly
different: we use a representation generator for atomic constituents, which encodes supplied type
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information in the form of tree structures, see fig. 2.

Fig. 2 Tree Structured Type Information

These tree structures were encoded (bottom-up) in a separate RAAM architecture (the repre-
sentation generator), but one could also imagine an approach where an Elman-like architecture is
used to extract that knowledge from syntactic context. All the leaves of the trees are assigned
unique, non-overlapping, input representations, e.g.:

The distributed representations for the atomic constituents are generated by training the sepa-
rate RAAM to encode all these tree structures (except the one containing the novel constituent 's'),
and then collecting the representations at the hidden layer. These distributed representations are
then used in the training of the combined model, described above. In the first modeling exercise,
with the smaller domain, each leaf, constituent and consequently complete formula (i.e the hidden
layer of the RAAM in the combined architecture) was represented by 22 units, and in the second
by 32 units.

Before testing the model, a distributed representation for the novel constituent has to be gener-
ated by the representation generator. Therefore, a unique non-overlapping representation is com-
bined with the distributed representation for 'Proposition' at the input of the representation
generator, and the hidden level activation is collected as a distributed representation for the novel
constituent i.e. sD = S + (Proposition + (Symbol + Nil)). This representation is then used in the
combined model to generate the complete set of formulae, for testing.

It is important to note that though the combined architecture involves a number of stages, no
part of the architecture is ever trained using any formula which contains the symbol 's' in any posi-
tion, for NvG3, whereas it is allowed in some syntactic positions, for HSS.

Table 1: Representations

Symbol Representation

P 1 0 0 0 ............................. 0

Q 0 1 0 0 ............................. 0

R 0 0 1 0 ............................. 0

S 0 0 0 1 ............................. 0

pD

P

Proposition

Symbol Nil

Connective

v

Symbol Nil

vD
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5 Analysis

What evidence can we present, apart from the reported results from the modeling exercises, that
would convince the doubtful reader that these networks do possess resources enabling systematic
mappings from the representation for one formula to the representation for another? We believe
that this is the final task that connectionists need to solve, in order to fully meet the systematicity
challenge, i.e. not only present networks that exhibit systematically structure-sensitive processes,
but also to explain why they exhibit that systematicity. Here we will here only give a simple expla-
nation, involving the representations generated by the representation generator and used by the
TN. The interested reader can also look at the explanations possible by the use of hyperplane anal-
ysis (e.g. Pratt and Kamm, 1991; Pratt, Mostow and Kamm, 1991; Sharkey and Jackson 1994).

The design and training regime of the representation generator results in representations that
are systematically positioned in the space so that the representation for 's' occupies the space in
between the 'known' constituents:

Fig. 3 Representations Formed by the Representation Generator

It is apparent, when investigating the representations used for the transformations, that (exter-
nal) syntactically structure can be preserved by (internal) spatially structured representations, and
that the spatial structure can be used for structure sensitive operations.
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Fig. 4 Representations Used by the TN

Figure 4 shows the systematic structure of four dimensions of the representational space of a
TN, but the same phenomenon could be noticed along all the dimensions (in this exercise, 8). It
should be noted that these results were generated when the task (in order to reduce the number of
dimensions) was reduced to a minimum:

Expressions:

        A :: {p | q | s}

Transformation:

        A -> A          <==>    A v A

Nevertheless, the figure clearly shows how operations sensitive to an external syntactical struc-
ture can be explained in terms of sensitivity to systematic spatial structure in the internal represen-
tational space of the network.

6 Conclusion

These exercises are not intended as psychologically realistic models of human cognitive process-
ing. They possess many obviously implausible features, such as the use of backpropagation and
exhaustive exposure to a training set. Our intention has not been to construct psychologically real-
istic models, but rather to demonstrate an in-principle point: that a certain interesting form of sys-
tematicity which is exhibited by humans is also exhibited by connectionist networks with the right
architecture. Thus, some form of connectionist architectures may well subserve human cognition;
systematicity phenomena, at least, do not rule this possibility out. Which of the classical or con-
nectionist conceptions of basic architecture will eventually turn out to furnish the best models
when all the relevant psychological data are taken into account remains an open question.

In our opinion the kinds of results described here, in the context of the kind of careful analysis
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of the concept of systematicity provided by Hadley, provide strong support for the general claim
that systematicity considerations do not currently favor classical architectures over connectionist
ones. We would like to conclude by stepping back to assess the impact of these points on the gen-
eral plausibility of the classical conception of cognitive architecture. Over the years a variety of
arguments have been advanced in support of the idea that the human cognitive architecture must
be basically classical in form. It is interesting to ask why it is that in 1988, and in order to defend
the classical conception againstconnectionism, Fodor and Pylyshyn came up with what, as far as
we can tell, is an entirely novel argument. Presumably, it is because they themselves felt that the
traditional arguments were no longer effective; they could not be used to make a compelling case
for the classical conception as against connectionism. For example, one kind of traditional argu-
ment has been the 'universality' argument: that classical computational systems that are universal
in the Turing sense are the only systems we know of that have the kind of flexibility to be ade-
quate for modeling cognitive processes. Yet the obvious power and flexibility of connectionist
architectures (and various 'universality' proofs associated with them) has effectively deprived this
argument of all its persuasive force. A similar story applies to other traditional arguments such as
the 'knowledge argument' (see, e.g., Pylyshyn, 1984, Ch. 1). The systematicity argument can
therefore be seen a last ditch attempt to provide a decisive general argument in favor of the classi-
cal conception. Since the systematicity argument is undermined by the kind of results described
here, it seems that there are no longer any powerful general arguments in favor of the classical
view. This does not establish that the classical view is false or that the connectionist approach is
right, but it does mean that it is only by providing the best detailed models of particular cognitive
phenomena that either approach can claim empirical superiority. This is a contest which connec-
tionism is ready, willing and able to enter.
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