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ABSTRACT

It is not widely realised that Turing was probably the first person to

consider building computing machines out of simple, neuron-like

elements connected together into networks in a largely random manner.

Turing called his networks ‘unorganised machines’. By the application of

what he described as 'appropriate interference, mimicking education' an

unorganised machine can be trained to perform any task that a Turing

machine can carry out, provided the number of 'neurons' is sufficient.

Turing proposed simulating both the behaviour of the network and the

training process by means of a computer program. We outline Turing's

connectionist project of 1948.
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1. Introduction

In a lecture given in London in 1947 Turing described the human

brain as a 'digital computing machine' (1947, p.111). When he spoke of

digital computing machines he had in mind a range of architectures

considerably wider than the class of (what we would now call) von

Neumann machines and their near relatives.1 Turing was probably the

first person to consider building computing machines out of simple,

neuron-like elements connected together into networks in a largely

random manner. Turing called his networks ‘unorganised machines’. His

only published discussion of them occurs in a little-known report

written in 1948 and entitled 'Intelligent Machinery'.

Turing describes three types of unorganised machine. A-type and

B-type unorganised machines consist of randomly connected two-state

'neurons' whose operation is synchronised by means of a central digital

clock. By the application of 'appropriate interference, mimicking

education' a B-type machine can be trained to 'do any required job,

given sufficient time and provided the number of units is sufficient'

(1948, pp.14-15). His P-type unorganised machines, which are not

neuron-like, have 'only two interfering inputs, one for "pleasure" or

"reward" . . . and the other for "pain" or "punishment" ' (1948, p.17).

Turing studied P-types in the hope of discovering training procedures

'analogous to the kind of process by which a child would really be

taught' (1948, p.20). It is a P-type machine that Turing was speaking of

when, in the course of his famous discussion of strategies for building

machines to pass the Turing Test, he said ‘I have done some
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experiments with one such child-machine, and succeeded in  teaching it

a few things’ (1950, p.457). A-type, B-type and P-type machines are

described more fully in what follows.

Turing had no doubts concerning the significance of his

unorganised machines.

[M]achines of this character can behave in a very complicated

manner when the number of units is large . . . A-type

unorganised machines are of interest as being about the

simplest model of a nervous system with a random

arrangement of neurons. It would therefore be of very great

interest to find out something about their behaviour. (1948,

p.10.)

He theorized that ‘the cortex of the infant is an unorganised machine,

which can be organised by suitable interfering training’ (1948, p.16).

Turing found ‘this picture of the cortex as an unorganised machine . . .

very satisfactory from the point of view of evolution and genetics’

(1948, pp.16-17).

The 1948 report was prepared for the National Physical

Laboratory, London, where Turing was employed as chief architect of

the proposed Automatic Computing Engine or ACE. (He resigned from the

NPL in 1948 to take up the position of Deputy Director of the Computing

Laboratory at Manchester University.) Nominally the report was an

account of research undertaken by Turing during a year he spent at

Cambridge on sabbatical from the NPL; in fact it is a wide-ranging and

strikingly original survey of the prospects for machine intelligence. In it
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Turing anticipated many key developments in the field, including the

theorem-proving approach to problem-solving (1948, p.22). Also

present is the idea, subsequently made popular by Newell and Simon

(1957, 1961, 1976), that 'intellectual activity consists mainly of various

kinds of search' (1948, p.23). In 1969 the report appeared in the

journal Machine Intelligence, but unfortunately this reprinting attracted

little discussion. The report will become more widely known now that it

is available in D.C. Ince's Collected Works of A.M. Turing: Mechanical

Intelligence . It merits the same degree of attention that Turing's other

major paper on artificial intelligence has attracted (Turing 1950).

2. Other Early Work On Neuron-Like Computation

As a result of his lukewarm interest in publication Turing's work

on neuron-like computation remained unknown to others working in

the area. His unorganised machines are not mentioned by the other

pioneers of neuron-like computation in Britain, Ashby, Beurle, Taylor,

and Uttley (Ashby 1952, Beurle 1957, Taylor 1956, Uttley 1956a,

1956b, 1959). The situation was the same on the other side of the

Atlantic. Rosenblatt - the inventor of the perceptron and first to use the

term ‘connectionist’ - seems not to have heard of Turing's unorganised

machines (Rosenblatt 1957, 1958a, 1958b, 1959, 1962 esp. pp.5 and

12ff).2 Nor is Turing's work mentioned in Hebb's influential book T h e

Organization of Behavior (1949), the source of the so-called Hebbian

approach to neural learning studied in connectionism today. Discussions

of the history of connectionism by Rumelhart, McClelland et al (1986)

show no awareness of Turing's early contribution to the field (see for

example pp.41ff, 152ff, 424).
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The pioneering work of Beurle, Taylor and Uttley has been

neglected almost to the same extent as Turing’s. According to

connectionist folklore it was Rosenblatt, influenced by McCulloch, Pitts

and Hebb, who originated the field of neuron-like computation. This is

not the case. Rosenblatt records that the ‘groundwork of perceptron

theory was laid in 1957’ (1962, p.27). A series of memoranda by Uttley

concerning his probabilistic approach to neuron-like computation

survives from as early as 1954 (Uttley 1954a-d) and published

accounts of the work of all three men appeared prior to 1957 (see the

references given above).

In 1958 Rosenblatt travelled to London and unveiled the

perceptron at a symposium held at the National Physical Laboratory. He

rashly claimed that ‘the only machine prior to the perceptron which has

shown itself to be capable of spontaneous  improvement (as opposed to

learning under the tutelage of an experimenter) has been Ashby’s

homeostat’ (1959, p.424). In a frosty reply to Rosenblatt’s paper

Stafford Beer remarked:

[T]here are tendencies to exaggerated claims to be found in the

paper. ... [O]ne which ought really to be mentioned is that, apart

from the Homeostat, the perceptron is the first machine ‘to

show spontaneous improvement’. This is not so. But perhaps Dr.

Rosenblatt rightly assumed that, after all, everyone here must

certainly have heard of Dr. Uttley’s work. (Rosenblatt 1959,

Discussion, p.463.)
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Subsequent to the symposium Rosenblatt wrote generously of Uttley’s

work, describing him, along with Hebb, Hayek and Ashby, as having

‘elaborated [the position] ... upon which the theory of the perceptron is

based’ (1958b, p.388). Concerning Taylor’s work Rosenblatt wrote:

Clearly our neuron models are very similar ... The one

important difference which I see in our neuron models is in the

choice of a suitable memory variable -- in Dr. Taylor’s case the

threshold, and in my own case, the strength or ‘value’ of the

output signal. (1959, p.471.)

Rosenblatt’s work was also prefigured in the U.S. by that of Clark

and Farley (Farley and Clark 1954, Clark and Farley 1955), who in 1954

simulated a network of threshold units with variable connection

weights. The training algorithm, or ‘modifier’, that they employed to

adjust the weights during learning is similar to the algorithms

subsequently investigated by Rosenblatt. Rosenblatt acknowledged that

‘the mechanism for pattern generalisation proposed by Clark and Farley

is essentially identical to that found in simple perceptrons’ (1962, p.24).

3. Turing’s Unorganised Machines

Turing introduces the idea of an unorganised machine by means

of an example.

A typical example of an unorganised machine would be as

follows. The machine is made up from a rather large number N

of similar units. Each unit has two input terminals, and has an

output terminal which can be connected to the input terminals
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of (0 or more) other units. We may imagine that for each

integer r , 1≤ r ≤ N , two numbers i(r ) and j(r ) are chosen at

random from 1 . . . N  and that we connect the inputs of unit r  to

the outputs of units i(r) and j(r). All of the units are connected

to a central synchronizing unit from which synchronizing

pulses are emitted at more or less equal intervals of time. The

times when these pulses arrive will be called ‘moments’. Each

unit is capable of having two states at each moment. These

states may be called 0 and 1. (1948, pp.9-10.)

Turing then gives (what would now be called) a propagation rule and an

activation rule for the network. A propagation rule calculates the net

input into a unit, and an activation rule calculates what the new state of

a unit is to be, given its net input.
Propagation rule

The net input into unit r  at moment m , net(r , m ), is the product of the
state of i(r) at m -1 and the state of j(r) at m -1 .
Activation rule

The state of r at m  is 1-net(r , m ) .

A network of the sort described whose behaviour is determined by

these two rules is an A-type unorganised machine.

In modern terminology an A-type machine is a collection of NAND

units. (PNANDQ  is —(P&Q).) The propagation rule in effect takes the

conjunction of the values on the unit's two input lines, and the

activation rule forms the negation of this value. Alternative choices of

propagation rule and/or activation rule will cause the units to perform

other Boolean operations. As is well known, NAND is more fundamental

than certain other binary operators (including conjunction, material
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implication, material equivalence, and inclusive and exclusive

disjunction) in the sense that any Boolean operation can be performed

by a circuit consisting entirely of NAND units. Thus any such operation

can be performed by an A-type machine.

When considering A-type circuits one has to take account of the

fact that each unit introduces a delay of one moment into the circuit.

Suppose, for example, that the job of some particular unit U in the

circuit is to compute XNANDY  for some pair of specific truth-functions X

and Y . The sub-circuits that compute X  and Y  may deliver their outputs

at different moments yet obviously the values of X  and Y  must reach U

at the same  moment. Turing does not mention how this is to be

achieved. A nowadays familiar solution to this problem - which also

arises in connection with cpu design - involves the concept of a ‘cycle of

operation’ of n moments duration. Input to the machine is held constant,

or ‘clamped’, throughout each cycle and output is not read until the end

of a cycle. Provided n is large enough then by the end of a cycle the

output signal will have the desired value.

4. Trainable Boolean Networks

The most significant aspect of Turing's discussion of unorganised

machines is undoubtedly his idea that an initially random network can

be organised to perform a specified task by means of what he describes

as 'interfering training' (1948, p.16).

Many unorganised machines have configurations such that if

once that configuration is reached, and if the interference
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thereafter is appropriately restricted, the machine behaves as

one organised for some definite purpose. (1948, pp.14-15.)

Turing illustrates his idea by means of the circuit shown in figure

1 (1948, pp.10-11). (He stresses that this particular circuit is employed

'for illustrative purposes' and not because it is 'of any great intrinsic

importance'.) We will call a pair of units connected in the way shown an

'introverted pair'. By means of external interference the state of unit A

may be set to either 0 or 1. The state selected will be referred to as the

'determining condition' of the pair. (Concerning specific interfering

mechanisms for changing the state of A  Turing remarks '[i]t is . . . not

difficult to think of appropriate methods by which this could be done'

(1948, p.15). He gives one simple example of such a mechanism (ibid.).)

FIGURE 1 ABOUT HERE

As the reader may verify, the signal produced in unit B 's free

output connection will be constant from moment to moment and the

polarity of the signal will depend only upon the determining condition

of the pair. Thus an introverted pair functions as an elementary

memory.

Turing defines B-type machines in terms of a certain process of

substitution applied to A-type machines: a B-type results if every unit-

to-unit connection within an A-type machine is replaced by the device

shown in figure 2 (1948, p.11). That is to say, what is in the A-type a

simple connection between points D  and E   now passes via the depicted

device. (Notice that all B-types are A-types.)
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FIGURE 2 ABOUT HERE

Depending on the polarity of the constant signal at C , the signal at

E  will either (i) be 1 if the signal at D  is 0 and 0 if the signal at D  is 1, or

(ii) always be 1 no matter what the signal at D . If by means of

interference the state of A  is changed from moment to moment, the

device will cycle through these two alternatives. (This interference may

be supplied either from outside or from within the network.)

In the first of these cases the device functions as a negation

module. In the second case the device in effect disables the connection

to which it is attached. That is to say, a unit with the device attached to

one of its input connections delivers an output that is a unary function

of the signal arriving along its other input connection. (If the devices on

both the unit's input connections are placed in disable mode then the

unit’s output is always 0.) By means of these devices an external agent

can organise an initially random B-type machine by selectively

disabling and enabling connections within it. This arrangement is

functionally equivalent to one in which the stored information takes the

form of new connections within the network.3

Turing claims that it is a 'general property of B-type machines ...

that with suitable initial [i.e. determining] conditions they will do any

required job, given sufficient time and provided the number of units is

sufficient’ (1948, p.15). This follows from the more specific claim that

given ‘a B-type unorganised machine with sufficient units one can find

initial conditions which will make it into a universal [Turing] machine

with a given storage capacity’ (1948, p.15).
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Concerning the latter claim Turing remarks: ‘A formal proof to this

effect might be of some interest, or even a demonstration of it starting

with a particular unorganized B-type machine, but I am not giving it as

it lies rather too far outside the main argument’ (1948, p.15).4 It is a

pity that Turing does not give any details of the proof, for this might

have cast some light on what appears to be an inconsistency in his

paper. It is reasonably obvious that not all Boolean functions can be

computed by B-type machines as defined and thus that each of the

claims quoted in the preceding paragraph is false. (A good way to get a

feel for the difficulty is to attempt to design a B-type circuit for

computing exclusive disjunction.) The simplest remedy seems to be to

modify the substitution in terms of which B-type machines are defined:

a B-type results if every unit-to-unit connection within an A-type

machine is replaced by two  of the devices shown in figure 2 linked in

series. That is to say, what is in the A-type a simple connection between

two units now passes through two additional units each with its own

introverted pair attached. It is trivially the case that if a function can be

computed by some A-type machine then it can also be computed by

some machine satisfying the modified definition of a B-type. However,

Turing’s paper contains no clues as to his own procedure.

As already indicated, the training process for a B-type

unorganised machine consists in an external agent setting the

determining condition of each introverted pair. In modern architectures

repeated applications of a training algorithm - for example the back

propagation algorithm - cause the encoding of the problem solution to

'evolve' gradually within the network during the training phase. Turing
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had no algorithm for training his B-types. He regarded the development

of training algorithms for unorganised machines as a central problem

and he envisaged the procedure - first implemented by Farley and

Clark and nowadays used extensively by connectionists - of

programming the training algorithm into a computer simulation of the

unorganised machine. With characteristic farsightedness Turing ends his

discussion of unorganised machines by sketching the research

programme that connectionists are now pursuing:

I feel that more should be done on these lines. I would like to

investigate other types of unorganised machines . . . When

some electronic machines are in actual operation I hope that

they will make this more feasible. It should be easy to make a

model of any particular machine that one wishes to work on

within such a UPCM [universal practical computing machine]

instead of having to work with a paper machine as at present.

If also one decided on quite definite ‘teaching policies’ these

could also be programmed into the machine. One would then

allow the whole system to run for an appreciable period, and

then break in as a kind of ‘inspector of schools’ and see what

progress had been made. (1948, pp.20-21.)

The importance that this project held for Turing may be gauged

from a remark in a letter that he wrote to Ashby at about the same

time:
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In working on the ACE I am more interested in the possibility of

producing models of the action of the brain than in the

practical applications to computing.5

Turing himself was unable to pursue his proposed research

programme very far. It must be remembered that at the time he wrote,

the only electronic stored-program computer in existence on either side

of the Atlantic was a tiny pilot version of the Manchester Mark I.6 (The

pilot version of the ACE did not run its first program until 1950.) By the

time he did have access to real computing power (at the University of

Manchester) his interests had shifted and he devoted his time to

modelling biological growth. It was not until the year of Turing's death

that Farley and Clark, working at MIT, succeeded in running the first

computer simulation of a small neural network (Farley and Clark 1954).

5. P-Type Unorganised Machines

Turing’s main purpose in studying P-type machines seems to have

been to search for general training procedures. A P-type machine is not

a neural network but a modified Turing machine. Chief among the

modifications is the addition of two input lines: the pleasure (or reward)

line and the pain (or punishment) line. (Turing considers other

modifications, in particular sensory input lines and internal memory

units; in the interest of simplicity we say nothing further concerning

these.) Unlike standard Turing machines a P-type has no tape.

Initially the P-type machine is unorganised in the sense that its

machine table is ‘largely incomplete’ (1948, p.18). Application of either

pleasure or pain by the trainer serves to alter an incomplete table to
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some successor table. After sufficient training a complete table will

emerge.

As is well known the machine table of a standard Turing machine

consists of quintuples of the form: <state, symbol under head, symbol to

be written, new state, direction of movement>. The P-types that Turing

explicitly considers have machine tables consisting of triples. There

follows an example of such a table. (This is a simplified version of

Turing’s own example on pp.18-19.)

State
1
2
3
4
5

Control Symbol
U
D0
T1
U
D1

External Action
A
B
B
A
B

‘U’ means ‘uncertain’, ‘T’ means ‘tentative’ and ‘D’ means ‘definite’.

(It is unnecessary to specify the nature of the external actions.) This

table is incomplete in that no control symbol at all is specified for states

1 and 4 and the control symbol 1 has been entered only tentatively in

the line for state 3. Only in the case of states 2 and 5 are definite control

symbols listed. The table is complete only when a definite control

symbol has been specified for each state.

The control symbol determines the state the machine is to go into

once it has performed the specified external action. The rules that

Turing gives governing the state transitions are:
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(a) If the control symbol is 1 (either definitely or tentatively) then n e x t

state  is the remainder of (2 Ù present state) + 1 on division by

the total number of states (in this case 5).

For example, if the machine is in state 3 then next state is 2.

(b) If the control symbol is 0 (again, either definitely or tentatively)

then next state is the remainder of 2 Ù present state on division

by the total number of states.

For example, if the machine is in state 2 then next state is 4.

Let us suppose that the machine is set in motion in state 2. It

performs the external action B, shifts to state 4, and performs the action

A. No control symbol is specified in state 4. In this case the machine

selects a binary digit at random, say 0, and replaces U by T0. The choice

of control symbol determines the next state, in this case 3.

The trainer may apply a pleasure or pain stimulus at any time,

with the effect that ‘[w]hen a pain stimulus occurs all tentative entries

are cancelled, and when a pleasure stimulus occurs they are all made

permanent’ (1948, p.18). In other words pleasure replaces every T in

the table by D and pain replaces all occurrences of T0 and T1 by U.

Turing suggests that ‘it is probably possible to organise these P-

type machines into universal machines’ but warns that this ‘is not easy’

(1948, p.19). He continues:

If, however, we supply the P-type machine with a systematic

external memory this organising becomes quite feasible. Such a

memory could be provided in the form of a tape, and the

[external actions] could include movement to right and left
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along the tape, and altering the symbol on the tape to 0 or 1 . . .

I have succeeded in organising such a (paper) machine into a

universal machine . . . This P-type machine with external

memory has, it must be admitted, considerably more

‘organisation’ than say the A-type unorganised machine.

Nevertheless the fact that it can be organised into a universal

machine still remains interesting. (1948, pp.19-20.)

As a search for ‘teaching policies’ Turing’s experiments with P-

types were not a success. The method he used to train the P-type with

external memory required considerable intelligence on the part of the

trainer and he describes it as ‘perhaps a little disappointing’, remarking

that ‘[i]t is not sufficiently analogous to the kind of process by which a

child would really be taught’ (1948, p.20).

The key to success in the search for training algorithms was the

use of weighted connections or some equivalent device such as variable

thresholds. During training the algorithm increments or decrements the

values of the weights by some small fixed amount. The relatively small

magnitude of the increment or decrement at each step makes possible a

smooth convergence towards the desired configuration. In contrast

there is nothing smooth about the atomic steps involved in training a B-

type. Switching the determining condition of an introverted pair from 0

to 1 or vice versa is a savage all-or-nothing shift. Turing seems not to

have considered employing weighted connections or variable

thresholds.
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6. McCulloch-Pitts Networks

It is interesting that Turing makes no reference in the 1948

report to the work of McCulloch and Pitts, itself influenced by his own

1936 paper. Their 1943 article represents the first attempt to apply

what they refer to as 'the Turing definition of computability' to the

study of neuronal function (1943, p.129). McCulloch stressed the extent

to which his and Pitts' work is indebted to Turing in the course of some

autobiographical remarks made during the public discussion of a lecture

given by von Neumann in 1948:

I started at entirely the wrong angle ... and it was not until I

saw Turing's paper [Turing 1936] that I began to get going the

right way around, and with Pitts' help formulated the required

logical calculus. What we thought we were doing (and I think

we succeeded fairly well) was treating the brain as a Turing

machine. (Von Neumann 1961, p.319.)

Like Turing, McCulloch and Pitts consider Boolean nets of simple

two-state 'neurons'. They show (i) that such a net augmented by an

external tape can compute all and only numbers that can be computed

by Turing machines, and (ii) that without the external tape some but

not all of these numbers, and no other numbers, can be computed by

nets (ibid.). They give no discussion of universal machines.

McCulloch and Pitts make no use of weighted connections or

variable thresholds. Part of the burden of their argument is to show

that the behaviour of a net of binary units with variable thresholds can
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be exactly mimicked by a simple Boolean net without thresholds

‘provided the exact time for impulses to pass through the whole net is

not crucial’ (1943, pp.119, 123-4). They establish the same result in the

case of various other phenomena associated with human neurons, in

particular relative inhibition, extinction, temporal summation, and the

formation of new synapses (ibid.).

McCulloch and Pitts say that two nets are ‘equivalent in the

extended sense’ when the one exactly mimics the input/output

behaviour of the other save possibly for the exact time it takes impulses

to pass through the net (1943, pp.119, 123). There are some differences

between the Boolean architectures of Turing and McCulloch and Pitts

but there is equivalence in the extended sense. For example, inhibitory

synapses are a primitive feature of McCulloch-Pitts nets but not of A-

types and B-types. (An input of 1 at an inhibitory synapse at moment m

unconditionally sets the output of the unit to 0 at m+1.) An inhibitory

synapse can be mimicked by an arrangement consisting essentially of

three introverted pairs, one modified in such a way that each unit of the

pair has an external input. Working in the opposite direction, an

introverted pair can be mimicked by one of the class of nets that

McCulloch and Pitts call ‘Nets with Circles’.

Turing had undoubtedly heard something of the work of

McCulloch and Pitts. Wiener would almost certainly have mentioned

McCulloch in the course of his 'talk over the fundamental ideas of

cybernetics with Mr Turing' at the NPL in the spring of 1947 (Wiener

1948, p.32). (Wiener and McCulloch were founding members of the

cybernetics movement.) Moreover von Neumann mentions the
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McCulloch-Pitts article - albeit very briefly - in the 'First Draft of a

Report on the EDVAC', which Turing read in 1945. (Von Neumann

appears to have employed a modified version of their diagrammatic

notation for neural nets in order to depict the EDVAC's logic gates. Turing

went on to extend considerably the notation he found in the 'First Draft'

(Carpenter and Doran 1986, p.277; Hartree 1949, pp.97, 102).) Turing

and McCulloch seem not to have met until 1949. After their meeting

Turing spoke dismissively of McCulloch, referring to him as a charlatan.7

It is an open question whether the work of McCulloch and Pitts had any

influence whatsoever on the development of the ideas presented in the

1948 report.

Over the years a number of commentators on the history of

electronic computing machinery, especially those whose primary

concern has been with developments in the United States, have found

Turing's contributions hard to place. It has often been falsely assumed

that most of the early work done in Britain on logical and electronic

design was derived from work carried out in the United States, via von

Neumann's report on the EDVAC (1945) and the Moore School lecture

series of 1946. Turing did read von Neumann's report before writing his

'Proposal for Development in the Mathematics Division of an Automatic

Computing Engine (ACE)' but his design is strikingly different from von

Neumann's (see Carpenter and Doran 1986, 1977; Huskey 1984). (M a x

Newman remarked in his obituary of Turing (Manchester Guardian, 11

June 1954) ‘It was, perhaps, a defect of his qualities that he found it

hard to accept the work of others, preferring to work things out for

himself’.8) A fundamental difference between the machine that Turing
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proposed and both the EDVAC and its British derivative the EDSAC was

that in Turing's design complex behaviour was to be achieved by

complex programming rather than by complex equipment. We know of

Turing's opinion of Maurice Wilkes' design for the EDSAC from a memo

Turing wrote in late 1946 or early 1947 to Womersley at the National

Physical Laboratory: Wilkes' proposals are 'very contrary to the line of

development here, and much more in the American tradition of solving

one's difficulties by means of much equipment rather than by thought'.9

Turing followed his own path from the abstract machines of his

1936 paper to the idea of a high-speed stored-program computer and

contemporaneous research in the United States meant little to him.1 0

The same may well have been true in the case of his work on neuron-

like computation.

Whatever the influences were on Turing at that time, there is no

doubt that his work on neural nets goes importantly beyond the earlier

work of McCulloch and Pitts. The latter give only a perfunctory

discussion of learning, saying no more than that the mechanisms

supposedly underlying learning in the brain - they specifically mention

threshold change and the formation of new synapses - can be mimicked

by means of nets whose connections and thresholds remain unaltered

(1943, pp.117, 124). Turing’s idea of using supervised interference to

train an initially random arrangement of units to compute a specified

function is nowhere prefigured.1 1
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NOTES

1. That Turing anticipated connectionism was first suggested to us by

Justin Leiber in correspondence. Leiber gives a brief discussion on

pp.117-18 and p.158 of his 1991 and on p.59 of his 1995. We cannot

endorse Leiber's claim that Turing made use of weighted connections

(1991, p.118).

2. Rosenblatt introduces the term ‘connectionist’ in the following way:

‘[According to] theorists in the empiricist tradition ... the stored

information takes the form of new connections, or transmission

channels in the nervous system (or the creation of conditions which are

functionally equivalent to new connections) ... The theory to be

presented here takes the empiricist, or “connectionist” position ... The

theory has been developed for a hypothetical nervous system, or

machine, called a perceptron’ (1958b, p.387).

3. See note 2.

4. Such proofs have been given for a number of modern connectionist

architectures, for example by Pollack 1987 and Siegelmann and Sontag

1992. The latter establish the existence of a network capable of

simulating a finite-tape universal Turing machine in linear time. They

are able to give an upper bound on the size of the network: at most

1058 units are required.

5. The letter is held in the NPL archive, Science Museum, South

Kensington, London. It is undated but was written while Turing was

working at the NPL.

6. Turing wrote the report during July and August of 1948 (Hodges

1983, p.377). The prototype Manchester machine ran its first progam in

June 1948 and the Cambridge EDSAC not until May 1949 (Kilburn and
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Williams 1953, p.120; Wilkes, M. 1985, p.142). The American ENIAC first

went into operation in November 1945 but was not stored-program. It

was not until September 1948 that the ENIAC began operating with

program code stored in its function tables (Goldstine 1972, p.233;

Metropolis and Worlton 1980, pp.53-54). However, since the function

tables were read-only, variable addressing was not possible and so the

ENIAC was never stored-program in the full sense. The American BINAC,

which was stored-program, was first tested in August 1949 (Stern

1979, pp.12-13). The IBM SSEC, which first ran in public in January 1948,

was stored-program but was not fully electronic, being largely

electromechanical (Bowden 1953, pp.174-5; Eckert 1948). Despite a

widespread belief to the contrary, the ENIAC was not the first electronic

computing machine. This distinction belongs to the Colossi, constructed

at Bletchley Park, Buckinghamshire, from 1943 onwards for use against

the German 'fish' codes. The Colossus was program-controlled rather

than stored-program. It performed Boolean operations and had some

arithmetical capability (Randell 1980). The Colossus was designed and

built by Flowers and Newman with - according to Donald Michie,

himself a junior member of Newman's team - some assistance from

Turing. (Possibly Turing's contributions concerned the methods of

search employed by the Colossus.) The existence of the Colossus was

kept secret by the British government for a number of years after the

war and so it was that von Neumann and others, in lectures and public

addresses, told the world that the ENIAC was 'the first electronic

computing machine' (von Neumann 1954, pp.238-9). (The Manchester

firm Ferranti built a production version of the Manchester Mark I. The
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first was installed in February 1951, two months before the first U N I V A C

(Lavington 1975, p.20).)

7. This is Robin Gandy's recollection.

8. Quoted in Kleene 1987, p.492.

9. The memo is reproduced in Huskey 1984, p.354.

10. Turing's wartime involvement with electronics was no doubt the

key link between his earlier theoretical work and the ACE: by means of

this new technology the abstract stored-program machines of his 1936

paper could be turned into a reality. (Very probably his wartime

involvement with the Colossus at Bletchley Park was a particularly

important influence in that respect.) Here is Turing's own statement of

the relationship between the universal Turing machine and the ACE.

Some years ago I was researching on what might now be

described as an investigation of the theoretical possibilities and

limitations of digital computing machines. I considered a type

of machine which had a central mechanism, and an infinite

memory which was contained on an infinite tape . . . Machines

such as the A C E  may be regarded as practical versions of this

same type of machine. (1947, pp.106-7.)

In the previously mentioned letter to Ashby Turing says:

The A C E  is in fact, analogous to the "universal machine"

described in my paper on conputable [sic] numbers . . .

[W]ithout altering the design of the machine itself, it can, in

theory at any rate, be used as a model of any other machine,

by making it remember a suitable set of instructions.

As Hodges suggests (1983, p.556) Sara Turing was probably more or

less quoting her son's own words when she wrote in connection with the
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ACE project that 'his aim [was] to see his logical theory of a universal

machine, previously set out in his paper "Computable Numbers" [sic] . . .

take concrete form in an actual machine' (1959, p.78).

11. We are indebted to John Andreae, Sean Broadley, Nat Gilman,

Simeon Lodge, Donald Michie, Seth Wagoner and Justin Zajac for

discussion, and especially so to Craig Webster. John Andreae, Kevin Korb

and Craig Webster commented helpfully on earlier versions of this

paper. Craig and Bruce Webster wrote a B-type simulator for us.
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