
The uuthor assumes that the render is fnmilinl- with the content
of the preceding paper, “ A General Purpose Systems Simulator,’’
by G. Gordon. Two dissimilar examples are provided to illustrate
various aspects of simulation in the systems engineering process.
One example involves the study of a n IBM 7040”IBM 7090
computer complex for scientific applications. The other concerns
a n IBM 1410 Tele-processing system for a stock brokerage house.
0 I n addition to illustrating the paper, both examples are of
intrinsic interest. The first presents a new philosophy of multi-
processing. The second examines a method of integrating com-
munication facilities with an information processor.

Simulation in systems engineering
by E. C. Smith, Jr.

Systems engineering is concerned with the synt,hesis and analysis
of systems of men and machines having specified objectives. Such
performance objectives are commonly expressed in terms of hu-
man values and, as a consequence, are often necessarily subjective.
Furthermore, the systems under consideration invariably exploit
the interaction of men with physical components. It is this high
degree of human involvement which particularly distinguishes
systems engineering from the more conventional fields of engineer-
ing. Thus, the design and analysis of a message handling informa-
tion system is a systems engineering activity, whereas the design
and evaluation of a water pump falls within conventional practice.

The conduct of systems engineering invariably includes the
conscious use of some form of modeling: either physical, such
as a model airfoil for a wind tunnel; or conceptive, by formal
mathematics or logical simulation. The General Purpose Systems
Simulator1 is one instrument which the systems engineer may
use to construct and manipulate a conceptive model. It can be
used for models of quite diverse and dissimilar physical systems.
However, i t is far from completely general. Even if attention is
restricted to information processing systems, the simulator is in-
adequate for the expression of many conceptual models.

Use of the simulator can be appreciated only in the terms
of its role in the tot,al systems engineering process. The purpose
of this paper is to help develop insight into its proper use through
discussion of two systems engineering studies ; one relating to a

IBM Systems Journal Septembw 1963 %?

computer complex for scientific applications, and the other to a
message handling system for a brokerage firm.

Relationships between system componente are the raw ma-
terial of the systems engineer. The systems engineer must first
determine the performance criteria-the values against which the
desired system will be measured. He must then select the system’s
components and their interrelationships so that the resultant
system will measure best against this criteria. Thus, once the
performance criteria have been established, his job is one of
selection and evaluation. A simulation model may be used in
the selection of the system’s components and their relationships,
or it may be used to help evaluate a specific system configura-
tion, or both. These two phases may proceed concurrently, oc-
casionally without conscious distinction between them, or they
may proceed independently. Indeed, different models may be
used in these two phases.

Occasionally, selection of the system configuration may be
dictated by equipment availability or economics so that only
one system is possible. Then, the choice is whether or not to
have the system. Modeling provides an evaluation which will
permit this choice to be made with minimal risk.

Simulation is not replication. The simulation (or mathemati-
steps in the cal) model possesses a t best a relatively small number of
use of properties which correspond (always in an approximate w a y) to
simulation reality. In order to use simulation, the systems engineer must:

1 Determine those properties of reality in which he is interested.
2 Determine those properties of reality which could conceivably

have a significant influence upon those in which he is interested.
3 Specify the relationships between the above properties.
4 Use a modeling tool (mathematical theory, General Purpose

Systems Simulator language, etc.) to build a model.
5 Establish a univalent correspondence between reality and the

identified entities and relationships of the model.
6 Manipulate the model.
7 Interpret the results of the manipulation.

Note that in a very real sense the first three steps build a
verbal or conceptual model. The very act of writing down proper-
ties and their relationships necessitates simplification of the
incredible complexity of reality-human language is bounded by
the degree of complexity which man can grasp and understand.
This type of modeling is very useful and is the kind of analysis
that is often described as sitting back, thinking about the prob-
lem and seeing the kernel of it. Step 4 above might be rephrased
as, “Use a modeling tool other than general language to build a
more precise model.”

Manipulation of the model produces the results. For a mathe-
model matical model expressed as a system of equations, manipulation
manipulation consists of solving the equations. For a physical model or a model

expressed in a language such as that of the General Purpose
Systems Simulator, manipulation consists of the conduct

of experiments and the collection of statistics for later analysis.
Manipulation in this case may also mean the varying of param-
eters in the model design and conducting more experiments to
obtain further statistics for comparative purposes. (One might
consider this the construction and manipulation of new, slightly
different models, but i t is more common to consider a model to
include those variants obtained by changing parameters.) For
a verbal model as developed in Steps 1, 2, and 3 above, the
manipulation is more difficult to identify, but i t consists pri-
marily of the application of insight and mental analysis to the
problem in order to draw conclusions.

The running of the General Purpose Systems Simulator pro-
gram can produce many kinds of statistics about the model. For
example, for a facility one may determine its average utilization
(the fraction of the total elapsed time i t is in use), the total
number of transactions to use the facility, etc. For a queue, one
may determine: the maximum length it attained, its average
length, the number of times its length met certain pre-specified
values, the total number of transactions which passed through
the queue and the number of these which spent no waiting time
at that point. Pages of statistics of this nature comprise the
results of the model manipulation; the value of the entire pro-
cedure obviously depends upon the interpretation of these results.
It is here that the evaluation in terms of human values is crucial.
It is of the utmost importance to establish in advance the pur-
pose of each particular simulation in the total systems engineering
process, and to specify how that purpose can be achieved by inter-
pretation of simulation results. Average queue length may be
pertinent for one case, maximum length may be critical for an-
other; average facility utilization may be a key factor for one
case, maximum transaction life may be a key for another.

One of the questions most commonly asked of a model is its
sensitivity to variations in its design or environment. For ex-
ample, if a computer system is designed to handle a certain work
load, what happens if the work load is increased slightly? The
degradation of service may be slight, or i t may be surprisingly
great. Conceivably, a 10% increase in workload could cause the
average job processing time to more than double because of the
cumulative effect of several queues. The systems engineer often
wants to vary model parameters in order to identify those to
which the system is most sensitive. He can then devote
most of his attention to those critical aspects of the total system.

First example : scientific computation
In order to better crystallize these ideas, consider the general data
processing milieu of scientific computation. The objective of the
use of data processing equipment in this context is to aid the
engineer and scientist in the solution of his problems. Present day
computing techniques are evidence of considerable progress in
this area, but it is not difficult to propose much improvement.
Rather than considering improvement by development of more

IBM Systems Journal September 1868

Figure 1

I

i I
I

I

c
CHANNEL

LL

I

I

-u READER

TAPES

CHANNEL

i
I SWITCHABLE
I

+ 3 7 "] CHANNEL

CHANNEL READER

proposed
multicomputer
system

36

sophisticated problem statement languages, remote graphical ter-
minals, etc., consider simply a reorganization of the central com-
puter complex to handle problems originally stated in Fortran
and/or FAP languages and presented to the complex from
multiple sources. The objective is to serve the user better by:

1 Reducing the average turnaround time (time between the
submission of programs to the complex and the presentation
of the results).

2 Providing dynamic scheduling of programs for the central
processor.

3 Providing dynamic scheduling of output devices (punches,
printers, remote terminals).

4 Providing interrupt capabilities for on-line remote terminals.
5 Increasing central processor throughput (number of programs

processed per unit of time).

The systems engineer should study each of the above in order
to synthesize several alternative equipment configurations and
operating systems which appear likely to accomplish the above.
This would include a functional specification of supervisory moni-
tor programs and operating procedures. Before attempting any-
thing more elaborate than a cursory examination of the engi-
neering difficulty and economic value of each of the proposed sys-
tems, each should be examined to determine if, indeed, i t would
accomplish each of the five points above. Stated simply, why per-
form a detailed economic analysis of a syst.em that could not ac-
complish the task set forth?

We shall describe a simulation of one system which might be
considered for this situation and set forth what the results of the
simulation imply and, what may be more important, what they
do not imply with regard to establishing the feasibility and de-
sirability of the system. The reader should note that this is a
hypothetical system and its discussion here is not necessarily
intended to supply the optimal system for this situation.

The proposed system consists of two computers operating in
concert to accomplish the scheduling and execution of programs.
This computer complex, shown in Figure 1, consists of an IBM,
7090 and an IBM 7040 linked into an integrated system by pro-
grammed-switchable tapes for mass data transfers as well as
other non-standard means of direct computer-to-computer com-
munication. The IBM 7090 performs the compilation, assembly
and execution of object programs. The IBM 7040 never re-
linquishes its control to an object program since i t must con-
stantly monitor the entire system, edit input, schedule and pre-
pare input tapes for the IBM 7090, edit, schedule and initiate all
output received by tape from the IBM 7090, and respond ap-
propriately to remotely initiated messages transmitted by on-line
Tele-processing@ equipment.

Program information and data can arrive at the IBM 7040
simultaneously from several sources-card reader, tapes, and
remote terminals. Such material is accumulated on the disk file

I B M Systems Journal September 1962

into complete programs. They are then, according to priority,
written onto tape for transmittal to the IBM 7090 for processing.
While passing through the IBM 7040 (to the disk or from the
disk to tape), some preparatory processing is done. For example,
Fortran and FAP statement.s are compressed by the elimina-
tion of null characters. Comments are stored on the disk with
their programs, but are not put on the tape for the IBM 7090.
Preliminary diagnostic editing is performed, possibly on a state-
ment-by-statement validity basis rather than an inter-statement
consistency level. Programs which fail such editing are appro-
priately handled by the IBM 7040 so that the problem originator
receives the necessary diagnostic information to effect later cor-
rections. Consequently, the IBM 7090 does not receive a program
for assembly or compilation unless it has passed a minimum
standard of error checking.

When creating an input tape for the IBM 7090, the IBM 7040
will select necessary library routines from the disk file and ap-
propriately incorporate them with the input programs. Such
routines, as well as previously assembled object programs, will
be relocated by the IBM 7040 so that the IBM 7090 will read this
information in absolute binary form for maximum efficiency in
loading. Thus, the IBM 7090 throughput should be increased
by a reduction in loading time and searching time for subroutines,
and by an increase in the probability of successful compilations
and assemblies effected by the pre-editing.

Periodically the IBM 7040 may monitor the execution of a
program by the IBM 7090 by means of an interval timer and (cur-
rently unavailable) trapping and direct communication devices
linking the machines. If the program execution is found to deviate
from some previously specified pattern, the IBM 7040 should
cause the IBM 7090 to terminate the processing of its current
program. The IBM 7040 should perform preliminary diagnostic
operations, condition the IBM 7090 to perform a more complete
diagnostic function and then begin the next program. Conse-
quently, the IBM 7040 always has complete control of the situa-
tion and can automatically restart the IBM 7090 even if an ob-
ject program has erroneously put nonsensical information into
virtually all of memory and entered an endless loop. For this
reason this multiprocessor concept is often called a master-slave
mode of operation.

Since a primary requirement is to help the IBM 7090 to op-
erate at maximum efficiency, the first question i t is necessary to
settle is whether or not the IBM 7090 would ever be kept waiting
for work because the IBM 7040 could not present i t with prepared
programs a t a rapid enough rate. This might be caused by several
reasons. The card reader and a reasonable set of Tele-processing
terminals may not be able to present programs to the IBM 7040
rapidly enough. The IBM 1301 disk file might create an untenable
queue of requests for disk usage because of the time necessary
for the access arm to seek new record locations. The IBM 7040
might be too slow to do the preliminary editing and preparatory

IBM Systems Journal September 196)

model
construction

identification
of transaction
unit

assignment
of parameters
to transactions

38

processing. The General Purpose Systems Simulator was used to
answer precisely the question of keeping the IBM 7090 busy. This
is one of the questions i t is necessary to ask in order t o select a
feasible system. It is not a question of economic feasibility or
evaluation relative to alternative systems. A different model
might aid such evaluation, but the one described below would be
of little use to the systems engineer for evaluation. Moreover, the
present model does not serve well to answer the question of
output congestion. It was chosen simply to illustrate that
each simulation can accomplish only specific, narrowly defined
objectives, and none can be all inclusive. Certainly, a more de-
tailed model could aid in answering more questions, but it is often
more practical to build a model to answer a few specific questions
because of the simplicity this course affords in the model design
as well as interpretation of the results of its manipulation.

Possibly the first step in designing the model we desire is to
identify the transaction unit. It should be identified as a unit of
information which is presented to the computer complex for proc-
essing. It could be a single character, an 80 character record, or
a full program of variable size. A myriad of choices is possible. It
is this choice that determines the level of detail of the model. In
general, the smaller the transaction unit, the greater the number
of entities of reality (and relationships between them) that have
to be identified and represented in the model. Thus, model com-
plexity is increased with the benefit (if the entities and relation-
ships are correctly identified with reality) of a closer approxima-
tion to reality by the model. The color of the disk file frame is
a property of reality we obviously do not want represented in our
model. It is not obvious, however, that our model need not re-
flect the fact that seek time for the disk access unit depends upon
the location of the read-write arm relative to its desired location.
(For our purposes the use of an average time is sufficient.) The
successful application of modeling depends upon the judgment o'f
the systems engineer in choosing an appropriate degree of model
detail, what to ignore, when to use averages, etc. Again, this
judgment is greatly aided by clear specification of objectives in
advance.

The sub-program was chosen as the transaction unit. It is
homogeneous in that i t consists solely of one type of information
(Fortran, FAP, binary program or data). It is necessary to
maintain separation of types of sub-programs on input because
of their different processing requirements. For example, a transac-
tion representing a Fortran sub-program might require, on
the average, 432 milliseconds to edit and condense preparatory to
writing i t onto the IBM 7090 input tape, while one representing
a binary sub-program might require lo00 milliseconds to prepare
i t in a relocated absolute form.

Each transaction, therefore, was assigned a parameter value
upon generation which indicates its program type. This parameter
value was carried with the transaction and was appropriately used
to guide the course of processing for that transaction. Further-

IBM S ~ s t e m r Journal September 2961

more, a t times i t was found necessary to tag transactions with
parameters representing other attributes of sub-programs as well.
Values for these parameters were also assigned upon generation
of each transaction and carried with i t until its termination. Some
of these other parameters represented the following:

1 Number of sub-programs (transactions) which comprise

2 Identification (job number) of the main program to which the

3 Number of input cards represented by the transaction.
4 Number of disk tracks necessary to store the transaction on

5 Number of tape records necessary to admit the transaction on

6 Number of lines to be printed as a result of processing the

7 Number of cards to be punched as a result of processing the

the main program to which the transaction belongs.

transaction belongs.

input.

input.

transaction.

transaction.

Facilities which were identified included the IBM 7040 cen- competition
tral processing unit, a disk unit channel, a card reader buffer, a for facilities
tape channel, a card punch buffer, two printer buffers, and the
IBM 7090 central processing unit. Distinct processing operations
compete for the use of these facilities. For example, a t a given
moment the disk channel could be called upon to help perform the
following:
1 Store in the disk storage unit a request from a remote termi-

nal to run a library program.
2 Store a portion of a Fortran sub-program to await accu-

mulation of the complete sub-program being entered into the
system from the card reader.

3 Store the results of a program already executed by the IBM
7090 in order to await the availability of an output device.

4 Present the IBM 7040 with the results of a previously proc-
essed program for punching.

5 Present the IBM 7040 with the results of two previously proc-
essed programs for printing by the two printers.

6 Present the IBM 7040 with a portion of a sub-program for
editing and submission to the IBM 7090 input tape.

It is precisely the extent of this kind of interference and com-

When isolated from each other, processing operations of the processing
petition for facilities that we wish to gauge by simulation.

above types are comparatively easy to analyze a t least to the streams
depth of detail necessary to specify their demands upon the
identified facilit,ies. A separate model was built for each of the
following nine processing operations called “streams” because they
represent a flow of transactions:

1 Card reader to disk storage.
2 Remote terminals to disk storage.
3 Disk storage to IBM 7090 input tape.

IBM Systems Journal September 19-32 39

queues

Figure 2 Typical
block chain

I

F 16682

QUEUE

I

I
I
I

~ ~~

4 IBM 7090 processing.
5 IBM 7090 output tape to disk storage.
6 Disk storage to printer # 1.
7 Disk storage to printer # 2.
8 Disk storage to card punch.
9 Disk storage to remote terminals.

Some information flow (error messages, etc.) is not included in
the above, but the density of this traffic is so slight that it was
ignored.

The model for each of the above streams generated its own
set of transactions either as fast as the system could accept them
or a t a rate determined by previous study to be about that which
one would find in real life. For example, for the disk storage to
input tape stream, a new transaction would be generated as soon
as the previous one was completely written on tape; whereas for
the card reader to disk storage stream a transaction was gen-
erated every minute (actually, whenever the simulator program
clock counter reached a multiple of 60,000).

The simulator program manipulated these independent stream
models concurrently. That is, as the basic clock counter in the
program stepped through discrete intervals of time, transactions
were generated for each of the streams and logically transported
through the blocks of the models at the rates each dictated. Con-
t,rary to indications above, the stream models were not actually
independent since each referred to the same facilities. As a con-
sequence, unless an interrupt was allowed, a facility in use by one
stream could not be used by another until the first released it.
Queues of requests for use of facilities formed of transactions from
several stream models. Thus, the simulator program performed the
service of linking the “independent” stream models and collecting
statistics on the interference caused by this linking.

I n order to illustrate how this is accomplished, consider the
chain of blocks in Figure 2. This or a similar chain of blocks may
exist in any of the stream models. The numerals 1 and 3 to the
right of the boxes are labels which reference the IBM 7040
central processing unit and the disk channel facilities respectively.
Many QUEUE boxes a t diverse locations in the total model may
have the same label and, thus, refer to the same queue. A trans-
action entering the above chain will proceed directly to t.he second
box (the HOLD box) if the disk channel facility is not being used
(held) by some other transaction. If the disk channel facility is
in use, the transaction will be held in the queue until it can pro-
ceed. Once it enters the HOLD box, a transaction remains there for
an integral number of clock counts selected a t random (by the
simulator program) between 84 and 248. These clock counts cor-
respond to the number of milliseconds the attention of the disk
storage channel would be required in order to service that trans-
action. Aft,er waiting the appropriate time, the transaction would
attempt to proceed through the other blocks of this chain. It may
be held in queue # 1 if the IBM 7040 central processing unit

IBM Systems Journal September 1961

facility is in use, etc. The SEIZE and RELEASE pair of boxes per-
form the same kind of function as the HOLD box, but with the
added feature of allowing the current transaction to traverse other
boxes inserted between the SEIZE and RELEASE boxes, all the while
holding in use the facility in question (the central processing unit
in this case).

Interaction of the type illustrated clearly is effect’ive between
different parts of a single transaction stream as well as between
separate streams. The ability to obtain interaction between seem-
ingly independent portions of the total model as illustrated above
is one of the keys to the power of the General Purpose Systems
Simulator as a modeling tool for study of information processing
systems. The simulator, therefore, incorporates simultaneity of
action of different parts of the model with the concept of sequenc-
ing through time intervals.

As we have seen, the primary use of the model under discus-
sion was to determine whether or not undue congestion would
occur with each stream operating at its reasonably expected maxi-
mum rate. The construction of several stream models to interact
when manipulated was simpler than the construction of a more
realistic single unified model which would follow a program from
entry to the computer complex completely through to the presen-
tation of its processed results by an output printer, card punch or
remote terminal. Such a “single stream” model could afford, in
addition to more information about points of congestion, statistics
on the total time a transaction (sub-program) remains in the sys-
tem. Such statistics would be invaluable in the evaluative stage
of the systems engineering process to assess possible benefits of
this system in the area of reduced turnaround time and dynamic
scheduling.

For some purposes i t may be desired to break the transaction
effectively into smaller units. This may be done either by splitting
a transaction into two distinct transactions or by sending a
transaction through a loop of the model a number of times equal
to the number of subunits it represents. This may be illustrated
in our example by a consideration of the t.iming of the reading of
those cards which may comprise a sub-program entering the com-
puter complex.

Assume that the value of the second paramet,er associated
with a transaction (indicated by P2) represents the number of
cards in the sub-program and has been assigned prior to the entry
of the transaction to the QUEUE block at the top of Figure 3. This
is the queue of transactions awaiting service by the central proc-
essing facility. When that facility is available, the transaction
will move t.o the SEIZE block to obtain service from the facility for
one unit of time. It will then attempt to enter t’he GATE block and
proceed t,o the SPLIT block to be divided into two distinct transac-
tiom2 The gate allows passage only if facility number two (the
card reader buffer) is not in use, as indicated by the flag NU2.

One of the two transactions leaving the SPLIT block holds the
card reader buffer facility for 75 clock counts (milliseconds) and

I B M Sy.qtems Journal September 1 9 6)

Figure 3
Simulator diagram

SEIZE

GATE RELEASE

A SPLIT

-\ L

””

(Z) (-)
P3 E K80

1

simulator
vs. flow
diagram

then terminates. The other proceeds to the first ASSIGN block where
it remains for 13 clock counts (an estimate of the time required of
the central processing unit to accept the information read from
one card). At this point the value of parameter two attached to
the transaction is decremented by the constant one, (as indicated
by “2-Kl”). The transaction then attempts to pass through
another gate which allows passage only if “P2EK0,” that is, the
value of the second parameter has been reduced sufficiently to
equal the constant zero. This is the exit used when the transac-
tion has traversed the loop a sufficient number of times to denote
the reading of all of the cards represented by the transaction.

If the value of P2 is not zero, the transaction proceeds to the
second ASSIGN block, wherein the value of parameter three is
incremented by one. This parameter initially has the value of
zero and is used as a counter. When this counter attains the
value 80, the gate below this ASSIGN block allows the transaction
to exit to a chain of blocks which represent the writing into disk
storage one disk track record containing the information from 80
cards. (An odd number of cards is processed by a routine not
shown in Figure 3.) It then returns to the loop to release the cen-
tral processing unit facility and continue circulating. If the
counter P3 does not have the value 80 then i t immediately moves
to release the central processing unit facility. From there the
transaction attempts to return to the entry point of the loop, but
may wait in a QUEUE block behind a gate until the card reader
buffer facility has been released.

The direct path from the SEIZE block to the RELEASE block is
taken only the first time the transaction circulates through the
loop, and then only in the unlikely case the card reader buffer
facility is still held by the previous transaction. It should be
noted that by logic not shown in Figure 3, only one transaction
is allowed to circulate in the loop a t a time. Clearly, all the cards
for a sub-program must be read before those of another sub-pro-
gram can be entered into the complex.

The consequence of this procedure is that a transaction may
assume a t various times the roles of a single card or a record of
80 cards as well as its primary role of a complete sub-program.
Note that when split, one of the two resultant transactions re-
mained existent only long enough to hold the card reader buffer
facility a specified number of clock counts. The apparent equivo-
cacy of the meaning of the transaction reveals a fundamental
aspect of the kind of models of information processing systems
which can be built in the language of the General Purpose Sys-
tems Simulator. The block diagram describing the model is de-
ceptively like but fundamentally different from a flow chart
which might be drawn to portray the processing logic for pro-
gramming purposes. In the real system under consideration, no
information unit recirculates through a processing loop to effect
card reading and no information unit is created for the purpose
of timing the use of the card reader buffer. Indeed, even though
we have called for the identification of the transaction with a

IBM Systems Journnl September 1962

unit of information to be processed (the sub-program), we now see
that this is an inaccurate but convenient device which serves only
to help the systems engineer to understand better the anima-
tion of his model. The transaction is simply an artifice to produce
this animation. It may be identified with different units of infor-
mation, or none a t all, a t different points in its flow through a
model.

Partial results of the simulation of the scientific computer
complex are presented in Tables 1 and 2 without the delusion
that they might be applicable to any particular installation, but
given only to illustrate the kind of numeric results available
from the program. These are results from model manipulation
corresponding to 104 minutes of time. The statistics for facility
number 7, the IBM 7090 central processing unit, indicate that
only five transactions held this facility, and they each held it ap-
proximately twenty minutes (1,200,000 clock counts). Here again
the transaction did not correspond to a sub-program (in know-
ing violation of our earlier implication), but represented the
amount of work presented to the IBM 7090 on a single magnetic
tape. The IBM 7090 stream model did not purport to mirror
“green light” time, etc., but served simply to time the transmis-
sion of magnetic tapes between the two processors. Consequently,
the 100% facility utilization figure is from one point of view very
unrealistic, but from the point of view from which the model was
constructed, i t is precisely what was desired and in that sense
realistic. Caution in the interpretation of results is again signaled.

The usage of a facility is best judged in terms of its average
utilization coupled with a history of the queue of requests for its
usage. For example, Table 1 shows that the IBM 7040 central
processing unit was in use 76% of the time available and tha t a t
least once there were seven requests for its use waiting. This is
the maximum number possible according to the way the model
was designed. The disk channel, on the other hand, was busy only

Table 1 Simulation results

No.
Facility Average Number of

Name utilization entries
Average

time/trans.

1 7040 CPU 0.7639 122,616 39.22
2 Card Reader 0.1224 10,272 75.00
3 Disk Channel 0.4835 18,363 165.75
7 7090 CPU 1.0000 5 1,259,081.39
8 First Printer 0.6547 41,219 100.00
9 Second Printer 0.6545 41 ,205 100.00

10 Card Punch 0.0714 1 ,872 240.00

Max- Per
Queue imum Average Total Zero cent Average

No. Name contents contents entries entries zeros time/trans.
1 7040 CPU 7 1.31 122,616 74,367 60.7 170.87
2 Card Reader 1 0.10 10,173 89 0 . 9 62.00
3 Disk Channel 4 0.19 18,363 11,013 60.0 161.81
8 First Printer 1 0.42 41,219 4,755 11.5 72.43
9 Second Printer 1 0.42 41,205 4,773 11.6 72.49

10 Card Punch 1 0.05 1,872 417 22.3 224.31

IBM Suatems JmLrnal September 196d

simulation
results

Table 2 Queue of transactions waitina service from disk channel

Upper Observed Per cent Cumulative Cumulative Multiple Deviation
limt frequency of total percentage remainder of mean from mean

1 17 0.23 0.2 99.8 0.006 -1.407
51 1075 14.63 14.9 85.1 0.315 -0.969

101 1475 20.07 34.9 65.1 0.624 -0.532
151 1539 20.94 55.9 44.1 0.933 -0.095
201 1114 15.16 71 .O 29.0 1 .242 0.343
251 735 10.00 81 .o 19.0 1.551
301

0.780
475 6.46 87.5 12.5 1.860 1.218

351 375 5.10 92.6 7.4 2.169 1.655
40 1 241 3.28 95.9 4.1 2.478 2.092
45 1 138 1.88 97.7 2.3 2.787 2.530
50 1 85 1.16 98.9 1.1 3.096 2.967
55 1 41 0.56 99.5 0.5 3.405 3.404
60 1 15 0.20 99.7 0.3 3.714 3.842
651 14 0.19 99.9 0.1 4.023 4.279
70 1 4 0.05 99.9 0.1 4.332 4.717
751 3 0.04 99.9 0.1 4.641 5.154
801 2 0.03 100.0 0 4.950 5.591
851 0 0.00 100.0 0 5.259 6.029
901 1 0.01 100.0 0 5.568 6.466
951 0 0.00 100.0 0 5.877 6.903

1001 1 0.01 100.0 0 6.186 7.341

Entries in table 7350 Mean argument 161.814 Standard deviation 114.318

48% of the available time and had a t most four transactions
waiting in a queue for its attention. Note, however, that although
the central processing unit had a greater utilization and a t least
once had a longer queue waiting for its service, these facilities
each granted immediate service to the same percentage of the
number of requests for its attention. This is seen by noting that
approximately 60% of the entries to these queues were “zero
entries,” that is, they did not wait a t all in the queues. It should
be noticed in passing that for a facility, the average time per
transaction is computed as the total clock time that facility is in
use divided by the number of transactions which entered it. For
queues, the average time per transaction is the average period of
residence in each queue computed only for t,hose instances
wherein the transactions remained in the queues a non-zero length
of time.

Table 2 refers wholly to the queue of transactions awaiting
service from the disk channel facility. An entry in the second
column indicates the total number of transactions that had to
wait in the queue an amount of time (measured in millisecond
clock counts) between the time indicated as the limit time on
the preceding line, and the upper limit time on that entry’s line.
This, then, is a tabulation according to frequency classes. We
see, then, that 55.9% of the transactions entering this queue had
to wait less than 151 clock counts for service, 95.9% waited less
than 401 clock counts and, interestingly, one transaction waited
almost a full second (more than 951 clock counts). The limits
specifying the classes were chosen by the systems engineer as a
part of his model design. The degree of detail is, thereby, accord-
ing to his purposes and judgment.

Would this justify the acquisition of a second disk storage

4 . IBM Systems Journal September 19fiB

~~

access arm? This can be answered only in terms of the human
measurement values which should have been defined prior to the
simulation. Full cognizance should be taken of the precise pur-
pose of the simulation. As we have seen for this case, the simula-
tion was undertaken only to see if congestion becomes serious
enough to prevent the IBM 7040 from submitting enough work to
the IBM 7090 to keep the latter busy. Since congestion is not this
serious, and since we then do not care if, for the kind of work to
which the system will be put, a unit of work waits for one or sev-
eral seconds for disk service, the reply to our question is “no.”
Clearly, the same results displayed in Table 2 could generate a
“yes” reply in a different milieu with, possibly, more stringent
real-time Tele-processing requirements.

Second example : message handling
A second system example may serve to illustrate the use of the
General Purpose Systems Simulator to examine an information
processing system whose critical components are found to be ex-
ternal to IBM equipment. This system was designed to effect the
message transmission functions between the more than 40 offices
of a stock brokerage firm. It contains more than 10 fully duplexed
communication circuits emanating from a centrally located IBM
7750 Programmed Transmission Control Unit. Several of the re-
mote offices are served by each communication circuit and, con-
sequently, compete for circuit service. The IBM 7750 is ap-
pended to an IBM 1410 Data Processing System with two modi-
fied IBM 1301 Disk Storage Unit,s. The basic information flow is
indicated in Figure 4.

The capabilities of the communication circuits are the critical
factors in the determination of the overall system capacity. The
purpose of the simulation was to help evaluate different system
topologies produced by variations in the allocation of offices to
circuits. The simulation contribution to this evaluation was made
in terms of the amount of time various types of messages required
for transmission and processing and the amount of time they
might be required to wait for service because of message con-
gestion. More than thirty message types were ident,ified as trans-
actions for the simulation model. These message types included
purchase orders and execution reports for stock listed on either
the New York or American stock exchanges, commodity pur-
chase orders and execution reports, over t,he counter purchase
orders and reports and price requests and quotes. They also in-
cluded inquiry and correct.ion messages as well as other admin-
istrative information.

In contrast with our preceding system example for which only
the most gross specification of terminal and data communications
channel requirements was necessary, simulation of the brokerage
system required that much attention be given to the communica-
tions circuits, the scanning discipline and the message assembly
and disassembly performed by the IBM 7750. The set of entities
of the real system identified as facilities in the model included:

I B M Sys tems Journal September 196t

implications of
the simulation

Figure 4 Basic
information flow

h

CPU. CORE CHANNEL

TAPES

CIRCUITS CIRCUITS

model
construction

45

1 The communications channels.
2 The IBM 7750 processing unit.
3 The data channel linking the IBM 1410, the IBM 7750 and

4 The IBM 1410 processing unit.
5 The data channel linking the IBM 1410 and the other IBhl

6 The two arms on each of the IBM 1301 disk storage units.

one of the IBM 1301 disk storage units.

1301 disk storage unit.

The magnetic core storage within both the IBM 1410 and the
IBM 7750, as well as each module of the disk storage units, were
identified as stores for the model. This model also consisted of
several streams, each generating, moving and terminating its set
of transactions. While the streams in the model of the scientific
system represented, in general, different processing stages for the
same data, each stream in the brokerage model served the entire
life of the messages with which i t was concerned. Consequently, a
transaction representing a message could be tagged when gene-
rated with the clock time of its origination. This, when subtracted
from the clock time at i ts termination, produced the time of its
life within the total system which was tabulated. The streams of
the brokerage model also differed from those of the scientific
model in their linkage. In addition to sharing common queues,
facilities and stores, they also shared many chains of blocks in the
model representing processing steps common for all types of mes-
sage t,ransactions. Separation of the streams upon exit from such
common chains was accomplished by usual logical branching
techniques.

Results of a simulation procedure are never any better than
validity the quality of the raw data upon which the model is built. We
of input have already noted in the first example that a number of quantita-
data tive statements must be made regarding time, size of data units

and frequency of occurrence. It was assumed that a new sub-
program entered the card reader on an average of once every
minute, that a Fortran sub-program required an average of
432 milliseconds to edit preparatory to writing on the IBM 7090
input tape, that a tape record would be written in approximately
54 milliseconds, etc. The assignment of program type to a newly
generated sub-program was made on a random basis with a
specified probabilistic distribution by means of a pseudo-random
number generating routine within the General Purpose Systems
Simulator program. The size of each sub-program was similarly
determined. The data used was assumed to be typical and yet not
representative of any particular installation. The brokerage study,
however, was conducted for a specific firm. Many weeks were
spent by systems engineers sitting beside Teletype operators
logging messages, noting their types, lengths, points of origin,
time of initiation, etc. Such historical data needed to describe
present operations for comparative purposes and for statistical
extrapolation to future requirements simply was not previously
available in a usable form. This situation is probably more ex-

46 IBM Systems Journal September 1961

emplary of the rule rather than the exception and exemplifies
another aspect of human interaction with the total systems en-
gineering process.

Sometimes, even after an effort such as that for the brokerage
study, the historical data available to a systems engineer for a
simulation may be adjudged insufficient to allow him to describe
the input to the system accurately enough to induce confidence
in his results. Several courses of action remain open for him. The
simulation program may be rerun several times, each time with
different choices for transaction generation times, parameter as-
signment and their stochastic distributions. If this is not sufficient,
he should consider developing a model and simulating the present
system to the same approximate detail as the model of the pro-
posed system. Then the results of that simulation with the ques-
tionable input descriptions can be compared with actual observed
performance of the present system to partially validate the input
descriptions. On other occasions a statistical description of input
data is impractical, and the only reasonable procedure would be
to furnish to the simulator as input a list of jobs presented to the
present system, together with a description of the pertinent at-
tributes of each. The General Purpose Systems Simulator does not
permit this at the present time. For this reason some systems engi-
neers have found i t advisable to write a simulator program tai-
lored to their specific system, or a t least to those very similar to
theirs. This was done, for example, to examine a proposed multi-
processor system for a firm in the aerospace industry when it was
desired to obtain statistics on the predicted performance of the
proposed system when processing a specific set of jobs. This set
consisted of all (approximately 2000) of the jobs generated by the
firm in a specified six day period. In this case i t took several
months to collect, check and prepare this information as input to
the simulator.5

One of the first general discrete systems simulator programs
was the Job Shop Simulator (M and A-1) written for the IBM
704 in 1959 by the Mathematics and Applications Department of
the Data Systems Division of IBM. While that program is
limited to apply only to those systems which are logically similar
to a job processing machine shop, i t did allow the independent
preparation of a history tape to be used as the generator of trans-
actions as well as their synthetic generation. Overall, however,
the General Purpose Systems Simulator is indeed amenable to
more general application than the Job Shop Simulator.

I n addition to data concerning the information to be processed,
accurate estimates of the number, sizes and speeds of operation
of programs necessary to process each transaction type have to be
supplied by programming specialists for the construction of a
model of an information processing system. This included both
IBM 1410 and IBM 7750 programs for the brokerage study. Fur-
thermore, i t was necessary to specify in considerable detail the
functional characteristics of the supervisory control program,
since some types of messages would require but one disk storage

IBM Sustems Joumnl Septemher 196.9

necessity
of program
description

47

access, while others would require four or five, etc. Such informa-
tion closely relates to the question of congestion points within the
system, and, consequently, to the total system capacity. In this
case the specification of these operating characteristics was more
difficult than the actual model construction. Determination of
such operating characteristics for the scientific computer com-
plex model was easier partly because of greater prior knowledge
of required processing steps, and partly because the depth of
detail of the simulation was not as great. That simulation did not
provide information about the elapsed time a program was in the
system; such information was the prime goal of the brokerage
simulation. Detailed specification of the supervisory control pro-
gram to reside in the IBM 7040 would be required in order to
obtain such information for the scientific system.

The result of the brokerage study was that the proposed sys-
results of tem could easily handle the projected peak hour message traffic
the without serious delay of any messages. The predicted amount of
simulation time a message would spend in IBM equipment never exceeded .8

seconds and increased only slightly as the peak hour trade volume
increased. The predicted transit time in the communications cir-
cuits, however, was up to 100 times as great and was very sensi-
tive to increases in traffic volume. Since a tabulation was kept of
the message life span for each message transaction, curves, such
as that in Figure 5, were easily obtained to estimate the probability
of the total transit time of a message being less than any given
time.

Figure 5 Probability of transit time being less than a given time

4

Evaluation of a proposed information processing system in-
variably entails an estimation of the cost of standard equipment,
special engineering, physical installation, personnel training,
special systems programming, daily operat.ion, etc. Cost is a very
human subject, liable to wide variations of interpretation and
evaluation. Hence, again we note the human values aspect of
systems engineering. The brokerage system requires little special
engineering, but may require retraining of many people. The
scientific system requires no retraining of users, but requires ex-

48 IBM Systems Journal September 1966

tensive special engineering. Indeed, the effective monitoring of
the IBM 7090 by the IBM 7040 depends upon some sort of direct
communication between the two processors. Details of this com-
munication are not germane to our purposes here; suffice it to say
that examination of the special engineering required is extremely
important within the larger systems engineering context.

The brokerage system requires a special supervisory pro-
gram, but this will probably not change appreciably with time
Systems programming is, therefore, primarily a one time cost.
The scientific system, however, requires not only a supervisory
monitor, but changes in other systems programs (such as the
Fortran compiler) as well. Since these are evolving entities,
the maintenance of these systems implies recurring costs. These
are the changes that would effect greater utilization of the IBM
7090, but does the gain overcome the cost? Again, the question
is not directly concerned with simulation, but is a part of the
larger view.

Absolute cost is meaningless; only relative cost has content.
Systems proved feasible in a systems engineering study must be
compared on a cost basis. Should the communication for mass
data transfers between the processors of the scientific complex
be by means of a random access disk unit instead of switchable
magnetic tapes? Is the performance gain effected by having the
remote terminals directly connected to the computer by means of
the IBM 7750 worth the cost of this unit? Simulation may help
measure performance; the systems engineer must measure cost.

Finally, the cost of a proposed system must be compared
against the cost of no system a t all, the cost to society of not per-
forming the full desired function.

Classical mathematical analysis seeks to represent a discrete
reality with a continuous model. The digital computer presents a
new analytic vista. It permits analysis of discrete systems in a
much more realistic manner than was permitted by earlier formal
methods. Furthermore, i t permits analysis of much more intricate
systems. The systems engineer can now conduct elaborate statisti-
cal experiments within a computer. He can become an empiricist
without the normally attendant cost of physical experimentation.

ACKNOWLEDGMENT

The scientific multiprocessor complex described in this paper
has been developed in some detail by Mr. A. E. Speckhard. The
simulation was performed by Miss B. Broome. Both Mr. Speck-
hard and Miss Broome are members of the IBM Data Processing
Division’s Market Development group and both are located in
San Jose, Calif.

The brokerage system was simulated by Mr. L. R. Esau of
the IBM Data Systems Division. Mr. Esau is engaged in Systems
Planning a t Poughkeepsie, N. Y.

IBM Systems Journal September 196)

REFERENCES AND FOOTNOTES
1. G. Gordon, “A General Purpose Systems Simulator,” I B M Systems

Journal, this i m e , p. 18.
2. The simulator program used is a modified version of the original General

Purpose Simulator and allows for the exit of more than one transaction
from a block and the attachment of several parameters to a transaction.

3. F. R. Baldwin, W. B. Gibson, and C. B. Poland, “A Multiprocessing Ap-
proach to A Large Computer System,” I B M Systems Journal: this issue,
p. 64.

BIBLIOGRAPHY
L. Gainen, “A Simulation Model for Data Systems Analysis,” Proc. of the

Eastern Joint Computer Conference, Washington, D. C., December 1961,
The Macmillan Co.

G. Gordon, ”A General Purpose Systems Simulation Program,” ibid.
C. Hammer, “Computers and Simulation,” Cybernetica, v. 4, # 4, (1961).
Proceedings, Symposium on Digital Simulation Techniques for Predicting

the Performance of Large Scale Systems, May 23 to 25, 1960, Ann Arbor,
Michigan, Report # 2354-33X, University of Michigan.

60 IBM Systems Journal September 196.9

