
The  uuthor  assumes  that  the render is fnmilinl- with  the content 
of the  preceding  paper, “ A  General  Purpose  Systems Simulator,’’ 
by  G.  Gordon.  Two  dissimilar  examples are provided  to  illustrate 
various  aspects of simulation in the  systems  engineering  process. 
One  example  involves  the  study of a n  IBM 7040”IBM 7090 
computer  complex for scientific  applications.  The  other  concerns 
a n  IBM 1410 Tele-processing  system  for  a  stock  brokerage  house. 
0 I n  addition  to  illustrating  the  paper,  both  examples  are of 
intrinsic  interest.  The  first  presents a new  philosophy of multi- 
processing. The second  examines a method of integrating  com- 
munication  facilities  with  an  information  processor. 

Simulation in systems  engineering 
by E. C. Smith, Jr. 

Systems  engineering  is  concerned  with the synt,hesis and  analysis 
of systems of men and  machines  having specified objectives.  Such 
performance  objectives  are  commonly expressed in  terms of hu- 
man  values  and,  as  a consequence, are often  necessarily  subjective. 
Furthermore,  the  systems  under  consideration  invariably  exploit 
the  interaction of men  with  physical  components. It is this high 
degree of human  involvement which particularly distinguishes 
systems  engineering  from the more  conventional fields of engineer- 
ing. Thus,  the design and  analysis of a  message  handling  informa- 
tion  system  is  a  systems engineering activity,  whereas  the design 
and  evaluation of a  water  pump  falls  within  conventional  practice. 

The conduct of systems engineering invariably includes the 
conscious use of some  form of modeling: either  physical,  such 
as a model airfoil  for  a wind tunnel; or conceptive, by  formal 
mathematics or logical  simulation. The General  Purpose  Systems 
Simulator1  is  one  instrument which the  systems engineer may 
use to construct  and  manipulate  a conceptive  model. It can be 
used for models of quite diverse and  dissimilar  physical  systems. 
However, i t  is far from  completely  general. Even if attention  is 
restricted to information processing systems, the  simulator  is  in- 
adequate for the expression of many  conceptual models. 

Use of the  simulator can be appreciated  only  in  the  terms 
of its role  in the tot,al  systems  engineering process. The purpose 
of this  paper is to help  develop  insight into  its proper use through 
discussion of two  systems  engineering  studies ; one relating  to  a 
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computer complex for scientific applications,  and the other to  a 
message handling  system  for a brokerage  firm. 

Relationships between system componente are  the  raw  ma- 
terial of the systems engineer. The systems  engineer must first 
determine  the performance criteria-the values  against which the 
desired  system will be measured. He  must  then select the system’s 
components and  their  interrelationships so that  the  resultant 
system will measure  best  against  this  criteria.  Thus, once the 
performance  criteria  have been established, his job is one of 
selection and  evaluation. A simulation model may be used in 
the selection of the system’s  components and  their  relationships, 
or it  may be used to help evaluate  a specific system  configura- 
tion, or both.  These  two  phases may proceed concurrently, oc- 
casionally  without conscious distinction between them,  or  they 
may proceed independently.  Indeed,  different models may be 
used in  these  two  phases. 

Occasionally, selection of the system  configuration may be 
dictated  by  equipment  availability  or economics so that only 
one system  is possible. Then,  the choice is whether  or  not to 
have the system.  Modeling  provides an evaluation which will 
permit  this choice to be made  with  minimal  risk. 

Simulation  is not replication. The simulation (or mathemati- 
steps in the cal) model possesses a t  best  a  relatively  small  number of 
use of properties which correspond (always in an approximate w a y )  to 
simulation reality. In  order to use simulation, the systems engineer must: 

1 Determine  those  properties of reality  in which he  is  interested. 
2 Determine those  properties of reality which could conceivably 

have  a significant influence upon  those  in which he is interested. 
3 Specify the relationships between the  above properties. 
4 Use a modeling tool (mathematical  theory,  General  Purpose 

Systems  Simulator  language,  etc.) to build  a model. 
5 Establish  a  univalent  correspondence between reality  and  the 

identified  entities and  relationships of the model. 
6 Manipulate  the model. 
7 Interpret  the  results of the manipulation. 

Note  that in  a  very  real sense the first  three  steps build  a 
verbal  or conceptual model. The  very  act of writing down proper- 
ties  and  their relationships  necessitates  simplification of the 
incredible  complexity of reality-human  language is bounded  by 
the degree of complexity which man  can  grasp  and  understand. 
This  type of modeling is very  useful and is the kind of analysis 
that is  often described as  sitting  back,  thinking  about  the prob- 
lem and seeing the kernel of it.  Step 4 above  might  be  rephrased 
as, “Use a modeling tool  other  than general  language to build a 
more precise model.” 

Manipulation of the model produces the results. For a mathe- 
model matical model expressed as  a  system of equations,  manipulation 
manipulation consists of solving the  equations.  For  a physical model or a model 

expressed in a  language  such as  that of the  General Purpose 
Systems  Simulator,  manipulation consists of the conduct 



of  experiments and  the collection of statistics  for  later  analysis. 
Manipulation  in  this  case  may  also  mean the  varying of param- 
eters  in  the model design and conducting  more  experiments to 
obtain  further  statistics for  comparative  purposes.  (One  might 
consider this  the construction and  manipulation of new, slightly 
different models, but  i t  is more common to consider a model to 
include  those variants  obtained  by changing  parameters.)  For 
a  verbal model as developed in  Steps 1, 2, and 3 above, the 
manipulation is more difficult to identify,  but i t  consists pri- 
marily of the  application of insight  and  mental  analysis  to  the 
problem in order to  draw conclusions. 

The  running of the General  Purpose  Systems  Simulator  pro- 
gram  can  produce  many  kinds of statistics  about  the model. For 
example,  for  a  facility one may determine its average  utilization 
(the fraction of the  total elapsed time i t  is  in  use),  the  total 
number of transactions  to use the facility,  etc.  For  a queue,  one 
may  determine:  the maximum  length it attained,  its  average 
length, the number of times  its length met  certain pre-specified 
values, the  total  number of transactions which passed  through 
the  queue  and  the  number of these which spent no  waiting  time 
at   that  point.  Pages of statistics of this  nature comprise the 
results of the model manipulation;  the  value of the  entire pro- 
cedure obviously  depends upon the  interpretation of these  results. 
It is  here that  the evaluation  in  terms of human  values  is  crucial. 
It is of the  utmost  importance  to  establish  in  advance  the  pur- 
pose of each particular  simulation  in  the  total systems  engineering 
process, and  to specify how that purpose  can be achieved by  inter- 
pretation of simulation  results.  Average  queue  length  may  be 
pertinent  for one case,  maximum  length may be critical  for  an- 
other;  average  facility  utilization  may be  a key  factor  for one 
case, maximum transaction life may be a  key  for  another. 

One of the questions  most commonly asked of a model is its 
sensitivity to  variations  in  its design or environment. For ex- 
ample, if a computer  system is designed to handle  a  certain  work 
load, what  happens if the work  load  is  increased  slightly?  The 
degradation of service may be slight,  or i t   may be  surprisingly 
great.  Conceivably, a 10% increase  in  workload could cause the 
average  job processing time to  more than double  because of the 
cumulative effect of several  queues. The  systems engineer often 
wants  to  vary model parameters  in  order to  identify  those to  
which the system  is  most sensitive. He can  then  devote 
most of his attention  to  those  critical  aspects of the  total  system. 

First  example : scientific computation 
In  order to  better crystallize  these  ideas,  consider the general data 
processing milieu of scientific computation. The objective of the 
use of data processing equipment  in  this  context  is to  aid  the 
engineer and  scientist  in  the solution of his problems. Present  day 
computing  techniques are evidence of considerable progress in 
this  area,  but  it  is  not difficult to propose much  improvement. 
Rather  than considering  improvement by development of more 
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sophisticated  problem  statement languages,  remote  graphical ter- 
minals,  etc.,  consider  simply  a  reorganization of the  central com- 
puter complex to  handle  problems  originally stated  in  Fortran 
and/or  FAP languages and presented to  the complex from 
multiple sources. The  objective is to serve the user better  by: 

1 Reducing the average  turnaround  time  (time between the 
submission of programs to  the complex and  the  presentation 
of the  results). 

2 Providing  dynamic  scheduling of programs  for the central 
processor. 

3 Providing  dynamic  scheduling of output devices (punches, 
printers,  remote  terminals). 

4 Providing  interrupt  capabilities  for on-line remote  terminals. 
5 Increasing  central processor throughput  (number of programs 

processed per  unit of time). 

The  systems engineer should study  each of the  above  in  order 
to synthesize  several  alternative  equipment configurations and 
operating  systems which appear likely to accomplish the above. 
This would include  a  functional  specification of supervisory moni- 
tor programs and  operating procedures. Before attempting  any- 
thing more elaborate  than  a cursory  examination of the engi- 
neering  difficulty  and economic value of each of the proposed sys- 
tems,  each  should be examined to determine  if, indeed, i t  would 
accomplish each of the five points  above. Stated  simply, why  per- 
form  a  detailed economic analysis of a syst.em that could not  ac- 
complish the  task  set  forth? 

We  shall  describe  a  simulation of one system which might  be 
considered for  this  situation  and  set  forth  what  the  results of the 
simulation  imply  and,  what  may be more important,  what  they 
do not imply  with  regard  to  establishing  the  feasibility and de- 
sirability of the  system.  The  reader should  note that  this is  a 
hypothetical  system  and  its discussion here  is not necessarily 
intended  to  supply  the  optimal system  for this  situation. 

The proposed system consists of two  computers  operating  in 
concert to accomplish the scheduling and execution of programs. 
This computer complex, shown in Figure 1, consists of an IBM, 
7090 and  an  IBM 7040 linked into  an  integrated  system  by pro- 
grammed-switchable tapes for  mass data transfers as well as 
other  non-standard  means of direct  computer-to-computer com- 
munication. The  IBM 7090 performs the compilation,  assembly 
and execution of object  programs. The  IBM 7040 never  re- 
linquishes its control to  an object  program since i t  must con- 
stantly  monitor  the  entire  system,  edit  input, schedule and pre- 
pare  input  tapes  for  the  IBM 7090, edit, schedule and  initiate  all 
output received by  tape from the  IBM 7090, and respond ap- 
propriately  to remotely initiated messages transmitted  by on-line 
Tele-processing@ equipment. 

Program  information  and data can  arrive at   the  IBM 7040 
simultaneously from several sources-card reader,  tapes, and 
remote  terminals. Such material is accumulated on the  disk file 
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into complete programs.  They are  then, according to  priority, 
written  onto  tape for transmittal  to  the  IBM 7090 for processing. 
While passing  through the  IBM 7040 (to  the disk  or  from the 
disk to  tape), some preparatory processing is done. For  example, 
Fortran  and  FAP statement.s  are compressed by the elimina- 
tion of null  characters.  Comments are stored on the  disk with 
their  programs,  but  are  not  put on the  tape for the  IBM 7090. 
Preliminary  diagnostic  editing  is  performed, possibly on  a state- 
ment-by-statement  validity basis rather  than  an  inter-statement 
consistency level. Programs which fail  such  editing are  appro- 
priately handled  by the  IBM 7040 so that  the problem  originator 
receives the necessary  diagnostic  information to effect later cor- 
rections.  Consequently, the  IBM 7090 does not receive a  program 
for assembly or compilation unless it  has passed a  minimum 
standard of error checking. 

When  creating an  input  tape for  the  IBM 7090, the  IBM 7040 
will select  necessary library  routines from the disk file and  ap- 
propriately  incorporate  them  with  the  input  programs.  Such 
routines,  as well as previously assembled object  programs, will 
be relocated by the  IBM 7040 so that  the  IBM 7090 will read  this 
information  in  absolute  binary  form  for  maximum efficiency in 
loading. Thus,  the  IBM 7090 throughput should be increased 
by  a  reduction  in  loading  time  and  searching  time  for  subroutines, 
and  by  an increase  in the  probability of successful compilations 
and assemblies effected by the pre-editing. 

Periodically  the IBM 7040 may monitor the execution of a 
program  by the  IBM 7090 by  means of an  interval  timer  and (cur- 
rently  unavailable)  trapping  and  direct communication  devices 
linking the machines. If the  program execution  is  found to  deviate 
from some  previously specified pattern,  the  IBM 7040 should 
cause the  IBM 7090 to  terminate  the processing of its  current 
program. The  IBM 7040 should  perform  preliminary  diagnostic 
operations,  condition the  IBM 7090 to perform  a  more  complete 
diagnostic  function and  then begin the  next  program. Conse- 
quently,  the  IBM 7040 always  has complete  control of the  situa- 
tion  and  can  automatically  restart  the IBM 7090 even if  an ob- 
ject program  has  erroneously put nonsensical information  into 
virtually  all of memory and  entered  an endless loop. For  this 
reason this multiprocessor  concept is often  called  a  master-slave 
mode of operation. 

Since a  primary  requirement  is  to help the  IBM 7090 to op- 
erate  at maximum efficiency, the first  question i t  is necessary to 
settle is whether or not  the  IBM 7090 would ever be kept  waiting 
for work because the  IBM 7040 could not  present i t  with  prepared 
programs a t  a  rapid enough rate.  This  might be caused by  several 
reasons. The  card  reader  and  a reasonable set of Tele-processing 
terminals  may  not be able  to present  programs  to the  IBM 7040 
rapidly enough. The  IBM 1301 disk file might  create an untenable 
queue of requests  for  disk  usage because of the time  necessary 
for the access arm to seek new record  locations. The  IBM 7040 
might  be  too slow to do the preliminary  editing  and  preparatory 
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processing. The  General  Purpose Systems  Simulator was used to 
answer  precisely the question of keeping the  IBM 7090 busy. This 
is one of the questions i t  is necessary to  ask in  order t o  select a 
feasible  system. It is not a question of economic feasibility  or 
evaluation  relative  to  alternative systems.  A  different model 
might  aid  such  evaluation,  but  the one described below would be 
of little use to  the systems  engineer  for  evaluation.  Moreover, the 
present model does not  serve well to answer the  question of 
output congestion. It was chosen simply  to  illustrate  that 
each  simulation  can accomplish only specific, narrowly defined 
objectives, and none  can  be all inclusive. Certainly, a  more de- 
tailed model could aid  in  answering  more  questions, but it is often 
more  practical  to  build  a model to answer a few specific questions 
because of the simplicity  this course  affords  in the model design 
as well as  interpretation of the results of its  manipulation. 

Possibly the  first  step  in designing the model we desire is to 
identify  the  transaction  unit. It should be identified as a unit of 
information which is presented to  the computer complex for proc- 
essing. It could be a single character, an 80 character record, or 
a full  program of variable size. A myriad of choices is possible. It 
is  this choice that determines the level of detail of the model. In  
general, the smaller  the  transaction  unit,  the  greater  the  number 
of entities of reality  (and  relationships between them)  that  have 
to  be  identified and represented in  the model. Thus, model com- 
plexity is increased  with the benefit (if the entities  and  relation- 
ships are correctly  identified  with reality) of a closer approxima- 
tion to  reality by  the model. The color of the disk file frame is 
a property of reality we obviously do not  want represented in  our 
model. It is not obvious,  however, that our model need not re- 
flect the  fact  that seek  time for  the  disk access unit depends  upon 
the location of the  read-write  arm  relative  to  its desired  location. 
(For our  purposes the use of an average  time  is sufficient.) The 
successful application of modeling  depends  upon the judgment o'f 
the  systems engineer in choosing an  appropriate degree of model 
detail,  what  to ignore, when to use averages,  etc.  Again,  this 
judgment  is  greatly aided by clear  specification of objectives  in 
advance. 

The sub-program  was chosen as  the  transaction  unit. It is 
homogeneous in that  i t  consists solely of one type of information 
(Fortran,  FAP,  binary  program or data). It is  necessary to 
maintain  separation of types of sub-programs  on  input because 
of their different processing requirements. For example,  a transac- 
tion  representing  a Fortran sub-program  might  require, on 
the average, 432 milliseconds to  edit  and condense preparatory to  
writing i t  onto the  IBM 7090 input  tape, while one representing 
a binary  sub-program  might require lo00 milliseconds to  prepare 
i t  in  a  relocated  absolute  form. 

Each  transaction,  therefore,  was assigned a parameter  value 
upon  generation which indicates its program type.  This  parameter 
value  was  carried  with  the  transaction  and was appropriately used 
to  guide the course of processing for that transaction.  Further- 
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more, a t  times i t  was  found  necessary to  tag  transactions  with 
parameters representing  other attributes of sub-programs  as well. 
Values  for  these parameters were  also assigned upon  generation 
of each  transaction  and  carried  with i t  until  its  termination. Some 
of these  other  parameters  represented  the following: 

1 Number of sub-programs  (transactions) which comprise 

2 Identification  (job  number) of the main  program  to which the 

3 Number of input  cards represented  by the transaction. 
4 Number of disk tracks necessary to store  the  transaction on 

5 Number of tape records  necessary to  admit  the  transaction on 

6 Number of lines to be printed  as  a  result of processing the 

7 Number of cards to be punched as  a  result of processing the 

the  main program to which the  transaction belongs. 

transaction belongs. 

input. 

input. 

transaction. 

transaction. 

Facilities which were identified  included the  IBM 7040 cen- competition 
tral processing unit,  a disk unit channel,  a  card reader buffer, a for facilities 
tape  channel,  a  card punch buffer, two printer buffers, and  the 
IBM 7090 central processing unit.  Distinct processing operations 
compete for  the use of these  facilities. For example, a t  a given 
moment the disk  channel could be called upon to help  perform the 
following: 
1 Store  in  the disk  storage  unit  a  request from a  remote  termi- 

nal  to  run  a  library program. 
2 Store a portion of a  Fortran  sub-program  to  await accu- 

mulation of the complete sub-program being entered  into  the 
system  from  the  card  reader. 

3 Store the results of a  program  already executed  by the  IBM 
7090 in order to  await  the  availability of an  output device. 

4 Present  the  IBM 7040 with  the  results of a  previously proc- 
essed program for punching. 

5 Present  the  IBM 7040 with the results of two  previously proc- 
essed programs for printing  by the two  printers. 

6 Present  the  IBM 7040 with  a  portion of a  sub-program  for 
editing  and submission to  the  IBM 7090 input  tape. 

It is precisely the  extent of this  kind of interference and com- 

When  isolated  from  each other, processing operations of the processing 
petition  for  facilities that we wish to gauge by  simulation. 

above  types  are  comparatively  easy to analyze a t  least  to  the streams 
depth of detail necessary to specify their  demands upon the 
identified facilit,ies. A separate model was built  for each of the 
following nine processing operations called “streams” because they 
represent  a flow of transactions: 

1 Card  reader  to  disk  storage. 
2 Remote  terminals  to  disk  storage. 
3 Disk  storage to  IBM 7090 input  tape. 
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4 IBM 7090 processing. 
5 IBM 7090 output  tape  to  disk storage. 
6 Disk  storage  to  printer # 1. 
7 Disk  storage  to  printer # 2. 
8 Disk  storage  to  card  punch. 
9 Disk  storage  to  remote  terminals. 

Some  information flow (error messages, etc.) is not included in 
the above, but  the  density of this traffic is so slight  that it was 
ignored. 

The model  for  each of the  above  streams  generated  its own 
set of transactions  either  as  fast  as  the  system could accept  them 
or a t  a rate determined  by  previous  study to  be  about  that which 
one  would  find in  real life. For example,  for  the  disk  storage to 
input  tape  stream, a new transaction would  be generated  as  soon 
as  the previous  one  was  completely  written  on tape; whereas  for 
the  card  reader  to  disk  storage  stream  a  transaction  was gen- 
erated  every  minute  (actually,  whenever  the  simulator  program 
clock  counter  reached  a  multiple of 60,000). 

The  simulator  program  manipulated  these  independent  stream 
models  concurrently. That  is,  as  the basic  clock counter  in  the 
program  stepped  through  discrete  intervals of time,  transactions 
were  generated  for  each of the  streams  and logically transported 
through  the blocks of the models at  the  rates each  dictated.  Con- 
t,rary  to indications  above,  the  stream models  were not  actually 
independent  since  each  referred to  the  same facilities. As a  con- 
sequence,  unless an  interrupt was  allowed,  a facility  in use by  one 
stream could not be  used by  another  until  the  first released it. 
Queues of requests  for  use of facilities  formed of transactions  from 
several  stream models. Thus,  the  simulator  program  performed  the 
service of linking the  “independent”  stream models and collecting 
statistics on the interference  caused  by  this  linking. 

I n  order to  illustrate how this  is  accomplished, consider the 
chain of blocks in  Figure 2. This or a  similar  chain of blocks may 
exist  in any of the  stream models. The  numerals 1 and 3 to  the 
right of the boxes are  labels which  reference the  IBM 7040 
central processing unit  and  the  disk  channel  facilities  respectively. 
Many QUEUE boxes a t  diverse  locations  in the  total model may 
have  the  same  label  and,  thus,  refer to  the  same queue. A trans- 
action  entering  the  above  chain will  proceed directly  to t.he second 
box (the HOLD box) if the disk  channel  facility is not being  used 
(held)  by some other  transaction. If the  disk  channel  facility  is 
in use, the  transaction will be held in  the  queue  until  it  can pro- 
ceed.  Once it  enters  the HOLD box, a  transaction  remains  there for 
an  integral  number of clock  counts  selected a t  random  (by  the 
simulator  program) between 84 and 248. These clock  counts  cor- 
respond to  the  number of milliseconds the  attention of the disk 
storage  channel would  be  required  in  order to service that  trans- 
action.  Aft,er  waiting  the  appropriate  time,  the  transaction would 
attempt  to proceed through  the  other blocks of this  chain. It may 
be held in  queue # 1 if the  IBM 7040 central processing unit 
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facility is in  use,  etc.  The SEIZE and RELEASE pair of boxes per- 
form the  same  kind of function as  the HOLD box, but  with  the 
added  feature of allowing the  current  transaction  to  traverse  other 
boxes inserted  between the SEIZE and RELEASE boxes, all  the while 
holding in use the  facility  in  question  (the  central processing unit 
in  this  case). 

Interaction of the  type  illustrated  clearly is effect’ive between 
different parts of a  single transaction  stream  as well as between 
separate  streams.  The  ability  to  obtain  interaction between  seem- 
ingly  independent  portions of the  total model as  illustrated  above 
is one of the  keys  to  the power of the General  Purpose  Systems 
Simulator  as  a modeling  tool  for study of information processing 
systems.  The  simulator,  therefore,  incorporates simultaneity of 
action of different parts of the model with  the  concept of sequenc- 
ing through time intervals. 

As we have  seen,  the  primary use of the model  under  discus- 
sion was to  determine  whether or not  undue congestion  would 
occur  with  each stream  operating  at  its  reasonably expected  maxi- 
mum  rate.  The construction of several  stream models to interact 
when manipulated  was  simpler  than  the  construction of a  more 
realistic  single  unified  model  which  would follow a program  from 
entry to  the computer complex completely  through  to  the  presen- 
tation of its processed results  by  an  output  printer,  card  punch or 
remote  terminal. Such  a  “single stream” model  could  afford, in 
addition  to more information  about  points of congestion,  statistics 
on  the  total  time a transaction  (sub-program)  remains in the sys- 
tem.  Such  statistics would  be invaluable  in  the  evaluative  stage 
of the systems  engineering  process to assess  possible  benefits of 
this  system  in  the  area of reduced turnaround  time  and  dynamic 
scheduling. 

For some  purposes i t   may be  desired to  break  the  transaction 
effectively into  smaller  units.  This  may be done  either  by  splitting 
a  transaction  into  two  distinct  transactions or by  sending a 
transaction  through  a loop of the model  a number of times  equal 
to  the  number of subunits  it represents.  This  may be illustrated 
in  our  example  by  a  consideration of the t.iming of the  reading of 
those  cards which may comprise  a sub-program  entering  the com- 
puter complex. 

Assume that  the  value of the second paramet,er  associated 
with  a  transaction  (indicated  by  P2)  represents  the  number of 
cards in the sub-program  and  has been assigned  prior to  the  entry 
of the  transaction  to  the QUEUE block at  the  top of Figure 3. This 
is  the  queue of transactions  awaiting service by  the  central proc- 
essing facility.  When that  facility is available,  the  transaction 
will move t.o the SEIZE block to obtain service  from the  facility  for 
one unit of time. It will then  attempt  to  enter  t’he GATE block and 
proceed t,o the SPLIT block to be  divided  into  two  distinct  transac- 
tiom2  The  gate allows  passage  only if facility  number  two  (the 
card  reader  buffer) is not in  use,  as  indicated  by  the flag NU2. 

One of the two transactions  leaving  the SPLIT block  holds the 
card  reader buffer facility  for 75 clock  counts  (milliseconds) and 
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then  terminates.  The  other proceeds to the first ASSIGN block where 
it remains  for 13 clock counts (an  estimate of the  time  required  of 
the  central processing unit  to  accept  the  information  read from 
one card).  At  this  point  the  value of parameter  two  attached to 
the  transaction is decremented  by the  constant one, (as  indicated 
by  “2-Kl”).  The  transaction  then  attempts to  pass  through 
another  gate which allows passage  only if “P2EK0,”  that is, the 
value of the second parameter  has been reduced  sufficiently to 
equal  the  constant zero. This  is  the  exit used when the  transac- 
tion  has  traversed  the loop a sufficient number of times  to  denote 
the reading of all of the  cards  represented  by  the  transaction. 

If the value of P2 is  not zero, the  transaction proceeds to  the 
second ASSIGN block, wherein the  value of parameter  three is 
incremented  by one. This  parameter  initially  has  the  value of 
zero and is used as a  counter.  When this counter attains  the 
value 80, the  gate below this ASSIGN block allows the  transaction 
to exit to a  chain of blocks which represent the writing  into  disk 
storage one disk track record  containing the information from 80 
cards.  (An odd number of cards  is processed by  a  routine  not 
shown in  Figure 3.) It then  returns  to  the loop to release the cen- 
tral processing unit  facility  and continue  circulating. If the 
counter P3 does not  have  the  value 80 then i t  immediately moves 
to release the  central processing unit  facility.  From  there  the 
transaction  attempts  to  return  to  the  entry  point of the loop, but 
may  wait in a QUEUE block behind  a gate  until  the  card  reader 
buffer facility  has been released. 

The direct  path from the SEIZE block to  the RELEASE block is 
taken  only  the  first  time  the  transaction circulates  through the 
loop, and  then only  in the unlikely  case the card  reader  buffer 
facility is still held by  the previous transaction. It should  be 
noted that by logic not shown in  Figure 3, only one transaction 
is allowed to  circulate in the loop a t  a  time.  Clearly,  all  the  cards 
for  a  sub-program  must be read before those of another  sub-pro- 
gram  can be entered  into  the complex. 

The consequence of this procedure is that a  transaction  may 
assume a t  various  times  the roles of a single card or a  record of 
80 cards  as well as  its  primary role of a  complete  sub-program. 
Note  that when split, one of the two resultant  transactions re- 
mained  existent  only long enough to hold the card  reader buffer 
facility  a specified number of clock counts. The  apparent equivo- 
cacy of the  meaning of the  transaction  reveals a fundamental 
aspect of the  kind of models of information processing systems 
which can be built in the language of the General  Purpose  Sys- 
tems  Simulator. The block diagram  describing the model is  de- 
ceptively  like but  fundamentally different from a flow chart 
which might  be  drawn  to  portray  the processing logic for  pro- 
gramming  purposes. In  the  real system  under  consideration, no 
information  unit recirculates  through a processing loop to effect 
card  reading  and no information  unit is created  for the purpose 
of timing  the use of the  card  reader buffer. Indeed, even  though 
we have  called  for the identification of the  transaction with  a 
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unit of information to be processed (the  sub-program), we  now see 
that  this is an inaccurate but convenient  device which serves  only 
to  help the systems  engineer to understand  better  the  anima- 
tion of his model. The  transaction  is  simply  an  artifice  to  produce 
this  animation. It may be  identified  with  different  units of infor- 
mation,  or none a t  all, a t  different  points  in its flow through  a 
model. 

Partial results of the simulation of the scientific computer 
complex are presented in  Tables 1 and 2 without  the delusion 
that  they might  be  applicable to  any  particular  installation,  but 
given only to  illustrate  the  kind of numeric  results available 
from the program.  These are  results  from model manipulation 
corresponding to 104 minutes of time. The  statistics  for  facility 
number 7, the IBM 7090 central processing unit,  indicate  that 
only five transactions held this  facility,  and  they  each held it  ap- 
proximately  twenty  minutes (1,200,000 clock counts).  Here  again 
the  transaction  did  not correspond to a  sub-program  (in  know- 
ing  violation of our  earlier  implication),  but represented the 
amount of work  presented to  the IBM 7090 on  a  single  magnetic 
tape. The IBM 7090 stream model did not  purport to mirror 
“green  light”  time,  etc., but served  simply to  time  the  transmis- 
sion of magnetic  tapes between the two processors. Consequently, 
the 100% facility  utilization figure is  from  one  point of view very 
unrealistic, but from the point of view from which the model was 
constructed, i t  is  precisely what  was desired and  in  that sense 
realistic. Caution  in  the  interpretation of results  is  again  signaled. 

The usage of a facility  is  best judged in  terms of its average 
utilization coupled with  a  history of the queue of requests  for  its 
usage. For example, Table 1 shows that  the IBM 7040 central 
processing unit  was  in use 76% of the time  available  and tha t   a t  
least once there were seven requests  for its use waiting.  This  is 
the maximum  number possible according to the  way  the model 
was designed. The  disk  channel, on the other  hand, was busy  only 

Table 1 Simulation results 

No. 
Facility Average  Number of 

Name utilization entries 
Average 

time/trans. 

1 7040 CPU 0.7639 122,616 39.22 
2 Card  Reader 0.1224 10,272 75.00 
3 Disk Channel 0.4835 18,363 165.75 
7 7090 CPU 1.0000 5 1,259,081.39 
8 First Printer 0.6547 41,219 100.00 
9 Second Printer 0.6545 41 ,205 100.00 

10 Card Punch 0.0714  1  ,872  240.00 

Max- Per 
Queue imum  Average Total Zero cent Average 

No. Name contents contents entries entries zeros time/trans. 
1 7040 CPU 7  1.31 122,616 74,367 60.7 170.87 
2 Card Reader 1  0.10 10,173 89 0 . 9  62.00 
3 Disk Channel 4  0.19 18,363 11,013 60.0 161.81 
8 First Printer 1  0.42 41,219 4,755 11.5 72.43 
9 Second  Printer 1  0.42 41,205 4,773 11.6 72.49 

10 Card Punch 1  0.05 1,872 417 22.3 224.31 
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Table 2 Queue of transactions waitina service from disk channel 

Upper Observed Per cent  Cumulative Cumulative Multiple Deviation 
limt frequency of total percentage remainder of mean from mean 

1 17 0.23  0.2  99.8  0.006  -1.407 
51 1075 14.63  14.9  85.1  0.315  -0.969 

101 1475 20.07  34.9  65.1  0.624  -0.532 
151 1539 20.94  55.9  44.1  0.933  -0.095 
201 1114 15.16 71 .O 29.0 1 .242 0.343 
251 735 10.00 81 .o 19.0  1.551 
301 

0.780 
475 6.46  87.5  12.5  1.860  1.218 

351 375 5.10  92.6  7.4  2.169  1.655 
40 1 241 3.28  95.9  4.1  2.478 2.092 
45 1 138 1.88  97.7  2.3  2.787  2.530 
50 1 85  1.16  98.9  1.1  3.096 2.967 
55 1 41 0.56  99.5  0.5  3.405  3.404 
60 1 15 0.20  99.7  0.3  3.714  3.842 
651 14 0.19  99.9  0.1 4.023  4.279 
70 1 4 0.05  99.9  0.1  4.332  4.717 
751 3 0.04  99.9  0.1  4.641  5.154 
801 2 0.03  100.0 0 4.950  5.591 
851 0 0.00 100.0 0 5.259  6.029 
901 1 0.01  100.0 0 5.568  6.466 
951 0 0.00 100.0 0 5.877  6.903 

1001 1 0.01 100.0 0 6.186  7.341 

Entries  in  table 7350 Mean  argument 161.814 Standard deviation 114.318 

48% of the  available  time  and  had a t  most  four  transactions 
waiting  in  a  queue for  its  attention.  Note, however, that  although 
the  central processing unit  had  a  greater  utilization  and a t  least 
once had  a longer queue  waiting  for its service,  these  facilities 
each  granted  immediate  service to  the  same  percentage of the 
number of requests  for  its  attention.  This is seen by  noting that 
approximately 60% of the entries to these  queues were “zero 
entries,” that is, they  did  not  wait a t  all  in  the queues. It should 
be  noticed  in  passing that  for a  facility,  the  average  time per 
transaction is computed as  the  total clock time  that facility  is in 
use divided  by the number of transactions which entered  it.  For 
queues, the  average  time  per  transaction  is  the  average period of 
residence in each  queue  computed  only  for t,hose instances 
wherein the  transactions remained  in the queues  a non-zero length 
of time. 

Table 2 refers wholly to  the  queue of transactions  awaiting 
service from the disk  channel  facility. An entry  in  the second 
column indicates the  total  number of transactions  that  had  to 
wait  in  the  queue  an  amount of time  (measured  in millisecond 
clock counts) between the  time  indicated  as  the  limit  time on 
the preceding  line, and  the  upper  limit  time on that  entry’s line. 
This,  then,  is  a  tabulation according to frequency classes. We 
see, then,  that 55.9% of the transactions  entering  this  queue  had 
to  wait less than 151 clock counts  for  service, 95.9% waited less 
than 401 clock counts and,  interestingly, one transaction waited 
almost  a  full second (more  than 951 clock counts).  The limits 
specifying the classes were chosen by the systems engineer as  a 
part of his model design. The degree of detail  is,  thereby, accord- 
ing to his purposes and  judgment. 

Would this  justify  the acquisition of a second disk  storage 
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access arm?  This  can  be  answered  only  in  terms of the  human 
measurement  values  which  should  have been  defined prior  to  the 
simulation.  Full cognizance  should be  taken of the precise pur- 
pose of the simulation. As we  have seen for  this  case,  the  simula- 
tion  was  undertaken  only  to see if congestion becomes serious 
enough to  prevent  the  IBM 7040 from  submitting enough  work to 
the  IBM 7090 to keep the  latter busy.  Since  congestion  is not  this 
serious, and  since we then do not  care if, for  the  kind of work to  
which the  system will  be put,  a  unit of work  waits  for one  or  sev- 
eral seconds  for disk  service,  the  reply  to  our  question  is “no.” 
Clearly,  the  same  results  displayed  in  Table 2 could generate a 
“yes”  reply  in  a  different milieu with,  possibly,  more  stringent 
real-time Tele-processing  requirements. 

Second example : message handling 
A second system  example  may  serve  to  illustrate  the  use of the 
General  Purpose  Systems  Simulator  to  examine  an  information 
processing system whose critical  components  are  found to be  ex- 
ternal  to  IBM equipment.  This  system  was designed to effect the 
message  transmission  functions  between the more than  40 offices 
of a  stock  brokerage  firm. It contains  more than 10 fully  duplexed 
communication  circuits  emanating  from  a  centrally  located IBM 
7750 Programmed  Transmission  Control  Unit.  Several of the re- 
mote offices are served by each  communication  circuit  and, con- 
sequently, compete for  circuit service. The  IBM 7750 is  ap- 
pended to  an  IBM 1410 Data Processing  System  with  two modi- 
fied IBM 1301 Disk  Storage Unit,s. The basic  information flow is 
indicated  in  Figure  4. 

The capabilities of the communication  circuits are  the  critical 
factors  in  the  determination of the overall  system  capacity.  The 
purpose of the  simulation  was  to  help  evaluate  different  system 
topologies  produced by  variations  in  the  allocation of  offices to  
circuits. The  simulation  contribution  to  this  evaluation  was  made 
in terms of the  amount of time  various  types of messages  required 
for  transmission  and processing and  the  amount of time  they 
might be  required to  wait for  service  because of message  con- 
gestion. More  than  thirty message types were  ident,ified as  trans- 
actions  for the  simulation model. These message types  included 
purchase  orders  and execution reports  for  stock  listed on either 
the New  York  or  American  stock exchanges,  commodity pur- 
chase  orders  and  execution  reports,  over  t,he  counter  purchase 
orders  and  reports  and  price  requests  and  quotes.  They  also  in- 
cluded inquiry  and correct.ion  messages as well as  other  admin- 
istrative  information. 

In  contrast  with  our  preceding  system  example  for which  only 
the  most gross  specification of terminal  and  data communications 
channel  requirements  was  necessary,  simulation of the brokerage 
system  required that  much  attention be  given to  the communica- 
tions  circuits,  the  scanning discipline and  the message  assembly 
and  disassembly  performed  by the  IBM 7750. The  set of entities 
of the  real  system identified as facilities  in the model  included: 
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1 The communications  channels. 
2 The  IBM 7750 processing unit. 
3 The  data channel  linking the  IBM 1410, the  IBM 7750 and 

4 The  IBM 1410 processing unit. 
5 The  data channel  linking the  IBM 1410 and the other IBhl 

6 The two arms on each of the  IBM 1301 disk  storage  units. 

one of the  IBM 1301 disk  storage  units. 

1301 disk  storage  unit. 

The magnetic core storage  within  both the  IBM 1410 and  the 
IBM 7750, as well as each  module of the disk  storage  units, were 
identified as  stores  for  the model. This model also consisted of 
several streams, each  generating,  moving  and  terminating  its  set 
of transactions.  While  the  streams  in the model of the scientific 
system  represented,  in  general,  different processing stages  for  the 
same data, each stream  in  the brokerage model served the  entire 
life of the messages with which i t  was concerned. Consequently,  a 
transaction representing  a  message could be  tagged when gene- 
rated  with  the clock time of its origination. This, when subtracted 
from the clock time at   i ts  termination,  produced the  time of its 
life  within the  total  system which was tabulated.  The  streams of 
the  brokerage model also differed from  those of the scientific 
model in  their linkage. In  addition to  sharing common queues, 
facilities and  stores,  they also  shared  many chains of blocks in  the 
model representing processing steps common for  all types of mes- 
sage  t,ransactions.  Separation of the  streams upon exit  from  such 
common chains  was accomplished by  usual logical branching 
techniques. 

Results of a  simulation  procedure are never any  better  than 
validity the  quality of the  raw  data upon which the model is built. We 
of input have  already noted  in the  first example that a  number of quantita- 
data tive  statements  must be made  regarding  time, size of data units 

and  frequency of occurrence. It was  assumed that a new sub- 
program  entered  the  card  reader on an average of once every 
minute, that a  Fortran  sub-program  required  an  average of 
432 milliseconds to  edit  preparatory  to  writing on the  IBM 7090 
input  tape,  that  a  tape record would be written  in  approximately 
54 milliseconds, etc. The  assignment of program type  to a newly 
generated  sub-program  was  made on a  random  basis  with  a 
specified probabilistic  distribution  by  means of a  pseudo-random 
number  generating  routine  within the General  Purpose  Systems 
Simulator  program.  The size of each  sub-program  was  similarly 
determined. The  data used was assumed to be typical  and  yet  not 
representative of any  particular  installation.  The  brokerage  study, 
however,  was  conducted for  a specific firm. Many weeks were 
spent  by  systems engineers sitting beside Teletype  operators 
logging messages, noting  their  types, lengths,  points of origin, 
time of initiation, etc. Such historical data needed to describe 
present  operations  for  comparative  purposes  and  for  statistical 
extrapolation to  future  requirements  simply was not previously 
available  in a usable  form. This  situation is probably  more ex- 
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emplary of the rule rather  than  the exception and exemplifies 
another  aspect of human  interaction  with the  total  systems  en- 
gineering process. 

Sometimes, even after  an effort  such as  that for  the  brokerage 
study,  the historical data  available  to  a  systems engineer for a 
simulation  may be adjudged insufficient to allow him to describe 
the  input  to  the  system  accurately enough to induce confidence 
in his  results.  Several courses of action  remain open for  him. The 
simulation  program  may be rerun  several  times,  each  time  with 
different choices for  transaction generation  times, parameter as- 
signment and  their  stochastic  distributions. If this  is  not sufficient, 
he  should consider developing a model and  simulating  the present 
system to  the same  approximate  detail  as  the model of the pro- 
posed system.  Then  the  results of that simulation  with the ques- 
tionable  input descriptions  can be compared  with actual observed 
performance of the present  system to  partially  validate  the  input 
descriptions. On other occasions a  statistical description of input 
data is  impractical,  and the only  reasonable  procedure would be 
to furnish  to  the  simulator  as  input  a  list of jobs  presented to  the 
present  system,  together  with  a  description of the  pertinent  at- 
tributes of each.  The  General  Purpose Systems  Simulator does not 
permit  this at   the present  time.  For  this  reason some systems engi- 
neers have found i t  advisable  to  write  a  simulator program tai- 
lored to  their specific system,  or a t  least  to those  very  similar to 
theirs.  This was done,  for  example, to examine  a proposed multi- 
processor system  for  a firm in  the aerospace industry when it was 
desired to  obtain  statistics on the predicted  performance of the 
proposed system when processing a specific set of jobs. This  set 
consisted of all  (approximately 2000) of the jobs  generated  by the 
firm in  a specified six day period. In  this case i t  took  several 
months to collect, check and  prepare  this  information as input  to 
the simulator.5 

One of the first  general  discrete  systems  simulator  programs 
was the  Job Shop  Simulator (M  and A-1) written  for  the  IBM 
704 in 1959 by the  Mathematics  and Applications Department of 
the  Data Systems  Division of IBM. While that  program is 
limited to  apply only to  those  systems which are logically  similar 
to  a  job processing machine  shop, i t  did allow the  independent 
preparation of a history  tape to  be used as  the generator of trans- 
actions  as well as  their  synthetic generation.  Overall,  however, 
the  General  Purpose  Systems  Simulator  is  indeed  amenable to 
more general  application  than  the  Job Shop  Simulator. 

I n  addition  to  data concerning the  information to  be processed, 
accurate  estimates of the  number, sizes and speeds of operation 
of programs  necessary to process each transaction  type  have  to be 
supplied by programming  specialists  for the construction of a 
model of an  information processing system. This included both 
IBM 1410 and  IBM 7750 programs  for the  brokerage  study.  Fur- 
thermore, i t  was  necessary to specify in considerable detail  the 
functional  characteristics of the supervisory  control  program, 
since  some types of messages would require but one disk  storage 
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access, while others would require  four or five, etc.  Such  informa- 
tion closely relates to  the question of congestion points  within the 
system,  and, consequently, to  the  total  system  capacity. In  this 
case the specification of these  operating  characteristics  was  more 
difficult than  the  actual model construction.  Determination of 
such  operating  characteristics  for the scientific computer com- 
plex model was  easier partly because of greater  prior knowledge 
of required processing steps,  and  partly because the  depth of 
detail of the  simulation was not  as great. That simulation  did  not 
provide  information  about the elapsed  time a program  was  in the 
system; such  information  was the prime goal of the brokerage 
simulation. Detailed specification of the supervisory  control  pro- 
gram to reside  in the IBM 7040 would be  required  in  order to 
obtain  such  information for the scientific system. 

The result of the brokerage study was that  the proposed sys- 
results of tem could easily  handle  the projected peak  hour message traffic 
the without  serious  delay of any messages. The predicted  amount of 
simulation time a message would spend  in IBM equipment  never exceeded .8 

seconds and increased only slightly  as the  peak  hour  trade volume 
increased. The predicted transit  time  in  the communications  cir- 
cuits, however, was up to 100 times  as  great  and was very sensi- 
tive  to increases in traffic volume. Since a tabulation was kept of 
the message  life span  for each message transaction, curves,  such 
as that in  Figure 5, were easily  obtained  to  estimate  the  probability 
of the  total  transit  time of a message being less than  any given 
time. 

Figure 5 Probability of transit time being less than a given time 

4 

Evaluation of a proposed information processing system  in- 
variably  entails  an  estimation of the cost of standard  equipment, 
special engineering, physical installation, personnel training, 
special  systems  programming,  daily  operat.ion,  etc. Cost is a very 
human  subject,  liable  to wide variations of interpretation  and 
evaluation.  Hence,  again we note the  human  values  aspect of 
systems engineering. The brokerage  system  requires little special 
engineering, but  may  require  retraining of many people. The 
scientific system  requires  no retraining of users, but requires ex- 
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tensive  special engineering. Indeed, the effective monitoring  of 
the  IBM 7090 by  the  IBM 7040 depends  upon  some sort of direct 
communication between the two processors. Details of this com- 
munication  are  not germane to our  purposes here; suffice it  to  say 
that examination of the special engineering required  is  extremely 
important  within  the  larger  systems engineering  context. 

The brokerage  system  requires  a  special  supervisory  pro- 
gram, but  this will probably  not change  appreciably  with  time 
Systems  programming  is,  therefore, primarily  a one time cost. 
The scientific system, however, requires not  only  a supervisory 
monitor, but changes in  other  systems  programs  (such as  the 
Fortran compiler) as well. Since these  are evolving entities, 
the maintenance of these  systems implies recurring costs. These 
are  the changes that would effect greater  utilization of the  IBM 
7090, but does the gain overcome the cost?  Again, the question 
is not  directly concerned with  simulation, but is  a part of the 
larger view. 

Absolute  cost  is  meaningless;  only relative  cost  has  content. 
Systems  proved  feasible in  a  systems engineering study  must be 
compared  on  a  cost  basis.  Should the communication  for  mass 
data  transfers between the processors of the scientific complex 
be by  means of a  random access disk  unit  instead of switchable 
magnetic tapes?  Is  the performance  gain effected by  having  the 
remote  terminals  directly connected to  the computer  by  means of 
the  IBM 7750 worth  the cost of this  unit?  Simulation  may help 
measure  performance; the systems  engineer must  measure cost. 

Finally,  the cost of a proposed system must be compared 
against  the cost of no system a t  all,  the cost to society of not  per- 
forming the full  desired  function. 

Classical mathematical  analysis seeks to represent  a  discrete 
reality  with  a continuous model. The digital  computer  presents a 
new analytic  vista. It permits  analysis of discrete  systems in a 
much more  realistic manner  than was permitted  by  earlier  formal 
methods.  Furthermore, i t  permits  analysis of much  more intricate 
systems. The systems  engineer  can now conduct elaborate  statisti- 
cal  experiments  within  a  computer. He  can become an empiricist 
without the normally  attendant cost of physical  experimentation. 
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p. 64. 
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