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Abstract 

A challenging goal of psychology and neuroscience is to map cognitive 

functions onto neuroanatomical structures. This paper shows how computational 

methods based upon evolutionary algorithms can facilitate the search for 

satisfactory mappings by efficiently combining constraints from neuroanatomy 

and physiology (the structures) with constraints from behavioural experiments 

(the functions). This methodology involves creation of a database coding for 

known neuroanatomical and physiological constraints, for mental programs 

made of primitive cognitive functions, and for typical experiments with their 

behavioural results.  The evolutionary algorithms evolve theories mapping 

structures to functions in order to optimize the fit with the actual data.  These 

theories lead to new, empirically testable predictions. The role of the prefrontal 

cortex in humans is discussed as an example.  This methodology can be applied 

to the study of structures or functions alone, and can also be used to study other 

complex systems. 
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Evolving structure-function mappings in cognitive neuroscience using genetic 

programming 

 A primary aim in science is to develop theories that summarize and unify 

a large body of experimental data. However, there is no overarching theory in 

psychology (or even in subfields of psychology, such as the study of memory, 

emotions or perception) which imposes order on the mass of data and makes it 

possible to derive quantitative predictions, in the way, for example, quantum 

mechanics can be used to organize empirical data in chemistry.  To compound the 

difficulty, there are currently around 1,500 journals devoted to scientific 

psychology.  A substantial proportion of these journals publish mainly 

experimental results. Psychology is not exceptional: in sciences from astrophysics 

to meteorology to biology, technological progress has enabled the rapid collection 

of huge amounts of data. How can scientists keep track of this exponentially 

increasing amount of information, in spite of their bounded rationality?  

 While progress in database management of scientific results is notable, 

there remains the question of how this new information can foster scientific 

understanding, as opposed to simple accumulation of knowledge. A particularly 

interesting approach is to develop theories implemented as computer programs 

which account for, and therefore summarize, empirical data.  

 How scientific theories are developed has been the focus of a number of 

studies in psychology, philosophy, history, and, more recently, artificial 
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intelligence (e.g., Hanson, 1958; Kuhn, 1977; Langley, Simon, Bradshaw, & 

Zytkow, 1987; Gholson, Shadish, Neimeyer, & Houts, 1989). In psychology, 

researchers have proposed a variety of explanations, including intuition 

(Hadamard, 1945), heuristic search (Simon, 1977), as well as random variation 

and Darwinian selection (Simonton, 1999). If the process of scientific discovery 

can be described precisely in information-processing terms, as argued forcefully 

by Langley et al. (1987), it should be possible to automate it—thus alleviating 

researchers’ task of dealing with an exponentially increasing quantity of 

information. 

 The goal of this paper is to help psychologists and other scientists develop 

powerful theories explaining complex data. This is done by offering a 

methodology which, combined with other informatics techniques (Kanehisa, 

2000; Koslow & Huerta, 1997), could help solve the problem of information 

overload in science.  This methodology consists of powerful search methods 

(evolutionary computation) aimed at automatically developing theories. As an 

illustrative example, we have chosen the question of the localization of cognitive 

functions in the brain, and, more specifically, of the role of the prefrontal cortex—

a difficult and topical research question. Given the readership of this journal, we 

are not so much interested in discussing the technical details underlying the 

computational implementation of our approach as in pointing the presence of 

potentially powerful methods to psychologists and philosophers. 
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The role of the prefontal cortex in humans 

 An important goal in biological psychology and neuroscience is to map 

cognitive processes onto neuroanatomical structures. Currently, a massive amount 

of data is being collected using such approaches as fMRI and lesion studies with 

non-human primates. However, neuroscientists have been increasingly worried 

about their limits to assimilate information from empirical research (Purpura, 

1997). Research into the prefrontal cortex offers a striking example of this 

situation. 

 In line with research on monkeys (Parker & Gaffan, 1998), this area of the 

cortex is assumed to be involved in working memory, planning, decision making, 

the acquisition of behavioural strategies, emotions, and motivation (Roberts, 

Robbins, & Weiskrantz, 1998).  However, progress in mapping structures to 

functions in the prefrontal cortex lags behind advances in those brain areas 

underpinning perceptual processing. Indeed, no current theory is able to account 

for even a small subset of the data—posing a sufficient challenge to test the 

validity of our methodology. 

The problem of mapping brain structures to functions 

 Structure-to-function mapping in the prefrontal cortex is difficult for three 

reasons: 
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1. Our understanding of prefrontal cortical anatomy (both functional and 

structural), particularly in humans, is less developed than for other parts of the 

brain (e.g., visual cortex). 

2. Many different mental programs (i.e., organized sequences of serial and 

parallel cognitive processes) may instantiate the same pattern of behavioural 

data, making search through the space of possible mental programs difficult. 

3.  The mapping between the two domains, a difficult task in itself, is made more 

difficult by the uncertainties in our knowledge of human neuroanatomy and the 

processes involved in mental programs. 

 We therefore face a typical problem of optimizing search through multiple 

spaces.  Hitherto, most research has addressed this question using informal 

theories, a weak method given the size of the search space.  Moreover, modelling 

has not been applied to solving the mapping problem itself, but instead to provide 

functional mechanisms for simulating empirical data (Burgess & Shallice, 1996; 

Cohen, Braver & O’Reilly, 1998; Dehaene & Changeux, 1995). We propose that 

the mapping problem can be tackled by using the powerful search methods 

offered by evolutionary computation. 

Computational scientific discovery 

 Scientific research can be described as heuristic search in combinatorial 

spaces (Langley et al., 1987; Simon, 1977).  ‘Combinatorial’ means that, at each 
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choice point, many decisions are possible. This combinatorial explosion implies 

that the search space drastically outgrows human capacities to explore it. To 

circumvent these limits, research in artificial intelligence has developed efficient 

search techniques in order to devise new laws, theories, and concepts.  These 

techniques, used either autonomously or semi-autonomously, have been 

successfully applied in sciences such as chemistry, biology, mathematics (e.g., 

Bollobas & Riordan, 1998; Valdés-Pérez, 1999; Xu, Mural, Einstein, Shah, & 

Eberbacher, 1996). 

 One class of computational search techniques is evolutionary computation, 

which includes genetic algorithms (Goldberg, 1989; Holland, 1992; Mitchell, 

1996) and genetic programming (Koza, 1992; 1994). Inspired by natural 

selection, evolutionary computation enacts a search for solutions to the problem 

of survival. It evolves large populations of genotypes (possible solutions) with the 

constraint that the fittest (best) tend to survive and reproduce.  Artificial 

genotypes encode sets of parameters with genetic algorithms, or entire programs 

with genetic programming.  What constitutes a ‘solution’ is governed by a fitness 

function determined by the specific problem at hand. For example, if the problem 

is to optimize the fit of a mathematical function to a set of empirical data, the 

amount of variance accounted for may be used as the fitness measure. The 

mathematical foundation of evolutionary computation is well established 

(Holland, 1992). 
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 While computationally simple, these algorithms are robust and powerful. 

Being less sensitive to local minima and to initial conditions than other hill-

climbing methods (Koza, 1992), they can explore huge search spaces efficiently 

and in parallel, even when the information is noisy and subject to uncertainty.  

These algorithms have been used extensively in science and engineering, for 

example in function optimisation, pattern recognition, functional genomics, and 

the analysis of noisy data (Kanehisa, 2000; Goldberg, 1989; Mitchell, 1996; 

Koza, 1992, 1994). Recent neuroscientific applications include diagnostic 

discovery (Kentala, Laurikkala, Pyykko, & Juhola, 1999), neuromuscular 

disorders assessment (Pattichis & Schizas, 1996), and interpretation of magnetic-

resonance brain images (Sonka, Tadikonda, & Collins, 1996). 

Genetic-programming algorithms 

 We propose to use a variant of evolutionary computation called genetic 

programming (Koza, 1992, 1994).  Instead of acting on digital chromosomes, as 

do genetic algorithms, genetic programming evolves entire computer programs.  

This removes some of the limitations of classical genetic algorithms (mainly, 

necessity to use fixed-length chromosomes, difficulty in representing hierarchical 

structures; and lack of dynamic variability; cf. Koza, 1992). The hierarchical 

structure of these programs is also convenient for simulating human mental 

programs. 
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Insert Figure 1 about here 

 

 Programs are represented as trees, a common data structure in computer 

science, to allow ease of manipulation and evolution. For example, the function 

(A + (B * 2)) can be represented as a tree (Figure 1a). ‘A’, ‘B’, and ‘2’ are called 

terminals and ‘+’ and ‘*’ are called operators. With simulated mental programs, 

operators consist of cognitive operations, and terminals of possible inputs. Figure 

1b encodes an elementary mental program that compares two perceptual inputs, 

and then outputs the outcome of the comparison. 

 

 Genetic programming involves four steps: 

 1. Choose a set of admissible operators and terminals. In the case of 

mental programs, these are cognitive operations and possible inputs, respectively. 

 2. Generate an initial population of trees. These trees use the set of 

admissible operators and terminals, and can be of different sizes and shapes. They 

may be generated either fully randomly, or as random variations of plausible 

programs, which can be derived from the literature. Syntactically incorrect trees 

are deleted.  
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 3. Calculate the fitness of each program.  The fitness is computed based 

on the performance of each program on a set of problems (‘fitness cases’), where 

both the input and the output are known. With mental programs, the fitness cases 

consist of behavioural data of humans performing prefrontal cortex tasks, where 

the fit is the amount of variance accounted for in the empirical data by the 

program. 

 4. Apply selection, crossover, and mutation.  Selection involves keeping a 

predetermined number of programs in the population, selected probabilistically in 

proportion to fitness.  Crossover refers to producing two offspring from a random 

point in each of the two parents and swapping the resultant subtrees (Figure 2).  

Mutation consists of replacing a subtree below a random point by a randomly 

created subtree. Typically, mutation has a much lower probability than crossover 

(Mitchell, 1996). 

 

Insert Figure 2 about here 

 

 Genetic programming offers an efficient way of using feedback about a 

program’s fitness within a generation to breed the next generation. While the 

basic representation uses trees, with each node having a single parent, several 

techniques exist to implement cyclic or recursive function calls, such as 

‘automatically defined functions’ (Koza, 1994; Angeline & Pollack, 1992). 
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Searching through the space of mapping theories 

 Complex systems, both natural and artificial, are more likely to evolve 

from simple systems if they are organized as modules and hierarchies—i.e., if 

they contain stable intermediate forms (e.g., Simon’s, 1996, concept of near-

decomposability). Such hierarchical organisations have often been proposed for 

brain structures (Churchland & Sejnowski, 1992), cognitive processes (Kosslyn & 

Koenig, 1992), and knowledge representations (Gobet, 2001; Gobet & Simon, 

2000; Newell, 1990).  While the assumption of brain modularity has been 

disputed (Elman et al., 1996; Uttal 2001), it is explicitly accepted by many 

researchers in neuroscience (Churchland & Sejnowski, 1992; Shallice, 1992) and 

implicitly by most researchers using neuro-imaging techniques. 

 We assume that the interactions between elements are high within a 

subsystem of the hierarchy, but weak between subsystems (Simon, 1996). This 

assumption is important in that it simplifies the search space of the structure-to-

function mappings, because subsystems can be considered as units during 

simulated evolution.  This also enables the direct use of genetic-programming 

subtree-encapsulation methods (Koza, 1994). 

 

Insert Figure 3 about here 
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 Figure 3 depicts the abstract relations formulated here. Four properties are 

important: (a) structures are organized hierarchically; (b) functions are organized 

hierarchically; (c) a one-to-one, one-to-many or a many-to-one mapping may link 

functions and structures (thus, the same elemental structure may implement 

multiple functions); and (d) in both hierarchies, some subtrees can be considered 

as modules. 

 A theory mapping structure to function (hereafter, mapping theory) 

comprises a 3-part system: (a) a hierarchy representing brain structures and their 

connections; (b) a hierarchy representing cognitive programs; and (c) the mapping 

between these two hierarchies. The same mapping theory is used across several 

tasks, providing an important constraint for selection.  

 Mapping theories are explicit, and therefore easily understood by humans.  

They can be manipulated and evolved as executable data structures. The key of 

our methodology is to evolve such mapping theories, using as a fitness function 

the extent to which they account for empirical data. While limiting the number of 

theories, thereby eliminating potentially successful theories, the mechanisms of 

evolutionary computation ensure that only viable theories are evolved.  These 

mechanisms also lead to diverse, sometimes incompatible theories that all account 

for the data equally well. This is a strength of our method, as these competing 

theories and the new predictions that are derived from them can be tested 

empirically.  
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 We can identify five main stages in our methodology: 

 1. Codification of current knowledge of anatomical structures, their 

connections, and their hierarchical organisation. This includes information about 

putative hierarchical organisation.  The databases are coded using trees for their 

later input to evolutionary algorithms.  

 2. Codification of current knowledge of cognitive processes implicated in 

prefrontal cortex tasks, and their hierarchical organisation. Although complex, 

each cognitive process can be viewed as an operation or series of operations.  

Each operation has two parameters: list of input values, list of output values. 

Based on these operations, programs for classical prefrontal cortex tasks, such as 

discrimination reversal, delayed match to sample, or Wisconsin Card Sort, can be 

written.  These programs use, as elementary operations, a limited set of processes 

gleaned from the literature (such as inhibition of visual information, maintenance 

of verbal information, matching of two visual pieces of information). The 

elementary processes are organized as subsystems, thus allowing a hierarchical 

organisation of the programs. There is no doubt that translating current theories 

into formal programs can result in a wide variety of different programs, possibly 

revealing inconsistencies across authors, or even within authors. These programs, 

used as the initial seed population, can be tested to ensure that they obtain 

performance similar to ‘normal’ participants, and thus are sufficient for the task. 
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 3. Preliminary mapping of the two types of knowledge. These two 

knowledge bases, and their mapping, are combined into mapping theories, again 

guided by the current literature.  Each operation has one or more cytoarchitectonic 

areas associated with it, as well as lists of input and output areas, and their 

respective values.  Operations may function properly only if the necessary cortical 

area is intact, and if the input and output areas, as well as their connections, are 

intact (in all cases, impairment may be only partial).  Information can also be 

encoded about the degree of confidence in the operation-area mapping. 

 4. Construction of a database of tasks containing empirical results; these 

tasks are then used to compute the fitness function of the mapping theories. To 

test the fit of the mapping theories to the empirical data requires the creation of a 

database of results from human studies using prefrontal cortex tasks, both with 

normal participants and brain-damaged patients. The database can also 

incorporate brain scan data.  It is then possible to compute the fitness of a given 

theory by applying it to a set of tasks and to a set of neurological damages, and to 

compare the predictions of the theory with the empirical data, using standard 

measures of goodness of fit such as r2 (amount of variance accounted for). 

 5. Use of genetic-programming techniques to optimize search between 

these two types of knowledge and their conjunction. The final stage uses 

evolutionary algorithms to optimize search through the spaces of structure and 

function as well as their conjunction. Several approaches can be used to search for 
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new and better hypotheses for the mapping of structures to processes: search of 

the space of structures, processes, and mappings, respectively, while keeping the 

two other spaces constant; search of two spaces while keeping the third space 

constant; and, finally, search through the three spaces simultaneously.  The role of 

the initial conditions and parameters of the system, such as mutation and 

crossover rate, can also be explored by systematically varying these conditions 

and parameters.  

A simplified  example 

 As an illustration, consider the delayed match to sample (DMTS) task. In 

this task, a stimulus is first presented for a given amount of time, followed by a 

delay. Then, two stimuli are presented, and the task is to select which of these two 

stimuli matches the stimulus presented first. This task has been extensively used 

with humans and non-human animals. In this example, we used the data of Chao, 

Haxby and Martin (1999), who studied humans. We chose this paper because the 

task (a) is simple, (b) uses only known stimuli, which makes it unnecessary to 

model any learning process, and (c) is short enough so that forgetting does not 

need to be taken into consideration, at least as a first approximation. We focused 

on two conditions: in the first, pictures of animals were presented as stimuli, and, 

in the second, pictures of tools were used.  We explain in some detail how our 

methodology can evolve (indeed, has evolved) functional theories with this task; 
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then, more briefly, we indicate how it could be used to evolve full mapping 

theories.  

 First, we programmed the task itself. We generated simplified versions of 

the stimuli used by Chao et al. (1999), by using pseudo-random sequences of 

digits. We then implemented the exact design in that paper, including the exact 

number of subjects, stimuli, and trials used.  

 Second, we selected a set of cognitive operations from the literature. 

These included operations for inputing a stimulus, storing information in short-

term memory (STM), and matching two stimuli. Operations were not fully 

deterministic, as they had a .02 probability of failing to produce the correct 

output. Based on the literature (e.g., Cowan, 2001; Gobet & Clarkson, 2004), we 

assumed that visual STM was limited to four items.  

 Third, we defined a fitness function, using the deviation percentage from 

the means and standard deviations of  the “animal” and “tool” conditions in Chao 

et al.’s (1999) study.  The deviation percentage was defined as: 

 

   ( | Theory – Observed |    /    Observed ) * 100 

 

where Observed refers to the human data, as provided by Chao et al., and Theory 

refers to the prediction of an evolved theory. As the experimental design is 
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exactly the same with the simulations as with the human data (see above), the 

observed and predicted means and standard deviations are directly comparable. 

 We also defined a hit measure. When an evolved theory obtained a value 

within 10% of the value observed with the human data, we arbitrarily counted this 

as a hit. For example, the condition “animal”  yielded a value of 1.4% for the 

standard deviation; the accepted range is therefore (1.26% - 1.54%); thus, 1.50% 

would be counted as a hit, but 1.60% would be counted as a miss. In this example, 

the fitness function was the sum of relative deviations; other functions are 

possible, such as the sum of hits, or the amount of variance explained by linear 

regression (r2). 

 Fourth, we let a modified version of genetic programming evolve the 

theories, starting with a population made of random trees. The fitness of each 

evolved theory was computed by running through the two conditions of Chao et 

al.’s (1999) experiment. In spite of the fact that only four fitness cases were 

available, the program managed to evolve interesting theories. For example, after 

14 generations, the program depicted in Figure 4 was produced. The top part of 

the Figure shows the (slightly edited) Lisp code of the theory evolved, and the 

bottom part a diagrammatic representation of this theory. In words, what this 

theory does is to store the first stimulus in STM, and then to store the second and 

third stimuli). Finally, the second and third elements in STM are compared. 

Because STM is implemented as a queue, new elements “push” older elements;  
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as a consequence, by the time the comparison takes place, stimulus #1 is in the 

third slot of STM, and stimulus #2 in the second slot.  The theory does a good job 

at predicting means, but is wide of the mark with standard deviations (see Table 

1). While rather modest, this theory shows that functional theories can be 

involved, at least in the conditions of these simulations. 

 

Insert Figure 4 about here 

 

Insert Table 1 about here 

 

The methodology discussed in this paper involves one additional—and 

important—complication: to use theories that combine structure and function. 

Figure 5, which was constructucted by the authors, and not generated 

automatically, shows such a possible mapping theory, extending the program 

shown in Figure 4. Note that the brain structure could be further specified; for 

example, the dorsolateral prefrontal cortex could be divised into Brodmann areas 

9 and 46. Chao et al. (1999) do not present data about the prefrontal cortex, but 

brain-imaging or patient data available elsewhere in the literature could be used to 

compute a more sophisticated fitness function that would include the information 

about brain structures. For example, if the empirical data show that the 
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dorsolateral prefrontal cortex is not engaged in this task, contrary to what the 

program states, then this would count against (the fitness value of) the theory.  

 

 

Insert Figure 5 about here 

 

Role of constraints in reducing the search space 

Even when considering only the functional side of our approach, the number of 

possible mapping theories is theoretically infinite. In order to have practical 

chances to search this space successfully, it is necessary to use a number of 

heuristics that constrain search. For example, we have imposed a modular and 

hierarchical structure to the theories. We have also biased search by selecting the 

cognitive operations used, and not selecting others. In addition, we have chosen a 

given experiment, and not another. While the full application of our framework 

would incorporate more cognitive operations and more fitness cases, in addition 

to using full mapping theories, there is no doubt that (strong) assumptions will 

have to be used as constraints to make our method feasible—as is the case 

generally with optimization techniques. We refer the reader to the section 

“Searching through the space of mapping theories” for a discussion of some of 
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these, namely modularity and hierarchical organization of cognitive functions and 

brain structures.   

Likely objections 

 Our proposal is likely to raise a number of objections, and it is important 

to review some of them here. 

 1. The search space is too large. We agree that the search space is 

extremely large. However, we also believe that the use of current knowledge of 

psychology and neuroscience, as well as the use of heuristics such as the 

assumption of near-decomposability, helps cut down the size of this space. 

Moreover, evolutionary computation is one of the best methods to efficiently 

tackle large search spaces. Finally, new technologies such as grid computing may 

help mitigate the time needed to carry out search (Gobet & Lane, 2005). 

 2. The amount of information hampers the search process. We suggest 

that, on the contrary, the amount of information available constrains the search 

process, and then helps weed out poor candidate theories (cf. Newell, 1990). 

 3. Humans can do it without the help of this or of similar methodology.  

As noted in the introduction, information overload is a serious concern for 

psychology and neuroscience, and, indeed for most sciences. In addition, humans, 

including scientists, are prone to cognitive limitations that may seriously hamper 
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progress (Langley et al., 1987; Richman, Gobet, Staszewski, & Simon, 1996; 

Simon, 1989). 

 4. Too much bias is introduced by the selection of primitives, tasks, and 

fitness function. It is true that the choice of primitives for the brain structures and 

cognitive operations, as well as the choice of experiments and fitness function, 

determines and therefore biases the space of possible theories. It is also true that 

we may not have the right primitives and thus are searching in the wrong solution 

subspace. However, the same applies for psychologists and neuroscientists 

attempting to build these mappings, who, as we have just seen in the previous 

objection, may be ill-equipped computationally for carrying out this type of task.  

 5. Setting up the databases used for evolving theories represents a huge 

and tedious task. We agree with this point, but note that such databases would be 

useful on their own. Indeed, a substantial part of neuroinformatics currently 

consists in setting up databases encoding information about neuro-anatomical 

structures, neurophysiological processes, and behavioural results, to make that 

information available to other researchers. Even if the specific methodology 

proposed in this paper is found wanting, the databases can be reused in other 

projects aimed at modelling these data. 

 6. The methodology is purely inductive and unlikely to be successful. The 

first statement is not correct. As this methodology uses the current state of 
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scientific knowledge in the field, it is not “theory free,” but anchored in current 

neuroscientific theories. 

Conclusion 

 A major advantage of the methodology presented in this paper is that it 

enables selecting evolved theories that are consistent with most results contained 

in a given database. This avoids the selection biases that are unavoidable in 

informal theorizing and suggests an increased likelihood of finding theories to 

account for the empirical data while satisfying the constraints imposed. Another 

advantage is that the developed theories meet the criterion of sufficiency: being 

implemented as  computer programs, they can indeed carry out the tasks under 

study. 

 To our knowledge, this constitutes the first attempt to use artificial 

evolution to tackle the problem of structure-to-function mapping in neuroscience. 

While we do not deny that a number of conceptual and practical questions remain 

to be answered, we believe that the potential is high for this methodology. First, 

the techniques described here, illustrated by the study of the prefrontal cortex, can 

be easily generalized to other regions of the brain. Second, these techniques can 

also be applied to domains where the structure-to-function mapping relates to a 

finer level of analysis (e.g., neuronal and molecular level);  indeed, the exact level 

of explanation offered by these theories will depend on the primitives selected.  
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Third, while the focus in this paper is at the functional level, it is possible to 

further implement functions using neural nets. Fourth, the techniques can be used 

for each subcomponent of mapping theories in isolation (i.e., either functions or 

structures).  Fifth, they can be used in other sciences as well, as long as theories 

can be formalized as computer programs and matched to a database of empirical 

results. 

 Philosophers of science have often noted the evolutionary character of 

scientific knowledge (Toulmin, 1967; Popper, 1979). In this paper, we have 

proposed to use the evolutionary process not only as a description of the way 

science evolves, but also as a tool that can actively evolve new scientific theories. 
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Table 1.  

Mean and standard deviation of percentages of the “animal” and “tool” 

conditions, for the human data (Chao et al., 1999) and one of the evolved 

theories. 

 

 

       Measures 

           ------------------------------------------------------------------ 

 

            Observed Evolved  Deviation             Hit 

Condition       theory            percentage 

 

“Animal”  

  mean  97       92      5.1     yes 

  sd    1.4         2.1   50.0      no 

 

“Tool”   

  mean   95        93      2.1    yes 

  sd                       1.2          3.1 158.3      no 
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Figure Captions 

 

Figure 1.  Examples of genetic-programming trees. 

Figure 2.  Crossover in genetic programming. 

Figure 3.  Some properties of mapping theories. A given structure may map to 

several functions (narrow dashed arrows), conversely, a given function may map 

to several structures (thick dashed arrows).  A group of nodes denoting structures 

may be considered as a unit (subtree) mapping to a single function, and vice-versa 

(ellipses). 

Figure 4.  Example of an evolved functional theory. Top part: Lisp code of the 

evolved theory; bottom part: diagrammatic representation of this theory. Three 

primitive are used. PutStm puts a new element into STM. Progn2 allows the 

execution of two subtrees one after the other. Compare23 compares element 2 

and element 3 of STM.  

Figure 5. An illustration of how the functional theory of Figure 4 could be linked 

to brain structures. PFC = prefrontal cortex. 
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