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Abstract

We present the first formal correctness proof of an offline polyvariant specialization al-
gorithm for first-order recursive equations. As a corollary, we show that the specialization
algorithm generates a program implementing the search phase of the Knuth-Morris-Pratt
algorithm from an inefficient but binding-time-improved string matcher.
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1 Introduction
Partial evaluation is a program-transformation technique characterized by constant propagation
and call unfolding [13, 33]. Given a program f(x,y)=e and a value c for x, a partial evaluator
(also called a program specializer) generates a program, fc(y)=e’, equivalent to f’(y)=f(c,y).
The usefulness of partial evaluation is that fc(y)=e’ may, due to optimizations enabled by fixing
x= c, be significantly more efficient than f’(y)=f(c,y).

Consider the power function as an example. (It will also be used to illustrate some technical
aspects about the main proof in Section 2.4.2.)

power(n,x) = if (n=0) then 1 else x*(power(n-1,x))

Fixing n = 2, a partial evaluator generates:

power2(x) = x*(x*1)

In offline partial evaluation, the decision on what can and should be reduced is taken during a
so-called binding-time-analysis prephase, and represented as annotations in the program. These
annotations are then blindly followed in the subsequent specialization phase. The utility of this
division was demonstrated by Jones’s group [34] in connection with compiler-generation by self-
application of the specializer, an idea originally conceived by Futamura [24].

The above example is annotated as follows (with reducible terms in italics)

power(n,x) = if (n=0) then 1 else x*(power(n−1,x))

Note that it can be annotated before the value of n is chosen. Fixing n = 2, the result of
specializing the annotated program is as above.

Polyvariant specialization allows recursive functions to be indexed by their fixed arguments, and
was originally conceived in Ershov’s group [11].

In the example, we may thus choose to index the recursive calls to power by n, instead of
symbolically unfolding them:

power2(x) = x*(power1(x))
power1(x) = x*(power0(x))
power0(x) = 1

Here, symbolic unfolding is probably to be preferred to remove the overhead of function calls. To
see where polyvariance makes a difference, consider the following mutually-recursive functions:

even(n,x) = if (x=0) then true else odd (n+1,x-1)
odd (n,x) = if (x=0) then false else even(n−1,x-1)

Fixing n = 2 for even, a monovariant specializer using symbolic unfolding would diverge, be-
cause each function unfolds to itself with only the dynamic arguments changed. To avoid non-
termination, weaker binding-time annotations must be chosen (i.e., where all terms are annotated
as dynamic); the result is trivial specialization:

even2(x) = even(2,x)
even(n,x) = if (x=0) then true else odd (n+1,x-1)
odd (n,x) = if (x=0) then false else even(n-1,x-1)

In contrast, a polyvariant specializer generates:

even2(x) = if (x=0) then true else odd3(x-1)
odd3(x) = if (x=0) then false else even2(x-1)

As a footnote, the tension between ensuring termination while avoiding trivial specialization is a
major issue in partial evaluation [32].

Although the above example is short, the classical example where polyvariance makes a differ-
ence is the generation of the search phase of the efficient Knuth-Morris-Pratt algorithm [35] from
an inefficient string matcher [12, 26].
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Outline
This work presents the first formal correctness proof of an offline polyvariant specialization algo-
rithm for typed first-order recursive equations. We work in a call-by-value denotational setting [43],
where our approach – inspired by type-directed partial evaluation [14, 19, 21] – is to phrase poly-
variant specialization as a non-standard, code-generating semantics (also called a residualizing
semantics). This approach immediately suggests certain proof principles, namely structural in-
duction (by compositionality) and fixed-point induction.

A priori, two issues complicate the proof:

1. We must keep track of the polyvariant element, i.e., the transitive closure of needed special-
ized functions. This turns out to be relatively unproblematic and isolated.

2. We must ensure that the result of symbolic unfolding is well-typed and with the right mean-
ing. A well-known complication is that symbolic unfolding necessitates α-renaming of let-
expressions to avoid variable captures. Symbolic unfolding also turns out to destroy the
obvious proof approach in the denotational setting.

As an application, the specialization algorithm is shown to generate a program implement-
ing the search phase of the Knuth-Morris-Pratt algorithm from an inefficient, but binding-time-
improved, string matcher.

2 Polyvariant specialization

2.1 A typed first-order language
We consider first-order recursive equations with a call-by-value denotational semantics [20, 43].
We use standard denotational concepts throughout the paper.

2.1.1 Syntax

The language is parameterized by a signature, Σ = (B, L, C). B is a set of base types, b; L maps
base types to disjoint sets of literals, l ∈ L(b); and C maps function constants, c, to function types.

Types:

GTyp : τ ::= b | bool (Ground types)
FTyp : σ ::= τ1 * . . .* τn->τ (Function types)

Terms: Let x ∈ Var and f ∈ FVar denote variables. We define expressions, equations (or
functions), declarations, and programs. A notable restriction is that arguments to function calls
must be variables. This restriction simplifies the formal construction, because it will eliminate the
need for the partial evaluator to insert lets to avoid unsound handling of computations [9]. Hence,
we effectively require that source programs have already been let-inserted (even for literals, but
here only to simplify the syntax).

Exp : e ::= l | true | false | c(e1,. . .,en) | if e1 then e2 else e3 |
x | letx:τ1 ⇐ e1 in e2 | f(x1, . . . ,xn)

Eqn : q ::= f:σ(x1, . . . ,xn)=e
Decl : d ::= [q1, . . . ,qn]
Pgm : p ::= locald in f

Equation names are required to be distinct within a declaration and argument names are
required to be distinct within each equation.

For any a, b ∈ N, let [a..b] denote {a, a + 1, . . . , b} if a ≤ b, and ∅ if a > b.
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2.1.2 Typing

Let Γ : Var → GTyp, and Ψ : FVar → FTyp be typing environments. We define a relation,
Ψ, Γ ` e : τ , asserting that e is a well-typed term of type τ , in the context of Ψ and Γ. Similarly,
Ψ ` q : (f, σ), ` d : Ψ, and ` p : σ.

Ψ, Γ ` e : τ

l ∈ L(b)
Ψ, Γ ` l : b

Ψ, Γ ` true : bool

Ψ, Γ ` false : bool
C(c) = τ1 * . . .* τn->τ ∀i∈ [1..n]. Ψ, Γ ` ei : τi

Ψ, Γ ` c(e1,. . .,en) : τ
Ψ, Γ ` e1 : bool Ψ, Γ ` e2 : τ Ψ, Γ ` e3 : τ

Ψ, Γ ` if e1 then e2 else e3 : τ
Γ(x) = τ

Ψ, Γ ` x : τ
Ψ, Γ ` e1 : τ1 Ψ, Γ[x 7→ τ1] ` e2 : τ2

Ψ, Γ ` letx:τ1 ⇐ e1 in e2 : τ2

Ψ(f) = τ1 * . . . * τn->τ ∀i∈ [1..n]. Γ(xi) = τi

Ψ, Γ ` f(x1, . . . ,xn) : τ

Ψ ` q : (f, σ)
σ = τ1 * . . .* τn->τ Ψ, {xi 7→ τi | i∈ [1..n]} ` e : τ

Ψ ` f:σ(x1, . . . ,xn)=e : (f, σ)

` d : Ψ
Ψ = {fi 7→ σi | i∈ [1..n]} ∀k∈ [1..n]. Ψ ` qk : (fk, σk)

` [q1, . . . ,qn] : Ψ
` p : σ

Ψ(f) = σ ` d : Ψ
` locald in f : σ

2.1.3 Semantics

Let an interpretation of the signature, IΣ = (B,L, C), be given. We require that B maps each
base type to a discrete cpo of values; and that L maps literals to values such that for all l ∈ L(b),
L(l) ∈ B(b). For simplicity, we assume that L is surjective; i.e., that for every value v ∈ B(b) we
can find a literal l ∈ L(b) such that L(l) = v.

Meaning of types:

[[b]]= B(b)
[[bool]]= B = {tt, ff}

[[τ1 * . . . * τn->τ ]]= [[[τ1]]× . . .× [[τn]] → [[τ ]]⊥]

Furthermore, for all function constants c ∈ domC, we require that C(c) ∈ [[C(c)]]. The spectrum
of computational effects is here thus limited to partiality [20, 38].

Meaning of typing environments:

[[Γ]] = Πx∈domΓ[[Γ(x)]] = {ρ | domρ = domΓ, ∀x ∈ domΓ. ρ(x) ∈ [[Γ(x)]]}
[[Ψ]] = Πf∈dom Ψ[[Ψ(f)]] = {ξ | dom ξ = domΨ, ∀f ∈ domΨ. ξ(f) ∈ [[Ψ(f)]]}
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Note that [[Ψ]] is always a pointed cpo. We write b·c for the inclusion from A to A⊥; and for
f : A → B with B pointed, we write · † f for f ’s strict extension to A⊥, i.e., ⊥ † f = ⊥ and
bac † f = f a. Let further fix(·) denote the least-fixed-point operator.

Meaning of well-typed terms: If Ψ, Γ ` e : τ , we define [[e]] ∈ [[[Ψ]] → [[[Γ]] → [[τ ]]⊥]]. Similarly,
if Ψ ` q : (f, σ) then [[q]] ∈ [[[Ψ]] → [[σ]]]; if ` d : Ψ then [[d]] ∈ [[Ψ]]; and if ` p : σ then [[p]] ∈ [[σ]].

[[l]] ξ ρ = bL(l)c
[[true]] ξ ρ = bttc

[[false]] ξ ρ = bffc
[[c(e1,. . .,en)]] ξ ρ = [[e1]] ξ ρ † λv1. . . . [[en]] ξ ρ † λvn. C(c)(v1, . . . , vn)

[[if e1 then e2 else e3]] ξ ρ = [[e1]] ξ ρ † λb. case b of
{

tt → [[e2]] ξ ρ
ff → [[e3]] ξ ρ

[[x]] ξ ρ = bρ(x)c
[[letx:τ1 ⇐ e1 in e2]] ξ ρ = [[e1]] ξ ρ † λv. [[e2]] ξ ρ[x 7→ v]

[[f(x1, . . . ,xn)]] ξ ρ = ξ(f)(ρ(x1), . . . , ρ(xn))

[[f:σ(x1, . . . ,xn)=e]] ξ = λ(v1, . . . , vn). [[e]] ξ {xi 7→ vi | i∈ [1..n]}
If ` [q1, . . . ,qn] : Ψ with ∀i∈ [1..n]. Ψ ` qi : (fi, σi), note that Φ : [[Ψ]] → [[Ψ]] below is indeed

a continuous operator on a pointed cpo.

[[[q1, . . . ,qn]]] =
(

let Φ(ξ) = {fi 7→ [[qi]] ξ | i∈ [1..n]}
in fix(Φ)

)
[[locald in f ]] = [[d]](f)

We shall need some standard weakening properties:

Lemma 1 (weakening) If Ψ, Γ ` e : τ and f /∈ domΨ then for all σ ∈ FTyp,

1. Ψ[f 7→ σ], Γ ` e : τ

2. ∀g ∈ [[σ]]. [[e]] ξ ρ = [[e]] ξ[f 7→ g] ρ

Proof: Straightforward, by structural induction. �

Lemma 2 (weakening) If Ψ ` q : (f ′, σ′) and f /∈ domΨ then for all σ ∈ FTyp,

1. Ψ[f 7→ σ] ` q : (f ′, σ′)

2. ∀g ∈ [[σ]]. [[q]] ξ = [[q]] ξ[f 7→ g]

Proof: Follows directly from Lemma 1. �

2.2 A binding-time-annotated language
We introduce a binding-time-annotated variant of the typed first-order language. The annotations
are intended to direct the specialization algorithm. As traditional we overline static constructs
(understood as “to be evaluated”) and underline dynamic ones (understood as “to be residualized”).

2.2.1 Syntax

The annotated language is given with respect to the original signature, Σ = (B, L, C). Distinctness
of argument and function names is again assumed.

Types:

ĜTyp : τ̂ ::= τ | τ (Ground types)
F̂Typ : σ̂ ::= τ̂1 * . . .* τ̂n->τ̂ (Function types)
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Terms:

Êxp : ê ::= l | true | false | c(ê1,. . .,ên) | if ê1 then ê2 else ê3 |
x | letx:τ̂1 ⇐ ê1 in ê2 | f(x1, . . . ,xn)
$τ ê | c(ê1,. . .,ên) | if ê1 then ê2 else ê3 |
letx:τ̂1 ⇐ ê1 in ê2 | f(x1, . . . ,xn)

Êqn : q̂ ::= f:σ̂(x1, . . . ,xn)=ê
D̂ecl : d̂ ::= [q̂1, . . . ,q̂n]
P̂gm : p̂ ::= local d̂ in f

2.2.2 Typing

Let Γ̂ : Var → ĜTyp, and Ψ̂ : FVar → F̂Typ be typing environments. Well-typed terms (whose
binding-time annotations are called congruent [33]) are defined analogously to before. We dis-
tinguish the three possible annotations for a function call: “to be unfolded” (evaluated), “to be
symbolically unfolded” (reduced), or “to be residualized” (rebuilt).

Ψ̂, Γ̂ ` ê : τ̂

l ∈ L(b)

Ψ̂, Γ̂ ` l : b

Ψ̂, Γ̂ ` true : bool

Ψ̂, Γ̂ ` false : bool
C(c) = τ1 * . . . * τn->τ ∀i∈ [1..n]. Ψ̂, Γ̂ ` êi : τ i

Ψ̂, Γ̂ ` c(ê1,. . .,ên) : τ

Ψ̂, Γ̂ ` ê1 : bool Ψ̂, Γ̂ ` ê2 : τ̂ Ψ̂, Γ̂ ` ê3 : τ̂

Ψ̂, Γ̂ ` if ê1 then ê2 else ê3 : τ̂

Γ̂(x) = τ̂

Ψ̂, Γ̂ ` x : τ̂

Ψ̂(f) = τ1* . . . *τn->τ ∀i∈ [1..n]. Γ̂(xi) = τ i

Ψ̂, Γ̂ ` f(x1, . . . ,xn) : τ

Ψ̂, Γ̂ ` ê1 : τ1 Ψ̂, Γ̂[x 7→ τ1] ` ê2 : τ̂2

Ψ̂, Γ̂ ` letx:τ1 ⇐ ê1 in ê2 : τ̂2

Ψ̂(f) = τ̂1* . . . *τ̂n->τ ∀i∈ [1..n]. Γ̂(xi) = τ̂i

Ψ̂, Γ̂ ` f(x1, . . . ,xn) : τ

Ψ̂, Γ̂ ` ê : τ

Ψ̂, Γ̂ ` $τ ê : τ

C(c) = τ1 * . . . * τn->τ ∀i∈ [1..n]. Ψ̂, Γ̂ ` êi : τ i

Ψ̂, Γ̂ ` c(ê1,. . .,ên) : τ

Ψ̂, Γ̂ ` ê1 : bool Ψ̂, Γ̂ ` ê2 : τ Ψ̂, Γ̂ ` ê3 : τ

Ψ̂, Γ̂ ` if ê1 then ê2 else ê3 : τ

Ψ̂, Γ̂ ` ê1 : τ1 Ψ̂, Γ̂[x 7→ τ1] ` ê2 : τ2

Ψ̂, Γ̂ ` letx:τ1 ⇐ ê1 in ê2 : τ2

Ψ̂(f) = τ̂1* . . . *τ̂n->τ ∀i∈ [1..n]. Γ̂(xi) = τ̂i

Ψ̂, Γ̂ ` f(x1, . . .,xn) : τ
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Ψ̂ ` q̂ : (f, σ̂)

σ̂ = τ̂1 * . . .* τ̂n->τ̂ Ψ̂, {xi 7→ τ̂i | i∈ [1..n]} ` ê : τ̂

Ψ̂ ` f:σ̂(x1, . . . ,xn)=ê : (f, σ̂)

` d̂ : Ψ̂
Ψ̂ = {fi 7→ σ̂i | i∈ [1..n]} ∀k∈ [1..n]. Ψ̂ ` q̂k : (fk, σ̂k)

` [q̂1, . . . ,q̂n] : Ψ̂

` p̂ : σ̂

Ψ̂(f) = σ̂ = τ̂1* . . . *τ̂n->τ ` d̂ : Ψ̂

` local d̂ in f : σ̂

Note that the typing rules disallow functions to be annotated with a static return type but dy-
namic arguments, since the dynamic arguments cannot currently be used in any meaningful way.
In the presence of bounded static variation [33], however, this situation would change (see also
Section 5.2).

2.2.3 Semantics

The intended standard semantics of the binding-time-separated language is virtually identical to
the previous semantics, simply ignoring binding-time annotations and interpreting $ as identity.

This can be straightforwardly formalized as a family of erasure translations, ‖·‖, on types,
terms, and typing environments, taking each construct to its unannotated counterpart. For ex-
ample,

‖letx:τ1 ⇐ ê1 in ê2‖ = letx:τ1 ⇐ ‖ê1‖ in ‖ê2‖ and ‖$τ ê‖ = ‖ê‖.
It is easy to show that well-typedness is preserved. The meaning of each annotated construct is
then simply the meaning of its erasure.

The role of binding-time analysis In our formulation, a (monovariant) binding-time analyzer,
bta(·) : Pgm × F̂Typ → P̂gm, is thus a function satisfying that if σ̂ = τ̂1* . . . *τ̂n->τ and ` p : ‖σ̂‖
then ` bta(p, σ̂) : σ̂ and ‖bta(p, σ̂)‖ = p. In particular, a binding-time analyzer must preserve
meanings.

Of course, one can also write programs in P̂gm directly; writing such programs is for example
done when writing macros [5].

2.3 The specialization algorithm
We define polyvariant specialization as a non-standard, residualizing semantics.

2.3.1 Notation

For residualized function calls, we need some notation that lets us separate static and dynamic
arguments. Given σ̂ = τ̂1 * . . . * τ̂n->τ , we define the index of the i’th static argument, (i)

bσ, and
of the i’th dynamic argument, (i)bσ. For example, if σ̂ = b1*b2*b3->b then (1)

bσ = 1,(2)
bσ = 3, and

(1)bσ = 2. We formalize these indices as follows. Let first the predicates

S(τ̂ ) ⇔ (∃τ. τ̂ = τ ), S(σ̂) ⇔ (∃τ̂1, . . . , τ̂n, τ. σ̂ = τ̂1 * . . . * τ̂n->τ )
D(τ̂ ) ⇔ (∃τ. τ̂ = τ ), D(σ̂) ⇔ (∃τ̂1, . . . , τ̂n, τ. σ̂ = τ̂1 * . . . * τ̂n->τ )

assert that a given type is static or dynamic, respectively. For any function type σ̂ = τ̂1* . . . *τ̂n->τ ,
let |σ̂| = |{i∈ [1..n] | S(τ̂i)}| and |σ̂| = |{i∈ [1..n] | D(τ̂i)}| be the number of static and dynamic
arguments, resp. Note that it is always the case that |σ̂|+ |σ̂| = n. Define then

∀i∈ [1..|σ̂|], (i)
bσ = min k∈ [1..n] s.t. (|{j∈ [1..k] |S(τ̂j)}| = i)

∀i∈ [1..|σ̂|], (i)bσ = min k∈ [1..n] s.t. (|{j∈ [1..k] |D(τ̂j)}| = i)
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Given a function type σ̂, let further currybσ generalize the standard binary ‘curry’ combinator,
i.e., curry = λf.λx.λy.f(x, y), to static and dynamic arguments. For example, if σ̂ = b1*b2*b3->b
then currybσ = λf. λ(x1, x3). λx2. f(x1, x2, x3). We define currybσ by

currybσ = λf. λ(v1, . . . , vk). λ(w1, . . . , wk′ ). f(u1, . . . , un)
where ∀j∈ [1..n]. (uj = vi ⇔ (i)

bσ = j) ∧ (uj = wi ⇔ (i)bσ = j)

Now, given a function type σ̂ = τ̂1* . . . *τ̂n->τ , let

σ̂ = τ̂(1)bσ
* . . .*τ̂(|bσ|)bσ

->τ

be its residual type (i.e., σ̂ without the static arguments). Also, let (by slight abuse of notation,
since we do not have product types)

[[‖σ̂‖]] = [[‖τ̂(1)
bσ
‖]]× . . .× [[‖τ̂(|bσ|)

bσ
‖]]

be the set of σ̂’s evaluated static arguments.

We assume convenient names for specialized functions, i.e., f(v1,...,vk), in FVar . Let

FVar bΨ = {f(v1,...,vk) | f ∈ domΨ̂, (v1, . . . , vk) ∈ [[‖Ψ̂(f)‖]]}

be the well-formed residual function names in the context of Ψ̂.
In the polyvariant specializer, the residualized function calls will refer to such residual function

names. Hence, we need some notation to specify the contexts in which residualized terms are to
be given meaning. We extend the notions of residual function types and currying to environments.
If Ψ̂, X ⊆fin FVar bΨ, and ξ ∈ [[‖Ψ̂‖]], let

Ψ̂(X) = {f(v1,...,vk) 7→ Ψ̂(f) | D(Ψ̂(f)), f(v1,...,vk) ∈ X}
currybΨ(ξ)(X) = {f(v1,...,vk) 7→ currybΨ(f)(ξ(f))(v1, . . . , vk) | D(Ψ̂(f)), f(v1,...,vk) ∈ X}

Note that currybΨ(ξ)(X) ∈ [[‖Ψ̂(X)‖]].

2.3.2 State and effects

The residualizing semantics is phrased in so-called monadic style. We use a specific state monad
to support the bookkeeping involved, layered on top of partiality (recall that partiality is the
computational effect of the original language). A notable simplification of this bookkeeping is the
convenient names for specialized functions, i.e., f(v1,...,vk), in FVar . Hence, we can recover the
static argument values from the name of a specialized function. Accordingly, let

∆ = {{i 7→ i, seen 7→ s, pen 7→ p, res 7→ d} | i ∈ N, s ∈ Pfin(FVar ), p ∈ FVar list, d ∈ Decl}
be the cpo of states, where Pfin(FVar) is discretely ordered. Hence, ∆ is a discrete cpo. The
intended reading is that i is a counter for generating “fresh” names; seen is the set of (names
of) visited equations (the so-called ‘déjà-vu’ or ‘seen-before’ list); pen is the worklist of (names
of) visited but not generated equations (the so-called ‘pending’ list); and res is the generated
equations.

We will find it convenient to allow manipulation of declarations as if they were lists. Also, if
d = [q1, . . . ,qn], and qi = fi:σi(x1, . . .,xn)=ei for all i∈ [1..n], let domd = {f1, . . . , fn} denote
the set of function names.

For all cpos A and B and f ∈ [A → TB], we define

TA = [∆ → (A×∆)⊥]

ηA : A → TA = λa. λδ. b(a, δ)c
· ? f : TA → TB = λt. λδ. (t δ † λ(a, δ′). f a δ′)
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For static computations we need to transfer answers. This is accomplished via the monad mor-
phism γT : A⊥ → TA defined as γT (v) = v † η. Note that if t δ = b(a, δ)c and t = γT (v) then
v = bac. For the purpose of unique name generation, let {y0, y1, ...} be a countably-infinite subset
of Var , such that yi = yj implies i = j.

We define
new : TVar = λδ. b(yδ(i), δ[i 7→ δ(i) + 1])c

visit : FVar → T1 = λf. λδ. case f ∈ δ(seen) of

tt → b(∗, δ)c
ff → b(∗, δ

[
seen 7→ δ(seen) ∪ {f},
pen 7→ f ::δ(pen)

]
)c

commit : Eqn → T1 = λq. λδ. b(∗, δ[res 7→ q::δ(res)])c
next : T (1 + FVar) = λδ. case δ(pen) of

{
f ::X → b(in2(f), δ[pen 7→ X ])c
nil → b(in1(∗), δ)c

result : TDecl = λδ. b(δ(res), δ)c
These operations will provide adequate support for the bookkeeping involved with the polyvariant
element of specialization. new returns a “fresh” variable name; visit(f) schedules f for residual-
ization (if it has not been already); commit(q) appends q to the result (where the name of q is
assumed to have been visited); next returns (and removes) the head of the pending list; and result
returns the generated (i.e., committed) equations.

2.3.3 The residualizing semantics

Recall that in the source language, arguments to function calls are required to be syntactic vari-
ables. We slightly restrict the meaning of types to ensure this. Define first:

[[τ ]]V = [[τ ]]
[[τ ]]V = Var

Meaning of types:

[[τ ]]R = [[τ ]]
[[τ ]]R = Exp

[[τ̂1 * . . . * τ̂n->τ̂ ]]R = [[[τ̂1]]V × . . .× [[τ̂n]]V → T [[τ̂ ]]R]

Meaning of typing environments:

[[Γ̂]]R = Πx∈dom bΓ[[Γ̂(x)]]R = {ρ̂ | dom ρ̂ = dom Γ̂, ∀x ∈ dom Γ̂. ρ̂(x) ∈ [[Γ̂(x)]]V}
[[Ψ̂]]R = Πf∈dom bΨ[[Ψ̂(f)]]R = {ξ̂ | dom ξ̂ = domΨ̂, ∀f ∈ dom Ψ̂. ξ̂(f) ∈ [[Ψ̂(f)]]R}

We previously assumed that each base value was represented by a literal (an extension to booleans
is trivial); we now let ↓τ (·) : [[τ ]] → Exp pick particular such literals, i.e., for every a ∈ [[τ ]], if
↓τ (a) = l then [[l]] ξ ρ = bac.

Meaning of well-typed terms: If Ψ̂, Γ̂ ` ê : τ̂ , we define [[ê]]R ∈ [[[Ψ̂]]R → [[[Γ̂]]R → T [[τ̂ ]]R]].
Note that the only effectful operations used are new and visit.

[[l]]R ξ̂ ρ̂ = η(L(l))
[[true]]R ξ̂ ρ̂ = η(tt)

[[false]]R ξ̂ ρ̂ = η(ff)
[[c(ê1,. . .,ên)]]R ξ̂ ρ̂ = [[ê1]]R ξ̂ ρ̂ ? λv1. . . . [[ên]]R ξ̂ ρ̂ ? λvn.

γT (C(c)(v1, . . . , vn))

[[if ê1 then ê2 else ê3]]R ξ̂ ρ̂ = [[ê1]]R ξ̂ ρ̂ ? λb. case b of

{
tt → [[ê2]]R ξ̂ ρ̂

ff → [[ê3]]R ξ̂ ρ̂

[[x]]R ξ̂ ρ̂ = η(ρ̂(x))
[[letx:τ̂1 ⇐ ê1 in ê2]]R ξ̂ ρ̂ = [[ê1]]R ξ̂ ρ̂ ? λv. [[ê2]]R ρ̂[x 7→ v]
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[[f(x1, . . . ,xn)]]R ξ̂ ρ̂ = ξ̂(f)(ρ̂(x1), . . . , ρ̂(xn))

[[$τ ê]]R ξ̂ ρ̂ = [[ê]]R ξ̂ ρ̂ ? λv. η(↓τ (v))
[[c(ê1,. . .,ên)]]R ξ̂ ρ̂ = [[ê1]]R ξ̂ ρ̂ ? λe1. . . . [[ên]]R ξ̂ ρ̂ ? λen.

η(c(e1,. . .,en))
[[if ê1 then ê2 else ê3]]R ξ̂ ρ̂ = [[ê1]]R ξ̂ ρ̂ ? λe1. [[ê2]]R ξ̂ ρ̂ ? λe2. [[ê3]]R ξ̂ ρ̂ ? λe3.

η(if e1 then e2 else e3)
[[letx:τ1 ⇐ ê1 in ê2]]R ξ̂ ρ̂ = new ? λy. [[ê1]]R ξ̂ ρ̂ ? λe1. [[ê2]]R ξ̂ ρ̂[x 7→ y] ? λe2.

η(let y:τ1 ⇐ e1 in e2)

If Ψ̂, Γ̂ ` f(x1, . . . ,xn) : τ with Ψ̂(f) = σ̂ then

[[f(x1, . . .,xn)]]R ξ̂ ρ̂ = visit(f(bρ(x(1)
bσ
),...,bρ(x(|bσ|)

bσ
))) ? λu.

η(f(bρ(x(1)
bσ
),...,bρ(x(|bσ|)

bσ
))(ρ̂(x(1)bσ

), . . . ,ρ̂(x(|bσ|)bσ
)))

Recall above that ρ̂(x(1)
bσ
) . . . ρ̂(x(|bσ|)

bσ
) is simply the values of the static arguments, and ρ̂(x(1)bσ

)
. . . ρ̂(x(|bσ|)bσ

) are the values (which must be variables due to [[·]]V) of the dynamic arguments.
If Ψ̂ ` q̂ : (f, σ̂) we define [[q̂]]R ∈ [[[Ψ̂]]R → [[σ̂]]R] by

[[f:σ̂(x1, . . . ,xn)=ê]]R ξ̂ = λ(v1, . . . , vn). [[ê]]R ξ̂ {xi 7→ vi | i∈ [1..n]}
Since the residualized meaning of a dynamic equation is an expression-generating function, we
shall need a way to convert it to an equation. All we need is a function name, some distinct
variables (fresh variables are fine), and some values: if D(σ̂) and g ∈ [[σ̂]]R, we define ↓bσ (g)(·, ·) ∈
[(FVar × [[‖σ̂‖]]) → TEqn] by

↓bσ (g)(f, (v1, . . . , vk)) = new ? λx1. . . . new ? λxk′ . currybσ(g)(v1, . . . , vk)(x1, . . . , xk′) ? λe.
η(f:σ̂(x1, . . . ,xk′)=e)

The output, if any, is the corresponding residual equation (note that the use of currybσ(g) is
inessential, it is only a convenient way to properly merge the static and dynamic arguments).

If ` [q̂1, . . .,q̂n] : Ψ̂ where (∀i∈ [1..n]. Ψ̂ ` q̂i : (fi, σ̂i)), we define [[d̂]]R ∈ [[Ψ̂]]R by

[[[q̂1, . . .,q̂n]]]R =
(

let Φ̃(ξ̂) = {fi 7→ [[q̂i]]R ξ̂ | i∈ [1..n]}
in fix(Φ̃)

)
We can now define our polyvariant specialization algorithm. The central part is the computation
of the transitive closure of visited functions.

If ξ̂ ∈ [[Ψ̂]]R, the transitive closure, closebΨ(ξ̂) : TDecl , is defined as follows. Let Φ be the
underlying operator:

Φ(F ) = next ? λs. case s of


in1(∗) → result

in2(f(v1,...,vk)) → ↓bΨ(f) (ξ̂(f))(f(v1,...,vk), (v1, . . . , vk)) ? λq.

commit(q) ? F

Define then
closebΨ(ξ̂) = fix(Φ)

It is a simple worklist algorithm, where the pending list is processed. The output, if any, is a
declaration consisting of a self-contained finite set of specialized functions.

Let δ0 = {i 7→ 0, seen 7→ ∅, pen 7→ nil, res 7→ nil} be the initial state.
If ` p̂ : σ̂, we define [[p̂]]R ∈ [[[‖σ̂‖]] → Pgm⊥] by

[[local d̂ in f ]]R (v1, . . . , vk) =
(visit(f(v1,...,vk)) ? λu. closebΨ([[d̂]]R)) δ0 † λ(d, δ). blocald in f(v1,...,vk)c

We will show our putative polyvariant specializer to be sound; i.e., if ` p̂ : σ̂ and [[p̂]]R(v1, . . . , vk)
= bpc then ` p : σ̂ and [[p]] = currybσ([[‖p̂‖]])(v1, . . . , vk). Since the specializer blindly follows anno-
tations, it may easily diverge. Under certain conditions, however, we can guarantee termination.
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2.4 Correctness of the algorithm
The main contribution of this work, namely the proof, is quite technical. This is large due to the
two major complications: keeping track of the transitive closure and taming symbolic unfolding.

2.4.1 The transitive closure

We need to keep tight control with the state, as it is passed around, to prove that closebΨ(ξ̂)
will actually compute a transitive closure. Informally, everything will run smoothly if (1) the
generation of the equations uses only new and visit (i.e., does not corrupt the bookkeeping); and
(2) the initial state is not already corrupted.

To specify that only new and visit are used, we define the set of simple extensions of a state,

extbΨ(δ) =
{

δ′
∣∣∣∣ ∃i ≥ δ(i). ∃f1, . . . , fn ∈ FVar bΨ, n ≥ 0.

(visit(f1) ? λu. . . . ? visit(fn)) δ[i 7→ i] = b(∗, δ′)c
}

Note that simple extensions are transitive: if δ′ ∈ extbΨ(δ) and δ′′ ∈ extbΨ(δ′) then δ′′ ∈ extbΨ(δ).
We define a state δ to be well-formed, written wellbΨ(δ), if the elements of δ(pen), P , are all

distinct, P ∪ dom δ(res) = δ(seen) ⊆ FVar bΨ, and P ∩ dom δ(res) = ∅. For any typing context
Ψ̂, the initial state is well-formed; and so are its simple extensions: if δ ∈ extbΨ(δ0) then wellbΨ(δ).

Operationally, the computation of closebΨ(ξ̂) can be thought of as progressing through a series
of well-formed states, which we will call the well-formed extensions, defined by

wextbΨ(δ) =
{

δ′
∣∣∣∣ ∃δ′′ ∈ extbΨ(δ), q1, . . . , qn, n ≥ 0, wellbΨ(δ), wellbΨ(δ′), wellbΨ(δ′′). # δ′′(pen) ≥ n

∧ (next ? λs1. commit(q1) . . . next ? λsn. commit(qn)) δ′′ = b(∗, δ′)c
}

where # l denotes the length of a list l. Also these extensions are transitive: if δ′ ∈ wextbΨ(δ) and
δ′′ ∈ wextbΨ(δ′) then δ′′ ∈ wextbΨ(δ).

We will now prove that if closebΨ(ξ̂) terminates then the result is indeed a transitive closure.

Lemma 3 If ` d̂ : Ψ̂, (visit(f) ? λu. closebΨ(ξ̂)) δ0 = b(d, δ′)c, and

∀q, f, (v1, . . . , vk), δ′′, δ′′′. (↓bΨ(f) (ξ̂(f))(f(v1,...,vk), (v1, . . . , vk)) δ′′ = b(q, δ′′′)c) ⇒ δ′′′ ∈ extbΨ(δ′′)

then δ′ ∈ wextbΨ(δ0), δ′(res) = d, δ′(seen) = dom d, and ∀q ∈ δ′(res). ∃f, (v1, . . . , vk), δ′′, δ′′′.

1. ↓bΨ(f) (ξ̂(f))(f(v1,...,vk), (v1, . . . , vk)) δ′′ = b(q, δ′′′)c
2. δ′ ∈ wextbΨ(δ′′′).

Proof: By fixed-point induction. Define the predicate P ⊆ TDecl by

P =



F

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀d̂, Ψ̂, d, δ, δ′, ξ̂.
if ` d̂ : Ψ̂, wellbΨ(δ), F (δ) = b(d, δ′)c, and

a. ∀q, f, (v1, . . . , vk), δ′′, δ′′′.
(↓bΨ(f) (ξ̂(f))(f(v1,...,vk), (v1, . . . , vk)) δ′′ = b(q, δ′′′)c) ⇒ δ′′′ ∈ extbΨ(δ′′)

b. ∀q ∈ δ(res). ∃f, (v1, . . . , vk), δ′′, δ′′′.
↓bΨ(f) (ξ̂(f))(f(v1,...,vk), (v1, . . . , vk)) δ′′ = b(q, δ′′′)c ∧ δ′ ∈ wextbΨ(δ′′′)

then δ′ ∈ wextbΨ(δ), δ′(res) = d, δ′(seen) = domd, and
∀q ∈ δ′(res). ∃f, (v1, . . . , vk), δ′′, δ′′′.
1. ↓bΨ(f) (ξ̂(f))(f(v1,...,vk), (v1, . . . , vk)) δ′′ = b(q, δ′′′)c
2. δ′ ∈ wextbΨ(δ′′′)



.

P is clearly pointed; it is also easily verified to be inclusive, noting that any ω-chain Fi will
eventually stabilize for each δ due to TDecl = [∆ → (Decl ×∆)⊥] being a function space with a
flat co-domain. Note that condition (a.) simply require that the generation of the equations use
only new and visit, and condition (b.) is only needed to make the induction go through. The
lemma follows by fixed-point induction on P , using the operator Φ underlying closebΨ(ξ̂). �
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For concrete applications, we shall also need to prove that computing the transitive closure actually
terminates, if there is a finite bound X for visited functions for each set of given static parameter
values (and the generation of residual functions from X does not diverge). To support the Knuth-
Morris-Pratt application in Section 3, where we also want to specify size bounds of the generated
programs, a simple – although technical – lemma is the most convenient:

Lemma 4 If ` d̂ : Ψ̂, X ⊆fin FVar bΨ, and ∀f(v1,...,vk) ∈ X, δ. (δ(seen) ⊆ X) ⇒ ∃q, δ′.

1. ↓bΨ(f) (ξ̂(f))(f(v1,...,vk), (v1, . . . , vk)) δ = b(q, δ′)c ∧ δ′ ∈ extbΨ(δ)

2. δ′(seen) ⊆ X,

then ∀δ. (δ(seen) ⊆ X ∧ wellbΨ(δ)) ⇒ ∃d, δ′. closebΨ(ξ̂) δ = b(d, δ′)c ∧ δ′(seen) ⊆ X.

Proof: Assume that the premise holds, and let δ be given. The lemma follows by mathematical
induction on |X − δ(res)|. �

Of course, finding such a finite X is undecidable in general.

2.4.2 Symbolic unfolding

Symbolic unfolding turns out to be the main source of complication, for three reasons:

1. Renaming of bound variables had to be included and must be sound (captured as . ).

2. The result of unfolding must be correct (captured as / ).

3. Soundness can not be established equationally by fixed-point induction (complicating / ).

We will first consider renaming of variables. It will be useful to recall the symbolic unfolding
case from the residualizing semantics:

[[f(x1, . . . ,xn)]]R ξ̂ ρ̂ = ξ̂(f)(ρ̂(x1), . . . , ρ̂(xn))

Here ξ̂(f) is an expression-generating function. First, we must ensure that ξ̂(f) is given sound
arguments (e.g., to ensure that generated expressions are not untypable).

Given Γ̂, ρ̂ ∈ [[Γ̂]]R, and ρ ∈ [[‖Γ̂‖]], we define

ρ̂ .i
bΓ

ρ ⇔ (∀x ∈ dom Γ̂. S(Γ̂(x)) ⇒ ρ̂(x) = ρ(x)) ∧
(∀x ∈ dom Γ̂. D(Γ̂(x)) ⇒ ρ̂(x) /∈ {yi, yi+1, . . .}) ∧
∀x, y ∈ dom Γ̂. ρ̂(x) = ρ̂(y) ⇒ (Γ̂(x) = Γ̂(y) ∧ ρ(x) = ρ(y))

Thus, ρ̂ .i
bΓ

ρ asserts that ρ̂ is consistent with ρ, in the sense that ρ can be obtained from ρ̂ by
assigning values to its variables (which must not clash with name generation).

If ρ̂ .i
bΓ

ρ, let
Γ̂α(ρ̂) = {ρ̂(x) 7→ Γ̂(x) |x ∈ dom Γ̂, D(Γ̂(x))}
ρ

bΓ
α(ρ̂) = {ρ̂(x) 7→ ρ(x) |x ∈ dom Γ̂, D(Γ̂(x))}

These functions propagate types and values through the α-renaming defined by ρ̂, that is, they
describe how typing and value environments are transformed to apply to the generated expression.
They are well-defined by ρ̂’s consistency with ρ. Note that ρ

bΓ
α(ρ̂) ∈ [[‖Γ̂α(ρ̂)‖]] and that static types

and values are not propagated.
We shall need the following simple properties about . .

Lemma 5 If ρ̂ .i
bΓ

ρ then

1. if j > i then ρ̂ .j
bΓ

ρ.
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2. if v ∈ [[τ ]] then
(a) ρ̂[x 7→ v] .i

bΓ[x 7→τ ]
ρ[x 7→ v]

(b) Γ̂[x 7→ τ ]α(ρ̂[x 7→ v]) = Γ̂α(ρ̂)

(c) ρ[x 7→ v]
bΓ[x 7→τ ]
α (ρ̂[x 7→ v]) = ρ

bΓ
α(ρ̂)

3. if v ∈ [[τ ]] then

(a) ρ̂[x 7→ yi] .i+1
bΓ[x 7→τ ]

ρ[x 7→ v]

(b) Γ̂[x 7→ τ ]α(ρ̂[x 7→ yi]) = (Γ̂α(ρ̂))[yi 7→ τ ]

(c) ρ[x 7→ v]
bΓ[x 7→τ ]
α (ρ̂[x 7→ yi]) = (ρbΓ

α(ρ̂))[yi 7→ v]

4. if x ∈ dom Γ̂ then Γ̂α(ρ̂)(ρ̂(x)) = Γ̂(x) and ρ
bΓ
α(ρ̂)(ρ̂(x)) = ρ(x).

5. if (∀j∈ [1..n]. xj ∈ dom Γ̂) and z1, . . . , zn are distinct variables then

(a) {zi 7→ ρ̂(xi) | i∈ [1..n]} .i
{zi 7→bΓ(xi) | i∈[1..n]} {zi 7→ ρ(xi) | i∈ [1..n]}

(b) {zi 7→ Γ̂(xi) | i∈ [1..n]}α({zi 7→ ρ̂(xi) | i∈ [1..n]}) = Γ̂α(ρ̂)

(c) {zi 7→ ρ(xi) | i∈ [1..n]}{zi 7→bΓ(xi) | i∈[1..n]}
α ({zi 7→ ρ̂(xi) | i∈ [1..n]}) = ρ

bΓ
α(ρ̂)

Proof: Straightforward in all cases. �

We now consider the two last reasons. We first illustrate the latter, technical reason: recall the
power function from the introduction (glossing over syntactic restrictions),

q̂ = power(n,x) = if (n=0) then 1 else x*(power(n-1,x))

(placed in context p̂ = local[q̂] in power) and its specialized version,

q = power2(x) = x*(x*1)

(placed in context p = local[q] in power2). We thus have [[p̂]]R(2) = bpc. By soundness of
specialization, the following equality is required to hold (unfolding the definition for curry):

[[p]] = λx. [[‖p̂‖]](2, x)

By further unfolding the definitions, we can recognize it as a relation between two fixed points,

fix(Φ′)(power2) = λx. fix(Φ)(power)(2, x)

where Φ′ = λξ′. {power2 7→ [[q]] ξ′} and Φ = λξ. {power 7→ [[‖q̂‖]] ξ}. The standard technique
for proving such equalities is fixed-point induction, here on the pointed and inclusive relation
P = {(ξ′, ξ) | ξ′(power2) = λx. ξ(power)(2, x)}. But we cannot prove the inductive case, i.e., if
(ξ′, ξ) ∈ P then (Φ′(ξ′), Φ′(ξ)) ∈ P , because it does not hold. The problem can be illustrated
using the example, where we have by definition (simplifying the total arithmetic functions):

[[‖q̂‖]] ξ = λ(n, x). case (n = 0) of
{

tt → 1
ff → ξ(power)(n− 1, x) † λr. bx× rc

[[q]] ξ′ = λx. bx × xc
Then,

λx.⊥(power)(2, x)= ⊥ = ⊥ =⊥(power2)
λx. Φ(⊥)(power)(2, x)= ⊥ 6= λx. bx× xc= Φ′(⊥)(power2)

λx. Φ(Φ(⊥))(power)(2, x)= ⊥ 6= λx. bx× xc= Φ′(Φ′(⊥))(power2)
λx. Φ(Φ(Φ(⊥)))(power)(2, x)=λx. bx × xc= λx. bx× xc= Φ′(Φ′(Φ′(⊥)))(power2)

etc.
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So although the desired equality certainly does hold, we cannot in general prove it by fixed-point
induction alone. We can observe that fixed-point induction may give us one direction, namely

λx. fix(Φ)(power)(2, x) v fix(Φ′)(power2)

This direction does actually hold in general.
For the other direction, consider the residual meaning of power:

[[q̂]]R ξ̂ = λ(n, x). case (n = 0) of
{

tt → 1
ff → ξ̂(power)(n− 1, x) † λr. bx*rc

Let Φ̃ = ξ̂. {power 7→ [[q̂]]R ξ̂}. Here, the symbolic unfoldings are

⊥(2, x) = ⊥ = ⊥
Φ̃(⊥)(2, x) = ⊥(1, x) † λr. bx*rc = ⊥

Φ̃(Φ̃(⊥))(2, x) = ⊥(0, x) † λr. bx*rc † λr. bx*rc = ⊥
Φ̃(Φ̃(Φ̃(⊥)))(2, x) = b1c † λr. bx*rc † λr. bx*rc = bx*x*1c

etc.

The fallacy of the above example was to assume that the specialization terminated, thereby im-
plicitly using fix(Φ̃) to define the operator Φ′ and thus unavoidably baking adequate symbolic
unfolding into it. So while Φi(⊥) and Φ̃i(⊥) are in perfect harmony, Φi(⊥) and Φ′i(⊥) are not
until the regular unfolding has “caught up” with the symbolic unfolding (which happens at i = 3
in the example). A central concept in the proof is precisely this relationship, written / .

Given Ψ̂, ξ̂ ∈ [[Ψ̂]]R, and ξ ∈ [[‖Ψ̂‖]], we define

ξ̂ /bΨ ξ ⇔ (∀f ∈ dom Ψ̂. S(Ψ̂(f)) ⇒ ξ̂(f) = γT ◦ ξ(f))∧
∀f ∈ domΨ̂.D(Ψ̂(f)) ⇒ ∀τ̂1, . . . , τ̂n, τ, Γ̂, x1, . . . , xn, ρ̂, ρ, δ, δ′, ξ′, e.
if Ψ̂(f)= τ̂1 * . . .* τ̂n->τ , dom Γ̂={x1, . . . , xn}, (∀i∈ [1..n]. Γ̂(xi) = τ̂i),

ρ̂ .δ(i)
bΓ

ρ, ξ′ v ξ, and ξ̂(f)(ρ̂(x1), . . . , ρ̂(xn)) δ = b(e, δ′)c
then δ′ ∈ extbΨ(δ) and, letting X = δ′(seen),

1. ‖Ψ̂(X)‖, ‖Γ̂α(ρ̂)‖ ` e : τ

2. [[e]] (currybΨ(ξ)(X)) ρ
bΓ
α(ρ̂) = ξ(f)(ρ(x1), . . . , ρ(xn))

3. ξ′(f)(ρ(x1), . . . , ρ(xn)) v [[e]] (currybΨ(ξ′)(X)) ρ
bΓ
α(ρ̂)

There are four parts (beyond bookkeeping): the static case and the numbered dynamic conclusions.
The static case (the first line) simply requires that ξ̂(f) is identical to ξ(f) (modulo η).
The dynamic case (the remaining lines) addresses several issues, given the premise that the

symbolic unfolding of ξ̂(f) terminates and is called from some valid typing context Γ̂ with sound
renaming ρ̂ .

bΓ
ρ. Then, (case 1.) the generated expression must be well-typed in the residual

context; (case 2.) the meaning of it in this context must be equal to the meaning of the erasured
function call; and (case 3.) if further ξ′ v ξ then only one direction of (case 2.) is guaranteed
to hold when substituting ξ′ for ξ. We can thus recognize the two cases of symbolic unfolding
mentioned above: (case 2.) can be read as ξ is “adequately unfolded” with repect to ξ̂, and (case
3.) as any ξ′ v ξ is perhaps “inadequately unfolded” with repect to ξ̂.

We can now present an outline for the soundness proof (illustrated by power).

1. Show by structural induction that, given ξ̂ / ξ, the RHS generalizes to all terms, not just
the case for symbolic unfolding (Lemmas 7-10).

2. Establish [[[q̂]]]R / [[‖[q̂]‖]], i.e., fix(Φ̃) / fix(Φ), by fixed-point induction (Lemma 11).
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3. Use (case 3.) of the RHS, taking Φi(⊥) v fix(Φ), to show

λx. fix(Φ)(power)(2, x) v fix(Φ′)(power2)

by fixed-point induction. Further,
Φ′({power2 7→ λx. fix(Φ)(power)(2, x)})
= {power2 7→ [[q]] {power2 7→ λx. fix(Φ)(power)(2, x)}}
= {power2 7→ λx. ([[‖q̂‖]] fix(Φ))(2, x)} By (case 2.) of the RHS
= {power2 7→ λx. (Φ(fix(Φ))(power))(2, x)}
= {power2 7→ λx. fix(Φ)(power)(2, x)} By Φ(fix(Φ)) = fix(Φ)

Hence, {power2 7→ λx. fix(Φ)(power)(2, x)} is a fixed point of Φ′ and therefore greater than
its least fixed point, fix(Φ′). Consequently,

λx. fix(Φ)(power)(2, x) w fix(Φ′)(power2)

This completes the key lemma (Lemma 12), which implies soundness (Theorem 1).

The typing parts are unproblematic, so is accounting for the transitive closure.

We have a technical requirement for / , namely that is admits fixed-point induction:

Lemma 6 For fixed Ψ̂, P = {(ξ̂, ξ) | ξ̂ /bΨ ξ} is pointed (i.e., (⊥,⊥) ∈ P ) and inclusive (i.e.,
closed under ω-chains).

Proof: Straightforward verification. �

Remark 1 It may be instructive to consider omitting symbolic unfolding. There would be no need
for renaming, so dynamic variables could be syntactically preserved by the residualizing seman-
tics (the restriction that function arguments must be variables also becomes unnecessary). The
definitions of this section are considerably simplified:

ρ̂ .i
bΓ

ρ ⇔ ∀x ∈ dom Γ̂. S(Γ̂(x)) ⇒ ρ̂(x) = ρ(x)
Γ̂α(ρ̂) = {x 7→ Γ̂(x) |x ∈ dom Γ̂, D(Γ̂(x))}
ρ

bΓ
α(ρ̂) = {x 7→ ρ(x) |x ∈ dom Γ̂, D(Γ̂(x))}

ξ̂ /bΨ ξ ⇔ ∀f ∈ dom Ψ̂. S(Ψ̂(x)) ⇒ ξ̂(f) = γT ◦ ξ(f)

Most importantly, the simple fixed-point induction is now strong enough to prove correctness.

2.4.3 Soundness of the residualizing semantics

Soundness of the residualizing semantics follows the proof outline from above.
Static terms form a proper subset of the language, where the non-standard semantics agrees

with the standard ones:

Lemma 7 If Ψ̂, Γ̂ ` ê : τ , ξ̂ /bΨ ξ, and ρ̂ .i
bΓ

ρ then [[ê]]R ξ̂ ρ̂ = γT ([[‖ê‖]] ξ ρ).

Proof: Straightforward, by structural induction. �

Lemma 8 If Ψ̂ ` q̂ : (f, σ̂), S(σ̂), and ξ̂ /bΨ ξ then [[q̂]]R ξ̂ = γT ◦ ([[‖q̂‖]] ξ).
Proof: Follows directly from lemma 7. �

Dynamic terms and their residualized versions have the same meaning in the standard seman-
tics, taking appropriate contexts into account.

Lemma 9 If Ψ̂, Γ̂ ` ê : τ , ξ̂ /bΨ ξ, ρ̂ .δ(i)
bΓ

ρ, ξ′ v ξ, and ([[ê]]R ξ̂ ρ̂) δ = b(e, δ′)c then δ′ ∈ extbΨ(δ)
and, letting X = δ′(seen),
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1. ‖Ψ̂(X)‖, ‖Γ̂α(ρ̂)‖ ` e : τ

2. [[e]] (currybΨ(ξ)(X)) ρ
bΓ
α(ρ̂) = [[‖ê‖]] ξ ρ

3. [[‖ê‖]] ξ′ ρ v [[e]] (currybΨ(ξ′)(X)) ρ
bΓ
α(ρ̂)

Proof: By structural induction, using Lemmas 1, 5(1-4), and 7. �

Lemma 10 If Ψ̂ ` q̂ : (f, σ̂), D(σ̂), ξ̂ /bΨ ξ, ξ′ v ξ, (v1, . . . , vk) ∈ [[‖σ̂‖]], and furthermore
(↓bσ ([[q̂]]R ξ̂)(f(v1,...,vk), (v1, . . . , vk))) δ = b(q, δ′)c then δ′ ∈ extbΨ(δ) and, letting X = δ′(seen),

1. ‖Ψ̂(X)‖ ` q : (f(v1,...,vk), ‖σ̂‖)
2. [[q]] (currybΨ(ξ)(X)) = currybσ([[‖q̂‖]] ξ)(v1, . . . , vk)

3. currybσ([[‖q̂‖]] ξ′)(v1, . . . , vk) v [[q]] (currybΨ(ξ′)(X))

Proof: Follows from Lemma 9, using Lemma 5(1-3). �

The declaration level is where all the pieces must fit together. First, we need to establish that
a residualized declaration provides sound symbolic unfolding:

Lemma 11 If ` d̂ : Ψ̂ then [[d̂]]R /bΨ [[‖d̂‖]].

Proof: By fixed-point induction, using Lemmas 5(5), 6, 8, and 10. �

We are now in position to establish the key soundness lemma.

Lemma 12 If ` d̂ : Ψ̂ and (visit(f) ? λu. closebΨ([[d̂]]R)) δ0 = b(d, δ)c then, letting X = δ(seen),

1. ` d : ‖Ψ̂(X)‖
2. [[d]] = currybΨ([[‖d̂‖]])(X)

Proof: Assume that ` d̂ : Ψ̂ and (visit(f) ? λu. closebΨ([[d̂]]R)) δ0 = b(d, δ)c. Note first the condi-
tions for Lemma 3 are straightforwardly satisfied, using the simple extension part of Lemma 10
(formally triggered by Lemma 11).

(1.) We aim to establish that each equation q ∈ d is well-typed in typing context ‖Ψ̂(X)‖ and
that domd = dom ‖Ψ̂(X)‖ = X , i.e., that the premise for the typing rule for declarations holds.

Let q ∈ d be arbitrary. By Lemma 3(1), there is some f ′ ∈ domΨ̂, (v1, . . . , vk), δ′′, and δ′′′ such
that ↓bΨ(f ′) ([[d̂]]R(f ′))(f ′(v1,...,vk), (v1, . . . , vk)) δ′′ = b(q, δ′′′)c. Let Y = δ′′′(seen). By Lemma 10(1)
(formally triggered by Lemma 11),

‖Ψ̂(Y )‖ ` q : (f ′(v1,...,vk), σ̂)

By Lemma 3(2), Y ⊆ X , so by weakening (Lemma 2(1)),

‖Ψ̂(X)‖ ` q : (f ′(v1,...,vk), σ̂)

Since q was arbitrary, each q ∈ d is well-typed in context ‖Ψ̂(X)‖.
By Lemma 3, δ′(seen) = dom d, i.e., X = domd.
The conclusion, ` d : ‖Ψ̂(X)‖, then follows by the typing rule for declarations.

(2.) Let Φ and Φ′ denote the operators underlying [[‖d̂‖]] and [[d]], resp. We consider each
direction of the equality separately, as motivated in Section 2.4.2.
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Case currybΨ([[‖d̂‖]])(X) v [[d]]: Let

P = {(ξ, ξ′) ∈ [[‖Ψ̂‖]]× [[‖Ψ̂(X)‖]] | currybΨ(ξ)(X) v ξ′ ∧ ξ v [[‖d̂‖]]}

It is straightforward to verify that the predicate is pointed and inclusive. We proceed by
fixed-point induction. Assume (ξ, ξ′) ∈ P .

Let f ′(v1,...,vk) ∈ X be arbitrary. By well-typedness of d̂, there is some q̂ ∈ d̂ and σ̂ such
that Ψ̂ ` q̂ : (f ′, σ̂). By Lemma 3(1) and part 1, there exists q ∈ d, δ′′ and δ′′′ such that
↓bσ ([[d̂]]R(f ′))(f ′(v1,...,vk), (v1, . . . , vk)) δ′′ = b(q, δ′′′)c. Let Y = δ′′′(seen). Now,

currybσ([[‖q̂‖]] ξ)(v1, . . . , vk)
v [[q]] currybΨ(ξ)(Y ) By ξ v [[‖d̂‖]] and Lemmas 10(3) and 11
= [[q]] currybΨ(ξ)(X) By Lemmas 3(2) and 2(2)
v [[q]] ξ′ By IH and monotonicity

Since f(v1,...,vk) ∈ X was arbitrary,

currybΨ(Φ(ξ))(X)
= {f(v1,...,vk) 7→ currybσ(Φ(ξ)(f))(v1, . . . , vk) | f(v1,...,vk) ∈ X}
= {f(v1,...,vk) 7→ currybσ([[‖q̂‖]] ξ)(v1, . . . , vk) | f(v1,...,vk) ∈ X}
v {f(v1,...,vk) 7→ [[q]] ξ′ | f(v1,...,vk) ∈ X}
= Φ′(ξ′)

By monotonicity of Φ and the fixed-point equation, Φ(ξ) v Φ([[‖d̂‖]]) = [[‖d̂‖]]. Hence,
(Φ(ξ), Φ′(ξ′)) ∈ P ; we can thus conclude currybΨ([[‖d̂‖]])(X) v [[d]].

Case [[d]] v currybΨ([[‖d̂‖]])(X): The idea is to show that currybΨ([[‖d̂‖]])(X) is a fixed point of Φ′

and hence greater than its least fixed point, [[d]].

Let f ′(v1,...,vk) ∈ X be arbitrary. By well-typedness of d̂, there is some q̂ ∈ d̂ and σ̂ such
that Ψ̂ ` q̂ : (f ′, σ̂). By Lemma 3(1) and part 1, there exists q ∈ d, δ′′ and δ′′′ such that
↓bσ ([[d̂]]R(f ′))(f ′(v1,...,vk), (v1, . . . , vk)) δ′′ = b(q, δ′′′)c. Let Y = δ′′′(seen). Thus,

currybσ([[‖q̂‖]] [[‖d̂‖]])(v1, . . . , vk)
= [[q]] currybΨ([[‖d̂‖]])(Y ) By Lemmas 10(2) and 11
= [[q]] currybΨ([[‖d̂‖]])(X) By Lemmas 3(2) and 2(2)

Since f(v1,...,vk) ∈ X was arbitrary,

Φ′(currybΨ([[‖d̂‖]])(X))
= {f(v1,...,vk) 7→ [[q]] currybΨ([[‖d̂‖]])(X) | f(v1,...,vk) ∈ X}
= {f(v1,...,vk) 7→ currybσ([[‖q̂‖]] [[‖d̂‖]])(v1, . . . , vk) | f(v1,...,vk) ∈ X}
= currybΨ(Φ([[‖d̂‖]]))(X)
= currybΨ([[‖d̂‖]])(X) Since [[‖d̂‖]] is a fixed point of Φ

Hence, currybΨ([[‖d̂‖]])(X) is a fixed point of Φ′. Consequently,

[[d]] = fix(Φ′) v currybΨ([[‖d̂‖]])(X)
�

Theorem 1 (soundness) If ` p̂ : σ̂ and [[p̂]]R(v1, . . . , vk) = bpc then

1. ` p : σ̂

2. [[p]] = currybσ([[‖p̂‖]])(v1, . . . , vk)

Proof: Follows directly from Lemma 12, using Lemma 3. �
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3 Application: the Knuth-Morris-Pratt algorithm
String matching has been a subject to extensive investigation in partial evaluation, since Futamura
in 1987 presented the method of Generalized Partial Computation [26]. His method could trans-
form a naive, inefficient string matcher into the search phase of the ingenious Knuth-Morris-Pratt
algorithm [35]. This example (now known as the “KMP-test” [41]) has since fueled numerous
investigations in partial evaluation [1–4, 12, 29, 39–41]. In particular, Consel and Danvy showed
that polyvariant specialization is acutally strong enough to pass the KMP-test, for certain ineffi-
cient string matchers [12]. One notable utility of the KMP-test has been to relate and distinguish
various advanced program transformations with respect to how much information is propagated
(and exploited) by the transformations [39, 41].

However, only recently has it been shown precisely what information should be propagated
to obtain the Knuth-Morris-Pratt algorithm [1]. As an amusing corollary, none of the advanced
transformations that pass the KMP-test actually propagate the precise amount of information
needed to exactly obtain the Knuth-Morris-Pratt algorithm [39].

The value of the formal treatment was thus to pinpoint this precise amount of information.
For the purpose of analysis, a simple polyvariant specializer that actually failed the KMP-test was
used [1]. The reason being that it is much easier to control the source program, which propagates
collected static information about the dynamic argument by itself — a so-called binding-time-
improved algorithm [12], than an advanced transformation.

From a semantic perspective, however, one piece of the formal treatment is still missing, namely
a proof that applying a polyvariant specializer always gives a correct result. We are now in position
to address this problem in full.

We instantiate the signature, Σ = (B, L, C), as follows:

B = {int, char, string}
L(int) = {. . . , -1, 0, 1, . . .}

L(char) = {a, . . . , z}
L(string) = {"c1 · · · cn" |n ∈ N, ∀i∈ [1..n]. ci ∈ L(char)}

C = {+ 7→ int*int->int, - 7→ int*int->int,
=int 7→ int*int->bool, =char 7→ char*char->bool,
ref 7→ string*int->char, length 7→ string->int}

The interpretation of the signature is the obvious one.
For conciseness and readability, we (1) abbreviate both =int and =char as =; (2) write binary

function constants in infix notation; (3) assume implicit let-insertion of function arguments in a
left-to-right order; and (4) write all static, reducible types and terms in italics, instead of overlining
them.

We use the following inefficient string matcher, STAGED [1].

local
main : string*string->int (pat,txt)

= match(pat,txt,0,$0,length(pat),length(txt))
match : string*string*int*int*int*int->int (pat,txt,j,k,lp,lt)

= if (j=lp)
then (k-$j)
else if (k=lt)

then $-1
else compare(pat,txt,j,k,lp,lt)

compare : string*string*int*int*int*int->int (pat,txt,j,k,lp,lt)
= if ($(ref (pat,j))=ref(txt,k))
then match(pat,txt,j+1,k+$1,lp,lt)
else if (j=0)

then match(pat,txt,0,k+$1,lp,lt)
else rematch(pat,txt,j,k,0,1,lp,lt)

19



rematch : string*string*int*int*int*int*int*int->int
(pat,txt,j,k,jp,kp,lp,lt)

= if (kp=j)
then if ( ref (pat,jp)=ref (pat,kp))

then if (jp=0)
then match(pat,txt,0,k+$1,lp,lt)
else rematch(pat,txt,j,k,0,(kp-jp)+1,lp,lt)

else compare(pat,txt,jp,k,lp,lt)
else if ( ref (pat,jp)=ref (pat,kp))

then rematch(pat,txt,j,k,jp+1,kp+1,lp,lt)
else rematch(pat,txt,j,k,0,(kp-jp)+1,lp,lt)

in main

The expensive part of the computation –called backtracking– is encapsulated in the essentially
static rematch function. During specialization, rematch is thus completely unfolded and the
residual program runs in linear time (with a constant factor independent of the pattern pat [41]).
So although inefficient, the string matcher is not particularly naive.

In contrast, more advanced program transformations such as Supercompilation [28,41,42] and
Generalized Partial Computation [25–27] can pass the KMP-test from a naive (i.e., not staged),
inefficient string matcher.

As an example, the result of specializing the inefficient string matcher with repect to the pattern
"abaa" is shown below (we use the notational conventions from above and have further renamed
all variables):

local
main(‘‘abaa”) : string->int (txt)

= match(‘‘abaa”,0,4)(txt,0,length(txt))
match(‘‘abaa”,0,4) : string*int*int->int (txt,k,lt)

= if k=lt then -1 else compare(‘‘abaa”,0,4)(txt,k,lt)
compare(‘‘abaa”,0,4) : string*int*int->int (txt,k,lt)

= if ’a’=ref(txt,k) then match(‘‘abaa”,1,4)(txt,k+1,lt)
else match(‘‘abaa”,0,4)(txt,k+1,lt)

match(‘‘abaa”,1,4) : string*int*int->int (txt,k,lt)
= if k=lt then -1 else compare(‘‘abaa”,1,4)(txt,k,lt)

compare(‘‘abaa”,1,4) : string*int*int->int (txt,k,lt)
= if ’b’=ref(txt,k) then match(‘‘abaa”,2,4)(txt,k+1,lt)

else compare(‘‘abaa”,0,4)(txt,k,lt)
match(‘‘abaa”,2,4) : string*int*int->int (txt,k,lt)

= if k=lt then -1 else compare(‘‘abaa”,2,4)(txt,k,lt)
compare(‘‘abaa”,2,4) : string*int*int->int (txt,k,lt)

= if ’a’=ref(txt,k) then match(‘‘abaa”,3,4)(txt,k+1,lt)
else match(‘‘abaa”,0,4)(txt,k+1,lt)

match(‘‘abaa”,3,4) : string*int*int->int (txt,k,lt)
= if k=lt then -1 else compare(‘‘abaa”,3,4)(txt,k,lt)

compare(‘‘abaa”,3,4) : string*int*int->int (txt,k,lt)
= if ’a’=ref(txt,k) then match(‘‘abaa”,4,4)(txt,k+1,lt)

else compare(‘‘abaa”,1,4)(txt,k,lt)
match(‘‘abaa”,4,4) : string*int*int->int (txt,k,lt)

= k-4
in main(‘‘abaa”)

We will now show that for all patterns, our polyvariant specializer transforms the inefficient
string matcher, STAGED, into a program with the above structure. The proof consists of two parts:
termination of the specializer and properties of the residual programs.

We define the size of a term, | · |, in the obvious way by induction.

Theorem 2 For all strings s there exists a p such that [[STAGED]]R s = bpc and
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1. ` p : string->int

2. [[p]] = currystring*string->int([[‖STAGED‖]])(s)
3. |p| ∈ O(|s|)

Proof: Let s be arbitrary. We will establish the prerequisites for Lemma 4. Define

X = {main(s)} ∪ {match(s,j,|s|) | j ∈ [0..|s|]} ∪ {compare(s,j,|s|) | j ∈ [0..|s| − 1]}
Clearly |X | = 1 + (|s| + 1) + |s|. Let δ be given and let Z = δ(seen) ⊆ X . Let σ̂ =
string*string*int*int*int*int->int.

Let f ∈ X be arbitrary. All cases but the last are completely straightforward.

case f = main(s): Let σ̂′ = string*string->int. Then

(↓bσ′ ([[STAGED]]R(main))(main(s), (s))) δ = b(q, δ′)c
where δ′(seen) = Z ∪ {match(s,0,|s|)}
and q = main(s): σ̂′ (yi) = match(s,0,|s|)(yi,0,length(yi)).

case f = match(s,j,|s|), j ∈ [0..|s| − 1]: Then

(↓bσ ([[STAGED]]R(match))(match(s,j,|s|), (s, j, |s|))) δ = b(q, δ′)c
where δ′(seen) = Z ∪ {compare(s,j,|s|)}
and q = match(s,j,|s|) : bσ (yi,yi+1,yi+2)

= if yi+1=yi+2

then -1
else compare(s,j,|s|)(yi,yi+1,yi+2)

case f = match(s,|s|,|s|): Then

(↓bσ′ ([[STAGED]]R(match))(match(s,|s|,|s|), (s, |s|, |s|))) δ = b(q, δ′)c
where δ′(seen) = Z and q = match(s,|s|,|s|) : bσ (yi,yi+1,yi+2) = k-↓int (|s|)

case f = compare(s,0,|s|): Then, noting that |s| 6= 0,

(↓bσ ([[STAGED]]R(compare))(compare(s,0,|s|), (s, 0, |s|))) δ = b(q, δ′)c
where δ′(seen) = Z ∪ {match(s,0,|s|), match(s,1,|s|)}
and q = compare(s,0,|s|) : bσ (yi,yi+1,yi+2)

= if ↓char (ref(s, 0))=ref(yi,yi+1)
then match(s,1,|s|)(yi,yi+1+1,yi+2)
else match(s,0,|s|)(yi,yi+1+1,yi+2)

case f = compare(s,j,|s|), j ∈ [1..|s| − 1]: This case is slightly more complicated, since we first
need to know how the symbolic unfolding of rematch behaves (essentially [1, Lemma 3]).
Define the termination relation Y as

Y = {(kp− jp, kp) | 0 ≤ jp ≤ kp ≤ j}
ordered by (a1, b1) >Y (a2, b2) ⇔ a1 < a2 ∨ (a1 = a2 ∧ b1 < b2). Note that (j, j) is thus the
least element. By well-founded induction on Y , it is now easy to show that

[[STAGED]]R(rematch)(s, yi, j, yi+1, jp, kp, lp, yi+2) δ = b(e, δ′)c
for some e and δ′, where either e = match(s,0,|s|)(yi,yi+1+1,yi+2) and δ′(seen) = Z ∪
{match(s,0,|s|)} or e = compare(s,jp′,|s|)(yi,yi+1,yi+2) and δ′(seen) = Z∪{compare(s,jp′,|s|)},
for some jp′ ∈ [0..j].
Hence,

(↓bσ ([[STAGED]]R(compare))(compare(s,j,|s|), (s, j, |s|))) δ = b(q, δ′′)c
where δ′′(seen) = δ′(seen) ∪ {match(s,j+1,|s|)}
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and q = compare(s,j,|s|) : bσ (yi,yi+1,yi+2)
= if ↓char (ref(s, j))=ref(yi,yi+1)
then match(s,j+1,|s|)(yi,yi+1+1,yi+2)
else e

Now, by Lemma 4 and the definition of [[STAGED]]R, there is some p such that [[STAGED]]R s = bpc.
By Theorem 1, parts (1.) and (2.) follow.

Let p = locald in f ′. By Lemma 3(1), every q ∈ d is of the form

(↓bσ ([[STAGED]]R(f))(f(v1,...,vk), (v1, . . . , vk))) δ = b(q, δ′)c
where f(v1,...,vk) ∈ X ′ ⊆ X and δ(seen) ⊆ X ′. Hence, we can observe by the above case analysis
that the size of each q is independent of s. Since X contains at most 2|s|+ 2 such equations, we
have established part (3.), namely |p| ∈ O(|s|). �

Since a formal notion of “time” is outside the scope of our denotational framework, we will have
to settle for some informal remarks concerning the efficiency of the specialized programs.

Given any s, it is a simple observation from the proof of Theorem 2 that when running the
specialized program only a constant (i.e., independent of |s|) number of elementary operations
are performed between each comparison, and that these comparisons are preserved exactly from
the binding-time-improved program. From previous work [1], we know that this sequence of
comparisons performed is identical to the sequence performed by the real Knuth-Morris-Pratt
algorithm. Hence, the specialized program is at least as fast (asymptotically) as the linear-time
Knuth-Morris-Pratt algorithm.

Note however that we use a different formal semantics than in previous work [1]. Therefore,
even if we had a formal notion of time, we could not use the previous result directly.

4 Related work
Our closest related work is Filinski’s formalizations of type-directed (monovariant) partial eval-
uation [14, 15, 19, 21, 22]. In fact, the technical aspects of the present work are inspired by Fil-
inski’s work: for call-by-value type-directed partial evaluation with computational effects for the
simply-typed lambda calculus with constants, he uses a denotational semantics parameterized by
a monad. The semantic construction of type-directed partial evaluation is a prime application of
normalization by evaluation [6, 7].

Not only do the correctness proofs involve more advanced techniques, e.g., logical relations due
to being in a higher-order setting, but the elegant semantic construction underlying type-directed
partial evaluation is on closer inspection quite different from ours: the reification functions are
defined by induction on their types, and the residualizing semantics is an instance of a parameteri-
zable, conventional monadic semantics. The latter property is the key to its efficiency, since it can
therefore delegate evaluation to existing, optimizing compilers; here, the types are a crucial part
of the construction (cf. the untyped setting [23]). Type-directed partial evaluation also guarantees
completeness, namely that if a solution (i.e., normal form) exists at all then the algorithm will
also find one (cf. our Lemma 4). Conceivably, one could mimic this construction by defining (syn-
tactic) polyvariant normal forms with a polyvariant reduction system, and prove the polyvariant
specializer complete in the above sense.

Despite the differences, type-directed partial evaluation does however not seem incompatible
with polyvariance. It seems possible to introduce a new dynamic “polyvariant” fixed-point constant
to the current framework, and instantiating the monadic semantics with a more complicated monad
capable of handling the necessary bookkeeping, similarly to our T . The interpretation of the new
constant would then compute the transitive closure, possibly restricting polyvariance to a first-
order fragment only using typing (in contrast to using the syntax grammar, as in our work).

Hatcliff and Danvy [30] have formalized a (monovariant) partial evaluator for Moggi’s com-
putational metalanguage. The partial evaluator is proven sound with repect to an underlying
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operational semantics. Their formalization is evaluation-order independent and captures so-called
control-based binding-time improvements (e.g., let-rearrangements) via the monadic laws.

In a small-step operational setting, they make the technical shortcut that “stuck” terms, i.e.,
irreducible non-values, are disallowed (and thus avoid two distinct notions of partiality, arising
from both “stuck” terms and infinitely-reducing terms). This choice implies, in particular, that
function constants must denote pure total functions. For example, using natural numbers, they
consequently define pred(0) = 0, i.e., 0 − 1 = 0, to avoid pred(0) being “stuck”. In contrast, we
explitly allow both static and dynamic primitive functions to be partial.

Later, Lawall and Thiemann re-investigated sound (monovariant) specialization, also from an
operational standpoint [36]. Finally, Ager, Danvy, and the author’s treatment of the Knuth-
Morris-Pratt algorithm is based on a formal semantic foundation [1]; this work was mentioned in
more detail in Section 3.

5 Perspectives
The present work suggests several research directions.

5.1 Computational effects
A natural generalization is to allow arbitrary computational effects by parameterizing the source
language by a monad. We not only gain expressibility, but can also keep track of dynamic compu-
tations more accurately. For the Knuth-Morris-Pratt algorithm, by the sheer possibility of making
(dynamic) references to the text effectful, the residualizing semantics is forced by soundness to
preserve them. Hence, the preservation of the algorithm’s trace (the sequence of these references)
will be guaranteed by the specializer [1].

Other natural generalizations would be to allow higher-order functions or partially-static data
structures [33]. A promising direction would be to try to integrate polyvariance into type-directed
partial evaluation, as suggested in Section 4.

5.2 Selective bounded static variation
Another natural generalization is to parametrize the residualizing semantics by a monad (layered
on top of the source monad). This would allow more radical program rearrangements, e.g., via the
continuation monad [19]. In particular, an “unlift” operation, @, (namely bounded static variation)
can be defined:

Ψ̂, Γ̂ ` ê : τ |[[‖τ‖]]| < ∞
Ψ̂, Γ̂ ` @ê : τ

This rule will give rise to a lookup table in the residual program. In the realm of string matching,
Danvy and the author have discovered that the key bad-character-shift heuristic of the efficient
Boyer-Moore algorithm [10,31] can be seen as an instance of bounded static variation [17].

5.3 Resource-bounded partial evaluation
If we are given only limited (insufficient) resources to compute the residual program, we may
consider stopping the partial evaluator prematurely. The result will then be the already completed
specialized functions, some trivially specialized functions (i.e., the pending functions and values,
which are scheduled for specialization), and the original program [16]. Note that such an algorithm
is indifferent to whether or not the number of specialized functions is finite. We expect that the
current proof can be adapted without much difficulty.

The real challenge will be to decide what should be specialized [16, 18]. Naively, we can view
the pending list as a priority queue, taking the priority to be simply be the number of potential
callers. Advanced profiling methods are probably preferable, particularly if they take selective
bounded static variation into account. Given a sufficiently powerful profiling analysis, the idea in
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a nutshell is thus to focus the specialization effort (enhanced by tabulation) where it is expected
to pay off most.

6 Conclusion
We have presented the first formal correctness proof of an offline polyvariant specialization algo-
rithm for first-order recursive equations. Our approach has been to formulate the algorithm as a
non-standard denotational semantics for the first-order language, and we have been able to estab-
lish correctness using mainly structural induction and fixed-point induction. The main technical
challenges have been to keep track of the transitive closure and to tame symbolic unfolding.

As an application, the specialization algorithm has been shown to generate a program imple-
menting the search phase of the Knuth-Morris-Pratt algorithm from an inefficient, but binding-
time-improved, string matcher. Here, our formalization sharpens the existing analysis of informa-
tion propagation.

The present work suggests several extensions, as already mentioned in Section 5. It is also a step
towards a formalization of more advanced program transformations, such as Supercompilation and
Generalized Partial Computation.
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