
February 23, 2007

Evaluating Static Analysis Defect Warnings
On Production Software

Nathaniel Ayewah, William Pugh
University of Maryland

ayewah,pugh@cs.umd.edu

J. David Morgenthaler, John Penix,
YuQian Zhou

Google, Inc.
jdm,jpenix,zhou@google.com

Abstract
Static analysis tools for software defect detection are becoming
widely used in practice. However, there is little public information
regarding the experimental evaluation of the accuracy and value of
the warnings these tools report. In this paper, we discuss the warn-
ings found by FindBugs, a static analysis tool that finds defects in
Java programs. We discuss the kinds of warnings generated and the
classification of warnings into false positives, trivial bugs and se-
rious bugs. We also provide some insight into why static analysis
tools often detect true but trivial bugs, and some information about
defect warnings across the development lifetime of software re-
lease. We report data on the defect warnings in Sun’s Java 6 JRE, in
Sun’s Glassfish JEE server, and in portions of Google’s Java code-
base. Finally, we report on some experiences from incorporating
static analysis into the software development process at Google.

1. Introduction
Static analysis for software defect detection has become a popular
topic, and there are a number of commercial, open source and
research tools that perform this analysis. Unfortunately, there is
little public information about the experimental evaluation of these
tools with regards to the accuracy and seriousness of the warnings
they report. Commercial tools are very expensive and generally
come with license agreements that forbid the publication of any
experimental or evaluative data.

Even when data is published, there is not significant agreement
on standards for how to evaluate and categorize warnings. Some
warnings reflect situations that cannot occur and that a smarter tool
might be able to show are infeasible. But many other warnings,
while reflecting true defects in the code, do not significantly im-
pair the intended functionality of the application. Should both of
these be counted as false positives, or only the first? The paper by
Wagner et al [9] regards a defect warning as a false positive un-
less the developer believes that the defect could result in significant
misbehavior of the application; however, this classification was not
clear in the paper and only confirmed through personal commu-
nication. Clearly, clarification on this issue is necessary when dis-
cussing false positives from static analysis.

Since software rarely comes with specifications that can be in-
terpreted by automatic tools, defect detection tools don’t try to find
places where software violates its specification. Instead, most de-
fect detection tools find inconsistent [3] or deviant [2] code: code
that is logically inconsistent, nonsensical, or unusual. But inconsis-
tent or nonsensical code, while undesirable, may not actually re-
sult in the application behaving in a way that substantially deviates
from its intended functionality. We discuss this situation and give

examples of such defects in Section 2. This issue is particularly
exacerbated in a memory-safe language such as Java. In a memory-
unsafe language such as C, there is no such thing as a harmless (but
feasible) null pointer dereference or buffer overflow. But in Java,
dereferencing a null pointer and throwing a null pointer exception
may be the most appropriate response when a null value is unex-
pectedly passed as a method parameter.

There are many contexts for using static analysis for defect
detection. One context is when performing code review of a newly
written module. In such cases, developers will likely be interested
in reviewing any warnings of questionable code, and would likely
want to correct confusing or misleading code, even if the confusing
or misleading code doesn’t result in misbehavior. Another context
is when you wish to look for defects in a large existing code base.
In this context, the threshold for changing code in response to a
warning is higher, since the issue has been in production without
causing serious apparent problems, and you would need to get a
developer to switch from other tasks and gain familiarity with the
code in question before they could make a change they would be
confident in. In this paper, we largely concern ourselves with the
second context: applying static analysis to existing code bases.

In this paper, we report on results of running FindBugs against
several large software projects, including Sun’s JDK (Section 3),
Sun’s Glassfish J2EE server (Section 4) and portions of Google’s
Java code base (Section 5).

2. True But Low Impact Defects
One unexpected finding from looking at a number of defect warn-
ings is that there are a number of cases in which FindBugs has
correctly diagnosed what seems to be an obvious defect, yet it is
also clear that the defect will not result in measurable misbehavior
of the program. In fact, sometimes the misbehavior is intentional.

2.1 Deliberate errors
Figure 1 shows some examples of code containing deliberate errors
(code that results in a RuntimeException being thrown). The devel-
oper apparently believed this was preferable to explicitly creating
and throwing an exception.

2.2 Masked errors
Figure 2 shows a masked error. The variable b is a byte array. Any
value loaded from a byte array is treated as a signed byte and
sign extended to an integer in the range -128 to 127. Thus, the
test b[offset] > 128 will always be false. However, the cases
where the value would be greater than 128 if treated as an unsigned
byte are caught by the test b[offset] < 32, so the defect cannot

// com.sun.jndi.dns.DnsName, lines 345-347
if (n instanceof CompositeName) {

n = (DnsName) n; // force ClassCastException
}
// com.sun.java.util.jar.pack.Attribute,
// lines 1042-1043
if (layout.charAt(i++) != ’[’)

layout.charAt(-i); // throw error

Figure 1. Intentional errors

// sun.jdbc.odbc.JdbcOdbcObject, lines 85-91
if ((b[offset] < 32) || (b[offset] > 128)) {
asciiLine += ".";

}
else {
asciiLine += new String (b, offset, 1);

}

Figure 2. Masked Error

// com.sun.corba.se.impl.dynamicany.DynAnyComplexImpl
String expectedMemberName = null;
try {

expectedMemberName = expectedTypeCode.member_name(i);
} catch (BadKind badKind) { // impossible
} catch (Bounds bounds) { // impossible
}
if (! (expectedMemberName.equals(memberName) ...)) {

Figure 3. Infeasible situation

// com.sun.org.apache.xml.internal.security
// .encryption.XMLCiper
// lines 2224-2228
if (null == element) {

//complain
}
String algorithm = element.getAttributeNS(...);

Figure 4. Doomed situations: vacuous complaint

actually cause misbehavior. This example also shows a fairly com-
mon phenomenon where warnings are closely associated with other
questionable code. Here, the code is constructing single character
strings and incrementally appending them to a String (which has
quadratic complexity) rather than simply appending a character to
a String.

2.3 Infeasible statement, branch, or situation
Some errors only arise in a situation that the developer believes
to be impossible but cannot easily infer by direct examination of
the code. Figure 3 shows an example of an infeasible error: the
developer clearly believes that the exceptions cannot arise in this
situation. In this example, interpreting the comments would be
worthwhile, but the developers beliefs are not always this well
documented.

One appropriate remedy for an infeasible error would be to fail
an assertion. However, the case for modifying existing code to add
an assertion for a situation believed to be infeasible is weak.

// com.sun.org.apache.xalan.internal
// .xsltc.runtime.output
// .TransletOutputHandlerFactory
// lines 146-174 (slightly modified for brevity)
SerializationHandler result = null;
if (_method == null)

result = new ToUnknownStream();
else if (_method.equalsIgnoreCase("xml"))

result = new ToXMLStream();
else if (_method.equalsIgnoreCase("html"))

result = new ToHTMLStream();
else if (_method.equalsIgnoreCase("text"))

result = new ToTextStream();
result.setEncoding(_encoding);

Figure 5. Doomed situations: missing else clause

// com.sun.org.apache.xerces.internal.util
// lines 78-122, abbridged
Node node = null;
switch(place.getNodeType()) {
case Node.CDATA_SECTION_NODE: {

node = ...
break;

}
case Node.COMMENT_NODE:
...
default: {

throw new IllegalArgumentException("...("
+ node.getNodeName()+’)’);

}

Figure 6. Doomed situation: error in error handling

2.4 Already Doomed
Sometimes, an error can occur only in a situation where the compu-
tation is already doomed, and throwing a runtime exception is not
significantly worse than any other behavior that might result from
fixing the defect. Figures 4 – 6 shows three examples of doomed
situations. In Figure 4 the comment indicates the intention of the
developer to complain about a null parameter, but no action is taken
and thus a null pointer exception will occur. Perhaps null is never
provided as an argument to this method. But even if it is, it seems
likely that the appropriate remedy for this warning would be to
throw a null pointer exception when the parameter is null. Since
the existing code already gives this behavior, changing the code is
probably unwarranted (although documenting the fact that the pa-
rameter must be non-null would be useful).

Figure 5 shows what is effectively a switch statement, con-
structed using if .. else statements. This pattern is relevantly
common, even to the detail of not having an else clause for the fi-
nal if statement. Thus, if the final if statement fails, result will
be null and a null pointer exception will occur. While this code is
highly questionable, the appropriate fix would likely be to throw
an IllegalArgumentException if none of the if guards match, and
the impact of a null pointer exception is unlikely to be significantly
different than that of throwing an IllegalArgumentException.

Figure 6 shows an example where the program has detected an
erroneous situation, and is in the process of creating an exception
to throw. However, due to a programming error, a null pointer
exception will occur when node is dereferenced. While the code
is clearly mistaken, the impact of the mistake is minimal.

2.5 Testing code
In testing code, developers will often do things that seem nonsensi-
cal, such as checking that invoking .equals(null) returns false.

// com.sun.org.apache.xml.internal.resolver.Catalog
// lines 818-820
String userdir = System.getProperty("user.dir");
userdir.replace(’\\’, ’/’);
catalogManager.debug.message(1,

"Malformed URL on cwd", userdir);

Figure 7. Logging bug

In this case, the test is checking that the equals method can han-
dle a null argument. We can’t ignore nonsensical code in testing
code, since it may reflect a coding mistake that results in the test
not testing what was intended.

2.6 Logging or other unimportant case
We have also seen a number of cases of a bug that would only
impact logging output, or assertions. While accurate logging mes-
sages are important, bugs in logging code might be deemed to be
of lower importance. Figure 7 shows code in which the call to
replace is performed incorrectly. The replace method cannot
modify the String it is invoked on - Java Strings are immutable.
Rather, it returns a new String that is the result of the modifica-
tion. Since the return result is ignored here, the call to replace has
no effect and the userdir may contain back slashes rather than the
intended forward slashes.

2.7 When should such defects be fixed?
Should a defect that doesn’t cause the program to significantly
misbehave be fixed? The primary argument against fixing such
defects is that they require engineering resources that could be
better applied elsewhere, and that there is a chance that the attempt
to fix the defect will introduce another, more serious bug that does
significantly impact the behavior of the application. The primary
argument for fixing such defects is that doing so makes the code
easier to understand and maintain, and less likely to break in the
face of future modifications or uses.

When sophisticated analysis finds an interprocedural error path
involving aliasing and multiple conditions, understanding the de-
fect and how and where to remedy it can take significantly more
engineering time, and it can be more difficult to have confidence
that the remedy resolves the issue without introducing new prob-
lems. However, most of the warnings generated by FindBugs are
fairly obvious once you know what to look for, can be understood
by looking at a few lines of code, and the fix is straight forward
and obvious. Thus, with FindBugs warnings it is often possible to
just understand the defect and fix it without expending the effort
required to do a full analysis of the possible impact of the fault (or
the fix) on application behavior. However, even with simple defects,
their presence highlights a lack of test coverage, and supplementing
defect fixes with additional unit tests is a worthy idea.

3. Results on Sun’s JDK1.6.0
In this section, we present results on Sun’s JDK 1.6.0 implemen-
tation. We analyzed all 89 publicly available builds of JDK, builds
b12 through b105. We only report on the high and medium priority
correctness warnings generated by a developmental build of Find-
Bugs 1.1.4. Note that in computing lines of code, we use the num-
ber of non-commenting source statements, rather than the number
of lines in the file. We can calculate this very accurately from the
line number tables associated with each method in a class file. Note
that statements spanning multiple lines are counted once this way,
as are multiple statements on a single line. This gives a value that
is typically 1/3 to 1/4 of the total number of text lines in the file. To
compare these results against defect densities based on total num-

ber of text lines in the file, you will need to divide our defect den-
sities by 3-4.

b12 b51 b105
Warnings 370 449 407
warnings/KLocNCSS 0.46 0.45 0.42

These numbers and densities are typical and our target range for
applying static analysis to large established code bases. Developers
tasked with reviewing a million line code base would throw up their
hands in dismay if you presented them with 5,000 issues to review.

We manually examined the defects that were removed during
the development of JDK 1.6.0. More precisely, we looked at each
warning that was present in one build and not reported in the next
version, but the class containing the warning was still present. To
simplify the analysis, we only examined defects from files that were
distributed with the JDK. Of a total of 53 defect removals, 37 were
due to a small targeted program change that seemed to be narrowly
focused on remedying the issue described by the warning. Five
were program changes that partially but not entirely remedy the
issue raised by the warning (the warning was that a null pointer
dereference could occur in the computation of a String that was
passed to a logging method; the change was to only compute
those Strings if logging was enabled, which lowered the issue
below a priority that FindBugs reports). The remaining 11 warnings
disappeared due to substantial changes or refactorings that had a
larger scope than the removal of the one defect.

We also manually evaluated all of the medium and high priority
correctness warnings in build 105 of JDK1.6.0 (the official release).
We reviewed bugs located in any source file contained in the Java
Release License of the JDK, which is more than the source files
distributed with the JDK. Of 379 medium and high priority cor-
rectness warnings, we classified:

• 1 as being due to bad analysis (in this one case, due to not
understanding that a method call could change a field)

• 160 as likely to have little or no functional impact, for one or
more of the reasons described in Section 2

• 176 as seeming to have functional impact, and
• 38 as likely to have substantial functional impact: the method

containing the warning will clearly behave in a way substan-
tially at odds with its intended function.

Clearly, any such classification is open to interpretation, and
it is likely than other reviewers would produce slightly different
classifications. Also, our assessment of the functional impact may
differ from the actual end-user perspective. For example, even if
a method is clearly broken, the method might never be called and
might not be invokable by user code. However, given the localized
nature of many of the bug patterns, we have some confidence in the
general soundness our classification.

4. Results on Glassfish v2
The Glassfish project is “open source, production-quality, enter-
prise software. The main deliverables are an Application Server,
the Java EE 5 Reference Implementation, and the Java Persistence
API Reference Implementation.” Members of the Glassfish project
have demonstrated substantial interest in the FindBugs project for
over a year, and FindBugs is run against their nightly builds. The
results are posted on a web page, and recently results have been
emailed to developers.

We analyzed Glassfish v2, builds 09-b33. One thing we checked
were defects that were present in one version and not reported in the
next build. We restricted our analysis to medium and high priority
correctness warnings, ignored defects that disappeared because the
file containing them was removed, and only considered files in

Pattern Warnings FP Trivial Impact Serious
Total 379 5 160 176 38
Nullcheck of value previously dereferenced 54 0 32 20 2
Possible null pointer dereference 48 2 14 28 4
Unwritten field 47 2 35 8 2
Invocation of toString on an array 27 0 0 27 0
Class defines field that masks a superclass field 22 1 9 11 1
Method call passes null for unconditionally dereferenced parameter 17 0 6 9 2
Possible null pointer dereference in method on exception path 16 0 14 2 0
Method ignores return value 13 0 7 4 2
Field only ever set to null 10 0 4 6 0
Suspicious reference comparison 10 0 0 10 0
Read of unwritten field 9 0 9 0 0
A parameter is dead upon entry to a method but overwritten 9 0 2 7 0
Uninitialized read of field in constructor 8 0 7 1 0
Uncallable method defined in anonymous class 8 0 0 8 0
Integer shift by an amount not in the range 0..31 8 0 0 0 8
Doomed test for equality to NaN. 8 0 1 6 1
Call to equals() comparing different types 6 0 0 2 4
Potentially dangerous use of non-short-circuit logic 5 0 0 5 0
Null value is guaranteed to be dereferenced 5 0 4 1 0
Null pointer dereference 5 0 0 2 3
Bad comparison of signed byte 4 0 2 2 0
Call to equals() with null argument 4 0 2 2 0
Impossible cast 3 0 2 1 0
Dead store due to switch statement fall through 3 0 0 0 3
Self assignment of field 3 0 2 1 0
Double assignment of field 3 0 2 0 1
A known null value is checked to see if it is an instance of a type 3 0 1 2 0
int value cast to double and then passed to Math.ceil 3 0 0 3 0
instanceof will always return false 3 0 3 0 0
12 more, less than 3 each 15 0 2 6 7

Table 1. FindBugs medium/high priority “Correctness” warnings on JDK1.6.0-b105

the Glassfish source distribution. There were a total of 58 bug
defect disappearances. Of these, 50 disappeared due to small edits
designed to specifically address the issue raised by FindBugs (and
many of the commit messages mentioned FindBugs), and the other
8 disappeared due to more more complicated edits that addressed
more than the issue raised by FindBugs.

We also looked at the medium and high priority correctness
warnings in build 33, restricting ourselves to files included in the
source distribution. We found a total of 334 such warnings, which
corresponds to a defect density of 0.44 defects / KLocNCSS.

5. Experiences at Google
Since summer 2006, we have been running FindBugs against por-
tions of Google’s Java code base, manually evaluating warnings,
and filing bug reports as deemed appropriate. The results of these
efforts for FindBugs Priority 1 and 2 Correctness warnings are
shown in Figure 2. These data represent continued sampling of the
code base covering several projects in various stages of develop-
ment over a six month period, using several FindBugs versions as
available.

We distinguished false positives from trivial warnings by judg-
ing whether the checker found what it was looking for in the pro-
gram syntax and semantics. For checkers looking for relatively syn-
tactic patterns, false positives are likely errors in the checker code.
Checkers looking for deeper patterns are often held to a higher stan-
dard. For example, the most common warning was the Redundant
Check for Null pattern, where a variable is checked for null after
it was already dereferenced and would have thrown a null pointer

exception. There are two common defensive coding patterns that
trigger this warning if they occur after a variable x is dereferenced:

y = (x == null ? null : x.getY());
if (x != null && x.isValid()) { ...

We generally considered these cases as trivial. The more standard
case is:

x.getY();
... // several to many lines of code
if (x == null)

In evaluating this warning, we check to see if the dereference
was introduced by a later change than the null check. If so, it
is possible that a developer introduced the dereference without
realizing that the variable can be null. This warning, and its partner
the dereference before the null check are often fixed even if it is
known that the null cases cannot happen in practice. It appears
that the risk (potential cost) of going forward with inconsistent
assumptions in the code outweighs the known cost and risk of
making a small change. We did not observe a clear trend when
choosing a fix between moving the check before the dereference
and simply removing the check.

Over time, we observed that the likelihood of a warning being
fixed varies with the length of time the issue has existed in the code.
After 6 months of running the tool, the average age of the fixed
bugs were 5 months versus 9 months for the open bugs. Based on
our interaction with developers, we believe older code is less likely
to be fixed for several reasons. First, older code may be obsolete,
deprecated, or “going away soon.” Also, the original developer may

Bug Pattern Warnings FP Trivial Open Fixed
Total 1127 193 127 289 518
Nullcheck of value previously dereferenced 222 30 49 52 91
Invoking toString on an array 161 1 8 54 98
Possible null pointer dereference 98 28 10 25 35
Method ignores return value 66 8 1 25 32
Call to equals() comparing different types 49 1 0 10 38
int division result cast to double or float 47 7 7 23 10
Null value is guaranteed to be dereferenced 36 21 1 6 8
Null pointer dereference 33 2 0 7 24
An apparent infinite recursive loop 31 0 0 1 30
Questionable used of non-short-circuit logic 30 6 12 5 7
Bad attempt to compute absolute value of signed 32-bit hashcode 30 1 3 5 21
Read of unwritten field 29 5 0 5 19
Bad attempt to compute absolute value of signed 32-bit random integer 26 5 1 12 8
Non-virtual method call passes null of unconditionally dereferenced parameter 24 20 0 0 4
equals() used to compare array and nonarray 17 0 0 4 13
Uncallable method defined in anonymous class 16 0 9 2 5
Possible null pointer dereference in method on exception path 15 8 3 2 2
Uninitialized read of field in constructor 13 7 2 2 2
Impossible cast 13 0 0 4 9
int value cast to float and then passed to Math.round 13 0 5 6 2
Self assignment of field 12 0 1 6 5
Field only ever set to null 11 2 1 1 7
A parameter is dead upon entry to a method but overwritten 9 4 0 1 4
Class defines field that masks a superclass field 9 0 3 4 2
No relationship between generic parameter and method argument 7 0 0 7 0
Dead store due to switch statement fall through 6 0 0 0 6
Unwritten field 6 1 1 1 3
Invocation of equals() on an array, which is equivalent to == 6 0 0 2 4
Method may fail to close stream 6 2 0 0 4
Very confusing method names 5 2 2 1 0
On an exception path, value is null and guaranteed to be dereferenced 5 3 0 2 0
Useless control flow on next line 5 1 4 0 0
Integer shift by an amount not in the range 0..31 4 0 0 1 3
Method call passes null for unconditionally dereferenced parameter 4 4 0 0 0
Others - less than 4 each 60 22 4 13 21

Table 2. FindBugs medium/high priority “Correctness” warnings from code at Google

change projects, which generally makes it harder to find someone
willing to make a change. Finally, older code is generally more
trusted and more thoroughly tested and so a “defect” is less likely
to lead to surprises.

6. Related work
We had previously discussed [7] the techniques used by FindBugs
to track defect occurrences from one analysis run to the next.

Engler et al. have published numerous papers on static analysis
for defect detection, and their SOSP 2001 paper [2] have included
some experimental evaluation of defect warnings. Li et al. [4]
examined the commit logs and messages to classify the occurrence
of bugs characteristics and patterns.

There have been few published works evaluating the defects
found by commercial defect detection tools, due to the cost and li-
cense agreements associated with those tools. Almossawi, Lim and
Sinha [1] provide a third party evaluation of Coverity Prevent and
reported an overall evaluation than 13% of the warnings seemed be
infeasible and 64% seemed very likely to result in faults. The pa-
per did not touch on the issue of true but low impact defects, but
since the tool scans C/C++ code and primarily looks for memory
access errors, very few true defects could be considered to have low
impacts.

Robert O’Callahan blogged [5] about his experience with Kloc-
work and Coverity, and noted that many of the defects found did
not seem to be as significant as the press releases seemed to make
them out to be. Konstantin Boundnik blogged about his experience
with Klocwork and Coverity, including some high-level data about
defect density and false positive rates.

Rutar et al [6] studied ESC/Java, FindBugs, JLint and PMD.
However, this paper did not attempt to evaluate the individual
warnings or track the history of warnings over time in a software
project. Rather, it studied the correlation and overlap between the
different tools. Zitser et al.[10] evaluated several open source static
analyzer against known exploitable buffer overflows from open
source code.

Wagner et al. [8] evaluated FindBugs and PMD on two soft-
ware projects. They found that very few of the defects identified,
post-release, by these tools actually correlated to documented fail-
ures in deployed software. Of a total of 91 defect removals, com-
paring two successive versions of software, they found only 4 that
corresponded to remedying a problem that caused a failure in the
deployed software.

7. Conclusions
One major point of this paper is to discuss the fact that trying to
classify defect warnings into false positives and true positives over-
simplifies the issue, and that obviously bogus and inconsistent cod-
ing mistakes may have no adverse impact on software functionality.
In memory safe programming languages, a substantial portion of
defects detected by static analysis might fall into this category. Re-
moving such defects may make software easier to maintain and is
still useful. However, the costs associated with such removal must
be kept low. Trying to devise static analysis techniques that sup-
press or deprioritize true defects with minimal impact, and high-
light defects with significant impact, is an important and interesting
research question.

We have also shown that FindBugs reports a substantial number
of defects on production software, and while several bug patterns
account for a majority of the defects, that there is a “long tail” to
bug patterns: lots of bug patterns, each of which might typically
find only a few defects per million lines of code. FindBugs reports
more than 250 different bug patterns, over a hundred of which
are classified as correctness bugs. This is feasible because many
of the bug patterns are small and focused, and can be initially
implemented and evaluated within an hour or two.

We’ve also shown that the defects reported by FindBugs are
issues that developers are willing to address. In the case of the
Sun’s JDK, no systematic policy or procedure of reviewing Find-
Bugs warnings was in place, yet the build history shows developers
specifically making changes to address the issues raised by Find-
Bugs. While some of changes might have been informed by Find-
Bugs, many of the changes occurred over a year ago, when Find-
Bugs was in a much more primitive state, not widely adopted, and
did not, at the time, report many of the defects which were removed.

The experience in the Glassfish and at Google show a more sys-
tematic effort to address defects found through static analysis. The
Google effort has been particularly well focused, and incorporates
three elements that we believe are important:

• a centralized effort to run and perform an initial triage of warn-
ings, so that individual developers are notified, without any ac-
tion on their part, of issues in their code, and

• an integrated system to be able to mark defects connecting the
results of previous triages with the results of new analysis, so
that defects marked as false positives don’t have to be reexam-
ined after each analysis, and

• a system for reviewing the effectiveness of the static analysis,
to allow for determination of effective bug patterns, feedback to
static analysis tool vendors, and review of the effectiveness and
impact of the static analysis effort.

At Google, nearly all instances of the bug patterns identified as
generally important have been triaged, and new warnings, whether
resulting from new check-ins or new versions of the analysis, are
initially reviewed within days.

The effort on the Glassfish has resulted in a number of issues
being examined and addressed, but FindBugs identifies 341 high
and medium priority correctness defects in build b33. Some of the
remaining 341 warnings are undoubtedly trivial or not possible, but
clearly some issues with functional impact remain, and there is no
central location for viewing any comments as to the significance or
insignificance or any particular warning.

Google confidentiality requirements prevent any direct quanti-
tative comparison of defects in the Sun code base and the Google
code base. However, UMD has scanned a number of open code
bases and closed code bases, including those in commercial closed
source Java applications that can be downloaded over the web.
In looking at defects found in many systems, including the JDK,

Glassfish, IBM WebSphere, JBoss, BEA WebLogic, Oracle Con-
tainers for Java, SleepyCat Java DB, we have generally seen de-
fect densities of 0.3 - 0.6 warnings/KLocNCSS (medium and high
priority correctness warnings per 1,000 lines of non-commenting
source statements). The only times we have see defect densities
significantly lower than that is when, as in SleepyCat DB, there has
been a systematic attempt to review and address issues raised by
static analysis.

8. Acknowledgments
Thanks to David Hovemeyer for his comments on the paper, to
all those who have contributed to the FindBugs project. Fortify
Software is the sponsor of the FindBugs project, and additional
current support is provided by Google and Sun Microsystems.
Sandra Cruze, Antoine Picard, Shama Butala, Boris Debic and
Feng Qian helped us successfully deploy FindBugs at Google.

References
[1] A. Almossawi, K. Lim, and T. Sinha. Analysis tool evaluation: Cover-

ity prevent, May 2006. http://www.cs.cmu.edu/ aldrich/courses/654/tools/
cure-coverity-06.pdf.

[2] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: a general approach to inferring errors in systems
code. In SOSP ’01: Proceedings of the eighteenth ACM symposium
on Operating systems principles, pages 57–72, New York, NY, USA,
2001. ACM Press.

[3] T. D. Isil Dillig and A. Aiken. Static error detection using semantic
inconsistency inference. In Proceedings of the Conference on
Programming Language Design and Implementation, June 2007.

[4] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have
things changed now?: an empirical study of bug characteristics in
modern open source software. In ASID ’06: Proceedings of the 1st
workshop on Architectural and system support for improving software
dependability, pages 25–33, New York, NY, USA, 2006. ACM Press.

[5] R. O’Callahan. Static analysis and scary headlines, Septem-
ber 2006. http://weblogs.mozillazine.org/roc/archives/2006/09/
static analysis and scary head.html.

[6] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of bug finding
tools for java. In ISSRE ’04: Proceedings of the 15th International
Symposium on Software Reliability Engineering (ISSRE’04), pages
245–256, Washington, DC, USA, 2004. IEEE Computer Society.

[7] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking defect warnings
across versions. In MSR ’06: Proceedings of the 2006 international
workshop on Mining software repositories, pages 133–136, New York,
NY, USA, 2006. ACM Press.

[8] S. Wagner, F. Deissenboeck, M. A. J. Wimmer, and M. Schwalb. An
evaluation of bug pattern tools for java, January 2007. under review.

[9] S. Wagner, J. Jurjens, C. Koller, and P. Trischberger. Comparing
bug finding tools with reviews and tests. In Proc. 17th International
Conference on Testing of Communicating Systems, pages 40–55, 2005.

[10] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools us-
ing exploitable buffer overflows from open source code. In SIGSOFT
’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth inter-
national symposium on Foundations of software engineering, pages
97–106, New York, NY, USA, 2004. ACM Press.

