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Abstract

Despite its success, the Black-Scholes formula has become increasingly unreliable over time in the very
markets where one would expect it to be most accurate.  In addition, attempts by financial economists to
extract probabilistic information from option prices have been puny in comparison to what is clearly possible.
 This paper develops a new method for inferring risk-neutral probabilities (or state-contingent prices) from the
simultaneously observed prices of European options.  These probabilities are then used to infer a unique
fully specified recombining binomial tree that is consistent with these probabilities (and hence consistent
with all the observed option prices).  If specified exogenously, the model can also accommodate local
interest rates and underlying asset payout rates that are general functions of the concurrent underlying
asset price and time.  One byproduct is a map of the local and risk-neutral global volatility structure of the
underlying asset return over future dates and states. 

In a 200 step lattice, for example, there are a total of 60,301 unknowns:  40,200 potentially different move
sizes, 20,100 potentially different move probabilities, and 1 interest rate to be determined from 60,301
independent equations, many of which are non-linear in the unknowns.  Despite this, a 3-step backwards
recursive solution procedure exists which is only slightly more time-consuming than for a standard binomial
tree with given constant move sizes and move probabilities.  Moreover, closed-form expressions exist for the
values and hedging parameters of European options maturing with or before the end of tree.  The tree can
also be used to value and hedge American and several types of exotic options.  From the standpoint of the
standard binomial option pricing model which implies a limiting risk-neutral lognormal distribution for the
underlying asset, the approach here provides the natural (and probably the simplest) way to generalize to
arbitrary ending risk-neutral probability distributions.

Interpreted in terms of continuous-time diffusion processes, the model here assumes that the drift and local
volatility are at most functions of the underlying asset price and time.  But instead of beginning with a
parameterization of these functions (as in previous research), the model derives these functions
endogenously to fit current option prices.  As a result, it can be thought of as an attempt to exhaust the
potential for single state-variable path-independent diffusion processes to rectify problems with the Black-
Scholes formula that arise in practice.
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One of the central ideas of economic thought is that in properly functioning markets, prices contain valuable
information that can be used to make a wide variety of economic decisions.  At the simplest level, a farmer
learns of increased demand (or reduced supply) for his crops by observing increases in prices, which in turn
may motivate him to plant more acreage.  In financial economics, for example, it has been argued that future
spot interest rates, predictions of inflation, or even anticipation of turns in the business cycle, can be inferred
from current bond prices.  The efficacy of such inferences depends on four conditions:

- a satisfactory model which relates prices to the desired inferred information,
- a model which can be implemented by timely and low-cost methods,
- correct measurement of the exogenous inputs required by the model, and
- the efficiency of markets.

Indeed, given the right model, a fast and low-cost method of implementation, correctly specified inputs, and
market efficiency, it will usually not be possible to obtain a superior estimate of the variable in question by
any other method.

In this spirit, financial economists have tried to infer the volatility of underlying assets from the prices of their
associated options.  In the classic example, the Black-Scholes formula for calls requires measurement of
the underlying asset price and its payout rate, the riskless interest rate, and an associated option price, its
striking price and time-to-expiration1.  The formula can be implemented in a fraction of a second on widely
available low-cost computers and calculators.  In many situations of practical relevance, the inputs can be
easily measured and the related securities are traded in highly efficient markets.  This model is widely
viewed as one of the most successful in the social sciences, and has perhaps (including its binomial
extension) the most widely used formula, with imbedded probabilities, in human history.

Despite this success, it is the thesis of this research that not only has the Black-Scholes formula become
increasingly unreliable over time in the very markets where one would expect it to be most accurate; but
moreover, attempts by financial economists to extract probabilistic information from option prices have been
puny in comparison to what is clearly possible.

I. Recent Evidence Concerning S&P 500 Index Options

The market for S&P 500 index options on the Chicago Board Options Exchange provides an arena where
the common conditions required for the Black-Scholes formula would seem to be best approximated in
practice.  The market is the second most active options market in the United States and has the largest
open interest, the underlying is a cash asset rather than a future, the options are European rather than
American, the options do not have the "wildcard" feature which seriously complicates the valuation of the
more active S&P 100 index options, the options can be easily hedged using S&P 500 index futures, the
index payout can be reliably estimated or inferred from index futures, unlike bond prices the underlying index
can a priori be assumed to follow a risk-neutral lognormal process, unlike currency exchange rates the
index does not have an obvious non-competitive trader in its market (i.e. the government), and finally the
underlying is an index which is therefore less likely to experience jumps than probably any of its component
equities and most other underlying assets such as commodities, currencies and bonds. 

In early research on 30 of its component equities using all reported trades and quotes on their options
covering a two year period during 1976-1978, I found that the Black-Scholes formula seemed to provide
                        
    

1
 See Fischer Black and Myron Scholes, "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, 81

(May-June 1973), 637-659.
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reasonably accurate values.2  A minimal prediction of the Black-Scholes formula is that all options on the
same underlying asset with the same time-to-expiration but with different striking prices should have the
same implied volatility.  While not strictly true, the formula passed this test with remarkable fidelity.  While I
showed that biases from the Black-Scholes predictions were statistically significant and there were long
periods of time during which another option model would have worked better, there was no evidence that the
biases were economically significant.  Moreover, while the alternative model might have worked better for
awhile, it would have performed worse at other times.

I used a minimax statistic to measure the economic significance of the bias.  The idea behind this statistic
is to place a lower bound on the performance of the formula without having to estimate volatility, either
implied or statistical.  Here is how it works.  Select any two options on the same underlying asset with the
same time-to-expiration, but with different striking prices.  For a given volatility, for each option calculate the
absolute difference between its market price and its corresponding Black-Scholes value based on the
assumed volatility ("dollar error").  Record the maximum difference.  Now repeat this procedure but each
time alter the assumed volatility, and span the domain of volatilities from zero to infinity.  We will end up with
a function mapping the assumed volatility into the maximum dollar error.  The minimax statistic is the
minimum of these errors.  We can say then that comparing just these two options, for one of them the
Black-Scholes formula must have at least this dollar error, irrespective of the volatility.

Because the Black-Scholes formula is monotonicly increasing in volatility, the volatility at which such a
minimum is reached always lies between the implied volatilities of each of the two options, and moreover will
be the volatility that equalizes the dollar errors for each of the two options.  As a result, the minimax
statistic can be computed quite easily.  I will call this the minimax dollar error.  To correct for the possibility
that, other things equal, we might expect a larger dollar error the higher the underlying asset value, the
minimax dollar error is scaled to an underlying asset price of 100 by multiplying it by 100 divided by the
concurrent underlying asset price.3  A negative sign is appended to the errors if, in the option pair, the higher
striking price option has a lower implied volatility than the lower striking price option.

We could also measure percentage errors at the volatility that equalizes the absolute values of the ratio of
the dollar error divided by the corresponding option market price.  This, I will call the minimax percentage
error. 

During 1976-1978, looking at a variety of pairs of options, minimax percentage errors were on the order of
2% -- a figure I would regard as sufficiently low to make the Black-Scholes formula a good working guide in
the equity options market (although not of sufficient accuracy to satisfy professionals who make markets in
options).  More recently, I had occasion to measure minimax errors again during 1986 for S&P 500 index
options and again minimax percentage (as well as dollar) errors were quite low.  However, since 1986 for
these options there has been a very marked and rapid deterioration.  Tables I and II list the minimax
percentage and dollar errors by striking price ranges for S&P 500 index calls with time-to-expiration of 125-
215 days.

                        
    

2
 See Mark Rubinstein, "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the

30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, 40 (June 1985), 455-
480.

    
3
 This scaling reflects that the Black-Scholes formula is homogeneous of degree one in the underlying asset price and the

striking price, so that doubling each of these variables, other things equal, doubles the values of puts and calls.
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Table I
Signed Minimax Percentage Errors

(S&P 500 Index 125-215 day maturity calls, 4/2/86 - 8/31/92)

 ------------- striking price range -------------
    I-T-M       A-T-M       O-T-M    I-T-M/O-T-M

 year   -9% - -3%   -3% - +3%   +3% - +9%   -9% - +9%

 1986     -0.3        -0.5        -0.3        -0.7
 1987     -0.7        -1.0        -0.8        -1.6
 1988     -2.5        -3.5        -4.1        -7.0
 1989     -2.5        -4.8        -6.4        -7.7
 1990     -3.4        -5.9        -8.7       -11.2
 1991     -4.0        -7.0       -10.3       -13.1
 1992     -4.9        -8.8       -14.2       -15.3

   ________________________________________________________________________
    

Table II
Signed Scaled Minimax Dollar Errors

(S&P 500 Index 125-215 day maturity calls, 4/2/86 - 8/31/92)

   ------------- striking price range -------------     
I-T-M       A-T-M       O-T-M    I-T-M/O-T-M      S&P 500 

   year   -9% - -3%   -3% - +3%   +3% - +9%   -9% - +9%     low     high

   1986    -.025       -.025       -.007       -.044      203.49 - 254.73
   1987    -.070       -.056       -.031       -.118      223.92 - 336.77
   1988    -.251       -.212       -.144       -.551      242.63 - 283.66
   1989    -.248       -.266       -.191       -.599      275.31 - 359.80
   1990    -.364       -.382       -.297       -.908      295.46 - 368.95
   1991    -.371       -.382       -.250       -.887      311.49 - 417.09
   1992    -.422       -.389       -.221       -.858      394.50 - 441.28

   ________________________________________________________________________

The striking price range indicates the striking prices of the two options used to construct the minimax statistic.
 For example,  -9% - +9%  indicates that the first call was sampled from in-the-money options with striking
prices between 12% and 6% less than the concurrent index and the second call was sampled from out-of-
the-money options with striking prices between 6% and 12% more than the concurrent index.  In both cases,
options were chosen as close as possible to the midpoint of their respective intervals.  The numbers for each
year represent the median signed minimax error from sampling once every trading day over the year.

Using just these statistics, the Black-Scholes model worked quite well during 1986.  Even in the worst
case, comparing calls that were 9% in-the-money with calls which were 9% out-of-the-money, the minimax
percentage error was less than 1% and the scaled minimax dollar error was about 4 cents per $100 of the
index.  At an average index level during that year of about 225, that can be translated into an unscaled error
of about 10 cents.  That means that, if the Black-Scholes formula were correct, the market mispriced one of
those options by at least 10 cents.  If we assume that the "true" implied volatility lay between the implied
volatilities of these options, then we can also say that if one of the options was mispriced by more than 10
cents, the other must have been mispriced by less than 10 cents. 
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However, during 1987 this situation began to deteriorate with percentage errors approximately doubling. 
1988 represents a kind of discontinuity in the rate of deterioration, and each subsequent year shows
increased percentage errors over the previous year.  One is tempted to hypothesize that the stock market
crash of October 1987 changed the way market participants viewed index options.  Out-of-the-money puts
(and hence in-the-money calls perforce by put-call parity) became valued much more highly, eventually
leading to the 1990-1992 (as well as current) situation where low striking price options had significantly
higher implied volatilities than high striking price options.  In this domain, during 1986 the span of implied
volatilities over the  -9% - +9% striking price range was about 1½% (roughly 18½% to 17%).  In contrast
during 1992, this range was about 6½% (roughly 19% to 12½%).  Anyone who had purchased out-of-the-
money puts before the crash and held them during the week of the crash would have made huge profits: not
only did put prices rise because the index fell by about 20%, but put prices rose because implied volatilities
typically tripled or quadrupled.  The market's pricing of index options since the crash seems to indicate an
increasing "crash-o-phobia", a phenomenon which we will subsequently document in other ways.

The tendency for the graph of implied volatility as a function of striking price for otherwise identical options to
depart from a horizontal line has become popularly known among market professionals as the "smile." 
Typical pre- and post-crash smiles are shown in Graphs I and II.  The increased concern about smiles
across options markets generally, the conferences and even academic papers concerning them, is rough
anecdotal evidence that similar problems with the Black-Scholes formula reported here for S&P 500 index
options, in recent years, may pervade options on many other underlying assets.

Of course, the estimation of minimax statistics across otherwise identical options with different striking
prices is just one way to test whether the market is pricing options according to the Black-Scholes formula.
 Apart from general arbitrage tests such as put-call parity, I consider it the most basic test since among
alternatives it is the easiest to verify.  However, it clearly does not test all implications of the Black-Scholes
formula.  One might also compare in a similar way otherwise identical options with different time-to-
expirations.  This can provide useful information, but may not be helpful in testing a slight generalization of
the Black-Scholes formula that allows time-dependent implied volatility.  These two cross-section tests can
be usefully supplemented by a third time-series test, which compares the implied volatilities measured
today with implied volatilities of the same options measured tomorrow.4  If the constant-volatility Black-
Scholes formula is true, these implied volatilities should be the same.  Even the more general formula,
allowing for time-dependent volatility, can be tested by looking for variables other than time which are
correlated with changing implied volatility.  Along these lines, a very interesting working paper by David
Shimko reports very high negative correlations during the period 1987-1989 between changes in implied
volatilities on S&P 100 index options and the concurrent return of the index -- a correlation which should be
zero according to the Black-Scholes formula.5  

Although this paper will discuss the use of these three types of tests, it will not investigate what I would call
statistical tests.  These tests usually take the form of comparing implied volatility with historically sampled
volatility.  Since the "true" stochastic process of historical volatility is not known, these tests are not as
convincing to me as the three outlined above.   
                        
    

4
 For the constant volatility Black-Scholes model, these time-series tests are the same as tests based on hedging using option

deltas since to know an option's delta is the same as knowing the difference between today's and tomorrow's option prices,
conditional on knowing the change in its underlying asset price.  Thus, if the Black-Scholes formula produces the correct deltas,
time-series changes in implied volatilities must not be significant. 

    
5
 See David Shimko, "Beyond Implied Volatility: Probability Distributions and Hedge Ratios Implied by Option Prices," (November

1991), working paper, USC.
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All this discussion overlooks one possibility:  the Black-Scholes formula is true but the market for options is
inefficient.  This would imply that investors using the Black-Scholes formula and simply following a strategy
of selling low striking price index options and buying high striking price index options during the 1988-1992
period should have made considerable profits.  While I have not tested for this possibility, given my priors
concerning market efficiency and in the face of the large profits that would have been possible under this
hypothesis, I will suppose that it would be soundly rejected and not pursue the matter further, or leave it to
skeptics whose priors would justify a different research strategy.

The constant volatility Black-Scholes model, as distinguished from its formula that can be justified on other
grounds6, will fail under any of the following four violations of its assumptions:

(1) the local volatility of the underlying asset, the riskless interest rate, or the asset payout rate is a
function of the concurrent underlying asset price or time;

(2) the local volatility of the underlying asset, the riskless interest rate, or the asset payout rate is a
function of the prior path of the underlying asset price;

(3) the local volatility of the underlying asset, the riskless interest rate, or the asset payout rate is a
function of a state-variable which is not the concurrent underlying asset price or the prior path of the
underlying asset price; or the underlying asset price, interest rate, or payout rate can experience
jumps in level between successive opportunities to trade; or

(4) the market has imperfections such as significant transactions costs, restrictions on short
selling, taxes, non-competitive pricing, etc. 

The violations of Black-Scholes assumptions at each of these levels becomes increasingly serious and
difficult to remedy as we move down the list.  Although violations of types (1) and (2) still leave the arbitrage
reasoning -- the essence of the Black-Scholes argument -- in tact, type (2) violations lead perhaps to
insurmountable computational problems. Violations of type 3 are far more serious since they destroy the
arbitrage foundations of the Black-Scholes model and have left researchers so far with two unpalatable
alternatives:  either an equilibrium model in which investor preferences explicitly enter, or other securities in
addition to the underlying and riskless assets must be included in the arbitrage strategy.  Violations of type
4 are the worst because their effects are notoriously difficult to model and because they typically lead only
to bands within which the option price should lie. 

In this context, here is one way to think of the contribution of this paper.  It will provide a computationally
effective way to value options even in the presence of violations (1), (2) and (3), and a computationally
effective way to hedge options even under violation (1).  Other work has dealt with violation (1), most notably
the constant elasticity of variance diffusion model developed by John Cox and Stephen Ross.7  But this work
begins with a parameterization of the function relating local volatility to the underlying asset price.  The
model here derives this function (which may depend on time as well) endogenously, and can be thought of
as an attempt to exhaust the potential for violation (1) to explain observed option prices.

                        
    

6
 See Mark Rubinstein, "The Valuation of Uncertain Income Streams and the Pricing of Options,"  Bell Journal of Economics, 7

(Autumn 1976), 407-425.

    
7
 See John Cox and Stephen Ross, "The Valuation of Options for Alternative Stochastic Processes," Journal of Financial

Economics, 3 (January-March 1976), 145-166.
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II. Implied Ending Risk-Neutral Probabilities

The approach we will use to value and hedge options involves three steps.  First, we must somehow
estimate the ending risk-neutral probabilities of the underlying asset return.  The approach emphasized here
will be to infer these from the riskless interest rate and concurrent market prices of the underlying asset and
its associated otherwise identical European options with different striking prices.  Second, we infer a unique
fully specified stochastic process of the underlying asset price from these risk-neutral probabilities.  Third,
armed with this process, we can calculate the value and hedging parameters of any derivative instrument
maturing with or before the European options.

Longstaff's method (amended):  Ever since the work of Stephen Ross8, it has been well-known that in
principle it should be possible to infer state-contingent prices, or their close relatives, risk-neutral
probabilities9, from option prices.  The first version of a recent working paper by Francis Longstaff describes
a way of doing this.10  Here I will describe a somewhat modified version of his method.  Let:

S ≡  current price of underlying asset

C1, C2, C3, C4  ≡  concurrent prices of associated call options with striking prices  K1 < K2 < K3 < K4,
 all with the same time-to-expiration

S* ≡ price of underlying asset on the expiration date

rn ≡ one plus the riskless rate of interest through the expiration date

dn ≡ one plus the payout rate on the underlying asset through the expiration date

Assume that conditional on  S*  being between adjoining striking prices (including 0), all levels of  S*  have
equal risk-neutral probabilities.  Also assume that there exists a number  K5 > K4  such that the probability
that  S* > K5  is zero, and that conditional on  S*  being between  K4 and K5, all levels of  S*  have the same
risk-neutral probability.  Graph II depicts this situation.

                        
    

8
 See Stephen Ross, "Options and Efficiency," Quarterly Journal of Economics, 90 (February 1976), 75-89.

    
9
 Jacques Dreze in his paper, "Market Allocation Under Uncertainty," European Economic Review, (Winter 1970), 133-165,

was probably the first to realize the significance of this correspondence between state-contingent prices and probabilities.

    
10

 See Francis Longstaff, "Martingale Restriction Tests of Option Pricing Models," version 1 (November 1990), working paper,
UCLA.  His method is quite similar to the first attempt of which I am aware described by Rolf Banz and Merton Miller in "Prices for
State-Contingent Claims: Some Estimates and Applications," Journal of Business, 51 (October 1978), 653-672.



9

Graph III
Risk-Neutral Probability Distribution
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Taking the market prices S, C1, C2, C3, C4  and the return rn as exogenous, Appendix I derives the following
solution for  P1, P2, P3, P4, P5  and  K5:

  P1 = 2[1 - rn(Sd-n - C1)K1
-1]

P2 = 2[1 - P1 - r
n(C1 - C2)(K2 - K1)

-1]

P3 = 2[1 - P1 - P2 - r
n(C2 - C3)(K3 - K2)

-1]

P4 = 2[1 - P1 - P2 - P3 - r
n(C3 - C4)(K4 - K3)

-1]

P5 = 1 - P1 - P2 - P3 - P4

K5  =  K4 + (2rnC4÷P5)

Thus, the implied risk-neutral probabilities can be derived in triangular fashion by solving the first equation for
 P1, using this value for  P1  and solving the second equation for  P2, using these values for  P1 and  P2 and
solving the third equation for  P3, etc.  This reveals an interesting structure of the solution.  The relation
between the underlying asset price, which can be thought of as a payout-protected zero-strike option, and
the lowest striking price option essentially determines the probability in the lower tail.  Then each
successive option contributes information about the probability from there to the next striking price.  The
upper tail probability then follows from the constraint that the total probability must be 1.

As a test of this method, I calculated risk-neutral implied probabilities from 11 options assumed to be priced
according to the Black-Scholes formula and therefore under a lognormal risk-neutral density function.  Table
III compares the Black-Scholes probability in each striking price interval with the discrete probabilities
derived using the amended Longstaff method.  
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Table III
Implied Risk-Neutral Probabilities Using an Amended Longstaff Method

        Black-Scholes    -- Implied Risk-Neutral Probability --
    Strike Call          Price               Black-Scholes     Discrete (Pj)

       0  100.00         .0581          .0092
      75   27.37         .0479          .1427
      80   23.19         .0663         -.0283
      85   19.27         .0826          .1776
      90   15.69         .0938         -.0008
      95   12.51         .0986          .1944
     100    9.78         .0971          .0042
     105    7.49         .0902          .1809
     110    5.62         .0798         -.0085
     115    4.15         .0676          .1562
     120    3.01         .0552         -.0338
     125    2.15         .1628          .2062
     148 or ∞    0.00

           _____________________________________________________________

Time-to-expiration was assumed to be one year and the volatility used in the Black-
Scholes formula was assumed to be 20%.  Other variables were   S = 100,  r

n
 = 1.1,   d

n

= 1.05.

Not only are the discrete probabilities quite different than lognormal, jumping from very low to very high over
adjoining intervals, even worse, many are negative.  Observe that nothing in the amended Longstaff method
precludes negative probabilities.  Clearly, assuming a uniform distribution between strikes and a finite upper
bound to the underlying asset price does not produce satisfactory results.

This method also highlights the critical problem:  in current option markets, we only observe striking prices
at discrete intervals.  Moreover, we have considerable identification problems in the tails because the
distance between  0  (the "striking price" of the underlying asset) and the lowest option striking price is
usually quite large, and we have no striking prices above some maximum level.  To solve this problem, we
need to find some way to interpolate between striking prices and extrapolate to provide satisfactory tail
probabilities.

Shimko's method:  Douglas Breeden and Robert Litzenberger11 showed that if a continuum of European
options with the same time-to-expiration existed on a single underlying asset spanning striking prices from
zero to infinity, the entire risk-neutral probability distribution for that expiration date can be inferred by
calculating the second derivative of each option price with respect to its striking price.

David Shimko provides a way to implement this idea.12  He first plots the smile and fits a smooth curve to it
                        
    

11
 See Douglas Breeden and Robert Litzenberger, "Prices of State-Contingent Claims Implicit in Options Prices," Journal of

Business, 51 (October 1978), 621-651.

    
12

 See David Shimko, "Bounds of Probability," RISK, 6 (April 1993), 33-37.
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between the lowest and highest option striking prices.  This provides him with interpolated Black-Scholes
implied volatilities.  Using the Black-Scholes formula, he inverts the implied volatilities, solving for the option
price as a continuous function of the striking price.  Then, taking the second derivative of this function, he
determines the implied risk-neutral probability distribution between the lowest and the highest strike options.
 Although he uses the Black-Scholes formula, Shimko's method does not require it to be true.  He has
merely used the formula as a translation device that allows him to interpolate implied volatilities rather than
the observed option prices themselves.  He supplies tail probabilities by grafting lognormal distributions onto
each of the tails.13

Using S&P 100 index options, he then creates graphs of the risk-neutral distribution for various option
maturities on selected dates from 1987-1989.  His method passes the test I applied to the Longstaff
method, since if the smile is exactly horizontal, he will imply a lognormal risk-neutral probability distribution
with the correct volatility. 

An optimization method:  Here, I propose yet another method.  First, we establish a prior guess of the risk-
neutral probabilities.  In general, it could be anything; but for working purposes, I will suppose that our prior
is the result of constructing an n-step standard binomial tree using the average of the Black-Scholes implied
volatilities of the two nearest-the-money call options14 .  Denote the nodal underlying asset prices at the end
of the tree from lowest to highest by  Sj  for j=0,...,n.  Denote the ending nodal derived risk-neutral
probabilities by  Pj′  where it will be the case that  SjPj′ = 1.  For example, if  p′  is the risk-neutral
probability of an up move over each binomial period, then  Pj′ = [n!/j!(n-j)!]p′ j(1-p′)n-j.  For sufficiently large n,
this probability distribution will be approximately lognormal.  Let  r and d  represent, respectively, the
riskless interest return and underlying asset payout return over each binomial period.15  Let  Sb (Sa)  be the
current bid (ask) price of the underlying asset and  Cb

i (C
a
i)  the bid (ask) price simultaneously observed on

European call  i=1,...,m  maturing at the end of the tree, assumed not to be protected against payouts. 
Choose n >> m.

The implied posterior risk-neutral probabilities  Pj  are then the solution to the following quadratic program:

min Sj(Pj - Pj′)
2   subject to:

                                                     Pj

SjPj = 1   and   Pj≥0  for  j=0,...,n

Sb ≤ S ≤ Sa  with  S = (dnSjPjSj)/r
n

                        
    

13
 Shimko does not use the information contained in the underlying asset price to help identify the lower tail.  He seems to do

this because he is worried about errors that would be created by non-simultaneity in the reporting of the index due to the familiar
problem of lagged trading of components of the S&P 100 index.  Except for rare moments (such as occurred on October 19-20,
1987), my own cursory research indicates that the error created by this non-simultaneity should be very small.  For an entire
month in 1986, I constructed an index of the average time to the last trade for the S&P 500, with market value proportions as
weights. After the first half hour of the trading day, the index was typically only about 5 minutes old.  I therefore believe that his
method can be improved by treating the underlying asset as just another option, but payout-protected with a zero striking price.

    
14

 This uses the well-known method described in John Cox, Stephen Ross and Mark Rubinstein, "Option Pricing: A Simplified
Approach," Journal of Financial Economics, 7 (September 1979), 229-263.

    
15

  If it is known how the payout return depends on the ending nodal asset prices, then stochastic payouts can be easily
handled by replacing the equation for S with:

S = (SjPjSjdj
n
)/r

n
.



12

Cb
i ≤ Ci ≤ Ca

i  with  Ci = (SjPj max[0, Sj - Ki])/r
n  for  i=1,...,m

The  Pj  are therefore the risk-neutral probabilities which are, in the least squares sense, closest to
lognormal which cause the present values of the underlying asset and all the options calculated with these
probabilities to fall between their respective bid and ask prices.

This technique also passes the earlier test.  That is, if all the options are priced with bid and ask prices
surrounding their standard binomial values, then  Pj = Pj′  for all j.  In addition, it passes a second test.  If a
solution exists, then the denser the set of options, other things equal, the less sensitive  Pj  will be to the
prior.  In the limit, as the number of options becomes increasingly dense on the real line, Pj  will become
independent of the prior.   

Using NAG non-linear programming software, for a 200-step tree for S&P 500 index options observed three
times a day from 1986-1992, in a few seconds for each time, the algorithm always converged to a solution
whenever there were no general arbitrage opportunities among the underlying asset, riskless asset and the
options -- that is, whenever there existed values of  S  and  {Ci}  such that if transactions to buy and sell
could have been effected at those same prices (without paying the bid-ask spread), no general arbitrage
opportunities existed.16

Although I adopted a specific minimization function and a specific prior, the optimization method is quite
flexible.  As long as a solution exists and the number of probabilities  n  is greater than the number of
options  m, the solution will depend on the prior and minimization function chosen.  The least squares form
of the minimization function is just one of a number of candidates.  For example, one might instead
minimize the "goodness of fit" function  Sj(Pj - Pj′)

2/Pj′  or, as suggested to me by Ray Hawkins, the
"maximum entropy" function  -SjPj log(Pj/Pj′)  or, as Ron Dembo has suggested, the absolute difference
function,  Sj|Pj - Pj′| .

17

For most pre-crash days, there is very little difference if any between the risk-neutral lognormal prior and the
implied posterior probabilities.   Graph IV provides an illustration of this procedure for a typical post-crash
day January 2, 1990 at 10:00 a.m. in Chicago, using S&P 500 index options maturing in June 1990.  Using
a 200 step tree, the risk-neutral prior is assumed to be approximately lognormal with an implied volatility of
17%, equal to the average of the two nearest-the-money options (strikes 350 and 355).  The risk-neutral
implied posterior distribution is slightly bimodal and more highly skewed and kurtotic.  The bimodality
coming from the lower tail ("crash-o-phobia") is quite common during the post-crash period. The table on the
                        
    

16
 The menu of general arbitrage opportunities is described in Chapter 4 of Options Markets  by John Cox and Mark Rubinstein,

published by Prentice-Hall, 1985.  By far the most frequent arbitrage opportunities present in the data are butterfly spreads.

    
17

 Sir Maurice Kendall and Alan Stuart in Chapter 30 of The Advanced Theory of Statistics, Volume 2, Fourth Edition, Oxford
University Press, 1979, discuss the related problem of measurement of the "closeness" of an observed frequency distribution to
an hypothesized probability distribution, including the "goodness of fit" and "maximum entropy" criteria.  In addition they discuss
strategies for spacing observations.  For example, an alternative to spacing the  Sj  at the end of a standard binomial tree, is to
space the ending asset prices, separated by areas of equal probability.  The absolute difference criteria has the advantage that
the optimization problem can be reduced to a linear rather than a quadratic, or more generally, non-linear program.

In independent research, Michael Stutzer in  "The Statistical Mechanics of Asset Prices," in Differential Equations, Dynamical
Systems, and Control Science, edited by K.D. Elworthy, W.N. Everitt and E.B. Lee, Marcel Deteteer, 1993, uses the maximum
entropy criterion to solve for state-contingent prices in a manner similar to mine. He provides a three-state example involving a
single option, using exact equality constraints for the current underlying asset and option prices.
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upper right shows the Black-Scholes implied volatilities (column 2) and the concurrent bid (Sb, {Cb
i}) (column

3) and ask (Sa, {Ca
i}) (column 4) prices for each option.18  The index itself was assumed to have a two-tick

bid-ask spread around the 10:00 a.m. reported level of the index (354.75) after deducting anticipated
dividends prior to the options' expiration date.

Using the best fitting risk-neutral probabilities, the fifth column reports values (S, {Ci}).  Note that in each
case, the values lie between the corresponding quotes.  When a quotation constraint is binding so that the
value is equal to either the bid or the ask, the NAG software also reports the associated lagrangian multiplier
(or shadow price, to use the language of economics), shown in column six.  Positive multipliers indicate that
the bid is binding, and negative multipliers that the ask is binding; and the absolute size of the multiplier
indicates how important its associated option was, given the quotes of the other options, as a cause of
squared differences between prior and posterior probabilities.  High absolute multipliers indicate options
priced under the more extreme departures from risk-neutral lognormality.  This suggests what is the first of
three potential empirical tests:  examine the profitability of buying options with high negative multipliers and
selling options with high positive multipliers.  Even though the model is designed to fit the prices of all the
options of a given expiration, information from it can be used to isolate the most extreme deviations from our
prior.

From this point, by whatever method -- Shimko's, optimization or some other way -- we assume that we
have satisfactorily estimated risk-neutral probabilities  Pj  associated with asset returns  Rj = Sj/S.

 III. Implied Stochastic Process

We now take as exogenous the discretized risk-neutral probability distribution of the underlying asset
returns at some specified time in the future.  For example, suppose there are three possible ending discrete
returns  R0, R1 and R2  where  0 < R0 < R1 < R2.  Each of these returns has known associated risk-neutral
probabilities  P0, P1 and P2, where all the probabilities are positive numbers which sum to one.19

Assumption 1:  The underlying asset return follows a binomial process.

Assumption 2:  The binomial tree is recombining.

Assumption 3:  The ending nodal values are ordered from lowest to highest.

For our example, with only three possible outcomes, we must then have an n=2 step binomial tree
(equations A):

              +--------  u×u[u] = R2

              ¦
    +--------u+
    ¦         ¦
   1+         +-- u×d[u]=d×u[d] = R1

                        
    

18
 The CBOE options market does not perform on command.  In particular, the 13 puts and 15 calls, which were used to

construct the bid and ask prices, did not trade simultaneously at 10:00 a.m.  To surmount this problem, elaborate procedures
were followed to adjust non-simultaneously observed option prices to their probable 10:00 a.m. levels, had they all been quoted
at that time.

    
19

 If some probabilities are zero, replace them with very small numbers.
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    ¦         ¦
    +--------d+
              ¦
              +--------  d×d[d] = R0

Here the notation indicates that the move at any step can depend on the node.  For example,  u[d]  is the
up move immediately following a down move.  Because the tree is assumed to be recombining,   u×d[u] =
d×u[d].

Discussion of Assumption 1: The assumption of a binomial process, as a practical matter20, places the
model, in the continuous-time limit, in the context of a single state-variable diffusion process where both the
drift and volatility can be quite general functions of the state variable, the prior path of the state variable, and
time.

Discussion of Assumption 2: A recombining tree implies path-independence of returns in the sense that all
paths containing the same number of up moves and the same number of down moves lead to the same
nodal return, irrespective of the ordering of the moves along the paths.  This restricts the limiting diffusion to
one which does not depend on the prior path of the state variable.  It would seem, in addition, to rule out
diffusions which while path-independent, nonetheless must apparently be mimicked discretely by a non-
recombining tree.  A well-known example of this is the constant elasticity of variance diffusion process.21 
However, it has been shown under fairly general conditions that any path-independent tree which is non-
recombining can, by adjusting the move sizes, be transformed into a tree which is recombining without
changing the limiting form of the resulting diffusion.22  To this extent, Assumption 2 is therefore not, as a
practical matter, a restriction on the tree, but is rather a matter of computational convenience.

Discussion of Assumption 3: The ordering assumption is equivalent to requiring that after an up (a down)
move, from that point on, the most extreme remaining ending return in the down (up) direction is dropped
from consideration.  While this assumption will not change the current value of European derivatives
maturing at the end of the tree, it will affect the interior structure of the tree and hence other tree properties
such as local volatility and option deltas, as well as the value of American options.

Also associate with each move, risk-neutral probabilities, where  p[•] (1-p[•])  is the probability of an up (a
down) move after the previous sequence of realized moves indicated in the brackets (equations B):

             +-------- p×p[u] = P2

             ¦
 +-------- p +
 ¦           ¦

                        
    

20
 The other limiting possibility is the binomial jump process discussed in John Cox, Stephen Ross and Mark Rubinstein, "Option

Pricing: A Simplified Approach," Journal of Financial Economics, 7 (September 1979), 229-263.  This limiting possibility,
however, has such bizarre implications that subsequent academic work has shown little interest in it.  Of course, in the more
general setting of this paper, where the binomial move size is itself stochastic, it would be possible for the limiting form to take on
a combination of a diffusion and a two-state jump process, where at each instant of time, it would be known in advance just
which of these two processes would be mimicked next.

    
21

 See John Cox and Mark Rubinstein, Options Markets , chapter 7, section 1,  Prentice Hall, 1985.

    
22

 See Daniel Nelson and Krishna Ramaswamy, "Simple Binomial Processes as Diffusion Approximations in Financial Markets,"
Review of Financial Studies , 3-3 (1990), 393-430.
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1+           +-- p×(1-p[u]) + (1-p)×p[d] = P1

 ¦           ¦
 +--------1-p+
             ¦
             +-------- (1-p)×(1-p[d]) = P0

Because the "move probabilities"  p[•]  are risk-neutral:

r[•] = ((1-p[•]) × d[•]) + (p[•] × u[•])

where  r[•]  is one plus the riskless rate of interest over the associated binomial step, which at this point
may be dependent on the previous combination of realized moves.  

Therefore, each probability must be related to its associated up and down moves as follows:

p[•] = (r[•] - d[•])÷(u[•] - d[•])

For our example (equations C):
p = (r - d)÷(u - d)

p[d] = (r[d] - d[d])÷(u[d] - d[d])
p[u] = (r[u] - d[u])÷(u[u] - d[u])

Payouts:  If the underlying asset has payouts which do not accrue to the holder of a derivative, then we may
want to measure the returns  R0, R1 and R2  exclusive of payouts and reinterpret the variable  r[•]  as the
ratio of one plus the riskless interest rate divided by one plus the payout rate over the corresponding
binomial step.

Our goal is to infer uniquely the entire tree from the ending nodal returns  (R0, R1 and R2) and ending nodal
risk-neutral probabilities  (P0, P1 and P2).  Assessing our progress, we must determine 12 unknowns:

d, u, r, p, d[d], u[d], r[d], p[d], d[u], u[u], r[u] and p[u]

from 10 equations, four from equations A, three from equations B and three from equations C.  Since the
number of unknowns exceeds the number of equations, we will need to impose other conditions.  One
possible condition is:

Assumption 4:  The interest rate is constant (per unit of time).

In our example, this means that  r = r[d] = r[u]; so henceforth we shall usually refer to one plus the interest
rate simply as  r.

Generalization:  This assumption is not required if we know (exogenous to the model) the different node-
dependent interest rates.  These might be inferred from the current prices of default-free bonds of different
maturities, from the interest rates implied in futures contracts with different delivery dates, or from a maturity
series of otherwise identical European puts and calls.  Should this information be supplied exogenously, in
our example, we can let  r ≠ r[d] ≠ r[u].

It is noteworthy that so far we have said nothing about the elapsed time for each move.  For example, while
the total time of all moves must be equal to the prespecified time from the beginning to the end of the tree,
we can divide that time up across moves any way we like.  For example, we might suppose that the second
move is twice as long as the first move.  This flexibility may prove quite useful in some situations. 
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Successively lengthening the time for each move may lead to faster convergence to the continuous-time
process because a wider span of ending returns can be reached with fewer steps.23  This flexibility also
provides a means of handling differences between trading and calendar time -- for example, differences
between intra-week and weekend volatility.

In this context, I like to think of the interest return  r  as the "clock" running the tree.  Tying it to a specific
interval or intervals of time (not simply saying, as we have so far, that it is the interest return over a binomial
step of indeterminant length) determines the speed of the tree.  There is a kind of "equivalence principle" at
work here:  An individual who can only view the tree cannot distinguish changes in interest returns  r[•]  from
changes in the elapsed time of different moves.  For concreteness, we will suppose that  r[•]  is always
measured over the same interval of calendar time.

Assumption 4 reduces the problem to 10 equations in 10 unknowns.  However, it is easy to show that
equations B are not independent of each other.  Thus, we will need to add further structure.

Assumption 5:  All paths which lead to the same ending node have the same risk-neutral probability.

This implies we can write down the following equations B′:

p × p[u] = P2 ≡ Puu

(1-p) × p[d] = P1÷2 ≡ Pdu          p × (1-p[u]) = P1÷2 ≡ Pud

(1-p) × (1-p[d]) = P0 ≡ Pdd

The variables  Pdd, Pdu=Pud and Puu, then, are probabilities associated with single paths through the tree
("path probabilities").

Considering equations B′ by themselves, since there are 4 equations in 3 unknowns,  p, p[d] and p[u],  they
would seem to be over-determined.  However, using the special structure of their right-hand sides, namely
that Pdd + Pdu + Pud + Puu = 1, it is easy to show that any three of the equations can be used to derive the
fourth.

Generalization:  This assumption is not required if we know (exogenous to the model) the different path-
dependent probabilities  (1-p)×p[d]=Pdu  and  p×(1-p[u])=Pud.  These might be inferred from the current prices
of options maturing before the ending date, from the prices of American options, or from options with path-
dependent payoffs.  In any case, we continue to require  Pdu + Pud = P1.

This ends the specification of the model.  Given these equations, the known ending nodal returns  R0, ..., R2

 and nodal probabilities  P0, ..., P2, we show below that it is possible to solve for a unique binomial implied
tree:  d, u, d[d], u[d], d[u], u[u], and r.  Of course, from equations C, we can then immediately determine  p,
p[d] and p[u], should we wish to do so.  Moreover, we also show that the solution is consistent with the non-
existence of riskless arbitrage as we work backwards in the tree.

Before we do this, note that the standard binomial option pricing model is a special case since all five
assumptions hold for that model as well but with the added requirement that  u and d  are constant
throughout the tree.  An implication of constant move size is that  P0 = (1-p)2,  P1 = 2p(1-p),  P2 =  p2.  In
                        
    

23
 The recent working paper "Discrete-time Valuation of American Options with Stochastic Interest Rates" by Kaushik Amin and

James Bodurtha (July 1993), University of Michigan, argues that the difficult numerical problem of the valuation of path-dependent
American options can be efficiently handled by a non-recombining binomial tree where the elapsed time per move is successively
lengthened as the end of the tree is approached.
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contrast, the model here allows these ending probabilities to take on arbitrary values, and therefore
represents a significant generalization.

IV. The Solution

The implied binomial tree can now be solved conveniently by working backwards recursively from the end of
the tree.

Here is the general method; it's as simple as One-Two-Three.  The unsubscripted  P  variables below
represent path probabilities and the  R  variables represent nodal values.  Say you are working backwards
from the end of a tree and you have worked out (P+,R+) and (P-,R-) and want to figure out the prior node
(P,R):

     +--------(P+,R+)
     ¦
(P,R)+
     ¦
     +--------(P-,R-)

One:  P = P- + P+

Two:  p = P+/P

Three:  R = [(1-p)R- + pR+]/r

That's it! and you are now ready for the next backwards recursive step.

To start everything rolling go the end of the tree and attach to each node its nodal value  Rj  and nodal
probability  Pj.  Now take each ending nodal probability and divide it by the number of paths to that node to
get the path probability, which is in general:

Pj ÷ [n!/j!(n-j)!]

Also, define the interest return  r  as the nth root of the sum of  PjRj, so that:

rn = SjPjRj  (with payouts: (r/d)n = SjPjRj)

Each of these One-Two-Three steps makes simple economic sense.  The first simply says that an interior
path probability equals the sum of the subsequent path probabilities that can emanate from it. The second
step is the simple probabilistic rule that allocates total probability across up and down moves since:

p = P+/P  and   (1-p) = P-/P

The third step uses the risk neutral move probability so calculated to determine the interior nodal value  R 
by setting it equal to the discounted value of its risk-neutral expected value at the end of the move.

Interior arbitrage:  Starting with positive ending path probabilities, Step One insures that all interior path
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probabilities are also positive since the sum of two positive numbers is obviously positive.  Step Two then
implies that all move probabilities  p[•]  are positive since they are the ratio of two positive numbers, and
moreover they are less than one since the  P+ < P.  This fully justifies our habit of referring to the  p[•]  as
move "probabilities".  A necessary and sufficient condition for there to be no riskless arbitrage opportunities
between the riskless asset and the underlying asset at any point in the tree is that  r[•]  (or r[•]/d[•]  with
payouts) must always lie between the corresponding values of  d[•]  and  u[•]  at each node.  Indeed, from
equations C, the fact that the corresponding  p[•]  qualify as probabilities guarantees this will be so.

Significance of Assumption 3:  With this solution, it is quite easy to see that Assumption 3, which governs
the ordering of the returns at the end of the tree, affects the structure of the tree.  For example, consider a 3-
step tree where  P0=P1=P2=1/3  and we permute the ordering of  R0, R1, R2  at the end of the tree to  R1, R0,
R2.  Where before  d = [(2/3)R0 + (1/3)R1]/r  and  u = [(1/3)R1 + (2/3)R2]/r, with the permuted ordering  d′ =
[(2/3)R1 + (1/3)R0]/r  and  u′ = [(1/3)R0 + (2/3)R2]/r.  Clearly:

d < d′ < u′ < u  

so that the local volatility over the first move will be smaller under the permuted ordering.

Some n-step tree properties:  See Appendix II for a 3-step numerical example.  In the third step of the tree,
the eight possible move sizes are  d[dd], u[dd], d[du], u[du], d[ud], u[ud], d[uu] and u[uu].  For example, 
d[du]  means the down move following a sequence of first a down move followed by an up move.  By
assumption, since the tree is recombining, it must be path-independent in the sense that at any node in the
tree, for the next move, while its size may depend on the number of up or down moves that gave rise to that
node, its size must be independent of the ordering of these prior moves.  This is an implication of the return
path-independence we discussed before.  In this case, it means operationally that  d[du] = d[ud]  and  u[du]
= u[ud].

In addition, it is quite easy to verify the following result:24

Given only Assumption 1:  if all ending paths containing the same numbers of up and down
moves have the same ending risk-neutral probability, then all interior paths containing the
same numbers of up and down moves also have the same interior risk-neutral probability.

Since, as a special case, the supposition to this result clearly holds under Assumptions 2 and 5, its
conclusion will as well.

For example, in a 3-step tree, the equations replacing equations B′ would be:

  p   ×   p[u]   ×   p[uu] = P3 ≡ Puuu (1)
  p   ×   p[u]   × (1-p[uu]) = P2÷3 ≡ Puud (2)
  p   × (1-p[u]) ×   p[ud] = P2÷3 ≡ Pudu (3)
(1-p) ×   p[d]   ×   p[du] = P2÷3 ≡ Pduu (4)
  p   × (1-p[u]) × (1-p[ud]) = P1÷3 ≡ Pudd (5)
(1-p) ×   p[d]   × (1-p[du]) = P1÷3 ≡ Pdud (6)
(1-p) × (1-p[d]) ×   p[dd] = P1÷3 ≡ Pddu (7)
(1-p) × (1-p[d]) × (1-p[dd]) = P0 ≡ Pddd (8)

                        
    

24
 One may be tempted to believe the complementary result:  Given only Assumption 1: if all ending paths containing the same

numbers of up and down moves lead to the same ending node, this will be true of interior paths as well (in other words, the tree
will be recombining).  However, such is not the case.
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In this case there is only one interior node that can be reached by more than one path: the middle node at
the end of step 2 which is reached by two paths.  We need to show that these path probabilities are equal. 
That is:

p × (1-p[u]) = (1-p) × p[d]

To see this, equations (3) and (5) imply  p[ud] = P2/(P1+P2).  Equations (4) and (6) imply  p[du] = P2/(P1+P2).
 Therefore, p[ud] = p[du].  Substitute this into equations (3) and (4) [or equations (5) and (6)], and we have
our desired result.

This 3-step example also highlights the special role played by the interest rate.  In addition to providing a
clock, it also is the primary route through which the model communicates with and is bound to the external
world.  I conjecture that in any reasonable economy, it is always possible to design a security whose
stochastic process obeys Assumptions 1 and 2.  But, given only these two assumptions, we are no longer
free to impose whatever structure we wish on the risk-neutral probabilities since:

Given only Assumptions 1 and 2:  the risk-neutral move probabilities will be path-
independent if and only if the riskless interest rate is path-independent.

This follows immediately from equations of type C, which provide expressions for  p[du] and p[ud]:

p[du] = (r[du] - d[du])÷(u[du] - d[du])
p[ud] = (r[ud] - d[ud])÷(u[ud] - d[ud])

Since Assumptions 1 and 2 imply that  d[du]=d[ud]  and  u[du]=u[ud], we must then have  p[du]=p[ud]  if
and only if  r[du]=r[ud], the conditions which embody the notion of path-independence.  Since we have just
shown that Assumptions 1, 2 and 5 imply  p[du]=p[ud], these must also imply  r[du]=r[ud].

As a result of these properties, the qualitative features of the tree that we have noted for the ending nodes
are recursively reproduced as we work backwards in the tree.

This reduction of the solution to a simple recursive procedure is quite fortunate.  For example, in a 200 step
lattice, we need to determine a total of 60,301 unknowns:  40,200 potentially different move sizes, 20,100
potentially different move probabilities, and 1 interest rate from 60,301 independent equations, many of
which are non-linear in the unknowns.  Despite this, the solution procedure is only slightly more time-
consuming than for a standard binomial tree with given constant move sizes and move probabilities.25

V. Extensions

As mentioned earlier, Assumptions 4 and 5 can be completely dropped if we have some way of knowing
                        
    

25
 In his notes on which he has based several talks during the last two years, Hayne Leland at Berkeley has solved a similar

problem.  He shows that under certain assumptions, given ending and possibly path-dependent desired personal wealth levels,
ending subjective (not risk-neutral) probabilities of an investor relative to the market consensus investor can be implied.  It is then
possible to work backwards from the end of a recombining binomial tree and derive the tree structure of the investor's subjective
beliefs.  He uses his analysis to answer the puzzling question:  who should buy exotic options such as lookbacks and Asians? 
Although he assumes a standard constant move size binomial tree, his work gave me the faith to pursue the research reported
here -- that I should not be daunted by the number of variables to be determined in the tree.



20

how one plus the interest rate  r[•]  varies with the underlying asset return and time and how the individual
ending risk-neutral probabilities  Pj  for j=0,...,n  are divvied up among different paths leading to the same
ending node.

Node-dependent interest rates:  In some situations, we may be willing to infer the time-dependence of  r[•] 
from the forward rates implied in the current prices of riskless bonds of different maturities.  For example if 
B1 and B2  were the current prices of zero coupon bonds yielding $1 at the end of steps 1 and 2,
respectively, then we could preset  r=1/B1  and  r[d]=r[u]=B1/B2.  It is much more difficult to see where we
could obtain reliable information about the dependence of  r[•]  on the combination of prior moves -- that is,
to justify by inference from the prices of securities that  r[d]≠r[u]. 

However, suppose we interpret  r[•]  as one plus the rate of interest divided by one plus the underlying asset
payout rate.  We may then come to appreciate this added flexibility.  This gives us a simple way of
incorporating into the tree, at minimal computational cost, a payout rate that can be a very general function
of the concurrent underlying asset return and time, provided this function can be exogenously specified. 

Introducing dividends into the standard binomial model by adjusting the risk-neutral move probabilities can
lead to incorrect results when dividends are highly state or date dependent.  For example, for some common
equities with quarterly dividends, one might try to include the effect of dividends by calculating the move
probability as  p[•]  = ((r/d[•]) - d)÷(u-d).  However, for accurate trees with a large number of moves, with  d[•]
 sufficiently large and discrete, it is quite easy for  r/d[•] < d  over some moves, producing negative and
nonsensical "probabilities."  Fortunately, as Bruno Dupire has mentioned to me, this is not a problem with
the implied tree constructed here because the move sizes  d[•]  and  u[•]  will automatically be adjusted in
the recursive procedure to insure that  d[•] < (r/d[•]) < u[•]  at every move in the tree.

So, if we know how  r[•]  and  d[•]  depend on the underlying asset and time, we can use these rates in
constructing our tree.  However, we are not completely free to choose them since to avoid arbitrage
opportunities, the one plus interest rates (possibly divided by one plus payout rates) must be individually
positive and jointly satisfy:

1 = Pdd(R0/(r×r[d]))+Pdu(R1/(r×r[d]))+Pud(R1/(r×r[u]))+Puu(R2/(r×r[u]))

This is an obvious generalization of the above solution for  r  under constant interest rates which, for
purposes of comparison, can be restated as:

1 = Pdd(R0/r
2) + Pdu(R1/r

2) + Pud(R1/r
2) + Puu(R2/r

2)

In words, more generally, each ending return must be discounted by its associated path of interest rates
before talking risk-neutral expectations.

While this generalization extends easily to an n-step tree, to maintain the benefits of a recombining tree, we
cannot go so far as to allow the interest rate structure to be path-dependent.  In the absence of Assumption
4 or 5, we no longer have a way of guaranteeing that the interest rate will be path-independent.  So for
example, in a 3-step tree we must then add the requirement that  r[du] = r[ud].

Different risk-neutral path probabilities at the same ending node:  A natural way to infer these probabilities is
from standard options with maturities prior to the ending date.  In our 2-step example, suppose through
options which mature at the end of step 1, we are able to infer the risk-neutral nodal probabilities (which in
this special case are also path probabilities)  Pd and Pu  at that time, where Pd + Pu = 1.  It turns out that
this gives us just enough information to infer the individual path-probabilities Pdu and Pud, which, since we
have dropped Assumption 5, are no longer assumed to be equal. 



21

To see this, in a 2-step tree, over the first step, we must have p = Pu.  We can now reconsider equations B
which before left the move probabilities indeterminant.  With this added restriction, they can be solved easily
for:

p[d] = 1 - P0÷Pd    and    p[u] = P2÷Pu

Note that in this case the two path probabilities leading to the middle ending node at step 2 are not
generally equal; that is:

Pdu = (1-p)p[d] = Pd - P0    and    Pud = p(1-p[u]) = Pu - P2

Of course, jointly they continue to satisfy the requirement that:

Pdu + Pud = (Pd-P0) + (Pu-P2) = 1-P0-P2 = P1

Extending this example to n-steps, remember that even though it is no longer true that all paths which lead
to the same interior or ending node have the same probability, the move probabilities must remain
independent of the prior path.  For example, in a 3-step tree, it remains the case that  p[ud] = p[du].  This
follows from the assumption that the binomial tree is recombining.  As previously noted, a recombining tree
implies that  d[du] = d[ud], u[du] = u[ud].  In addition, to maintain the benefits of a recombining tree, in the
absence of Assumptions 4 and 5, we must in their place assume  r[du] = r[ud]. We then have by our earlier
result:  p[du]=p[ud].

To imply all the path probabilities in an n-step tree requires that we know exogenously all the nodal interior
and ending probabilities in the tree.  In turn, these nodal probabilities can be inferred from standard
European options, provided that their maturities span all nodal dates in the tree.26  That is, we would need
currently available options maturing at the end of step 1, step 2, step 3, etc. Given the nature of traded
options, this is clearly an unrealistic expectation for trees sufficiently fine to be of practical value.  That is
why, for application purposes, we will continue to maintain Assumption 5.

However, in future research, it should prove useful to investigate methods of interpolating across the
available option maturities to fill in the missing expiration dates, or to find some way to use the current
prices of American options for the same purpose.

Even without this, what shorter maturity options that do exist can be put to good purpose.  Here is a second
potential empirical test:  compare their market prices to the value for them that we would infer from the early
portion of our binomial tree implied from the prices of longer maturity options.  Given Assumptions 1-4, this
gives us a way of separately testing Assumption 5 concerning path-independent risk-neutral probabilities.  If
the tree successfully predicts the contemporaneous prices of the shorter maturity options, Assumption 5
need not concern us. 

 
VI. Volatility and Mean Structure

Move (local) volatility:  Knowing the full binomial tree, at any node we can measure the move volatility  s[•] 
as follows:
                        
    

26
 Note that for there to be no arbitrage opportunities, the interior nodal probabilities derived from option prices would need to

be consistent across dates.  In our 2-step example, we would require that Pd > P0  and  Pu > P2.
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µ[•] ≡ ((1-p[•]) × log d[•]) + (p[•] × log u[•])

s 2[•] ≡ ((1-p[•]) × [log d[•] - µ[•]]2) + (p[•] × [log u[•] - µ[•]]2)

Holding fixed the time remaining to the ending node, if limits are taken properly, as the number of moves
increases and the move size goes to zero, the move volatility will approach the instantaneous diffusion
volatility, commonly written as  s(S,t)  in the continuous-time literature.  In the Black-Scholes model the
diffusion volatility is assumed to be constant, or at most a function of time -- either known in advance, or
implied in some way from option prices.  In other models (such as the constant elasticity of variance
diffusion model), the diffusion volatility is assumed to be a known function of  S, where perhaps a free
parameter might be inferred from option prices.  By contrast, not only does the model here permit
dependence of  s  on  t  as well as  S, but the model does not even begin with a specific parameterization of
 s (S,t); instead, using the rules to construct our binomial tree -- and despite the fact that  s(S,t)  is likely to
be a very complex function unique for each different assumed ending return distribution -- s[•], as an
approximation to  s(S,t), can nonetheless be easily determined by using the above backwards recursive
solution procedure.

Table IV examines a "typical" day from the post-crash period.  Bid (ask) quotes from 13 June puts and 15
June calls on January 2, 1990 at 10:00 a.m. on the S&P 500 index were averaged for each striking price and
input into the quadratic program to estimate risk-neutral probabilities for the June expiration date.  These
probabilities were then taken as inputs to create an implied binomial tree.  Finally, at each node in the tree
the local volatility was calculated using the above equation.  Although the annualized local volatility on
January 2 was virtually the same as the annualized global volatility over the life of the options, the predicted
pattern of local volatility over time shows considerable variation.  Using the model as a lens to peer into the
future, we would expect the local volatility to rise dramatically should the index decline rapidly.  For
example, if the index fell from 355 to 302 (an 18% decline) over the next twelve calendar days, the
annualized local volatility should quadruple from about 20% to 77%.  But, if the same drop in the index
occurred over a longer time interval, say three months, then the local volatility would only double.  On the
other hand, increases in the index should be accompanied by significant decreases in local volatility,
although again this effect tends to be attenuated the longer the increase takes to occur.  If instead, the
index remains relatively flat over the next three months, then local volatility should decline to about 15%. 
On the downside, it is tempting to conclude that the market has built into option prices a repeat of the
experience during the crash:  a sudden decline in prices led to a tripling or even quadrupling of Black-
Scholes implied volatility which gradually subsided as the market stabilized in the months following the
crash.

These results are consistent with the Shimko's time-series empirical observation that Black-Scholes implied
volatility varies strongly and inversely with contemporaneous index return.  The constant elasticity of
variance diffusion formula would also predict that local volatility should be inversely correlated with
contemporaneous index return.  However, since that model is stationary, it will not predict the time-
dependent nature of this relation.
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Table IV
 Annualized % Implied Local Volatility Structure (s[•])

January 2, 1990: 10:00 A.M.

Days into the Future

S&P500

Index      0    3    7   12   17   22   27   32   37   42   47   52   57   61   66   71   76   81   86   91

 407                                             3.3  3.5  3.7  3.9  4.1  4.2  4.4  4.7  5.0  5.2  5.6  5.9

 405                                        3.7  3.8  4.0  4.2  4.4  4.6  4.7  5.0  5.3  5.5  5.8  6.2  6.5

 402                                        4.1  4.3  4.5  4.7  4.9  5.1  5.3  5.5  5.8  6.1  6.4  6.7  7.1

 400                                   4.4  4.6  4.7  4.9  5.1  5.3  5.6  5.8  6.0  6.3  6.6  6.9  7.3  7.6

 397                                   4.8  5.0  5.2  5.4  5.6  5.8  6.1  6.2  6.5  6.8  7.1  7.4  7.8  8.2

 394                              5.1  5.2  5.4  5.6  5.8  6.0  6.3  6.5  6.7  7.0  7.3  7.6  7.9  8.3  8.6

 392                              5.5  5.7  5.8  6.0  6.2  6.5  6.7  7.0  7.1  7.4  7.7  8.0  8.4  8.7  9.1

 389                         5.7  5.9  6.1  6.3  6.5  6.7  6.9  7.1  7.4  7.6  7.8  8.2  8.5  8.8  9.1  9.5

 386                         6.1  6.3  6.5  6.7  6.9  7.1  7.3  7.5  7.8  8.0  8.2  8.6  8.9  9.2  9.5  9.8

 384                         6.5  6.7  6.9  7.1  7.3  7.5  7.7  7.9  8.2  8.4  8.6  9.0  9.2  9.5  9.8 10.2

 381                    6.8  7.0  7.2  7.3  7.5  7.7  7.9  8.1  8.3  8.6  8.8  9.0  9.3  9.6  9.9 10.2 10.5

 378                    7.3  7.4  7.6  7.8  8.0  8.1  8.3  8.5  8.8  9.0  9.2  9.4  9.7 10.0 10.3 10.5 10.8

 376                    7.8  8.0  8.1  8.3  8.4  8.6  8.8  9.0  9.2  9.4  9.6  9.8 10.1 10.4 10.6 10.9 11.2

 373               8.4  8.5  8.6  8.7  8.8  8.9  9.1  9.3  9.5  9.6  9.9 10.0 10.2 10.5 10.8 11.0 11.3 11.5

 371               9.2  9.2  9.3  9.3  9.4  9.5  9.6  9.8  9.9 10.1 10.3 10.5 10.7 10.9 11.2 11.4 11.6 11.9

 368              10.2 10.1 10.1 10.1 10.1 10.2 10.3 10.4 10.5 10.6 10.8 11.0 11.1 11.4 11.6 11.8 12.0 12.3

 365         11.6 11.5 11.3 11.1 11.0 11.0 11.0 11.0 11.0 11.1 11.2 11.4 11.5 11.6 11.8 12.0 12.2 12.5 12.7

 363         13.3 13.1 12.7 12.4 12.2 12.0 11.9 11.8 11.8 11.8 11.9 12.0 12.0 12.2 12.3 12.5 12.7 12.9 13.1

 360         15.3 14.8 14.4 14.0 13.6 13.3 13.1 12.9 12.7 12.6 12.6 12.7 12.7 12.8 12.9 13.0 13.2 13.4 13.6

 357         17.5 17.0 16.4 15.8 15.2 14.8 14.4 14.1 13.9 13.7 13.5 13.4 13.4 13.4 13.5 13.6 13.7 13.9 14.1

*355    20.4 20.0 19.3 18.5 17.8 17.2 16.6 16.0 15.5 15.1 14.7 14.5 14.3 14.2 14.2 14.1 14.2 14.3 14.4 14.5

 351         24.2 23.5 22.5 21.4 20.5 19.7 19.0 18.2 17.6 17.0 16.4 16.0 15.8 15.5 15.3 15.2 15.2 15.3 15.4

 347         28.8 27.8 26.7 25.7 24.5 23.4 22.3 21.4 20.5 19.7 18.9 18.1 17.7 17.2 16.8 16.5 16.3 16.2 16.2

 342         33.7 32.6 31.4 30.0 28.7 27.5 26.3 25.1 23.8 22.7 21.8 20.7 20.1 19.3 18.6 18.0 17.6 17.3 17.1

 338         38.6 37.5 36.1 34.7 33.3 31.9 30.3 29.0 27.7 26.4 25.1 23.7 23.0 21.9 20.7 19.9 19.2 18.6 18.2

 334              42.4 41.0 39.5 38.0 36.4 34.9 33.3 31.8 30.1 28.7 27.1 26.1 24.7 23.4 22.2 21.2 20.2 19.5

 330              47.3 45.9 44.4 42.7 41.1 39.4 37.7 36.0 34.3 32.7 30.8 29.7 28.2 26.3 24.9 23.6 22.3 21.2

 326              52.3 50.8 49.1 47.4 45.8 43.9 42.1 40.4 38.6 36.7 34.7 33.5 31.6 29.7 28.0 26.3 24.6 23.1

 322              57.2 55.6 53.8 52.2 50.4 48.4 46.6 44.7 42.8 40.8 38.6 37.3 35.4 33.2 31.3 29.4 27.6 25.8

 318              62.1 60.1 58.5 56.9 54.8 52.9 51.1 49.0 46.9 45.0 42.6 41.3 39.3 36.9 34.8 32.8 30.6 28.5

 314              66.3 64.6 63.2 61.1 59.1 57.4 55.3 53.1 51.1 49.1 46.5 45.2 43.0 40.6 38.4 36.2 34.0 31.8

 310              70.4 69.1 67.5 65.2 63.5 61.7 59.2 57.1 55.2 52.8 50.5 48.9 46.6 44.2 41.9 39.7 37.5 35.1

 306              74.6 73.6 71.2 69.3 67.9 65.3 63.1 61.2 58.8 56.4 53.9 52.3 50.2 47.5 45.4 43.2 40.9 38.4

 302              78.7 77.2 74.9 73.5 71.4 68.9 67.0 64.9 62.1 60.0 57.2 55.7 53.8 50.9 48.8 46.3 43.9 41.7

 297              82.9 80.4 78.6 77.6 74.5 72.4 70.9 67.8 65.4 63.5 60.4 59.2 56.6 54.2 51.5 49.1 47.0 45.0

 293                   83.5 82.3 80.2 77.6 76.0 73.4 70.7 68.7 66.3 63.7 61.8 59.0 56.4 54.0 52.0 50.1 47.4

 289                   86.7 86.1 82.7 80.8 79.3 75.9 73.6 71.9 68.4 65.8 63.8 61.5 58.6 56.5 54.7 51.9 49.6

 285                   89.8 87.9 85.2 83.9 81.0 78.3 76.5 73.4 70.5 67.5 65.9 64.0 60.7 58.9 55.9 53.6 51.9

 281                   93.0 89.7 87.7 86.5 82.8 80.7 78.6 75.0 72.7 69.3 67.9 65.4 62.8 59.6 57.1 55.3 53.3

 277                   94.4 91.4 90.3 87.5 84.6 83.1 79.5 76.6 74.8 71.0 69.6 66.0 63.2 60.3 58.4 56.3 53.6

 273                   95.2 93.2 92.5 88.4 86.4 84.2 80.4 78.1 75.3 72.4 69.6 66.6 63.4 61.1 59.1 56.0 53.8
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* Exact S&P 500 index on January 2, 1990, reported at 10:00 a.m. in Chicago is 354.75.

_______________________________________________________________________________________________________________

Based on S&P 500 index June call and put options maturing in 164 days.

This table suggests a third and final empirical test:  if we really take the model seriously, we should be able
to march into the future along the realized binomial path and find that options continue to imply what
remains of the original tree.  Of course, the Black-Scholes model demonstrably fails this test, and
realistically we cannot expect a very close fit here since the real world is certainly much more complex than
any model could be.  So the interesting question to answer is one of comparative models: can predictions of
local volatility be improved by using this approach compared to existing alternatives? 
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Global volatility:  Remember that we are looking at local volatilities, not Black-Scholes implied volatilities
that summarize the level of uncertainty over the entire life of an option.  The very high (low) local volatilities
shown in the table could imply much lower (higher) Black-Scholes implied volatilities over longer intervals. 
This is evident from the table that indicates that the effects of extreme volatility levels, other things equal,
are attenuated as one moves into the future.  This is an issue that can be resolved within the structure of the
model.  As we work backwards in the tree, at each interior node we can calculate the ending nodal
probabilities conditional upon arriving at that interior node (see the formula is Section VII).  Using these
conditional probabilities, at each interior node we then calculate the risk neutral global volatility from that
node looking forward to the end of the tree.  Table V displays the annualized global volatility structure. 
Indeed, the sensitivity of global volatility to the level of the index is about half the sensitivity of the local
volatility.  So, for example, if the index falls from 355 to 302 over the next twelve days, while the local
volatility rises from about 20% to 77%, the global volatility rises from 20% to 38%.  Similarly, on the upside,
if the index moves from 355 to 400 in twenty-seven days, the local volatility falls from 20% to 4%, but the
global volatility only falls from 20% to 9%.

It is also possible to calculate a tree of annualized at-the-money Black-Scholes implied volatilities.  To do
this, at each interior node, calculate the Black-Scholes value of an option (see Section VII) with a striking
price set equal to the index level at that node, and a time-to-expiration equal to the remaining time to the
end of the tree.  Then invert the Black-Scholes formula to obtain the implied volatility at each node.  Such a
tree shows that the current (time 0) implied volatility is 17%.  If, after twelve days, the index falls from 355 to
302, the implied volatility rises to 39%.  On the other hand, if, after twenty-seven days, the index rises from
355 to 400, the implied volatility falls to 9%.  So the behavior of the at-the-money Black-Scholes implied
volatility is quite similar to the global volatility.
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Table V
 Annualized % Implied Global Volatility Structure

January 2, 1990: 10:00 A.M.

Days into the Future

S&P500

Index      0    3    7   12   17   22   27   32   37   42   47   52   57   61   66   71   76   81   86   91

 407                                             7.6  7.8  8.0  8.2  8.4  8.6  8.8  9.0  9.3  9.5  9.8 10.1

 405                                        8.0  8.1  8.3  8.5  8.7  8.9  9.1  9.3  9.6  9.8 10.1 10.3 10.6

 402                                        8.5  8.6  8.8  9.0  9.2  9.4  9.6  9.8 10.1 10.3 10.5 10.8 11.1

 400                                   8.7  8.9  9.1  9.3  9.5  9.6  9.9 10.0 10.2 10.5 10.7 11.0 11.2 11.5

 397                                   9.2  9.3  9.5  9.7  9.9 10.1 10.3 10.4 10.6 10.9 11.1 11.4 11.6 11.9

 394                              9.4  9.6  9.7  9.9 10.1 10.3 10.4 10.7 10.8 11.0 11.3 11.5 11.7 12.0 12.2

 392                              9.8  9.9 10.1 10.3 10.4 10.6 10.8 11.0 11.1 11.3 11.6 11.8 12.0 12.3 12.5

 389                        10.0 10.1 10.3 10.5 10.6 10.8 11.0 11.1 11.3 11.5 11.7 11.9 12.1 12.3 12.6 12.8

 386                        10.4 10.5 10.6 10.8 10.9 11.1 11.3 11.4 11.7 11.8 12.0 12.2 12.4 12.6 12.8 13.0

 384                        10.7 10.8 11.0 11.1 11.3 11.4 11.6 11.8 11.9 12.1 12.2 12.5 12.6 12.8 13.1 13.3

 381                   10.9 11.1 11.2 11.3 11.5 11.6 11.7 11.9 12.1 12.2 12.3 12.5 12.7 12.9 13.1 13.3 13.5

 378                   11.3 11.4 11.5 11.7 11.8 11.9 12.1 12.2 12.4 12.5 12.6 12.8 13.0 13.2 13.3 13.5 13.7

 376                   11.8 11.8 11.9 12.0 12.1 12.3 12.4 12.5 12.7 12.8 12.9 13.1 13.2 13.4 13.6 13.7 13.9

 373              12.2 12.3 12.3 12.4 12.4 12.5 12.6 12.7 12.8 13.0 13.1 13.2 13.3 13.5 13.6 13.8 13.9 14.1

 371              12.9 12.8 12.8 12.9 12.9 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.8 13.9 14.0 14.2 14.3

 368              13.6 13.5 13.5 13.4 13.4 13.4 13.4 13.5 13.6 13.6 13.7 13.8 13.9 14.1 14.2 14.3 14.4 14.6

 365         14.7 14.5 14.3 14.2 14.1 14.0 14.0 13.9 14.0 14.0 14.0 14.1 14.1 14.2 14.3 14.5 14.6 14.7 14.8

 363         15.8 15.6 15.3 15.1 14.9 14.7 14.6 14.5 14.5 14.4 14.4 14.5 14.5 14.6 14.7 14.7 14.8 14.9 15.1

 360         17.0 16.7 16.4 16.1 15.8 15.6 15.4 15.2 15.1 15.0 14.9 14.9 14.9 14.9 15.0 15.0 15.1 15.2 15.3

 357         18.3 18.0 17.6 17.2 16.8 16.5 16.2 16.0 15.8 15.6 15.5 15.4 15.3 15.3 15.3 15.4 15.4 15.5 15.6

*355    20.0 19.7 19.3 18.8 18.3 17.9 17.5 17.1 16.8 16.5 16.2 16.1 15.9 15.8 15.8 15.7 15.7 15.7 15.8 15.9

 351         21.8 21.3 20.8 20.3 19.7 19.2 18.8 18.3 17.9 17.5 17.2 16.9 16.7 16.5 16.4 16.3 16.3 16.3 16.3

 347         23.8 23.4 22.8 22.2 21.6 21.1 20.5 19.9 19.4 19.0 18.5 18.0 17.8 17.5 17.2 17.0 16.9 16.8 16.8

 342         25.7 25.3 24.7 24.1 23.5 22.9 22.3 21.7 21.1 20.5 19.9 19.3 19.0 18.6 18.1 17.8 17.6 17.4 17.2

 338         27.7 27.1 26.6 25.9 25.3 24.7 24.1 23.4 22.7 22.1 21.5 20.8 20.4 19.8 19.2 18.8 18.4 18.0 17.8

 334              29.0 28.3 27.6 27.1 26.4 25.7 25.1 24.4 23.7 23.0 22.3 21.8 21.2 20.5 19.9 19.3 18.9 18.5

 330              30.4 29.9 29.4 28.7 28.0 27.4 26.7 26.0 25.3 24.6 23.8 23.3 22.6 21.8 21.1 20.5 19.8 19.3

 326              31.9 31.5 30.8 30.1 29.6 29.0 28.2 27.5 26.8 26.1 25.3 24.8 24.1 23.2 22.4 21.7 20.9 20.2

 322              33.3 32.8 32.1 31.6 31.1 30.3 29.6 29.0 28.3 27.5 26.7 26.2 25.4 24.5 23.7 23.0 22.2 21.4

 318              34.7 34.0 33.4 33.0 32.2 31.5 31.0 30.3 29.5 28.8 27.9 27.5 26.8 25.8 25.1 24.3 23.4 22.5

 314              35.7 35.1 34.7 34.0 33.3 32.8 32.2 31.4 30.7 30.1 29.2 28.8 28.0 27.1 26.4 25.5 24.7 23.8

 310              36.6 36.2 35.8 35.0 34.5 34.0 33.1 32.5 31.9 31.2 30.4 29.9 29.1 28.3 27.4 26.7 25.9 25.0

 306              37.5 37.3 36.6 36.0 35.6 34.8 34.1 33.6 32.9 32.1 31.3 30.8 30.1 29.2 28.5 27.8 27.0 26.2

 302              38.4 38.0 37.3 36.9 36.4 35.6 35.1 34.5 33.6 33.0 32.1 31.7 31.1 30.2 29.6 28.8 27.9 27.2

 297              39.3 38.6 38.1 37.9 37.0 36.4 36.0 35.1 34.4 33.9 32.9 32.6 31.8 31.1 30.3 29.5 28.9 28.2

 293                   39.1 38.8 38.3 37.6 37.2 36.5 35.7 35.1 34.5 33.8 33.2 32.4 31.6 30.9 30.3 29.8 28.9

 289                   39.7 39.6 38.7 38.2 37.8 36.9 36.3 35.9 34.9 34.2 33.6 32.9 32.1 31.5 31.0 30.1 29.5

 285                   40.2 39.8 39.1 38.8 38.0 37.3 36.9 36.1 35.3 34.5 34.0 33.5 32.6 32.1 31.2 30.5 30.0

 281                   40.8 40.0 39.5 39.2 38.3 37.7 37.2 36.3 35.6 34.8 34.4 33.7 33.0 32.1 31.4 30.9 30.3

 277                   40.9 40.1 39.8 39.2 38.5 38.1 37.2 36.5 36.0 35.0 34.7 33.7 33.0 32.2 31.6 31.1 30.3

 273                   40.8 40.3 40.2 39.2 38.7 38.2 37.3 36.7 36.0 35.2 34.5 33.7 32.9 32.2 31.7 30.8 30.2
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* Exact S&P 500 index on January 2, 1990, reported at 10:00 a.m. in Chicago is 354.75.

_______________________________________________________________________________________________________________

Based on S&P 500 index June call and put options maturing in 164 days.

Consensus mean:  In the diffusion continuous-time limit, the move volatility calculated from risk-neutral
probabilities and the move volatility calculated from the "true" market-wide (consensus) subjective
probabilities converges to the same number as the move size approaches zero.  However, this is not true for
the mean.  The risk-neutral mean for a single move is obviously  r.  If q[•] (1-q[•]) is the consensus subjective
probability of an up (down) move after the previous sequence of realized moves indicated in the brackets,
then the corresponding consensus move mean is:

m[•] ≡ [((1-q[•]) × d[•]) + (q[•] × u[•])]×d[•]

where  d[•]  is one plus the payout rate over the next binomial step after the previous sequence of realized
moves indicated in the brackets, and we must be careful to interpret  d[•] and u[•]  as only the capital gain
portion of the underlying asset return.

In general, not only is  m[•]  not equal to  r  in discrete time, but neither will it converge to  r  in the
continuous-time limit.  In fact, if the underlying asset is the market portfolio, market-wide risk aversion
implies that  m[•] > r, throughout the entire tree.  This is consistent with the common observation that the
subjective probability distribution of ending returns cannot be inferred only from knowledge of its risk-neutral
distribution.

Ending node-dependent mean:  However, in a fully specified utility theory framework, at least for the market-
wide portfolio, knowing the implied risk-neutral binomial tree goes a long way towards a full specification of
the consensus stochastic move process.27  To take a very special but classic example, consider a complete
markets economy with a representative investor who maximizes the expected utility of ending wealth with
constant relative risk aversion subject to the usual budget constraint that she invest all her wealth.  Since, in
this case, her proportional investment choice is invariant to her level of wealth, we can regard her as having a
utility function  U(dnRj), measured in terms of return, and an initial wealth of 1. In brief, she chooses  Rj  by
solving the following lagrangian problem28:

max SjQjU(dnRj) - ?[Sj(Pj/r
n)dnRj - 1]

where  Qj > 0  is the subjective probability she attaches to state j (so that SjQj = 1).  The  Pj/r
n are often

called "state-contingent prices."

Solving the first order conditions that arise after differentiating with respect to Rj:
                        
    

27
 A recent complementary paper by Hua He and Hayne Leland, "On Equilibrium Asset Price Processes," Review of Financial

Studies, volume 6, number 3 (1993), is also in the context of a single state-variable path-independent diffusion process for the
market portfolio return and the riskless interest rate, together with an exogenously specified utility of terminal wealth.  Their key
result is a differential equation that the local drift and volatility must follow to be consistent with equilibrium.  Knowing one, say the
drift, it is then possible to solve the differential equation for the other, in this case the volatility.  In this context, the work here can
be viewed as a binomial implementation of this differential equation by using risk-neutral probabilities inferred from market prices
as a wedge between the drift and volatility, permitting the solution of either one without first knowing the other.

    
28

 Actually, if  r, d  and the  Rj  are taken as exogenous, the problem amounts to determining the equilibrium risk-neutral ending
nodal probabilities  Pj.
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Qj = ?[(Pj/r
n) ÷ U′(dnRj)]

where  ? = 1 ÷ Sj[(Pj/r
n) ÷ (U′(dnRj))]

Now, returning to our original binomial tree where we assumed that we somehow knew both the  Rj and Pj,
we now have a formula for converting the ending nodal risk-neutral probabilities  Pj  into the ending
consensus subjective nodal probabilities  Qj.

This allows us to say a little more about Assumption 5.  Under our utility theory framework, since the utility
function of return does not depend on the path that leads to the return Rj, and as long as interest rates are
not node-dependent (although they may be time-dependent), then a necessary and sufficient condition for
Assumption 5 (which restricts risk-neutral probabilities) is that all paths which lead to the same ending
node have the same consensus subjective probability.

Graph V, matched to Graph IV, displays the difference between risk-neutral probabilities and consensus
subjective probabilities, assuming logarithmic utility, U(dnRj) = log (dnRj).  Although the posterior distributions
are shifted to the right since the market risk premium would then be about 3.3%, the qualitative shapes of
the distributions are quite similar.  Indeed, even if the utility function were -(dnRj)

-.65, which produces a market
risk premium of 5%, the two distributions remain less so, but still to the naked eye, quite similar in shape. 
This tempts me to suggest that, despite warnings to the contrary, we can justifiably suppose a rough
similarity between the risk-neutral probabilities implied in option prices and subjective beliefs.

Move-dependent mean:  It is well known, for the special case of logarithmic utility, that over time our
representative investor will follow a myopic decision rule even in the face of a changing set of investment
opportunities.  Therefore, as we work forward in the tree, at each interior node she chooses investments  d[•]
 and u[•]  to solve the following problem:

max ((1-q[•]) × U(d[•]d[•])) + (q[•] × U(d[•]u[•]))

subject to  (((1-p[•])/r) × d[•]d[•]) + ((p[•]/r) × d[•]u[•]) = 1

where, for our special case, we have  U(d[•]d[•]) = log (d[•]d[•])  and  U(d[•]u[•]) = log (d[•]u[•]).  Since utility
functions are unique up to increasing linear transformations, with logarithmic utility we can safely regard 
U(d[•]d[•]) _ log d[•]  and  U(d[•]u[•]) _ log u[•].29  Since  ?=1  in this case, at each interior node:

q[•] = p[•]×(u[•]/r)×d[•]

We now have an easy way at each interior node of the tree to convert our derived risk-neutral move
probabilities  p[•]  into the consensus subjective move probabilities  q[•].  Moreover, this gives us all the
information we need to calculate the consensus mean structure  m[•]  over all steps in the tree.

Table VI, in parallel with Table IV, examines the annualized local consensus mean assuming logarithmic
utility.  At high mean levels, the local mean is quite non-stationary and very dependent on previous realized
return.  At low levels, the local mean becomes almost insensitive to the index and time as it approaches the
9.0% riskless interest rate that provides a lower bound.  Since the local mean is inversely correlated with
return, the return itself should be highly mean-reverting.  Of course, given Table IV, this behavior of the mean

                        
    

29
 Notice that the budget constraint is simply a restatement of equations C defining "risk-neutral" probabilities.
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should come as no surprise since the trade-off between risk and return in equilibrium will typically imply that
local consensus mean and volatility will be positively correlated.   



30

Table VI
Annualized % Implied Local Consensus Mean Structure (m[•])

January 2, 1990: 10:00 A.M.

Days into the Future

S&P500

Index      0    3     7    12    17    22    27    32    37    42    47   52   57   61   66   71   76   81   86   91

 407                                                    9.1   9.1   9.1  9.1  9.2  9.2  9.2  9.2  9.2  9.3  9.3  9.4

 405                                              9.1   9.1   9.2   9.2  9.2  9.2  9.2  9.3  9.3  9.3  9.4  9.4  9.4

 402                                              9.2   9.2   9.2   9.2  9.2  9.3  9.3  9.3  9.3  9.4  9.4  9.5  9.5

 400                                        9.2   9.2   9.2   9.2   9.3  9.3  9.3  9.3  9.4  9.4  9.5  9.5  9.6  9.6

 397                                        9.2   9.3   9.3   9.3   9.3  9.3  9.4  9.4  9.4  9.5  9.5  9.6  9.6  9.7

 394                                  9.3   9.3   9.3   9.3   9.3   9.4  9.4  9.4  9.5  9.5  9.6  9.6  9.7  9.7  9.8

 392                                  9.3   9.3   9.4   9.4   9.4   9.4  9.5  9.5  9.5  9.6  9.6  9.7  9.7  9.8  9.9

 389                            9.3   9.4   9.4   9.4   9.4   9.5   9.5  9.5  9.6  9.6  9.7  9.7  9.8  9.8  9.9 10.0

 386                            9.4   9.4   9.4   9.5   9.5   9.5   9.6  9.6  9.6  9.7  9.7  9.8  9.8  9.9 10.0 10.0

 384                            9.4   9.5   9.5   9.5   9.6   9.6   9.6  9.7  9.7  9.7  9.8  9.9  9.9 10.0 10.0 10.1

 381                      9.5   9.5   9.5   9.6   9.6   9.6   9.7   9.7  9.7  9.8  9.8  9.9  9.9 10.0 10.1 10.1 10.2

 378                      9.6   9.6   9.6   9.6   9.7   9.7   9.7   9.8  9.8  9.9  9.9 10.0 10.0 10.1 10.1 10.2 10.3

 376                      9.7   9.7   9.7   9.7   9.8   9.8   9.8   9.9  9.9 10.0 10.0 10.0 10.1 10.2 10.2 10.3 10.3

 373                9.8   9.8   9.8   9.8   9.8   9.9   9.9   9.9  10.0 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.4 10.4

 371                9.9   9.9   9.9   9.9  10.0  10.0  10.0  10.0  10.1 10.1 10.2 10.2 10.2 10.3 10.3 10.4 10.5 10.5

 368               10.1  10.1  10.1  10.1  10.1  10.1  10.1  10.2  10.2 10.2 10.3 10.3 10.3 10.4 10.5 10.5 10.6 10.6

 365         10.5  10.4  10.4  10.3  10.3  10.3  10.3  10.3  10.3  10.3 10.4 10.4 10.4 10.5 10.5 10.6 10.6 10.7 10.7

 363         11.0  10.9  10.8  10.7  10.6  10.6  10.5  10.5  10.5  10.5 10.5 10.6 10.6 10.6 10.7 10.7 10.8 10.8 10.9

 360         11.6  11.4  11.3  11.2  11.0  10.9  10.9  10.8  10.8  10.7 10.7 10.7 10.8 10.8 10.8 10.8 10.9 10.9 11.0

 357         12.4  12.3  12.0  11.7  11.5  11.4  11.3  11.2  11.1  11.0 11.0 11.0 10.9 11.0 11.0 11.0 11.1 11.1 11.2

*355    13.6 13.5  13.2  12.8  12.6  12.3  12.1  11.8  11.6  11.5  11.4 11.3 11.2 11.2 11.2 11.2 11.2 11.2 11.3 11.3

 351         15.8  15.4  14.8  14.1  13.7  13.4  13.1  12.7  12.4  12.2 12.0 11.8 11.7 11.7 11.6 11.5 11.5 11.5 11.6

 347         18.7  17.8  17.3  16.7  15.9  15.2  14.5  14.2  13.8  13.4 13.0 12.6 12.5 12.3 12.1 12.0 11.9 11.9 11.9

 342         22.7  21.8  20.7  19.4  18.5  17.9  17.0  16.2  15.4  14.8 14.3 13.8 13.5 13.1 12.8 12.6 12.4 12.3 12.2

 338         26.7  26.1  24.2  23.5  22.3  20.9  19.5  18.8  17.9  17.0 16.2 15.4 15.0 14.4 13.8 13.4 13.1 12.8 12.6

 334               30.5  29.9  28.3  26.2  24.8  23.7  22.2  20.7  19.4 18.5 17.3 16.7 15.9 15.2 14.5 14.0 13.6 13.2

 330               37.9  35.9  33.1  31.6  30.0  27.9  25.6  24.5  23.1 21.6 20.1 19.3 18.2 16.9 16.1 15.3 14.6 14.0

 326               45.4  41.9  39.9  38.0  35.2  32.4  31.0  29.0  26.8 24.7 23.2 22.1 20.4 19.2 17.9 16.8 15.8 14.9

 322               52.9  49.5  47.8  44.5  40.7  39.1  36.5  33.6  31.2 29.4 26.6 25.6 24.0 21.7 20.4 19.0 17.7 16.5

 318               60.4  59.3  55.8  50.9  48.9  45.9  42.1  39.2  36.9 34.2 31.3 29.8 27.5 25.3 23.3 21.5 19.7 18.2

 314               71.9  69.1  63.8  60.3  57.1  52.7  48.7  45.9  42.6 39.0 36.1 34.0 31.3 28.8 26.3 24.4 22.6 20.8

 310               83.6  78.8  73.1  70.1  65.3  59.9  56.7  52.7  48.3 44.8 40.8 38.8 36.2 32.7 30.4 28.0 25.7 23.4

 306               95.3  88.6  84.4  79.9  73.5  69.0  64.6  59.5  54.9 51.2 46.5 44.3 41.0 37.3 34.4 31.6 28.9 26.6

 302              107.0  99.9  95.7  89.6  83.0  78.1  72.6  66.6  62.0 57.5 52.3 49.7 45.8 41.8 38.5 35.3 32.6 30.1

 297              118.7 112.1 106.9  99.4  92.9  87.2  80.5  74.3  69.1 63.9 58.2 55.2 50.5 46.4 42.5 39.3 36.4 33.5

 293                    124.4 118.2 109.4 102.9  96.3  88.2  81.9  76.2 69.7 64.0 60.0 55.2 50.3 46.5 43.2 40.1 36.7

 289                    136.6 129.5 119.3 112.8 104.9  95.9  89.5  83.1 75.2 68.5 64.6 59.9 54.2 50.5 47.0 42.9 39.8

 285                    148.8 138.0 129.3 122.8 111.7 103.5  97.1  87.8 80.6 72.8 69.1 64.6 58.1 54.4 49.2 45.6 42.9

 281                    161.0 146.4 139.2 131.2 118.5 111.2 102.8  92.5 86.0 77.0 73.6 67.5 62.0 55.8 51.4 48.3 44.9

 277                    167.6 154.8 149.2 135.7 125.2 118.9 106.0  97.2 91.4 81.2 77.4 68.8 62.8 57.2 53.5 49.8 45.3

 273                    172.4 163.3 157.9 140.1 132.0 122.3 109.2 101.9 92.8 84.6 77.5 70.2 63.1 58.5 54.7 49.3 45.8
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* Exact S&P 500 index on January 2, 1990, reported at 10:00 a.m. in Chicago is 354.75.

____________________________________________________________________________________________________________________

Based on S&P 500 index June call and put options maturing in 164 days.  Assumes logarithmic
utility. Annualized as if the risk-neutral distribution were lognormal.  Risk premia can be calculated
by subtracting an annualized riskless rate of 9.0% from these numbers.
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VII. Options

American options:  As in a standard binomial tree, the current value of a standard American call option can
be derived by working backwards recursively from the end of the tree using the following two rules:

at the end:  C[•] = max[0, S[•] - K]

in the interior:  C[•] = max[ S[•]-K, (((1-p[•])×Cd[•])+(p[•]×Cu[•]))÷r ]

where  K  is the striking price of the option,  S[•] ≡ SR[•],  R[•] and C[•]  are the underlying path return and
the call value after the previous sequence of realized moves indicated in the brackets,  and  Cd[•]  (Cu[•])  is
the call value after a following down (up) move.

Below, we will also use the notation, C(•)[•] and S(•)[•], more generally to indicate the call value and
underlying asset price after the previous sequence of realized moves indicated in the brackets and after the
following sequence of moves (•).  So for example, Sdu[•] means the underlying asset price observed after the
sequence of moves indicated in the brackets and followed by down move followed by an up move. If the
brackets are omitted, then the values are current, that is, measured at the beginning of the tree.
 
For standard call options, the current option "delta" (_ ∂C/∂S) and "gamma" (_ ∂2C/∂S2) may be read directly
from the first steps of the generalized binomial tree:

?  ≡ (Cu-Cd) ÷ d(Su-Sd)

?[d] ≡ (Cdu-Cdd) ÷ d[d](Sdu-Sdd)
?[u] ≡ (Cuu-Cud) ÷ d[u](Suu-Sud)

G ≡ (?[u]-?[d]) ÷ d(Su-Sd)

In a standard binomial tree, one naturally calculates the call option "theta" (_ -∂C/∂t) as:

T  ≡ (Cud - C)÷2h

where  h  is the elapsed time for a single binomial step.  This works because in a standard binomial tree, Sud

= S, so in the above numerator we are comparing the values of two calls under identical situations except
that their time-to-expirations are different.  However, in our generalized binomial tree, it will typically be the
case that Sud ≠ S, which can easily make the above measure of theta quite inaccurate.

In place of this technique, we can take advantage of the Black-Scholes differential equation, which holds
even if  s  is a function of  S and t.  This equation gives us a way in discrete-time of expressing  T 
approximately as a function of  C, ? and G:

T _ [(log r)C - (log (r/d))S? - ½s2S2G]/h

European options:  Just as in the case of a standard binomial tree, European options can be valued directly,
without working backwards.  For example, the current value of a European call may be stated in closed form
as:

C = (SjPj max[0, SRj - K])÷rn
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Despite the added complexity of the generalized binomial tree, European deltas, gammas and thetas can
also be evaluated using relatively simple closed-form expressions.  We begin by deriving closed-form
expressions for the ending nodal probabilities assessed at any interior node.  From these, we can derive
closed form expressions for the underlying asset and European option values at any interior node.  These, in
turn, can be used to express in closed-form the hedging parameters for European options maturing with or
before the ending of the tree.

Let  Pj[•]  be the ending nodal probability assessed from the node after the previous sequence of realized
moves indicated in the brackets.  So, for example,  Pj[u] is the nodal probability attached to ending node  j 
measured after it is already known that one up move has occurred.  Using Assumption 5 and a little algebra,
it can be shown that:

p = Sj(j/n)Pj    and    1-p = Sj[(n-j)/n]Pj

Pj[u] = [(j/n)Pj] ÷ p    and    Pj[d] = [((n-j)/n)Pj] ÷ (1-p)

p[u] = Sj((j-1)/(n-1))Pj[u]   and  p[d] = Sj(j/(n-1))Pj[d]

Pj[uu] = [(j/n)×((j-1)/(n-1))Pj] ÷ (p×p[u])

Pj[ud] = Pj[du] = [((n-j)/n)×((n-j-1)/(n-1))Pj] ÷ ((1-p)×p[d])

Pj[dd] = [((n-j)/n)×((n-j-1)/(n-1))Pj] ÷ ((1-p)×(1-p[d])

Now we can use these interior assessments of the nodal probabilities to determine the following interior
nodal values for the call and the underlying asset (assuming the payout rate  d[•]  is constant):

Sd = (SSjPj[d]Rj)÷(r/d)n-1

Su = (SSjPj[u]Rj)÷(r/d)n-1

Cd = (SjPj[d] max[0, SRj - K])÷rn-1

Cu = (SjPj[u] max[0, SRj - K])÷rn-1

Sdd = (SSjPj[dd]Rj)÷(r/d)n-2

Sdu = Sud = (SSjPj[du]Rj)÷(r/d)n-2

Suu = (SSjPj[uu]Rj)÷(r/d)n-2

Cdd = (SjPj[dd] max[0, SRj - K])÷rn-2

Cdu = Cud = (SjPj[du] max[0, SRj - K])÷rn-2

Cuu = (SjPj[uu] max[0, SRj - K])÷rn-2

Finally, substitute these expressions into the above equations for ?, G, and T.30

We state one last result that proved useful in constructing Table V.  Here is the general formula (continuing
to use Assumption 5) for interior assessments of ending nodal probabilities: let
                        
    

30
 For a method to calculate other derivatives such as "rho" (_∂C/∂r) see the technique suggested by me by Eric Reiner

described in Mark Rubinstein, "Guiding Force", in From Black-Scholes to Black-Holes: New Frontiers in Options , Risk Magazine,
Ltd. (November 1992).  "Vega", as  ∂C/∂s  is sometimes called, of course, no longer has a clear meaning in a model such as this

which allows for stochastic local volatility.
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Xj(k,l) ≡ [(j(j-1)⋅⋅⋅(j-k+1)) × ((n-j)(n-j-1)⋅⋅⋅(n-j-l+1)] ÷ [n(n-1)⋅⋅⋅(n-k-l+1)]

then  Pj[u
kdl] = [Xj(k,l)Pj] ÷ SjXj(k,l)Pj

Exotic options:  Several varieties of exotic options can be easily valued using the generalized binomial tree.

Perhaps the simplest type of path-dependent option is one where the payoff depends not only on the final
price of the underlying asset but also on whether or not the underlying asset has reached some other
"barrier" price during the life of the option.  For example, in a down-and-out call, a standard European or
American call comes into existence when the down-and-out is issued, but the standard call is extinguished
prior to expiration if the underlying asset price ever drops below the knock-out boundary,  H.  In that case
the buyer of the option may be paid a fixed rebate,  B,  payable on the date the boundary is first reached.  
Otherwise, if the underlying asset price never drops below  H, the down-and-out call will have the same
payoff as a standard call.  Valuing such an option is quite easy.  Work backwards as usual on the
generalized binomial tree, if the standard call is American place at each node the present value of holding
the call one more period or its current exercisable value, whichever is greater.  However, whenever the
current underlying asset price is less than or equal to the barrier  H, override this and place the rebate value
 B  at the node.31

Somewhat more complex are "lookback" options which are like standard options except that the minimum
for calls, (maximum for puts),  M, of the underlying asset price over the life of the option is substituted for
the striking price.  European lookbacks can be valued using the implied binomial tree as a basis for monte-
carlo simulation.  To construct a monte-carlo path, at each time step in the tree along a single path,
randomly select an up  u[•]  move with probability  p[•]  or down  d[•]  move with probability  1-p[•].  This
traces out one randomly selected path from the beginning to the end of the tree.  For this path, record the
ending underlying asset price as well as the minimum (or maximum) price that occurred along the sampled
path.  Use this to calculate the payoff to the option at the end of the path.  Now, repeat this procedure
thousands of times, compute a simple average of the resulting option payoffs, and discount this back to the
present at the appropriate riskless rate of interest.  This approach can be easily generalized to include
lookbacks with extrema calculated over only some portion of the life of the option, for discrete extrema
sampling intervals, and for lookback variations such as options paying off the maximum of zero or the
difference between the maximum  M  and a fixed striking price  K.  

"Asian" options comprise yet another class of path-dependent options where the payoff depends not only
possibly on the price at expiration of the underlying asset but also on the average price experienced by the
underlying asset during at least some portion of the life of the option.  Again, European Asians can be
handled via Monte-Carlo simulation in a similar way to the method described above for lookbacks.

VIII. Recent Related Research

Related work has recently been described in two articles appearing in RISK, one by Bruno Dupire and one
by Emanuel Derman and Iraj Kani.32  In both articles, an implied binomial or trinomial process is implied by
                        
    

31
 For a development of all eight types of barrier options, see Mark Rubinstein and Eric Reiner, "Breaking Down the Barriers,"

RISK 4 (September 1991), 28-35.

    
32

 See Bruno Dupire, "Pricing with a Smile," RISK, 7 (January 1994), 18-20, and Emanuel Derman and Iraj Kani, "Riding on the
Smile," RISK, 7 (February 1994), 32-39.
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the concurrent market prices of standard options of all striking prices and maturities available on a given
underlying asset, using an approach similar to Shimko's but expanded to allow interpolation and
extrapolation across maturities as well as striking prices.  Dupire assumes a trinomial process with
exogenously specified nodal values but fitted risk-neutral probabilities.  Derman and Kani fit a binomial tree
but where  n+1  nodal values are exogenously specified along the horizontal spine or trunk of the tree, rather
than the vertical base at the end of the tree as in the technique described here.  Because these approaches
make use of options of different maturities, they can effectively dispense with Assumption 5 requiring equal
path probabilities for all paths leading to the same ending node.  This is consistent with our earlier assertion
in Section V that Assumption 5 can be dropped if there were some way of knowing how the ending nodal
probabilities are divvied up among their constituent paths -- information that in principle can be inferred from
options of shorter maturities.

An obvious advantage of these alternative approaches is that they can dispense with Assumption 5 yet still
derive a unique tree.  However, there are a number of reasons to be interested in trees implied only from
options of a single maturity.  First, since information concerning earlier maturity options has not been used
to construct the tree, the tree shows how to use information contained in the prices of the options maturing
at the end of the tree to infer consistent values for options maturing earlier in the tree.  Second, once the
ending nodal probabilities have been specified, the algorithm for constructing the tree given in Section IV is
somewhat easier to understand and implement than the alternatives.  Third, nothing in the procedure here
requires that the ending risk-neutral distribution be completely consistent with available option prices.  Some
investors may have their own opinions concerning this distribution; if so, they can easily incorporate them
directly as the ending nodal probabilities.  Fourth, the optimization method used here for inferring ending
nodal probabilities from option prices permits interpolation and extrapolation based on a subjective prior in
combination with the prices of options.  Fifth, unlike Shimko's technique, the optimization method can be
easily modified to use the prices of non-standard European options with payoffs which are not piecewise
linear as the basis for inferring risk-neutral probabilities.33

 IX. Future Research

It is never a good idea for an academic to carry a line of research so far that one has left nothing further to
do.  So in the spirit of generating citations for this paper, in addition to the aforementioned empirical tests,
let me suggest the following agenda:

implied risk-neutral probabilities:
- how can American options be used to infer risk-neutral probabilities?
- how can option maturities be interpolated, not just striking prices?
- what is the best function to minimize, or the best prior to assume?
- is it better to interpolate implied volatilities or use optimization?

implied stochastic process:
- how can American options be used to drop the recombining assumption and deal with return path-
dependent trees?
- can unique trinomial trees be designed to handle jumps or stochastic volatility?
- can similar trees be designed, consistent with current bond option and bond prices, to determine
the stochastic process of bond prices?

                        
    

33
 I thank Bill Keirstead for pointing out to me that the Breeden-Litzenberger second derivative approach can only be used with

standard European call options.
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empirical issues:
- how can  s(S,t) and m(S,t)  be used to improve the way time-series data is interpreted?
- how can  s(S,t) and m(S,t)  be tested against historical time-series?

applications:
- how can the best portfolio of standard options be found to hedge exotic options?

To my mind, since most listed options are American not European, the most pressing of these problems is
the use of American options to infer risk-neutral probabilities.  Here is one currently untested possibility. 
For each American option, fit a standard binomial tree to its current bid (ask) price.  Using that tree,
calculate the current bid (ask) price of an otherwise identical European option.  Then follow either of the
approaches outlined in this paper to calculate the implied risk-neutral probabilities and from them, the
implied binomial tree.  Unfortunately, this approach is at best second best since it does not do full justice to
the information about the stochastic process contained in the price of American options:  American options
tell us something about the interior as well as ending nodal probabilities, or alternatively, about how the
nodal probabilities are divvied up among their path probabilities.  In fact, the tree resulting from this method
should not exactly fit the current prices of all the American options, although the fit may be close enough for
practical purposes.
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Appendix I
Amended Longstaff Method for Calculating Implied Risk-Neutral Probabilities

For  C4, as  S*  goes from  K4 to K5, the payoff to the call goes from  0  to  K5 - K4, so the average payoff in
the interval is  ½(K5 - K4).  Therefore:

rnC4  =  ½(K5 - K4)P5

For  C3, consider three possible types of outcomes:

outcome risk-neutral contribution to rnC3

S* < K3 0

As  S*  goes from  K3 to K4, the payoff to the call goes from  0  to  K4 - K3, so the average payoff in the
interval is  ½(K4 - K3).  Therefore:

K3 ≤ S* ≤ K4 ½(K4 - K3)P4

The payoff in the region greater than  K4  is the same as an otherwise identical call  C4  with striking price K4

 plus an extra payoff  (K4 - K3)  due to the lower striking price of call  C3.  Therefore:

K4 < S* (K4 - K3)P5 + rnC4

Adding up these payoff components:

rnC3  =  ½(K4 - K3)P4  +  (K4 - K3)P5  +  rnC4  =  (K4 - K3)[½P4 + P5]  +  rnC4

For  C2, again consider three possible types of outcomes:

outcome risk-neutral contribution to rnC2

S* < K2 0
K2 ≤ S* ≤ K3 ½(K3 - K2)P3

K3 < S* (K3 - K2)(P4+ P5) + rnC3

Adding up these payoff components:

rnC2  =  ½(K3 - K2)P3  +  (K3 - K2)(P4 + P5)  +  rnC3  =  (K3 - K2)[½P3 + P4 + P5]  +  rnC3

For  C1, again consider three possible types of outcomes:

outcome risk-neutral contribution to rnC1

S* < K1 0
K1 ≤ S* ≤ K2 ½(K2 - K1)P2

K2 < S* (K2 - K1)(P3 + P4+ P5) + rnC2

Adding up these payoff components:
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rnC1  =  ½(K2 - K1)P2  +  (K2 - K1)(P3 + P4 + P5)  +  rnC2  =  (K2 - K1)[½P1 + P2 + P3 + P4]  +  rnC2

Consider the underlying asset itself as a payout-protected call with striking price  K0 = 0.  For  S, again
consider three possible types of outcomes:

outcome risk-neutral contribution to rnSd-n

S* < 0 0
0 ≤ S* ≤ K1 ½(K1 - 0)P1

K1 < S* (K1 - 0)(P2 + P3 + P4+ P5) + rnC1

Adding up these payoff components:

rnSd-n  =  ½(K1 - 0)P1  +  (K1 - 0)(P2 + P3 + P4 + P5)  +  rnC1  =  K1[½P1 + P2 + P3 + P4 + P5]  +  rnC1

To account for the fact that the associated options are not protected against payouts, we use the present
value of the capital appreciation portion of the underlying asset  Sd-n, where  d  is one plus the underlying
asset payout rate.  

Restating earlier results:

rnSd-n  =  K1[½P1 + P2 + P3 + P4 + P5]  +  rnC1

and because we have probabilities:

1 = P1 + P2 + P3 + P4 + P5

we can put these together and solve for  P1:

rnSd-n  =  K1[½P1 + (1 - P1)] + rnC1  =  K1[1 - ½P1] + rnC1

⇒  rn(d-nS - C1)K1
-1  =  1 - ½P1

⇒  P1 = 2[1 - rn(Sd-n - C1)K1
-1]

Similarly:

P2 = 2[1 - P1 - r
n(C1 - C2)(K2 - K1)

-1]
P3 = 2[1 - P1 - P2 - r

n(C2 - C3)(K3 - K2)
-1]

P4 = 2[1 - P1 - P2 - P3 - r
n(C3 - C4)(K4 - K3)

-1]
P5 = 1 - P1 - P2 - P3 - P4

Thus, the implied risk-neutral probabilities can be derived by solving the equation for  P1, using this value for
 P1  and solving the equation for  P2, using these values for  P1 and  P2 and solving the equation for  P3, using
these values for  P1,  P2 and  P3  and solving the equation for  P4, and using these values for  P1,  P2,  P3 
and P4  and solving the final equation for  P5.

Restating an earlier result:

rnC4  =  ½(K5 - K4)P5

and having calculated  P5  we can solve this for  K5:
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K5  =  K4 + (2rnC4÷P5)
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Appendix II
Numerical Example of an Implied Binomial Tree

   R0 = .7827   R1 = .9216   R2 = 1.0851    R3 = 1.2776

   P0 =   .1    P1 =   .4    P2 =   .3      P3 =   .2   

n = 3     h = .167     r = 1.017    d = 1.008 

Move Return and Probability Tree
                                                             

                    

                                                                  p[uu]=.667

                                                              +-----------------u[uu]=1.0626    

                                                              ¦

                                     p[u]=.563                ¦

                                 +-----------------u[u]=1.0969+

                                 ¦                            ¦

             p=.533              ¦                            ¦   p[ud]=.429    u[ud]=1.1043

       +-----------------u=1.0961+                            +-----------------                

       ¦                         ¦                            ¦  1-p[uu]=.333   d[uu]= .9025

       ¦                         ¦   p[d]=.500     u[d]=1.0798¦

      1+                         +-----------------           +

       ¦                         ¦  1-p[u]=.437    d[u]= .8965¦

       ¦                         ¦                            ¦   p[dd]=.571    u[dd]=1.0789

       +-----------------d= .9100+                            +-----------------                 

            1-p=.467             ¦                            ¦  1-p[du]=.571   d[du]= .9379

                                 ¦                            ¦

                                 +-----------------d[d]= .9387+

                                    1-p[d]=.500               ¦

                                                              ¦

                                                              +-----------------d[dd]= .9163

                                                                 1-p[dd]=.429

Nodal Return and (Probability) Tree

                                                              +-----------------  R3 = 1.2776

                                                              ¦                   (P3 = .200)

                                                              ¦

                                 +-----------------    1.2023 +

                                 ¦                     (.300) ¦

                                 ¦                            ¦

       +----------------- 1.0961 +                            +-----------------  R2 = 1.0851
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       ¦                  (.533) ¦                            ¦                   (P2 = .300)

       ¦                         ¦                            ¦

      1+                         +-----------------     .9826 +

       ¦                         ¦                     (.467) ¦

       ¦                         ¦                            ¦

       +-----------------  .9100 +                            +-----------------  R1 = .9216

                          (.467) ¦                            ¦                   (P1 = .400)

                                 ¦                            ¦

                                 +-----------------     .8542 +

                                                       (.233) ¦

                                                              ¦

                                                              +-----------------  R0 = .7827

                                                                                  (P0 =.100)
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Numerical Calculations

interest/payout return:

(r/d) = [P0R0 + P1R1 + P2R2 + P3R3]
1/n

 = [.1(.7827) + .4(.9216) + .3(1.0851) +.2(1.2776)]
1/3

 = 1.0089

path probabilities:

Puuu = P3/1 = .200

Puud = Pudu = Pduu = P2/3 = .300/3 = .100

Pudd = Pdud = Pddu = P1/3 = .400/3 = .133

Pddd = P0/1 = .100

Puu  = Puud + Puuu = .100 + .200 = .300

Pud  = Pdu = Pudd + Pudu = Pdud + Pduu = .133 + .100 = .233

Pdd  = Pddd + Pddu = .100 + .133 = .233

Pu   = Pud + Puu = .233 + .300 = .533

Pd   = Pdd + Pdu = .233 + .233 = .467

P    = Pd + Pu = .467 + .533 = 1

move probabilities:

p[uu] = Puuu/Puu = .200/.300 = .667

p[ud] = p[du] = Pudu/Pud = Pduu/Pdu = .100/.233 = .429

p[dd] = Pddu/Pdd = .133/.233 = .571

p[u]  = Puu/Pu = .300/.533 = .563

p[d]  = Pdu/Pd = .233/.467 = .500

p     = Pu/P = .533/1 = .533

interior nodal values:

R[uu] = ((1-p[uu])R2 + p[uu]R3)/(r/d) = ((1-.667) × 1.0851 + .667 × 1.2776)/1.0089 = 1.2023
R[ud] = ((1-p[ud])R1 + p[ud]R2)/(r/d) = ((1-.429) ×  .9216 + .429 × 1.0851)/1.0089 =  .9826
R[du] = ((1-p[du])R1 + p[du]R2)/(r/d) = ((1-.429) ×  .9216 + .429 × 1.0851)/1.0089 =  .9826
R[dd] = ((1-p[dd])R0 + p[dd]R1)/(r/d) = ((1-.531) ×  .7827 + .531 ×  .9216)/1.0089 =  .8542
R[u]  = ((1-p[u])R[ud] + p[u]R[uu])/(r/d) = 1.008 × ((1-.563) × .9826 + .563 × 1.2023)/1.0173 = 1.0961
R[d]  = ((1-p[d])R[dd] + p[d]R[du])/(r/d) = 1.008 × ((1-.500) × .8542 + .500 ×  .9826)/1.0173 =  .9100
R     = ((1-p)R[d] + pR[u])/(r/d) = 1.008 × ((1-.533) × .9100 + .533 × 1.0961)/1.0173 = 1

Optional Calculations

interior nodal probabilities:

P[uu] = Puud + Puuu = .100 + .200 = .300

P[ud] = P[du] = Pudd + Pudu + Pdud + Pduu = .133 + .100 + .133 + .100 = .467

P[dd] = Pddd + Pddu = .100 + .133 = .233

P[u]  = Puu + Pud = .300 + .233 = .533

P[d]  = Pdu + Pdd = .233 + .233 = .467

move sizes:

u[uu] = R3/R[uu] = 1.2776/1.2023 = 1.0626
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u[ud] = u[du] = R2/R[ud] = R2/R[du] = 1.0851/.9826 = 1.1043

d[uu] = R2/R[uu] = 1.0851/1.2023 = .9025

u[dd] = R1/R[dd] = .9216/.8542 = 1.0789

d[du] = d[ud] = R1/R[du] = R1/R[ud] = .9216/.9826 = .9379

d[dd] = R0/R[dd] = .7827/.8542 = .9163

u[u]  = R[uu]/R[u] = 1.2023/1.0961 = 1.0969

u[d]  = R[du]/R[d] =  .9826/ .9100 = 1.0798

d[u]  = R[ud]/R[u] =  .9826/1.0961 =  .8965

d[d]  = R[dd]/R[d] =  .8542/ .9100 =  .9387

u     = R[u]/R = 1.0961/1 = 1.0961

d     = R[d]/R =  .9100/1 =  .9100


