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Abstract

We introduce the probabilistic classBP which is defined in aBPP-like manner. This class
emerges fronBPP by keeping the promise of a probability gap but decreasing the probability limit
from 1/2 to exponentially small values.

We show thatBP is in the polynomial-time hierarchy, exactly between the Arthur-Merlin classes
MA andAM on one the hand and betweBirP and the threshold cladsPP,,..», on the other hand.
We provide evidence th&iBP does not coincide with these and other known complexity classes. In
particular, in a suitable relativized worl8BP is not contained it} . As a consequence we get the
same forBPP,,¢n. This solves an open question raised by Haal. [HHT97].

1 Introduction

The use of randomness is one possible extension of conventional deterministic Turing machines. The
origins of this idea go back to the work of de Leeuw, Moore, Shannon, and Shapiro [dLMSS56]. In 1972
Gill started the investigation of probabilispiolynomial-time boundeohachines [Gil72, Gil77]. Such
machines can be considered as an extension of usual polynomial-time Turing machines. An (even prac-
tically) important class of languages decidable by such machii&BRs(bounded-error probabilistic
polynomial-time) [Gil72, Gil77]. For each languagen this class there existsgg> 1/2 and a proba-

bilistic polynomial-time decision procedure which finds the correct answer to arbitrary quedes?”

with probability > p. With help of an amplification technique one can even increase this success prob-
ability to values arbitrarily close tb. So in spite of the fact th&PP is an extension oP (which is
normally considered as the class of practically solvable problems) the decision probléRi2 gan

still be considered as feasible in practice.

The Topic. When looking at the definition @ PP there are two things that make this class different
from P. On one hand there is@obability limit of 1/2, i.e., an input is accepted if and only if the
machine accepts with probability 1/2. On the other hand for a suitalbie> 0 there is gprobability
gap, i.e., the machine promises that its acceptance probability is never in the ift&vak, 1/2 + ¢.

This paper studies what happens when one lowers the probability limit. It is known that nothing happens
when the probability limit is decreased by a polynomial factor. However, this changes when we decrease
it by an exponential factor. So the focus of this paper is on probabilistic polynomial-time machines that
have an exponentially small probability limit and still keep the promise of a probability gap. The class
of languages accepted by such machines is denot8BBysmall bounded-error probabilily



Motivation and Related Work. The classSBP emerges in different contexts. So far we looked at
SBP as ageneralization oBPP. In order to motivate our investigations and to explain why we think
this class is interesting we present the following alternative waySBfatcan be looked at.

When one abstains from the probability gap in the definitioRIoP this yields the clasBP (prob-
abilistic polynomial-time). SincP can be defined vigapP functions and since these functions have
different characterizations [FFK94] the following statements are equivalent to sayidgaHaPp.

1. There is a nondeterministic polynomial-time machineavith » € L <= accy(z) > rejy ().
2. There exisif € #P andg € FP such thatt € L <= f(x) > g(z).
3. There exisff, g € #P such that: € L <= f(z) > g(x).

Interestingly, this equivalence completely disappears when we return to the demand of a probability gap.
By this we mean that there must be some- 0 such that eitheaccy(z) > (1 + ¢) - rejy,(x) or
accy (z) < (1 —e¢) - rejy,(z); the probability gaps for the statements 3 and 2 are defined analogously. It
is not difficult to see that with this modification, statement 1 describe8RBt Moreover, we will see
that statement 3 meets exactly the threshold &&43,,., which was introduced by Haet al. [HHT97].
But what about statement 2 when demanding a probability gap?

We will see that apart from the original definition§BP one can allow any polynomial-time com-
putable probability limit. This means th8BP can be characterized by the following equivalence:
L € SBP if and only if there exist a probability gap> 0, a probability limitg € FP and anf € #P
such that

rel = f(z)>(1+4¢)-g(z) and
r¢ L = flx)<(l—2¢) g(z).

This shows that statement 2 with a probability gap yields our new 8l8Bs So when starting from
three equivalent characterizationsRi* and when introducing a probability gap then the equivalence
disappears and one meets the three cld3Bé&s SBP andBPP,;,. In particular this shows thaBP

can be thought of asrastriction ofBPP,,;, and thereforéSPP C SBP C BPP .

Another context wherg8BP raises interesting questions aim§BP’s relationship to gap-definable
counting classes, in particular with the clas&/PP introduced by Fennest al. [FFKL93, FFKL].
Starting from a new characterization &WPP [Fen02] we show that thgP counterpart oAWPP is
contained irbBP.

Our Contribution. After showing thatSBP admits a certain kind of amplification we turn to in-
vestigateSBP with respect to other complexity classes. When lookingBdt’s definition one notices
a similarity to the definitions of strong counting classes. So at first glance it is not obvio@8that
is in the polynomial-time hierarchy. We show ti88P is located exactly between Babai's [Bab85]
Arthur-Merlin classe3IA andAM. In particular, it is contained in the clad$ of the polynomial-time
hierarchy. In the proof we use similar arguments on linear hash functions as in the pidePfar PH
[Lau83, Sip83]. Furthermore, we show th&tP C SBP C BPP,,, (cf. Figure 1).

On the basis of collapse consequences for the polynomial-time hierarchy and on the basis of oracle
constructions we give evidence ti#P does not coincide with known complexity classes P,
BPPpah, MA, AM andAWPP. A summary of all oracle separations can be found in Figure 2.

When looking at the inclusioBBP C TI5 one might hope that alssBP C »F. We show that this
is not true in a suitable relativized world. SirsBP C BPP,;;, holds relativizable this oracle shows
that BPP 0 € »¥ in some relativized world. This solves an open question of étal. [HHT97]
which aimed at the relation &PP .., to RN and. Moreover, with respect to this orackBP is
not closed under complementation.

Paper Outline. After this introduction we start with some preliminaries. Then in section 3 we
introduceSBP, show different characterizations for this class and prove that it admits amplification and
that it is closed under union. Furthermore, we showBfatUP U MA C SBP C BPP,,, N AM and



we give a picture (cf. Figure 1) that compafd3P with other complexity classes. In section 4 we go

into other complexity classes that are interesting with resp&& o In particular we show that th&P
counterpart oAWPP is in SBP. In section 5 we provide evidence (by means of collapse consequences
and oracle constructions) that all inclusions we discussed in the previous sections are strict. In particular
we construct a relativized world whe$@8P is not contained irth. As a consequence we obtain that
BPPpatn € 212) with respect to this oracle

2 Preliminaries

We fix the finite alphabel £{0, 1}. For the definition oP, NP, PP, the classes of the polynomial-time
hierarchy and standard notions of complexity theory see any text book, e.g., [Pap94, BDG95]. For a
nondeterministic polynomial-time Turing machifg, let accys(x) (resp.,rej,,(x)) denote the number

of accepting (resp., rejecting) pathsidfon inputz. Moreover, lettotaly; () £ accps () + rejy, ()

denote the total number of paths. Throughout the paper, if not stated otherwise, variables are natural
numbers and polynomials have natural coefficients. The characteristic function & & sktnoted by

CB.

Since we will have a very close look at classes that are defined via probabilistic machines, we will
introduce them here. Arobabilistic machinavorks like a deterministic machine that has the additional
ability to make randomized operations. So, for example, a program of a probabilistic machine could
in one step assign to a variabtethe value 3 with probability and the value 17 with probability.

In consequence, the result of a computation of such a machine, since it may depend on several random
decisions, is randomized. For instance, a probabilistic machine may return 0 with prolf@ta’iitd 1

with probabilityl%. We will only regard a special type of probabilistic machines, namely those that make

a random decision between two alternatives every step, and each alternative is chosen with a probability
of % Besides that, our main interest isbialancedmachines, i.e. machines that for an input of length

n always make the same number of random decisions. Henceforth, if we talk of probabilistic machines,
we mean balanced machines, unless we explicitly announce them to be unbalanced (as needed in the
definition of BPP,.). If such a machine stops aftersteps, the probability that it has made one
concrete series of random choices is exaZtly. Hence, the probability of a specific resulbf such

a machine i% - 277, wherek is the number of series of random choices, that lead to the atitpuet

M be a probabilistic machine (maybe unbalanced). Far anx*, we write prob,,(z) to express the
probability thatM acceptse .

Another equivalent model of probabilistic machines is that of machines where the path of computa-
tion is nondeterministically splitin two in each step. We require each path of computation of the machine
to have the same length and say that the probability that the machine auipubte number of paths
that outputr divided by all paths of the machine. We express the correspondence between the proba-
bility of acceptance and the number of accepting paths in the proposition below. Before that, to avoid
cumbersome notation, we define for everyBet (¥*)"+!, every functionf : N — N, and allz € ¥*:
count;f(acl, ooy Tn) =def #{Y ¢ |yl = f(lz1 - xn|) @and(zy, ..., xn,y) € B}. As arule we will use
this notation fom = 1. Obviously, if B € P andf is a polynomial themountgf € #P.

Proposition 2.1 For every functiorh : ¥* — [0, 1] the following statements are equivalent:

1. There exist a polynomigland a probabilistic machin@/ that runs exactly(|x|) steps on input
x such thatprob,,(z) = h(x) for all x € ¥*.

2. There exist a polynomialand aB € P such thatount ;% (z) = h(z) - 222D for all z € ©*.
Proof: The claim follows immediately from the definition of probabilistic machines. a

Starting from existing complexity classes one can define new one with the help of s@paliaibrs.
We will introduce here some of these operators:



Definition 2.2 LetC be a complexity class.

e We sayA € 3-Cifthere is aB € C and a polynomiap such that for alke € >*:

z €A countz’(z) > 1

e We sayA € V-C ifthere is aB € C and a polynomiap such that for alke € >*:

z €A count;’(z) = op(|z])

e We sayA € BP-C if there is aB € C, a polynomialp, and anc > 0 such that for allke € >* the
following holds:

— 1
r€EA — count;p > (5 +¢)- op(lzl)

= 1
r¢ A = countz’ < (5 —¢) - 2ol

e We sayA € U-C if there is aB € C and a polynomiap such that for allz € >* the following
holds:

reA = county’ =1
r¢ A = countz”’ =0

By considering Proposition 2.1 and insertingBac P in the above definition, it is obvious that
3-P = NP andV-P = coNP. The BP- operator was introduced by Swefifig [Sch89] generalizing the
idea of Gill's clasBPP = BP-P [Gil77]. In the definition of3P-C there is the gaf{2 —¢)-22(1=) (1 +
e) - 2=}, the value of the functiorount ;* must never belong to. We have already seen, that there is
a strong correspondence betweencthent function and the probability of acceptance of a probabilistic
machine. From this correspondence it is evident, that a set that can be defined with a large gap can be
decided by a machine that works very accurate, i.e. that yields a correct result with high probability.
Therefore we are interested in ways to widen this gap; this is possible if the’dasisfies a certain
closure property.

Definition 2.3 Let A and B be two sets.

e We say thatd is conjunctive truth-table reducibte B (in notation A<, B) if there is a func-
tion f € FP such that for every € ¥* it holdsz € A if and only if f(z) = (z1,...,z%) and

cg(xy) = =cp(zg) = 1.

e We say thatd is majority-reduciblgo B (in notationAgfij) if there is a functionf € FP such
that for everyr € ¥* itholdsz € Aifand only iff = (z1,...,z;) and thereisad C {1,... k}
with 7| > & andep(z;) = 1foralli € I.

Proposition 2.4 (Amplification [Sch89]) IfC is closed undegﬁmj then for all A € BP-C and all
polynomialsp there is aB € C and a polynomiay such that

reA = countz? > (1 —27PUDy. 2d(lzh gng
r¢g A = Count;q < 9= (=) . 9a(lz])

SinceP is obviously closed undeifﬁaj we can give the following definition & P-P that coincides
with Gill's classBPP.



Definition 2.5 A setA is in BPP = BP-P if there is aB € P, a polynomialp, and ans > 0 such that
— 1
r€A = countz’ > (5 +e)- op(Iz) and
— 1
r¢ A = countz’ < (5 —g) - 2D,

We already mentioned the equivalence between the number of paths of balanced machines and their
probability of acceptance. In a balanced machine each path of computation has the same probability so
that we can determine whether or not an inpigaccepted by counting the number of paths and dividing
the result by the total number of paths of the machine. In an unbalanced machine we have shorter paths
and longer paths and the shorter a path is, the more probable the machine will choose this path. It is
easy to see that the above definitiorB&fP could be given equivalently using unbalanced probabilistic
machines as follows: A set is in BPP if there is an unbalanced probabilistic machidethat runs for
at mostp steps, where is a polynomial, and an > 0 such that

1
r€A = proby(z)> 5 + ¢ and

xr¢ A = proby(z) < % —e.
Since we talk about probability, in this definition we implicitly weight the paths of the machine in such a
way that short paths have higher probabilities. If we do not weight the paths and just count their number
we meet the following threshold class which was introduced byetlah

Definition 2.6 ([HHT97]) AsetAisinBPP,,, if there exists a nondeterministic polynomial-time Tur-
ing machineM and anes > 0 such that for alke € >*:

1

reA = accy(r)> (5 +¢) - totalps(x)
1

r¢ A = accy(x) < (5 —¢) - totalps(z)

Theorem 2.7 ([HHT97]) PNPllogl C BPP,q,

In 1985 Babai [Bab85] introduced the so-called Arthur-Merlin hierarchy that. The classes of the
hierarchy consist of sets that can be decided by an Arthur-Merlin game that works as follows: The
“board” the game takes place on is a Befrom P that is known to both, Arthur and Merlin. On an
input z, Arthur and Merlin alternately make moves, where moeensists of outputting a string of
polynomial length inc. Each player can remember all of the moves that were already made. The game
ends aften moves and Merlin wins if and only {tc, y1,...,y,) € B. Besides that, we require Merlin
to always make optimal moves and Arthur to always make totally arbitrary moves. We saly easet
be decided by an Arthur-Merlin game if there i®3ac P such that for all inputs: If = belongs tol
then the probability that Merlin wins is greater tl"@lplus some constant. if is not fromL then the
probability that Arthur wins has to be greater t}?plus some constant. Depending on who of the two
makes the first move, and how many moves the game lasts, we can sort\eis,ivA, AM, MAM
and so on, thus forming the Arthur-Merlin hierarchy. It is easy to seeAtkaBPP and thatM = NP.
Besides that, Babai showed thdA C AM and that the Arthur-Merlin hierarchy collapsesAtbl. We
will now give a formal definition of the class&$A and AM.

Definition 2.8 [Bab85] The set. is in MA if there is a seiB3 € P, polynomialsp, ¢, and anc > 0 such
that for all z € ¥*:

- 1
rel = Jy(lyl = p(z]) A countz!(z,y) > (5 + ) - 20z

= 1
r¢ L = Yy(ly| = p(Jz]) — countz?(z,y) < (5 —¢) - 2a(l=yD))



The setl is in AM if there is a setB € P, polynomialsp, g and ane > 0 such that for allx € ¥* the
following holds:

vel = ##Hy:lyl = q(]) A32(lz] = p(le]) A (2,y,2) € B)} > (% +¢) - 200D
v¢ L = #H{y:lyl = q(]) A32(lz] = p(le]) A (2,y,2) € B)} < (% —¢) - 240D

It is obvious thatAM coincides withBP-NP but MA does not seem to be the same3d3PP:
There exists an oraclé with MA4 # 3.BPP“ [FFKL93]. As well asBPP, bothAM andMA can be
amplified:

Proposition 2.9 L € MA if and only if there exists a polynomiakuch that for every polynomial> 1
there exists a sd8 € P and a polynomial with

relL = Jy(y|=p(x]) A countgq(x,y) > (1-— 2_’"(‘”/')) . 2‘1(‘“/')) and
e¢L = Yyl = pllal) — comntz(z,y) < 277D galla)

L € AM if and only if for every polynomial > 1 there is a seifB3 € P and polynomial®, ¢ such that
forall x € ¥*:

rel = #y:lyl=p(lz]) A3=(z] = q(jz]) A (2,y,2) € B)} > (1 —277(#) . 2¢(l#)
r¢ L = #{y:lyl=p(lzl) A 3z(lz = qlz]) A (2,9, 2) € B)} < 277D 2pllD

3 TheClassSBP

The classSBP is similar toBPP. Again the idea is that of a probabilistic machine with a probability
gap, i.e., a machine whose acceptance probability never falls into a certain forbidden interval. We want
such a machine to accept an input either with probability less than s@mwith probability greater

than someé, where0 < a < b < 1. But whereas in the definition &fPP the probability gap defined by

a andb forms a constant interval arouéd anSBP machine has a probability gap around some smaller
limit which is negatively exponential in the length of the input.

Definition 3.1 The setA is in SBP if there exists am > 0, a B € P and polynomial®, ¢ such that for
all x € ¥*:

reA = county!> (1+¢)-

r¢ A = countz?’ < (1-¢)-
This definition leads to a class that seems to be considerably more powerfBtRan

3.1 Propertiesof SBP

In this chapter we will have a look at the classes ardiBi and we will integrate it into known hierar-
chies. Before that we will discuss basic propertieSRIP and alternative characterizations.

Just aBPP, we can amplifySBP but in comparison with the amplification lemmas we saw until
now, this proposition does not increase the absolute size of the probability gap. It just diminishes the
probability of failure of arsBP machine for the negative case. As a consequenaeltieve sizeof the
probability gap w.r.t. this failure probability increases. So we can replace$8&rynachine by another
one that has a very low probability of failure on inputs that should be rejected.



Proposition 3.2 (Amplification) A € SBP if and only if for every polynomial > 0 there exist B € P
and polynomialg, s such that for allz € >*:

_ 24(|zl)
re€A = countz’(z) > gr(l=).. e
1 9a(||)

:q —_— —
r¢ A = county'(z) < 5 30l
Proof: We start with the implication from right to left. Choose the constant polynergl 1 and let
B, q, s be the witnesses of the right-hand side. #8r1/2 we obtainL € SBP since for allz € X*:

||

94(
2s(j))
9a(|z]
2s(z)

For the other direction let > 0 be a polynomialA € SBP andB, p, ¢, ¢ as in the definition of
SBP. Surely there is & > 0 such tha(1 + ¢)* > 2and(1 — ¢)F < 1. Let

)

reA = countz!(z)> (1+e¢)- )
)

r¢ A = countz!(z) < (1—e¢)- )

B =aet {(#,9) 1y = Y1 Yker(l2)) With |ys| = q(|z|) and(z, y;) € Bfor1 <i < k-r(|z|)}
and observe thas ¢ P. Moreover, withy'(n) £ & - g(n) - r(n) andp’(n) £ k - p(n) - r(n) we get:

iy o k(s gatle) \ T o e
r€A = county! (z) = (countz’(z)) > (1+¢)- D >2 .

r¢ A = count;?l(az) = (countzq(:n))k'r(‘x‘) < ((1 —)-

Proposition 3.3 The following statements are equivalent for evéryg >*.
1. A€ SBP

2. There exist polynomiajs ¢, some= > 0 and a probabilistic machind/ running exactlyy(|z|)
steps on input, such that for all: € ¥*:

zreA = proby(z)>(1+e) 272D
r¢ A = proby(z)<(1—e¢)- 9—p(|z|)
3. There exists afi € #P and a polynomia such that for alk: € >*:
reAd = flx)>(1+e)- 20D
¢ A = flz)<(1—¢)-2002D
4. There exisf € #P, g € FP ande > 0 such that for allz € ¥*:
reA = f(z)>1+¢) g(x)
rg A = f@)<(1-¢) gx)

5. For every polynomiat > 0 there existB € P and polynomials, t such that for allz € ¥*:

B 9t(|z)
reA = countz(z) > 22D e
B ot(|z[)
r¢ A = countz'(z) < PR ED)



6. For everyh € FP with h > 1 there existf € #P, g € FP such that for allz € >*:

reA = f(x)>h(z)-g(x)
¢ A = f(z)<g(z)

Proof:

The equivalence of the points 1, 2, and 3 is evident from the definiti®BBf probabilistic ma-
chines#P, and Proposition 2.1. Obviously, if point 3 holds, then point 4 does so.

Assume now tha#l satisfies point 4 of the proposition; we will show that this implies point 3. Note
that we can assume < 1. Sincef € #P there exists a polynomial > 0 and someB € P such
that f(z) = count;"(z) for all z € ¥*. In order to prevent that the value @f/anishes we define the
following normalizations for: € X*.

Jz) & 1 : ifg(x)=0
g(x) : otherwise

fla) L { 2 : ifg(x)=0

f(xz) : otherwise

Note thaty’ € FP and f’ € #P. Moreover, observe that if(z) = 0 thenxz € A. Therefore, we obtain
that f” andg’ achieve the same gsandg in the following sense:

reA = fll&)>0+¢e) ¢ ()
r¢gAd = fllz)<(1-¢) ¢ ()

Choose a polynomial such thaR?(™) . £/2 > 2¢(") for all n. > 0. Let h(x) £| 292D /¢/(z)] - f/(z) and
note thath € #P. Now observe the following implications.

. f'(@) o) s e L@ v oatel | )
€A = g’(x)><1+€) = h(z)>2 7 fi(x)>2 (1+¢)—2
> (14 ¢/2) - 240D
véA — LO g gy <ol L@y ateh < (1 Z gy gale

g'() g'(x)

It follows that A satisfies point 3. So we proved that the points 1-4 are equivalent.

By Proposition 3.2, point 1 implies point 5. Note that for everg FP there is a polynomiat
such thak™(™ > h(n) so point 6 follows directly from point 5. It remains to show that point 6 implies
point 4. For this we choode(z) £ 3 and get:

reAd = f(w)>3'g(w):(l+%)-29(w)

rgA = @) <) =(1-3) 2l
O

If we generalize the characterizationS&P that is given in Proposition 3.3.4 by using n@¢tR and
anFP function but two#P functions we get a larger class that, as we will see later, coincides with the
threshold clasBPP .

Closure properties of complexity classes are another point of interest. It is knowiihé closed
under union, intersection, and complement. We cannot §tiRiwto be likewise robust: We will see
that there is an oracle whe$&8P # coSBP. Besides that it remains open whether or$8P is closed
under intersection (we even do not know whether there is an oracle $B&rés not closed under
intersection). However, we can prove that it is closed under union:

8



Proposition 3.4 SBP is closed unde.

Proof: By Proposition 3.3.6, foA1, A, € SBP there existf1, fo € #P andg;, go € FP such that

reAd = fi(z) >4 gi1(x), Q)
¢ A = filz) < q(x),
x €Ay = fo(x) >4-ge(x), and 2
r¢ Ay = folx) < ga(x)

el = fi(z)g(xr) >4 gi(x)g2(x),

()g2()
r¢g A = fi(z)ge(z) < g1(x)g2(2),
x €Ay = fa(x)gi(x) >4 gi1(x)g2(x), and
r¢ Ay = folx)gi(z) < g1(x)g2(w

Hence we can conclude for=1/3, f(z) = fi(z) - g2(z) + f2(x) - g1(x) andg(z) = 3 - g1(x) - g2(x):

re€AUAy = f(x)>1+¢) g(x)
rg A UA = flz)<(1-¢) g(x)

Obviously f € #P andg € FP and therefored; U As € SBP by Proposition 3.3.4. O

3.2 SBP ishetween MA and AM

In this subsection we will fisBP in already known hierarchies. In particular we will show that it fits in
Babai's Arthur-Merlin hierarchy betweédA and AM.

Theorem 3.5 MA C SBP

Proof: Let L € MA. By Proposition 2.9, there exist a polynomjiasuch that fors(n) £ n + 2 there
exist a sefB € P and a polynomiag with:

r¢ L = Vy(ly| = p(Jz]) — countz(z,y) < 9~ s(lzyl) . galleyl))

Lete £ 1/2,¢'(n) ﬁp(n) + q(n+ p(n)), p'(n) ﬁp(n) +1and
B'L{(z,y) : y = yaiya Ayr € ZPUD A gy € 329091 A (41 0) € BY.
Then the following holds.

el = county? (z) > (1 — 2 (eltpleD)) . gallelp())

1 — g~ 2-lal=p(la])y . 9'(lz)~p(a])
90/ (e =pllal) — (1 4 ). 9¢'(l=D~»()

SinceB’ € P this showsL € SBP. O



To show thatSBP is a subset oAM we need the following definitions: Anear hash function
h: ™ — ¥F is given by a Boolealk, m)-matrix M. A stringz = z1 - - - z,,, is mapped to a string
y=11---y,ifand only ify = M - 27 (here we mean the inner product mod2ijoWe adopt notations
from [KW94] and define for a sek C X" and a family of hash functiond = {hq,...,h;} the
predicateCollision as

Collision(X, H) <L (3z € X)3y1,-..,y € X\ {z)) (Vi : 1 < i < D[hi(z) = halys)].

If Collision (X, H) then we say thak has a collision w.r.tH. The set of all familied? = {hy,...,h;}
of I linear hash functions froi™ to %* is denoted by (I, m, k). In 1983 Sipser proved the following
theorems about linear hash functions.

Theorem 3.6 ([Sip83, Coding Lemma])Let X C X be a set of cardinality at mogt—!. If we choose
a hash familyd uniformly at random froni(k, m, k), then the probability thak™ has a collision w.r.t.
H is at mostl /2.

So if the setX is not to big then collision does not occur to often. An easy pigeon-hole argument
shows that ifX contains slightly more elements then collisions occur with probability

Theorem 3.7 ([Sip83]) For any hash familyd € H(k,m,k) and any setX C Y™ of cardinality
|X| > k- 2%, X must have a collision w.r.f.

Theorem 3.8 SBP C BP-NP = AM

Proof: Let I. € SBP. By Proposition 3.2 there exist somsec P and polynomial, ¢ such that for all
T e X"

_ 24(|xl)

=q zl+1 .2

rel = county’(x)>2 e
. ., 24(|xl)
x ¢ = countz’(z) < SREN

With the following setD we can test whether a given family of hash functiGhsan hash all witnesses
of a givenz (i.e., ally with (z,y) € B) without collisions.

DL {(m,H) :x € X% H € H(k,m, k) andCollision(X, H) for (3)
o kZLq(|x]) —p(|a]) +1

o mZq(|z|)

o XL{y : |yl = q(le]) and(z,y) € B} |

From the definition ofCollision(X, H) it is easy to see thdd € NP. Now we consider an arbitrary
word z that is sufficiently long, i.e., long enough such &t > ¢(|z|) — p(|z|) + 1. Definek, m and
X as in equation (3). We consider two cases:

e z € L: Then|X| > 2a(eD=p(z)+lzl+1 — gk+le > [ . 9k sincex was chosen long enough. From
Theorem 3.7 it follows thatollision(X, H) for all H € H(k,m, k).

o = ¢ L: Then|X| < 24¢(zD)—p(lz)) = 2k=1 gnd from Theorem 3.6 it follows that

#{H : H € H(k,m, k) andCollision(X, H)}
#{H € H(k,m,k)}

1
< -
-2
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So we obtain:
#{H € H(k,m,k) : (x,H) € D}

L =1
res = S{H € Hk,m, k)}
#{H € H(k,m,k) : (z,H) € D} _1
L < Z
v¢l = B{H € Hk,m, b)) =3
SinceD € NP this showsl, € BP-NP. O

We are now able to fix the position 8BP:
Corollary 3.9 3.BPP = NPBPP € MA C SBP C AM = BP-NP.

Proof: 3.BPP = NPPEPP follows immediately by the selflowness BPP [Ko82, Zac82], and the
remaining claims follow from the definitions dfA andAM and from theorems 3.5 and 3.8. a

In Proposition 3.3.4 we characteriz8BP using a#P function and arF'P function. The natural
guestion arises what would happen if we defined a class in a very similar way but usig fwoctions
this time. We show now that this leads exactly to the threshold BIBES .1,

Proposition 3.10 L € BPP,,, if and only if there exisf, g € #P ande > 0 such that for alke € X*:
rel = f(z)>(1+¢e)- g(x)
¢l = f(x)<(l-¢) g(z)

Proof: Let L € BPP,,, and choosé/ ande as in Definition 2.6. Then the following is easy to see.

x €L = 2-accy(z) > (14 2¢)(accp(x) +rejy(x)) = acear(z) > (14 2¢) - rejp(x)
x¢ L = 2-accy(z) < (1 —2¢)(accpr(z) +rejy(x)) = acepy(x) < (1 —2e) - rejp ()

Since the functionsccy; andrej,, are in#P this shows that the proposition holds from left to right.

Now assume that we are given a languagsatisfying the right-hand side of the proposition. Note
that without loss of generality we may assume 1. Sincef,g € #P there exist nondeterministic
polynomial-time Turing machine¥;, Ny with accy, (x) = f(x) andaccy, () = g(z) for allz € £*.

Letp be a polynomial bounding the computation time of both machihendN,. Choose a polynomial
¢ large enough such that(™) . ¢ /4 > 2¢(MW+1 for all n > 0.

Let M denote a nondeterministic polynomial-time Turing machine working as follows onznput
First of all, M produces two paths while making one nondeterministic step. On the first (resp., second)
path M simulatesN; (resp.,N2) on inputz. Each time this simulation ends with a rejecting path,
makes one more nondeterministic step in order to produce one accepting and one rejecting path. If the
simulation ofN; (resp.,N2) ends with an accepting path th&h makes;(|x|) additional nondetermin-
istic steps in order to produé(*) accepting (resp., rejecting) paths.

In the remaining part of the proof we will show thiat acceptsl in the sense dBPP,,.,. From the
definition of M/ we get the following estimations farcy, andrej,,.

20020 . r(2) < acey(z) < 20020 f(z) 4 opleDtt (4)

If z € Lthenf(x) > g(x) - (1 + ¢) and thereforegf () > 1. Sinces < 1 we havel/(1+¢) <1—¢/2
andf(z)- (1 —¢/2) > g(z). So we obtain:

rejur(z) < 20070 g(z) 4 op2D+1
< gallz]) . flz)-(1—¢e/2) +2° (lz))+1
< 2020 p(z) . (1 —e/4) — 290D . g /4 4 222D+ (sincef(z) > 1)
< 200D () (1 —€/4) (by the choice of)
< (1 —¢/4) - accp(x) (by equation (4)) (6)
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If x ¢ Lthenf(z) < (1—¢)-g(xz)and therefor@( ) > 1. In this case we get:

)
accy(z) < ga(lel) . flz) + 2rleh+
< 200D g(z) (1 —€) + 2p(\:v\)+1
< 202D . g(z) - (1 —/2) — 292D . 2 /2 4 2P2DH1 (sinceg(z) > 1)
< 200D g(z). (1 —¢/2) (by the choice of)
< (1—¢/4) rejy(x) (by equation (5)) (7)

Observe that inequality (6) impliesj,,(z) < totaly/(z)/2 and inequality (7) impliesccys(z) <
totalys(z)/2. Therefore, if we addl — £/4) - rejy,(x) (resp.,(1 — €/4) - accpr(x)) to both sides of
inequality (6) (resp., inequality (7)) we get:

rel = (2— i) rejy(x) < (1— Z) - totalps(x) 2-rejy(x) < (1— g) - totalps(z)

1

rej(z) < (= — ° — ) - totalps(x)

—
— 5 16
1 €
= accy(w) > (— + 16) totalps ()
r¢ L = (2-— Z) ~acepy(x) < (1 — Z) <totaly(z) = 2-accepy(x) < (1— g) - totalys ()
1 €
Z_ . 1
= accy(z) < (2 16) total s ()
This showsL € BPP,,., and it follows that the implication from right to left holds. O

This result enables us to precise the positioRR¥P.
Corollary 3.11 BPP C SBP C BPP
Proof: This is an immediate consequence from Corollary 3.9 and the Propositions 3.3.4 and 3710.

We provide a picture of the mentioned classes’sinclusion structure, that is established when we take
the above results into account, at the end of section 4.

4 Relationsto Other Classes

In 1976 Valiant [Val76] introduced the clagdP of languages that are decidable in unambiguous
polynomial-time. This means thEiP consists of all languages that can be accepted in polynomial-time

by a nondeterministic machine satisfying the promise that each computation has at most one accepting
path. Equivalentlyl. € UP if and only if there exists somg € #P such that for all: € ¥*:

rel = f(x)

1
x¢ L = f(z)=0

If one weakens this definition and asks for sgfne GapP one meets th&apP counterpart ot/ P, the
classSPP (stoic PP because the machine doesn’t change its behavior much between accept and reject).
It was introduced in 1991 independently by Fengieal. [FFK94], Gupta [Gup91] (under the name
ZUP), and Ogiwara and Hemachandra [OH93] (under the nakje

Definition 4.1 ([FFK94, Gup91, OH93]) The classSPP consists of all languages C >* for which
there exists arf € GapP such that for allz € ¥*:

rel = f(z)

1
x¢L = f(x)=0

12



Theorem 4.2 ([FFK94]) Few C SPP

In [FFK94] it is shown thaSPP is exactly the class of languages that are lowfapP. Moreover,SPP
is closed under polynomial-time Turing reductions (i.e., is closed in particular under union, intersection
and complementation) [FFK94].
A relaxation of the definition above leadsWwaPP (widePP), a class which was introduced in 1991
by Fenneet al. [FFK94].

Definition 4.3 ([FFK94]) The classWPP consists of all languages C >* for which there exist an
f € GapP and ag € FP with g > 0 such that for allz € >*:

rel = f(x)
x¢ L = f(x)

g9(z)
0

Proposition 4.4 SPP C WPP

Neither it is known whether this inclusion is strict nor it is known whet&@P is closed under
polynomial-time Turing reductions [FFK94].

Another class that came up in the contexP&tlowness isAWPP (almost-widePP) introduced by
Fennemet al. [FFKL93, FFKL]. Li[Li93a, Li93b] showed thaAWPP is closed under union, intersection
and complementation, and all languages floWwiPP are low forPP.

The original definition oAWPP is such that the class admits amplification by definition. Recently,
Fenner showed [Fen02] that a weaker definition can be used equivalently. Here we use the characteriza-
tion of Fenner for the definition cfWPP. Theorem 4.7 below establishes the connection to the original
definition.

Definition 4.5 The classAWPP consists of all languages C >* for which there exist aif € GapP,
a polynomialp ande > 0 such that for all: € ¥*:

op(|z|)
el = (l+e) ——<fl@)< op(lzl)
op(|z|)
r¢L = 0<fr)<(1—¢g)- 5

Theorem 4.6 ([FFKL93, FFKL]) WPP C AWPP

Theorem 4.7 ([Fen02], amplification forAWPP) The following is equivalent fat C X*.
1. L € AWPP

2. There exist arf € GapP and polynomial®, g with ¢ > 0 such that for allz € 3*:

1 op(lzl)
. (|=[)
rel = (1+q(\x])) 5 < fz) <2P
1 op(lz)
r¢ L — O§f($)<(1—q(|$|) T

3. For every polynomiat > 0 there exist arf € GapP and a polynomiap such that for allz € ¥*:

rel — (1- 2zj‘)) Lgplla) < f(y) < oplaD
1
¢ L = 0<f(z)< D . op(lz))
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It turned out thatAWPP has also interesting connections to quantum computing: The quantum
classBQP (bounded-error quantum polynomial-time; think of this as the class of problems that can be
solved efficiently by quantum computers) is containedWiPP [FR99] and is therefore low faPP.

In [BV97] it is shown thaBPP is a lower bound foBQP, i.e., we havaBPP C BQP C AWPP. Up

to now this is the best classification BQP w.r.t. traditional complexity classes. In particular we have
no evidence whethdQP is in the polynomial-time hierarchy. In this connection [GP0O1] constructs
a relativized world wher&QP (exact quantum polynomial-time) is not containedi¥’. So in this
world, BQP ¢ PNP sinceEQP C BQP holds relativizable.

With the definition ofAPP (amplifiedPP), Li introduced another class of problems that are low for
PP [Li93a].

Definition 4.8 ([Li93a, Li93b]) The classAPP consists of all languages C X* such that for all
polynomials- there existf, g € GapP with f(1™) > 0 for n > 0 such that for alln, x withn > |z|:

)- f(") <g(z,17) < F(17)

1 n

It is known thatAPP C PP and thatAPP is closed under polynomial-time Turing reductions (in
particular it is closed under union, intersection and complementation) [LiI33tp. and AWPP were
introduced independendly and for both was independendly shown that they are oW fblowever,
Fenner [Fen02] showed thAWPP C APP thus giving another proof of the lownessAIPP for PP.

Theorem 4.9 ([Fen02]) AWPP C APP

Remember th&PP can be considered as thepP analog ofUP. With the following definition we
start fromAWPP and define its#P analog.

Definition 4.10 The classWAPP (weak almost-widé’P) consists of all languages C * for which
there exist ary € #P, a polynomialp ande > 0 such that for allv € X*:

1

r¢ L — 0<g(z,1") <

or(z])
rel = (1+4¢)- 5 < fa) < 2rl)
D)
r¢l = 0< f(z)<(l—e)- 5
Proposition 4.11 WAPP C AWPP
Proof: This is an immediate consequence of Definition 4.5. O

It is not known whetheAWPP is in the polynomial-time hierarchy and we will see in section 5 that
there is a relativized world whet8WPP ¢ PH. However, in spite of the very similar definitions of
AWPP and WAPP we can show thaWAPP C PH. More preciselyWAPP is located between the
classe8BP-UP andSBP.

Proposition 4.12 BP-UP C WAPP C SBP.

Proof: Let L € BP-UP, i.e., there exists afi € #P, a polynomialp, ande > 0 such that for all
x,y € ¥*, f(z,y) < 1and forallz € ¥,

vel — #{yewt: fay) =1} > <%+E> - gplla)
p(lal) . _ 1 p(lal)
r¢gL = #{yGE -f(w,y)—1}< 5 —¢) 2
Let g(z) L #{y € ¥PI=) . f(x,y) = 1} and note thay € #P sincef(z,y) < 1. It follows that
L € WAPP.

Let A € WAPP and consider definition 4.10. Multiply the right-hand sides of the implications with
2. Since2 - f(n) € #P and2P(™) ¢ FP we can apply proposition 3.3.4 and obtaire SBP. O
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Figure 1: Relationships betweS8BP and known complexity classes
(inclusions hold from bottom to top)
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5 Separation Results

In the previous sections our observations aimed at the localizatiSB®fw.r.t. known complexity
classes. In particular this yield&PP C SBP C BPP,,;, andMA C SBP C AM. However, up
to now we have not provided any evidence of the strictness of these inclusions. So the objective of this
section is to find hints that separate the clagdeB, BPP,,:,, MA andAM from SBP. Furthermore,
we will prove separation results w.itY and w.r.t. the classes defined in section 4.

As usual in complexity theory we cannot expect to find absolute separations since these would imply
P # NP. Instead of this either we show that the equivalenc8R¥ with other classes implies an
unlikely complexity-theoretic consequence (like a collapse of the polynomial-time hierarchy) or we show
thatSBP differs from other classes in suitable relativized worlds. We start with the separa® of
from BPP andBPP,.

Theorem 5.1 If BPP = SBP or SBP = BPP,,,;;, then the polynomial-time hierarchy collapses to its
second level.

Proof: If SBP C BPP thenNP C BPP. Sipser [Sip83] showed that this implies thd? has small
circuits. By Karp and Lipton [KL82] it follows that the polynomial-time hierarchy collapses to its second
level.

If BPP,an € SBP then we getoNP C BPP,, € SBP C AM from the Theorems 2.7 and 3.8.
The result of Boppana, Hastad, and Zachos [BHZ87] shows:éhd? C AM implies a collapse of the
polynomial-time hierarchy to its second level. a

Corollary 5.2 There exists an oraclé such thaBPP# # SBP4 andSBP# # BPP ...

Proof: This holds since theorem 5.1 is relativizable and since there exists a relativized world where the
polynomial-time hierarchy is infinite [Yao85]. a

In contrast to Theorem 5.1, concerning the separati@&ffrom MA and AM we could not prove
similar unlikely consequences. Therefore, we approach this question with the construction of suitable
relativized worlds where the conjectured separations hold. On one hand this gives some evidence that
the separations could still hold in the nonrelativized case. On the other hand the oracles show that even
if equalities likeMA = SBP andSBP = AM hold then they can only be proved with nonrelativizable
proof technigues. Since these techniques are known to be rare and difficult it is most likely that we are
still a long way off from the final solution of these separation questions.

The separation results below will be derived on one hand from known oracle constructions [Yao85,
Ver92, Bei94, For99] and on the other hand from a new construction that is described in the proof of
Theorem 5.15. In particular, in this new relativized woHBP is not contained iI’ES. SinceSBP C
BPP,.: holds relativizable we will see that our oracle shows BP0, € RN andBPP ., €
¥¥ in some relativized world. This solves an open question of étasl. [HHT97]. We start our
considerations with an oracle from Vereshchagin.

Theorem 5.3 ([Ver92]) There exists an oracld such thatAM4 N coAM4 ¢ PP4.
Corollary 5.4 There exists an oracld such thatAM* ¢ SBP“4 andcoAM* ¢ SBP,

Proof: Define A to be the oracle from Theorem 5.3. The corollary follows sisB® C PP in all
relativized worlds. O

The following oracle goes back to a construction of Beigel.

Theorem 5.5 ([Bei94]) There exists an oracld such thaPNP" ¢ PP,
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Corollary 5.6 There exists an oraclel such that the following holds for every complexity class
C € {APP, AWPP, WAPP, BP-UP, BPP, P, WPP, SPP, Few, BQP, EQP}.

1. NP4 ¢ cA 3. MAY g cA 5. AM4 ¢ ¢4
2. 3BPPA ¢ ¢4 4. SBPA ¢ ¢4 6. >0 ¢ ¢4

Proof: Define A to be the oracle from Theorem 5.5 and assumeNirdt C APP“. In [Li93a, Li93b]
Li proved thatAPP is low for PP. Since the proof is relativizabl&,PP* is low for PP*. In particular
this mean®PNP" C PP and therefor@NP" C PPA. This contradicts the assumption drand we
getNP4 ¢ APPA. This proves statement 1 f6r= APP. The remaining statements fér= APP
follow sinceNP is relativizable contained ida-BPP, MA, SBP, AM and 25’. The statements for the
remaining classes hold because these classes are subsét® Bfin all relativized worlds. O

Corollary 5.7 There exists an oracld such thatESA Z BPPpathA.

Proof: This follows from Theorem 5.5 sind@™" C ¥! andBPP,.., C PP holds in all relativized
worlds. a

At this point we want to mention another oracle that is interesting when lookiAgVaP. In
[FFKL93, FFKL] Fenner, Fortnow, Kurtz, and Li study the notion &P-genericy. In particular it
is shown that under an§P-generic oracle it holds that the polynomial-time hierarchy is infinite and
P = UP = AWPP (see [FFKL93] for definitions of and discussions on various genericy notions).

The next oracle we want to make use of is due to Forthow.

Theorem 5.8 ([For99]) There exists a relativized world whe$®P strictly contains an infinite poly-
nomial-time hierarchy.

Corollary 5.9 There exists an oracld such that for everg € {SPP, WPP, AWPP, APP,PP}:

1. CA ¢ AMA 4. cA ¢ 3.BPP4 7. C4 ¢ BP-.UPA
2. CA ¢ SBPA 5. C4 ¢ NP4 8. c4 ¢ BPPA
3.C4 ¢ MAA 6. CA ¢ WAPPA 9. C4 ¢ U-BPPA

Proof: Let A be the oracle from Theorem 5.8. Sinkd1 C PH holds relativizable we hawPP4 z
AM* which shows statement 1 f6r= SPP. The remaining statements f6r= SPP follow from the
fact that the classe83P, MA, 3-BPP, NP, WAPP, BP-UP, BPP, andU-BPP are subsets afM in all
relativized worlds. Finally, we obtain the statements correspondiGgstd WPP, AWPP, APP, PP}
sinceSPP C WPP C AWPP C APP C PP holds relativizable [Fen02]. O

Corollary 5.10 There exists an oracld such thatE* ¢ SBP4 andSE" ¢ AMA.

Proof: This follows from Theorem 5.8 since in all relativized worl8BP C AM C I1%, and a collapse
of the polynomial-time hierarchy is implied By C I1%. O

Remember thaA M contains classes lik§P, BPP, MA, and it is unlikely thatAM is contained in
¥¥. So in this lightAM seems to be quite powerful. However, Boppanastdd and Zachos [BHZ87]
showed that unless the polynomial-time hierarchy collapaé$and therefore alseéBP) is not powerful
enough to containoNP. Together with Yao’s oracle this has the following consequence.
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Theorem 5.11 ([Ya085, BHZ87]) There exists an oraclé such thacoNP4 ¢ AM4.

Proof. Yao [Yao85] constructed a relativized woddwhere the polynomial-time hierarchy is infinite.
Boppana, Hastad, and Zachos [BHZ87] showed with a relativizable proafofN& C AM implies a
collapse of the polynomial-time hierarchy to its second level. So weyj@t4 ¢ AMA. O

Corollary 5.12 There exists an oracld such thatoNP4 ¢ SBP4 andsE” ¢ SBPA.
Proof: This follows sinceSBP C AM andcoNP C 25 holds relativizable. O

We come now to a new oracle construction showing that it even holds that a certain subclass of
BP-UP is not contained i} . In order to specify this subclass we define the following operator.

Definition 5.13 For a complexity clas€ let R-C be the class that consists of all languadesuch that
there exist arB € C, a polynomialp ande > 0 such that for allz € X*:

c¢ L = #{yexPl) . (z,9)e B} < (1—¢). 200D
The idea of this operator baseswR, i.e., the complement of the probabilistic cl&ESil72, Gil77,

the classVPP]. Note that in order to describe some cl&s€ we cannot go back to some operalfor
which is derived from the clags, sinceR-C = co(R-C) holds only ifC is closed under complementation.

Proposition 5.14 (Amplification for R-) If C is closed undex’, then for everyl ¢ R-C and every
polynomialg there exist aB’ € C and a polynomiap’ such that for allz € ¥*:

el = #{yex’le . (zy) e B’} = 2”/ lI)

Proof: SinceL € R-C there exists & < C, a polynomialp ands > 0 such that for alk: € ¥*:
el = #{yexrl=) . (z,4) e B} =2rleh
x §7§ L = #{y c EP(|I|) . (x y) c B} < (1 _ E) . 2;0(\90\)

W.l.o.g. we may assume that< 1. Letc£[—1/logy(1 — €)], ' (n) L ¢ - p(n) - ¢(n), and observe that
c>0 and(l — 5) < (1 _ 5) (logg 2)/ logg(1—¢) _— (1 _ ) log1_y2 _ 1/2.

B'&{(z,y) : © € T,y = y1y2 - - Ye.q(|a|) fOr suitabley; € 57 and A\ (2,4:) € B}.

1<i<eq(|2|)

Obviously,B’<%, B and thereforeB’ € C. Now consider an arbitrary € ¥*. If z € L then(z,y) € B
for all y € xP(=D) which in turn implies#{y € 27" (=D . (z,4) € B’} = 2¢'(I*D_If 2 ¢ L then
/ q(l=|)
#y e @y e}t = (#lyesrt @y en)”
< (1 —g)caleh . gealzl)p(])
1

o (2]
S 2

O

When we apply this proposition 1P we see that the clags UP admits amplification. In contrast,
we cannot show the same B8P-UP.

We turn to the construction of an oraclewith SBP4 ¢ MA4. We will prove a result which is
stronger, namely that there exists a relativized world wWRet® ¢ Y. SinceR-UP C BP-UP C SBP
andMA C ¥ in all relativized worlds, we will finally geBP-UP# ¢ MA“ andSBP# ¢ MA“.
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Theorem 5.15 There exists an oracld such thalR-UP4 ¢ 3.v-PA4.

Before we prove this theorem let us summarize some immediate consequences.

Corollary 5.16 There exists an oraclel such that the following holds for every complexity class

C e {2bP"Y P MA,3BPP, NP, BPP, coAM, coMA, coNP}.
1. R-UupA ¢ cA 3. WAPPA ¢ ¢4 5. SBP4 ¢ ¢4
2. BP.UPA ¢ cA 4. AWPP4 ¢ cA 6. AMA ¢ cA

Proof: Let A be the oracle from Theorem 5.15 and note thatP4 = ZPA. In [Sch89] Scbiing
showed thatBPP is low for X¥. Since this theorem is relativizable we obtain the statement 1 for
C= EPB . The remaining statements f6r= EP " hold sinceR-UP is relativizable contained in
the cIasseBP UP, WAPP, AWPP, SBP, andAM The statements for the remaining clagsésllow
since these classes are subclassé%DoF in all relativized worlds. 0

Corollary 5.17 There exists an oraclel such thatSBP“ is not closed under complementation. In
particular, SBP4 neither is closed under Turing-reductions nor is closed under truth-table reductions.

Proof: By Theorem 3.8SBP C AM. Since this proof and the proof f&M C II¥ are relativizable
we haveSBP C 11} in all relativized worlds. But by Corollary 5.16 there exist an oratlguch that

SBP4 ¢ $2. HenceSBP is not closed under complementation. O

In [HHT97] Hanet al. introduce and investigate the threshold cla®¥,,.,. We have seen (cf.
Proposition 3.10) tha PP, is closely related t8BP, i.e., if we start fronBBP’s characterization in
Proposition 3.3.4 and if we alloyto be a#P function then we me&@PP,,.,. [HHT97] compares in
particular the classdsPP,,,., andBPP, and poses as an open question whether Sipser’s [Sip83] result
BPP C RN C ¥F can be transferred 8PP,,,.;,. With the oracle from Theorem 5.15we have found a
relativized world where this question has a negative answer.

. A
Corollary 5.18 There exists an oracld such thatBPPpathA Z 212) .

Proof: Since the proof of Corollary 3.11 is relativizable, we h@Bf C BPP,,;, in all relativized
worlds. So from Corollary 5.16 it follows that there is an oratleith BPPpathA z Eg’A. O

The corollaries above show that3BP coincides with known complexity classes then the corre-
sponding proofs cannot relativize. Moreover, we have seerSB#Rtand APP (resp., AWPP) are
incomparable under relativizing proof techniques. These oracle results give evidence that also in the real
world SBP does not coincide with known complexity classes. A summary of inclusions and separations
concerningSBP is given in Figure 2 below.

We turn now to the remaining proof of Theorem 5.15. In this oracle construction we will need the
following estimation.

Proposition 5.19 Leta; £ 22 anda; 41 £ 2% for i > 1. Then2%/* > (q;)* fori > 1.

Proof: This can be seen as follows.

a; > 16-4>
= @ > 1
= 10g2a - logy 21/4 > 4 since\/z > logy x for z > 4
= a; -logy 24 > i-logyay
— log, 2ui/t > log,(a;)
_— 2ai/4 > (ai)i



O

Proof of Theorem 5.15: We will construct oracle stage$,, Ao, ... and at the end we will define
AZ(J;5, Ai. As an abbreviation for intervals of stagéswe useA[k, j] £ ;<< ; Ai. Leta; £2'2
anda;, £2% for i > 1. Moreover, for everyB C X* and everyi > 1 we define the following
conditions:

I

3/4

C1(B, 1) for everyz € X%/ there exists at most onec %3/ with 2y € B

1
C2(B,i) £ |BNx%|=2%/1v|Bnx%| < 5 90:/4

The oracle construction will be such thét C X% A C1(A[1,i],7) A C2(A[L,4],1) for eachi > 1 (note
that these conditions are equivalenttoC X% A C1(A;, 1) A C2(A4;,4)). ForB C ¥* let

W (B)4£{0% : i > 1and for allz € %%/* there exists exactly onee £%3/* with zy € B}.

We will useW (A) as a witness language: Assume tHatC 3% A C1(A[1,14],7) A C2(A[1,1i],47)
holds for alli > 1, and letA £ J,~, A;. Then, sinceC1(A[1,i],i) holds, the setV’(A) £{(0%,x) :

x € X%/* and there is exactly ongc $%3/4 such thatry € A} is in UP“. So if 0% € W(A) then
#{x € R4/t (0%,2) € W(A)} = 2%/% If 0% ¢ W(A) then there is am € X%/* such that
there is ngy € X%3/% with 2y € A. SinceC2(A[1,i],7) holds, this implies#{z € X%/* . (0%,z) €
W'(A)} < §-29/% Therefore, we havll’(A) € R-UP“. Additionally, A will be constructed such that
W(A) ¢ 3-V-PA.

Let7y, T, ... be an enumeration of all triples of the fofin= (M, r, s) whereM is a deterministic
polynomial-time oracle machine and are polynomials. Without loss of generality we may assume that
if T, = (M;,r;,s;) thenr;(n) < n’ and there exists a polynomigln) < n’ such that the computation
MP(z,y,2) halts int;(|z|) steps for any oracl® and anyr € %+, y € ¥7eD, 5 ¢ »s(iz)),

In order to achievéV (A) ¢ 3.V-P4, during the construction of stage we diagonalize against
the tripleT; in the following sense: We interprét as a possible=v-P-machine” foriW(A) and we
construct4; such that the machine fails to give the right answer w.r.t. the question W (A). More
precisely, ifT; = (M;, r;, s;) then with the construction of; we will preventhe following equivalence.

0% € W(A[L,4]) <= (Jy € 2"®))(vz € n%@))[(0%  y, 2) € LM )]

So our construction will additionally satisfy the conditide A[1, ¢],4) for i > 1 which are defined as
follows: ForB C ¥* and: > 1 let

C3(B,i) L ﬂ(oai € W(B) <= (Jy € 27\ (vz € 2%(@))[(0%, y, 2) € L(Mf)]).
As an abbreviation for the conditions defined so far weud, i) £ C1(B, i) A C2(B, i) A C3(B, ).
Claim 5.20 There exist oracle stages;, As, . .. such that4; C X% andC(A[1,4],7) forall i > 1.

Before we prove this claim let us see that it implies the correctness of the theorem. We have already seen
that with A £ | J,-, A; it holds thatl(4) € R-UP4. Assume thatV’(A) € 3-¥-P4, i.e., there exist a
deterministic polynomial-time oracle machii&and polynomials: s such that for alke € ¥*:

zeW(A) < 3y e 271Dy (vz e 230=DY[(, 4, 2) € L(M™)] (8)

Hence there exists some> 1 such thatl; = (M;,r;,s;) = (M,r,s). We consider equation (8) for

£ 0%. Note thatd® € W(A) <= 0% ¢ W(A[L,1]). Moreover, by Proposition 5.19 the sequence of

a;'s grows fast enough such that for every oraBlec ¥* the computationg/”(0%,y, z) cannot ask

for words of length> a;+1 (remember our assumption on the enumeration of the tripJeg herefore,

for these computations it is equivalent to use oragle | instead ofA. So from equation (8) we obtain
0% € W(A[L,4]) <= (Jy € 2(®))(vz € £5@))[(0%,y, 2) € LM T, 9)

2
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By Claim 5.20,C(A[1,4],4) holds. In particular this implie€3(A[1,4],7) which in turn contradicts
equation (9). So we gét’(A) ¢ 3-V-P4; this proves the theorem.

So it remains to show Claim 5.20. We will prove this by contradiction, i.e., we will derive a contra-
diction from the following assumption.

Al £ there exists some > 1 and oracle staged;, As,...,A,_; such thatd; C X% A
C(A[1,4],4) for1 < i < n, and there does not exist dh C 3% with C(A[1,n—1]UA’ n).

So assumé\l. Leta = 3 .a,, § = 25 = 2%, andy = 4. We will show that under this
assumption we could encode an arbitrary nurider [0,2Y) with less than) bits. For simplicity, we
will write M, r, s instead ofM,,, r,, s,,, respectively. Choose a prime numbpee (2%~1,2°]; this is
possible by Bertrand’s postulatahich says that for every > 1 there is some prime numbgmwith
k < p < 2k. Each\ € [0,2%) can be represented ag aigit number with digits fronjo, 22~1) since
2 — 255 < (20“‘1)%. These digits can be considered as elements of the finitedie(d). So each
suchA\ can be thought of as%dimensional Vectoty, € GF(p)g.

Now, we make the vectorg, redundant, i.e., we double their dimension and transform them into
vectorsij, € GF(p)? in such a way that,, can be reconstructed when knowing an arbitrary half of the
components ofj,.. For this, we define the following matrix oveit' (p) which can be considered as a
generalization of a Vandermonde matrix.

112 13 15
9l 92 93 925
ML 31 32 33 35
gt g 3B 33

Itis known that if one delete% arbitrary rows in this matrix then one obtains a quadratic matrix which is
invertible inGF (p). Therefore, if one knowg components from thé-dimensional vectof, £ M .ZA:,F

(i.e., the inner product modulp), then one can reconstruct the vector or equivalently, ifyy, =

M- (Z)7, dv, = M- (2,)T and the vectorg,, andg,, coincide in at leasf many components,
thenzy, = Z, andyy, = t,. Sincep < 2, the vectorj,, can be represented as the oracle sthge

Ay L{w € X% . w = wiws, |wi| = a,/4 andw, is the binary
representation of the;-th component ofj, }.

So, in this sense, eadlf € [0,2%) induces a vectof, which induces a redundant vectgy which in
turn induces an oracle stagg. We get the following claim from our above observations.

Claim 5.21 Each\ € [0,2¥) can be reconstructed from an arbitrary half of the wordgin Formally,
if N1, N> € [0,2%) and| Ay, N Ay, | > 2, then; = As.

Note that0® € W (A[l,n — 1] U Ay) for each\ € [0,2%). Moreover, it holds thatl,, C > and
Cl(A[l,n — 1] U Ay,n) A C2(A[1,n — 1] U Ay, n). But by the assumptioal, we have-C(A[l,n —
1]U Ay, n) and therefore-C3(A[1, n — 1)U Ay, n). Together with)®» € W(A[1,n—1]U Ay ) it follows

(Fy € 2))(Vz2 € 207, y, 2) € L(MAT=HIA)), (10)

For each\ € [0,2%), let y, be the lexicographically smallest witness of this condition. Although the
length ofy, is polynomial ina,, it contains much information aboif; we will use this information

1This was first conjectured by J. Bertrand and in 1850 proved by P. Chebychev. In 1937, A. E. Ingham [Ing37] showed that
there is at least one prime number between neighboured cubic numbers. Itis still an open question whether the same holds for
neighboured squares.
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to reconstructV. Informally, our further way is as follows: we use certain subsets A[l,n — 1] U
A, asoracle and look for words such that the computatioh/ ? (0%, 4, ) rejects. Each of these
computations asks for at least one worddip. If we repeat these considerations for severtiten
this reveals many different words frod),. A single such word is characterized by its position in the
computationV 2 (0% |y, z) which can be described ®(log, a,,) bits. So, only a few bits are needed
to encode the words and with these words at hand we are able to reconstrueindtherefore alsaV.

For every\ € [0,2%), Q C £ andz € ¥*(*) we defineg?, as the sequendevy, wy, . . ., w;)
of oracle queries that are asked in the computamﬁlv"‘”UQ(Oan,yN, z). For convenience we will
use this query sequence also in the sense of a set. Consider the following algpiithax A for every
N €10,2%).

1.Q:=10

2. fori:=1t0%

3. choose the smalleste %5(¢n) such that\/ A=Y@ (gan 4. 2) rejects
4, choose the smallest element frqﬁl N (Ay \ @) and add it to the s&p
5. next:

6. return@

This algorithm looks for words from,, and it collects these words in the g&t So,Appr oxA can be
considered as an approximation procedure4far However, it is not immediately clear that the steps 3
and 4 always can be carried out. The following two claims make sure that this is possible.

Claim 5.22 Let \ € [0,2%) and consider the computation 8ppr oxA. The choice of in step 3 is
always possible, i.e(3z € S5@))[(0%, y,, 2) ¢ L(MAL—1YQ)],

Assume that there exists a moment where the choice in step 3 is not possible. Of course it holds that
Q C Ayand|Q| < g. So we obtain C X% A C1(A[l,n — 1] U Q,n) A C2(A[l,n — 1] U Q,n).
Additionally we haved® ¢ W (A[l,n — 1] U Q). From the assumption of this claim it follows that
(Fy € By (Vz € Bs@n))[(0%,y, 2) € L(MAL=1YQ)] and therefore3(A[1,n — 1] U Q,n). So
we getC(A[l,n — 1] U @, n) which contradicts the assumptidri. This proves claim 5.22.

Claim 5.23 Let\ € [0,2%) and consider the computation 8ppr oxA. The choice in step 4 is always
possible, i.e.q?. N (Ay\ Q) # 0.

By the choice ofy,, and by claim 5.22 the following holds for each valueibthat is possible in
step 3.

o (V2 € Z@)[(0%, yy, 2) € L(MAL1AN)]
o (32 € D@07, yy, 2) ¢ L(MALHIQ)]
e ) C Ay

If 2 is a witness of the second condition tHefr , ., z) € L(MAL»—1VAV) \ T,(ArALR=1UQ) This
means that there is at least one oracle qgesych thayy € A, \ @ andgq is asked during the computa-
tion MAL=19Q(gan 4 - 2) ie.,q%. N (Ax \ Q) # 0. This proves claim 5.23.

By the previous claims, each stepAfpr ox A can be carried out. So it is easy to see Amir oxA
returns a se) with |Q| = g and@ C A,. But we still have the problem thappr oxA on input\N'
makes use of the oracle stage. However, we will see that with help of a few bits of information one
can abstain fromd,,. We just need to know,, and the information which word frorqﬁz was chosen in
step 4. The latter can be described vitfiog, a,,) bits since the cardinality @ﬁ is polynomial ina,,.
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By our assumption, there exists a polynomi{al) < n* such that for all oracle® and allz € ¥,
y e ¥z » ¢ »s(eD the computatiod /2 (z,y, ) halts int(|z|) < |z|™ steps. Letn £[log, t(ay,)].
Consider the computation @ppr oxA for an arbitrary\" € [0,2%) and assume that we are in the
i-th pass of the loop in step 4. Here we choose a certain word from the query seqﬁgnce
(wo, w1, ..., w;) and we add this word t@. Note thatj < t(a,) holds by the definition oaf;,? If
we choose the wordy, with 0 < k& < j then definau,; to be them-digit binary representation &f For
every\ € [0,2¥) we define the packed encoding/dfasCode(N) £y - wy.1 - wy2 - Wy 3 - - Wy 8-

Claim 5.24 Each € [0,2?) can be reconstructed froode(\). Formally, if N7, N5 € [0,2%) and
Code(N7) = Code(N2) thenN; = Na.

Let V' € [0,2¥) and assume that we are givende(N) = yy - Wx1 - Wy - Wy 3 - ~~w,, 5. First
72
of all we see that we can simulate the computatioApgdr ox A (without the knowledge o and A,)
because

1. step 3 can be simulated with helpyf and

2. in step 4 with help of the words, ; we chose the right word frorqﬁz.

We know that this simulation yields a €@twith @ C A, and|Q| = g. Therefore, itNVy, N5 € [0,2Y)
and if we useCode(N;) = Code(N>) for the simulation then we get a s@twith Q C A, N A,, and
|Q| = Z. From claim 5.21 it follows thad/; = 5. This proves claim 5.24.

In order to determinfCode ()| we make the following estimation: For> 6 it holds thalz < %.
If we lety £ 22¢ then we obtaiflog, y < /z/4 fory > 212. It follows that(log, y)? < 2y for y > 2!2,
Sincea; > 2'2 we get fori > 1,

3

For every\ € [0,2%) the length ofCode() can be estimated as follows.

(logy a;)* <

[Code(N)| = r(an) + [logy t(an)] - g

(an)"™ + [logy((an)™)] -
(an)™ +2n -logy(an) - B

3n -logy(an) - B (by proposition 5.19)
(logy an)? - 3 (sincea,, ge23™)

P (by equation (11))

IR

(by the assumptions abouandt)

AN VAN VAN VAN VAN

This means that the number of code words is less #tanHence there exist two different numbers
N1, Ny € [0,2%) such thatCode(N;) = Code(N,). This contradicts claim 5.24. Therefore, our
assumptiom 1 is false. This proves claim 5.20 and completes the proof of the theorem. O

Following definition 2.2, for a complexity clagswe say that a language belongs tod!-C if and
only if there exist a seB € C and a polynomiap such that the equivalengec L < count;’(z) =1
holds for allz € ¥*. Note that the oracle construction above also showsithat) < v-3!-P4 and
W(A) ¢ 3-v-PA. This yields the following oracle which could be of interest in connection with leaf
languages.

Corollary 5.25 There exists an oracld such thaty.31.P4 ¢ x5%.
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Figure 2: Inclusions and Oracle Separations in the Conte®Bf
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6 Conclusions and Open Questions

We have seen that with the definitionSB8P one meets an interesting complexity class which is located
betweenMA and AM on one hand, and betwe®&PP andBPP,;, on the other hand. By means of
collapse consequences and oracle separations we obtained evidesd&Ptlimtes not coincide with

these classes. In particular we know BB is closed under union and in some relativized world it is

not closed under complementation. For intersection this question is open, i.e., neither we can prove that
SBP is closed under intersection, nor we can construct an oracle where this does not hold. Note that in
contrast tdGapP, it is not known whethe#tP is closed under subtraction. So the methods showing that

PP is closed under intersection [BRS95] cannot be transferred dire&yRo

Other open questions address the separatiSiBBffrom MA and AM. Can one extend the oracle
separations to collapse consequences? Note that Theorem 5.1 shows that such an extension is possible
for the separations frolBPP andBPP,,,. In addition it would be nice to find an unlikely consequence
of the assumptioSBP C XF' (cf. Corollary 5.16 for the respective oracle separation).

In [HHT97] the authors ask whethBIPP,,,;, has complete sets. The same question is also interest-
ing with respect t& BP. Since we expect a negative answer, one should ask whether there is a relativized
world whereSBP does not have complete sets? Note that there exists an oracle [HH88] where this holds
for BPP.

It seems (at least when looking at the definitions) that the cl&33Bs, ., andAM do not have much
in common. HowevelSBP is contained in both classes. So it would be desirable to know more about
the intersectioBPP,,:, N AM. Is it equal toSBP? If so, sinceBPP,,:, and AM are closed under
intersection, this would imply that alBP is closed under intersection. PP .., N AM does not
coincide withSBP it would be possible that it coincides at least WiBP’s closure under intersection.
Definitely, this would be a very nice characterization of the common featuiEBf.;, andAM.

In section 4 we considered complexity classes that are defin€thpia and#P functions. We have
seen thatUP is the#P counterpart oSPP. Moreover, with the definition o?WAPP we introduced the
#P counterpart oAWPP. Correspondingly, when we restrict Definition 4.3 such fhat#P we meet
the #P counterpart of the clas§ PP. What can one say about this class?
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