
Error-bounded probabilistic computations
between MA and AM

Elmar Böhler Christian Glaßer Daniel Meister

Theoretische Informatik
Julius–Maximilians–Universität Würzburg

97074 Würzburg, Germany

{boehler, glasser, meister}@informatik.uni-wuerzburg.de

2nd October 2002

Abstract

We introduce the probabilistic classSBP which is defined in aBPP-like manner. This class
emerges fromBPP by keeping the promise of a probability gap but decreasing the probability limit
from 1/2 to exponentially small values.

We show thatSBP is in the polynomial-time hierarchy, exactly between the Arthur-Merlin classes
MA andAM on one the hand and betweenBPP and the threshold classBPPpath on the other hand.
We provide evidence thatSBP does not coincide with these and other known complexity classes. In
particular, in a suitable relativized world,SBP is not contained inΣP

2 . As a consequence we get the
same forBPPpath. This solves an open question raised by Hanet al. [HHT97].

1 Introduction

The use of randomness is one possible extension of conventional deterministic Turing machines. The
origins of this idea go back to the work of de Leeuw, Moore, Shannon, and Shapiro [dLMSS56]. In 1972
Gill started the investigation of probabilisticpolynomial-time boundedmachines [Gil72, Gil77]. Such
machines can be considered as an extension of usual polynomial-time Turing machines. An (even prac-
tically) important class of languages decidable by such machines isBPP (bounded-error probabilistic
polynomial-time) [Gil72, Gil77]. For each languageL in this class there exists aρ > 1/2 and a proba-
bilistic polynomial-time decision procedure which finds the correct answer to arbitrary queries “x ∈ L?”
with probability> ρ. With help of an amplification technique one can even increase this success prob-
ability to values arbitrarily close to1. So in spite of the fact thatBPP is an extension ofP (which is
normally considered as the class of practically solvable problems) the decision problems inBPP can
still be considered as feasible in practice.

The Topic. When looking at the definition ofBPP there are two things that make this class different
from P. On one hand there is aprobability limit of 1/2, i.e., an input is accepted if and only if the
machine accepts with probability> 1/2. On the other hand for a suitableε > 0 there is aprobability
gap, i.e., the machine promises that its acceptance probability is never in the interval[1/2− ε, 1/2 + ε].
This paper studies what happens when one lowers the probability limit. It is known that nothing happens
when the probability limit is decreased by a polynomial factor. However, this changes when we decrease
it by an exponential factor. So the focus of this paper is on probabilistic polynomial-time machines that
have an exponentially small probability limit and still keep the promise of a probability gap. The class
of languages accepted by such machines is denoted bySBP (small bounded-error probability).

1

Motivation and Related Work. The classSBP emerges in different contexts. So far we looked at
SBP as ageneralization ofBPP. In order to motivate our investigations and to explain why we think
this class is interesting we present the following alternative ways thatSBP can be looked at.

When one abstains from the probability gap in the definition ofBPP this yields the classPP (prob-
abilistic polynomial-time). SincePP can be defined viaGapP functions and since these functions have
different characterizations [FFK94] the following statements are equivalent to saying thatL ∈ PP.

1. There is a nondeterministic polynomial-time machineM with x ∈ L ⇐⇒ accM (x) > rejM (x).

2. There existf ∈ #P andg ∈ FP such thatx ∈ L ⇐⇒ f(x) > g(x).

3. There existf, g ∈ #P such thatx ∈ L ⇐⇒ f(x) > g(x).

Interestingly, this equivalence completely disappears when we return to the demand of a probability gap.
By this we mean that there must be someε > 0 such that eitheraccM (x) > (1 + ε) · rejM (x) or
accM (x) < (1− ε) · rejM (x); the probability gaps for the statements 3 and 2 are defined analogously. It
is not difficult to see that with this modification, statement 1 describes justBPP. Moreover, we will see
that statement 3 meets exactly the threshold classBPPpath which was introduced by Hanet al. [HHT97].
But what about statement 2 when demanding a probability gap?

We will see that apart from the original definition ofSBP one can allow any polynomial-time com-
putable probability limit. This means thatSBP can be characterized by the following equivalence:
L ∈ SBP if and only if there exist a probability gapε > 0, a probability limitg ∈ FP and anf ∈ #P
such that

x ∈ L =⇒ f(x) > (1 + ε) · g(x) and

x /∈ L =⇒ f(x) < (1− ε) · g(x).

This shows that statement 2 with a probability gap yields our new classSBP. So when starting from
three equivalent characterizations ofPP and when introducing a probability gap then the equivalence
disappears and one meets the three classesBPP, SBP andBPPpath. In particular this shows thatSBP
can be thought of as arestriction ofBPPpath and thereforeBPP ⊆ SBP ⊆ BPPpath.

Another context whereSBP raises interesting questions aims atSBP’s relationship to gap-definable
counting classes, in particular with the classAWPP introduced by Fenneret al. [FFKL93, FFKL].
Starting from a new characterization ofAWPP [Fen02] we show that the#P counterpart ofAWPP is
contained inSBP.

Our Contribution. After showing thatSBP admits a certain kind of amplification we turn to in-
vestigateSBP with respect to other complexity classes. When looking atSBP’s definition one notices
a similarity to the definitions of strong counting classes. So at first glance it is not obvious thatSBP
is in the polynomial-time hierarchy. We show thatSBP is located exactly between Babai’s [Bab85]
Arthur-Merlin classesMA andAM. In particular, it is contained in the classΠP

2 of the polynomial-time
hierarchy. In the proof we use similar arguments on linear hash functions as in the proof forBPP ⊆ PH
[Lau83, Sip83]. Furthermore, we show thatBPP ⊆ SBP ⊆ BPPpath (cf. Figure 1).

On the basis of collapse consequences for the polynomial-time hierarchy and on the basis of oracle
constructions we give evidence thatSBP does not coincide with known complexity classes likeBPP,
BPPpath, MA, AM andAWPP. A summary of all oracle separations can be found in Figure 2.

When looking at the inclusionSBP ⊆ ΠP
2 one might hope that alsoSBP ⊆ ΣP

2 . We show that this
is not true in a suitable relativized world. SinceSBP ⊆ BPPpath holds relativizable this oracle shows
that BPPpath 6⊆ ΣP

2 in some relativized world. This solves an open question of Hanet al. [HHT97]
which aimed at the relation ofBPPpath to RNP andΣP

2 . Moreover, with respect to this oracle,SBP is
not closed under complementation.

Paper Outline. After this introduction we start with some preliminaries. Then in section 3 we
introduceSBP, show different characterizations for this class and prove that it admits amplification and
that it is closed under union. Furthermore, we show thatBP·UP ∪MA ⊆ SBP ⊆ BPPpath ∩AM and

2

we give a picture (cf. Figure 1) that comparesSBP with other complexity classes. In section 4 we go
into other complexity classes that are interesting with respect toSBP. In particular we show that the#P
counterpart ofAWPP is in SBP. In section 5 we provide evidence (by means of collapse consequences
and oracle constructions) that all inclusions we discussed in the previous sections are strict. In particular
we construct a relativized world whereSBP is not contained inΣP

2 . As a consequence we obtain that
BPPpath 6⊆ ΣP

2 with respect to this oracle

2 Preliminaries

We fix the finite alphabetΣ df={0, 1}. For the definition ofP, NP, PP, the classes of the polynomial-time
hierarchy and standard notions of complexity theory see any text book, e.g., [Pap94, BDG95]. For a
nondeterministic polynomial-time Turing machineM , let accM (x) (resp.,rejM (x)) denote the number
of accepting (resp., rejecting) paths ofM on inputx. Moreover, lettotalM (x) df=accM (x) + rejM (x)
denote the total number of paths. Throughout the paper, if not stated otherwise, variables are natural
numbers and polynomials have natural coefficients. The characteristic function of a setB is denoted by
cB .

Since we will have a very close look at classes that are defined via probabilistic machines, we will
introduce them here. Aprobabilistic machineworks like a deterministic machine that has the additional
ability to make randomized operations. So, for example, a program of a probabilistic machine could
in one step assign to a variablex the value 3 with probability13 and the value 17 with probability23 .
In consequence, the result of a computation of such a machine, since it may depend on several random
decisions, is randomized. For instance, a probabilistic machine may return 0 with probability1

10 and 1
with probability 9

10 . We will only regard a special type of probabilistic machines, namely those that make
a random decision between two alternatives every step, and each alternative is chosen with a probability
of 1

2 . Besides that, our main interest is inbalancedmachines, i.e. machines that for an input of length
n always make the same number of random decisions. Henceforth, if we talk of probabilistic machines,
we mean balanced machines, unless we explicitly announce them to be unbalanced (as needed in the
definition of BPPpath). If such a machine stops aftern steps, the probability that it has made one
concrete series of random choices is exactly2−n. Hence, the probability of a specific resultx of such
a machine isk · 2−p, wherek is the number of series of random choices, that lead to the outputx. Let
M be a probabilistic machine (maybe unbalanced). For anx ∈ Σ∗, we writeprobM (x) to express the
probability thatM acceptsx .

Another equivalent model of probabilistic machines is that of machines where the path of computa-
tion is nondeterministically split in two in each step. We require each path of computation of the machine
to have the same length and say that the probability that the machine outputsx is the number of paths
that outputx divided by all paths of the machine. We express the correspondence between the proba-
bility of acceptance and the number of accepting paths in the proposition below. Before that, to avoid
cumbersome notation, we define for every setB ⊆ (Σ∗)n+1, every functionf : N→ N, and allx ∈ Σ∗:
count=fB (x1, . . . , xn) =def #{y : |y| = f(|x1 · · · xn|) and(x1, . . . , xn, y) ∈ B}. As a rule we will use

this notation forn = 1. Obviously, ifB ∈ P andf is a polynomial thencount=fB ∈ #P.

Proposition 2.1 For every functionh : Σ∗ → [0, 1] the following statements are equivalent:

1. There exist a polynomialq and a probabilistic machineM that runs exactlyq(|x|) steps on input
x such thatprobM (x) = h(x) for all x ∈ Σ∗.

2. There exist a polynomialq and aB ∈ P such thatcount=qB (x) = h(x) · 2q(|x|) for all x ∈ Σ∗.

Proof: The claim follows immediately from the definition of probabilistic machines. 2

Starting from existing complexity classes one can define new one with the help of so-calledoperators.
We will introduce here some of these operators:

3

Definition 2.2 LetC be a complexity class.

• We sayA ∈ ∃·C if there is aB ∈ C and a polynomialp such that for allx ∈ Σ∗:

x ∈ A⇔ count=pB (x) ≥ 1

• We sayA ∈ ∀·C if there is aB ∈ C and a polynomialp such that for allx ∈ Σ∗:

x ∈ A⇔ count=pB (x) = 2p(|x|)

• We sayA ∈ BP·C if there is aB ∈ C, a polynomialp, and anε > 0 such that for allx ∈ Σ∗ the
following holds:

x ∈ A =⇒ count=pB > (
1
2

+ ε) · 2p(|x|)

x /∈ A =⇒ count=pB < (
1
2
− ε) · 2p(|x|)

• We sayA ∈ U·C if there is aB ∈ C and a polynomialp such that for allx ∈ Σ∗ the following
holds:

x ∈ A =⇒ count=pB = 1
x /∈ A =⇒ count=pB = 0

By considering Proposition 2.1 and inserting aB ∈ P in the above definition, it is obvious that
∃·P = NP and∀·P = coNP. TheBP· operator was introduced by Sch¨oning [Sch89] generalizing the
idea of Gill’s classBPP = BP·P [Gil77]. In the definition ofBP·C there is the gap[(1

2−ε) ·2
p(|x|), (1

2 +
ε) · 2p(|x|)], the value of the functioncount=pB must never belong to. We have already seen, that there is
a strong correspondence between thecount function and the probability of acceptance of a probabilistic
machine. From this correspondence it is evident, that a set that can be defined with a large gap can be
decided by a machine that works very accurate, i.e. that yields a correct result with high probability.
Therefore we are interested in ways to widen this gap; this is possible if the classC satisfies a certain
closure property.

Definition 2.3 LetA andB be two sets.

• We say thatA is conjunctive truth-table reducibleto B (in notationA≤P
cttB) if there is a func-

tion f ∈ FP such that for everyx ∈ Σ∗ it holdsx ∈ A if and only iff(x) = 〈x1, . . . , xk〉 and
cB(x1) = · · · = cB(xk) = 1.

• We say thatA is majority-reducibletoB (in notationA≤P
majB) if there is a functionf ∈ FP such

that for everyx ∈ Σ∗ it holdsx ∈ A if and only iff = 〈x1, . . . , xk〉 and there is anI ⊆ {1, . . . , k}
with |I| > k

2 andcB(xi) = 1 for all i ∈ I.

Proposition 2.4 (Amplification [Sch89]) IfC is closed under≤P
maj then for allA ∈ BP·C and all

polynomialsp there is aB ∈ C and a polynomialq such that

x ∈ A =⇒ count=qB > (1− 2−p(|x|)) · 2q(|x|) and

x /∈ A =⇒ count=qB < 2−p(|x|) · 2q(|x|).

SinceP is obviously closed under≤P
maj we can give the following definition ofBP·P that coincides

with Gill’s classBPP.

4

Definition 2.5 A setA is in BPP = BP·P if there is aB ∈ P, a polynomialp, and anε > 0 such that

x ∈ A =⇒ count=pB > (
1
2

+ ε) · 2p(|x|) and

x /∈ A =⇒ count=pB < (
1
2
− ε) · 2p(|x|).

We already mentioned the equivalence between the number of paths of balanced machines and their
probability of acceptance. In a balanced machine each path of computation has the same probability so
that we can determine whether or not an inputx is accepted by counting the number of paths and dividing
the result by the total number of paths of the machine. In an unbalanced machine we have shorter paths
and longer paths and the shorter a path is, the more probable the machine will choose this path. It is
easy to see that the above definition ofBPP could be given equivalently using unbalanced probabilistic
machines as follows: A setA is in BPP if there is an unbalanced probabilistic machineM that runs for
at mostp steps, wherep is a polynomial, and anε > 0 such that

x ∈ A =⇒ probM (x) >
1
2

+ ε and

x /∈ A =⇒ probM (x) <
1
2
− ε.

Since we talk about probability, in this definition we implicitly weight the paths of the machine in such a
way that short paths have higher probabilities. If we do not weight the paths and just count their number
we meet the following threshold class which was introduced by Hanet al.

Definition 2.6 ([HHT97]) A setA is in BPPpath if there exists a nondeterministic polynomial-time Tur-
ing machineM and anε > 0 such that for allx ∈ Σ∗:

x ∈ A =⇒ accM (x) > (
1
2

+ ε) · totalM (x)

x /∈ A =⇒ accM (x) < (
1
2
− ε) · totalM (x)

Theorem 2.7 ([HHT97]) PNP[log] ⊆ BPPpath

In 1985 Babai [Bab85] introduced the so-called Arthur-Merlin hierarchy that. The classes of the
hierarchy consist of sets that can be decided by an Arthur-Merlin game that works as follows: The
“board” the game takes place on is a setB from P that is known to both, Arthur and Merlin. On an
input x, Arthur and Merlin alternately make moves, where movei consists of outputting a stringyi of
polynomial length inx. Each player can remember all of the moves that were already made. The game
ends aftern moves and Merlin wins if and only if(x, y1, . . . , yn) ∈ B. Besides that, we require Merlin
to always make optimal moves and Arthur to always make totally arbitrary moves. We say a setL can
be decided by an Arthur-Merlin game if there is aB ∈ P such that for all inputsx: If x belongs toL
then the probability that Merlin wins is greater than1

2 plus some constant. Ifx is not fromL then the
probability that Arthur wins has to be greater than1

2 plus some constant. Depending on who of the two
makes the first move, and how many moves the game lasts, we can sort sets inM, A, MA, AM, MAM
and so on, thus forming the Arthur-Merlin hierarchy. It is easy to see, thatA = BPP and thatM = NP.
Besides that, Babai showed thatMA ⊆ AM and that the Arthur-Merlin hierarchy collapses toAM. We
will now give a formal definition of the classesMA andAM.

Definition 2.8 [Bab85] The setL is in MA if there is a setB ∈ P, polynomialsp, q, and anε > 0 such
that for allx ∈ Σ∗:

x ∈ L =⇒ ∃y(|y| = p(|x|) ∧ count=qB (x, y) > (
1
2

+ ε) · 2q(|xy|))

x /∈ L =⇒ ∀y(|y| = p(|x|)→ count=qB (x, y) < (
1
2
− ε) · 2q(|xy|))

5

The setL is in AM if there is a setB ∈ P, polynomialsp, q and anε > 0 such that for allx ∈ Σ∗ the
following holds:

x ∈ L =⇒ #{y : |y| = q(|x|) ∧ ∃z(|z| = p(|x|) ∧ (x, y, z) ∈ B)} > (
1
2

+ ε) · 2q(|x|)

x /∈ L =⇒ #{y : |y| = q(|x|) ∧ ∃z(|z| = p(|x|) ∧ (x, y, z) ∈ B)} < (
1
2
− ε) · 2q(|x|)

It is obvious thatAM coincides withBP·NP but MA does not seem to be the same as∃·BPP:
There exists an oracleA with MAA 6= ∃·BPPA [FFKL93]. As well asBPP, bothAM andMA can be
amplified:

Proposition 2.9 L ∈ MA if and only if there exists a polynomialp such that for every polynomialr > 1
there exists a setB ∈ P and a polynomialq with

x ∈ L =⇒ ∃y(|y| = p(|x|) ∧ count=qB (x, y) > (1− 2−r(|xy|)) · 2q(|xy|)) and

x /∈ L =⇒ ∀y(|y| = p(|x|)→ count=qB (x, y) < 2−r(|xy|) · 2q(|xy|)).

L ∈ AM if and only if for every polynomialr > 1 there is a setB ∈ P and polynomialsp, q such that
for all x ∈ Σ∗:

x ∈ L =⇒ #{y : |y| = p(|x|) ∧ ∃z(|z| = q(|x|) ∧ (x, y, z) ∈ B)} > (1− 2−r(|x|)) · 2p(|x|)

x /∈ L =⇒ #{y : |y| = p(|x|) ∧ ∃z(|z| = q(|x|) ∧ (x, y, z) ∈ B)} < 2−r(|x|) · 2p(|x|)

3 The Class SBP

The classSBP is similar toBPP. Again the idea is that of a probabilistic machine with a probability
gap, i.e., a machine whose acceptance probability never falls into a certain forbidden interval. We want
such a machine to accept an input either with probability less than somea or with probability greater
than someb, where0 ≤ a < b ≤ 1. But whereas in the definition ofBPP the probability gap defined by
a andb forms a constant interval around12 , anSBP machine has a probability gap around some smaller
limit which is negatively exponential in the length of the input.

Definition 3.1 The setA is in SBP if there exists anε > 0, a B ∈ P and polynomialsp, q such that for
all x ∈ Σ∗:

x ∈ A =⇒ count=qB > (1 + ε) · 2
q(|x|)

2p(|x|)

x /∈ A =⇒ count=qB < (1− ε) · 2
q(|x|)

2p(|x|)

This definition leads to a class that seems to be considerably more powerful thanBPP.

3.1 Properties of SBP

In this chapter we will have a look at the classes aroundSBP and we will integrate it into known hierar-
chies. Before that we will discuss basic properties ofSBP and alternative characterizations.

Just asBPP, we can amplifySBP but in comparison with the amplification lemmas we saw until
now, this proposition does not increase the absolute size of the probability gap. It just diminishes the
probability of failure of anSBP machine for the negative case. As a consequence therelative sizeof the
probability gap w.r.t. this failure probability increases. So we can replace everySBP machine by another
one that has a very low probability of failure on inputs that should be rejected.

6

Proposition 3.2 (Amplification) A ∈ SBP if and only if for every polynomialr > 0 there exist aB ∈ P
and polynomialsq, s such that for allx ∈ Σ∗:

x ∈ A =⇒ count=qB (x) > 2r(|x|) · 2
q(|x|)

2s(|x|)

x /∈ A =⇒ count=qB (x) <
1

2r(|x|)
· 2

q(|x|)

2s(|x|)

Proof: We start with the implication from right to left. Choose the constant polynomialr(n) df=1 and let
B, q, s be the witnesses of the right-hand side. Forε

df=1/2 we obtainL ∈ SBP since for allx ∈ Σ∗:

x ∈ A =⇒ count=qB (x) > (1 + ε) · 2
q(|x|)

2s(|x|)

x /∈ A =⇒ count=qB (x) < (1− ε) · 2
q(|x|)

2s(|x|)

For the other direction letr > 0 be a polynomial,A ∈ SBP andB, p, q, ε as in the definition of
SBP. Surely there is ak > 0 such that(1 + ε)k ≥ 2 and(1− ε)k ≤ 1

2 . Let

B′ =def {(x, y) : y = y1 · · · yk·r(|x|) with |yi| = q(|x|) and(x, yi) ∈ B for 1 ≤ i ≤ k · r(|x|)}

and observe thatB ∈ P. Moreover, withq′(n) df= k · q(n) · r(n) andp′(n) df= k · p(n) · r(n) we get:

x ∈ A =⇒ count=q
′

B′ (x) =
(
count=qB (x)

)k·r(|x|)
>

(
(1 + ε) · 2

q(|x|)

2p(|x|)

)k·r(|x|)
≥ 2r(|x|) · 2

q′(|x|)

2p′(|x|)

x /∈ A =⇒ count=q
′

B′ (x) =
(
count=qB (x)

)k·r(|x|)
<

(
(1− ε) · 2

q(|x|)

2p(|x|)

)k·r(|x|)
≤ 1

2r(|x|)
· 2

q′(|x|)

2p′(|x|)

2

Proposition 3.3 The following statements are equivalent for everyA ⊆ Σ∗.

1. A ∈ SBP

2. There exist polynomialsp, q, someε > 0 and a probabilistic machineM running exactlyq(|x|)
steps on inputx, such that for allx ∈ Σ∗:

x ∈ A =⇒ probM (x) > (1 + ε) · 2−p(|x|)

x /∈ A =⇒ probM (x) < (1− ε) · 2−p(|x|)

3. There exists anf ∈ #P and a polynomialq such that for allx ∈ Σ∗:

x ∈ A =⇒ f(x) > (1 + ε) · 2q(|x|)

x /∈ A =⇒ f(x) < (1− ε) · 2q(|x|)

4. There existf ∈ #P, g ∈ FP andε > 0 such that for allx ∈ Σ∗:

x ∈ A =⇒ f(x) > (1 + ε) · g(x)
x /∈ A =⇒ f(x) < (1− ε) · g(x)

5. For every polynomialr > 0 there existB ∈ P and polynomialss, t such that for allx ∈ Σ∗:

x ∈ A =⇒ count=tB (x) > 2r(|x|) · 2
t(|x|)

2s(|x|)

x /∈ A =⇒ count=tB (x) <
2t(|x|)

2s(|x|)

7

6. For everyh ∈ FP with h > 1 there existf ∈ #P, g ∈ FP such that for allx ∈ Σ∗:

x ∈ A =⇒ f(x) > h(x) · g(x)
x /∈ A =⇒ f(x) < g(x)

Proof:
The equivalence of the points 1, 2, and 3 is evident from the definition ofSBP, probabilistic ma-

chines,#P, and Proposition 2.1. Obviously, if point 3 holds, then point 4 does so.
Assume now thatA satisfies point 4 of the proposition; we will show that this implies point 3. Note

that we can assumeε < 1. Sincef ∈ #P there exists a polynomialp > 0 and someB ∈ P such
thatf(x) = count=pB (x) for all x ∈ Σ∗. In order to prevent that the value ofg vanishes we define the
following normalizations forx ∈ Σ∗.

g′(x) df=

1 : if g(x) = 0

g(x) : otherwise

f ′(x) df=

2 : if g(x) = 0

f(x) : otherwise

Note thatg′ ∈ FP andf ′ ∈ #P. Moreover, observe that ifg(x) = 0 thenx ∈ A. Therefore, we obtain
thatf ′ andg′ achieve the same asf andg in the following sense:

x ∈ A =⇒ f ′(x) > (1 + ε) · g′(x)
x /∈ A =⇒ f ′(x) < (1− ε) · g′(x)

Choose a polynomialq such that2q(n) · ε/2 > 2p(n) for all n ≥ 0. Leth(x) df=b2q(|x|)/g′(x)c · f ′(x) and
note thath ∈ #P. Now observe the following implications.

x ∈ A =⇒ f ′(x)
g′(x)

> (1 + ε) =⇒ h(x) > 2q(|x|) · f
′(x)
g′(x)

− f ′(x) > 2q(|x|) · (1 + ε)− 2p(|x|)

> (1 + ε/2) · 2q(|x|)

x /∈ A =⇒ f ′(x)
g′(x)

< (1− ε) =⇒ h(x) ≤ 2q(|x|) · f
′(x)
g′(x)

< (1− ε) · 2q(|x|) < (1− ε/2) · 2q(|x|)

It follows thatA satisfies point 3. So we proved that the points 1–4 are equivalent.
By Proposition 3.2, point 1 implies point 5. Note that for everyh ∈ FP there is a polynomialr

such that2r(n) ≥ h(n) so point 6 follows directly from point 5. It remains to show that point 6 implies
point 4. For this we chooseh(x) df=3 and get:

x ∈ A =⇒ f(x) > 3 · g(x) = (1 +
1
2
) · 2g(x)

x /∈ A =⇒ f(x) < g(x) = (1− 1
2
) · 2g(x)

2

If we generalize the characterization ofSBP that is given in Proposition 3.3.4 by using not a#P and
anFP function but two#P functions we get a larger class that, as we will see later, coincides with the
threshold classBPPpath.

Closure properties of complexity classes are another point of interest. It is known thatBPP is closed
under union, intersection, and complement. We cannot showSBP to be likewise robust: We will see
that there is an oracle whereSBP 6= coSBP. Besides that it remains open whether or notSBP is closed
under intersection (we even do not know whether there is an oracle whereSBP is not closed under
intersection). However, we can prove that it is closed under union:

8

Proposition 3.4 SBP is closed under∪.

Proof: By Proposition 3.3.6, forA1, A2 ∈ SBP there existf1, f2 ∈ #P andg1, g2 ∈ FP such that

x ∈ A1 =⇒ f1(x) > 4 · g1(x), (1)

x /∈ A1 =⇒ f1(x) < g1(x),
x ∈ A2 =⇒ f2(x) > 4 · g2(x), and (2)

x /∈ A2 =⇒ f2(x) < g2(x).

Multiplying equation (1) withg2 and equation (2) withg1 leads to

x ∈ A1 =⇒ f1(x)g2(x) > 4 · g1(x)g2(x),
x /∈ A1 =⇒ f1(x)g2(x) < g1(x)g2(x),
x ∈ A2 =⇒ f2(x)g1(x) > 4 · g1(x)g2(x), and

x /∈ A2 =⇒ f2(x)g1(x) < g1(x)g2(x).

Hence we can conclude forε = 1/3, f(x) = f1(x) · g2(x) + f2(x) · g1(x) andg(x) = 3 · g1(x) · g2(x):

x ∈ A1 ∪A2 =⇒ f(x) > (1 + ε) · g(x)
x /∈ A1 ∪A2 =⇒ f(x) < (1− ε) · g(x)

Obviouslyf ∈ #P andg ∈ FP and thereforeA1 ∪A2 ∈ SBP by Proposition 3.3.4. 2

3.2 SBP is between MA and AM

In this subsection we will fitSBP in already known hierarchies. In particular we will show that it fits in
Babai’s Arthur-Merlin hierarchy betweenMA andAM.

Theorem 3.5 MA ⊆ SBP

Proof: Let L ∈ MA. By Proposition 2.9, there exist a polynomialp such that fors(n) df=n + 2 there
exist a setB ∈ P and a polynomialq with:

x ∈ L =⇒ ∃y(|y| = p(|x|) andcount=qB (x, y) > (1− 2−s(|xy|)) · 2q(|xy|))
x /∈ L =⇒ ∀y(|y| = p(|x|)→ count=qB (x, y) < 2−s(|xy|) · 2q(|xy|))

Let ε df=1/2, q′(n) df= p(n) + q(n+ p(n)), p′(n) df= p(n) + 1 and

B′ df={(x, y) : y = y1y2 ∧ y1 ∈ Σp(|x|) ∧ y2 ∈ Σq(|xy1|) ∧ (x, y1, y2) ∈ B}.

Then the following holds.

x ∈ L =⇒ count=q
′

B′ (x) > (1− 2−s(|x|+p(|x|))) · 2q(|x|+p(|x|))

= (1− 2−2−|x|−p(|x|)) · 2q′(|x|)−p(|x|)

≥ 3
4
· 2q′(|x|)−p(|x|) = (1 + ε) · 2q′(|x|)−p′(|x|)

x /∈ L =⇒ count=q
′

B′ (x) < 2p(|x|) · 2−s(|x|+p(|x|)) · 2q(|x|+p(|x|))

= 2−2−|x|−p(|x|) · 2q′(|x|)

≤ 1
4
· 2q′(|x|)−p(|x|) = (1− ε) · 2q′(|x|)−p′(|x|)

SinceB′ ∈ P this showsL ∈ SBP. 2

9

To show thatSBP is a subset ofAM we need the following definitions: Alinear hash function
h : Σm −→ Σk is given by a Boolean(k,m)-matrixM . A stringx = x1 · · · xm is mapped to a string
y = y1 · · · yk if and only if y = M · xT (here we mean the inner product modulo2). We adopt notations
from [KW94] and define for a setX ⊆ Σm and a family of hash functionsH = {h1, . . . , hl} the
predicateCollision as

Collision(X,H)
df⇐⇒ (∃x ∈ X)(∃y1, . . . , yl ∈ X \ {x})(∀i : 1 ≤ i ≤ l)[hi(x) = hi(yi)].

If Collision(X,H) then we say thatX has a collision w.r.t.H. The set of all familiesH = {h1, . . . , hl}
of l linear hash functions fromΣm to Σk is denoted byH(l,m, k). In 1983 Sipser proved the following
theorems about linear hash functions.

Theorem 3.6 ([Sip83, Coding Lemma])LetX ⊆ Σm be a set of cardinality at most2k−1. If we choose
a hash familyH uniformly at random fromH(k,m, k), then the probability thatX has a collision w.r.t.
H is at most1/2.

So if the setX is not to big then collision does not occur to often. An easy pigeon-hole argument
shows that ifX contains slightly more elements then collisions occur with probability1.

Theorem 3.7 ([Sip83]) For any hash familyH ∈ H(k,m, k) and any setX ⊆ Σm of cardinality
|X| > k · 2k,X must have a collision w.r.t.H.

Theorem 3.8 SBP ⊆ BP·NP = AM

Proof: Let L ∈ SBP. By Proposition 3.2 there exist someB ∈ P and polynomialsp, q such that for all
x ∈ Σ∗:

x ∈ L =⇒ count=qB (x) > 2|x|+1 · 2
q(|x|)

2p(|x|)

x /∈ L =⇒ count=qB (x) <
2q(|x|)

2p(|x|)

With the following setD we can test whether a given family of hash functionsH can hash all witnesses
of a givenx (i.e., ally with (x, y) ∈ B) without collisions.

D
df=
{

(x,H) : x ∈ Σ∗,H ∈ H(k,m, k) andCollision(X,H) for

• k df= q(|x|)− p(|x|) + 1

• m df= q(|x|)

• X df={y : |y| = q(|x|) and(x, y) ∈ B}
}

(3)

From the definition ofCollision(X,H) it is easy to see thatD ∈ NP. Now we consider an arbitrary
wordx that is sufficiently long, i.e., long enough such that2|x| > q(|x|) − p(|x|) + 1. Definek, m and
X as in equation (3). We consider two cases:

• x ∈ L: Then|X| ≥ 2q(|x|)−p(|x|)+|x|+1 = 2k+|x| > k · 2k sincex was chosen long enough. From
Theorem 3.7 it follows thatCollision(X,H) for allH ∈ H(k,m, k).

• x /∈ L: Then|X| ≤ 2q(|x|)−p(|x|) = 2k−1 and from Theorem 3.6 it follows that

#{H : H ∈ H(k,m, k) andCollision(X,H)}
#{H ∈ H(k,m, k)} ≤ 1

2
.

10

So we obtain:

x ∈ L =⇒ #{H ∈ H(k,m, k) : (x,H) ∈ D}
#{H ∈ H(k,m, k)}

= 1

x /∈ L =⇒ #{H ∈ H(k,m, k) : (x,H) ∈ D}
#{H ∈ H(k,m, k)}

≤ 1
2

SinceD ∈ NP this showsL ∈ BP·NP. 2

We are now able to fix the position ofSBP:

Corollary 3.9 ∃·BPP = NPBPP ⊆ MA ⊆ SBP ⊆ AM = BP·NP.

Proof : ∃·BPP = NPBPP follows immediately by the selflowness ofBPP [Ko82, Zac82], and the
remaining claims follow from the definitions ofMA andAM and from theorems 3.5 and 3.8. 2

In Proposition 3.3.4 we characterizedSBP using a#P function and anFP function. The natural
question arises what would happen if we defined a class in a very similar way but using two#P functions
this time. We show now that this leads exactly to the threshold classBPPpath.

Proposition 3.10 L ∈ BPPpath if and only if there existf, g ∈ #P andε > 0 such that for allx ∈ Σ∗:

x ∈ L =⇒ f(x) > (1 + ε) · g(x)
x /∈ L =⇒ f(x) < (1− ε) · g(x)

Proof: LetL ∈ BPPpath and chooseM andε as in Definition 2.6. Then the following is easy to see.

x ∈ L =⇒ 2 · accM (x) > (1 + 2ε)(accM (x) + rejM (x)) =⇒ accM (x) > (1 + 2ε) · rejM (x)
x /∈ L =⇒ 2 · accM (x) < (1− 2ε)(accM (x) + rejM (x)) =⇒ accM (x) < (1− 2ε) · rejM (x)

Since the functionsaccM andrejM are in#P this shows that the proposition holds from left to right.
Now assume that we are given a languageL satisfying the right-hand side of the proposition. Note

that without loss of generality we may assumeε < 1. Sincef, g ∈ #P there exist nondeterministic
polynomial-time Turing machinesN1, N2 with accN1(x) = f(x) andaccN2(x) = g(x) for all x ∈ Σ∗.
Letp be a polynomial bounding the computation time of both machinesN1 andN2. Choose a polynomial
q large enough such that2q(n) · ε/4 > 2p(n)+1 for all n ≥ 0.

Let M denote a nondeterministic polynomial-time Turing machine working as follows on inputx:
First of all,M produces two paths while making one nondeterministic step. On the first (resp., second)
pathM simulatesN1 (resp.,N2) on inputx. Each time this simulation ends with a rejecting path,M
makes one more nondeterministic step in order to produce one accepting and one rejecting path. If the
simulation ofN1 (resp.,N2) ends with an accepting path thenM makesq(|x|) additional nondetermin-
istic steps in order to produce2q(|x|) accepting (resp., rejecting) paths.

In the remaining part of the proof we will show thatM acceptsL in the sense ofBPPpath. From the
definition ofM we get the following estimations foraccM andrejM .

2q(|x|) · f(x) ≤ accM (x) ≤ 2q(|x|) · f(x) + 2p(|x|)+1 (4)

2q(|x|) · g(x) ≤ rejM (x) ≤ 2q(|x|) · g(x) + 2p(|x|)+1 (5)

If x ∈ L thenf(x) > g(x) · (1 + ε) and thereforef(x) ≥ 1. Sinceε < 1 we have1/(1 + ε) ≤ 1− ε/2
andf(x) · (1− ε/2) ≥ g(x). So we obtain:

rejM (x) ≤ 2q(|x|) · g(x) + 2p(|x|)+1

≤ 2q(|x|) · f(x) · (1− ε/2) + 2p(|x|)+1

≤ 2q(|x|) · f(x) · (1− ε/4) − 2q(|x|) · ε/4 + 2p(|x|)+1 (sincef(x) ≥ 1)

< 2q(|x|) · f(x) · (1− ε/4) (by the choice ofq)

≤ (1− ε/4) · accM (x) (by equation (4)) (6)

11

If x /∈ L thenf(x) < (1− ε) · g(x) and thereforeg(x) ≥ 1. In this case we get:

accM (x) ≤ 2q(|x|) · f(x) + 2p(|x|)+1

< 2q(|x|) · g(x) · (1− ε) + 2p(|x|)+1

≤ 2q(|x|) · g(x) · (1− ε/2)− 2q(|x|) · ε/2 + 2p(|x|)+1 (sinceg(x) ≥ 1)

< 2q(|x|) · g(x) · (1− ε/2) (by the choice ofq)

≤ (1− ε/4) · rejM (x) (by equation (5)) (7)

Observe that inequality (6) impliesrejM (x) ≤ totalM (x)/2 and inequality (7) impliesaccM (x) ≤
totalM (x)/2. Therefore, if we add(1 − ε/4) · rejM (x) (resp.,(1 − ε/4) · accM (x)) to both sides of
inequality (6) (resp., inequality (7)) we get:

x ∈ L =⇒ (2− ε

4
) · rejM (x) < (1− ε

4
) · totalM (x) =⇒ 2 · rejM (x) < (1− ε

8
) · totalM (x)

=⇒ rejM (x) < (
1
2
− ε

16
) · totalM (x)

=⇒ accM (x) > (
1
2

+
ε

16
) · totalM (x)

x /∈ L =⇒ (2− ε

4
) · accM (x) < (1− ε

4
) · totalM (x) =⇒ 2 · accM (x) < (1− ε

8
) · totalM (x)

=⇒ accM (x) < (
1
2
− ε

16
) · totalM (x)

This showsL ∈ BPPpath and it follows that the implication from right to left holds. 2

This result enables us to precise the position ofSBP.

Corollary 3.11 BPP ⊆ SBP ⊆ BPPpath

Proof: This is an immediate consequence from Corollary 3.9 and the Propositions 3.3.4 and 3.10.2

We provide a picture of the mentioned classes’sinclusion structure, that is established when we take
the above results into account, at the end of section 4.

4 Relations to Other Classes

In 1976 Valiant [Val76] introduced the classUP of languages that are decidable in unambiguous
polynomial-time. This means thatUP consists of all languages that can be accepted in polynomial-time
by a nondeterministic machine satisfying the promise that each computation has at most one accepting
path. Equivalently,L ∈ UP if and only if there exists somef ∈ #P such that for allx ∈ Σ∗:

x ∈ L =⇒ f(x) = 1
x /∈ L =⇒ f(x) = 0

If one weakens this definition and asks for somef ∈ GapP one meets theGapP counterpart ofUP, the
classSPP (stoicPP because the machine doesn’t change its behavior much between accept and reject).
It was introduced in 1991 independently by Fenneret al. [FFK94], Gupta [Gup91] (under the name
ZUP), and Ogiwara and Hemachandra [OH93] (under the nameXP).

Definition 4.1 ([FFK94, Gup91, OH93]) The classSPP consists of all languagesL ⊆ Σ∗ for which
there exists anf ∈ GapP such that for allx ∈ Σ∗:

x ∈ L =⇒ f(x) = 1
x /∈ L =⇒ f(x) = 0

12

Theorem 4.2 ([FFK94]) Few ⊆ SPP

In [FFK94] it is shown thatSPP is exactly the class of languages that are low forGapP. Moreover,SPP
is closed under polynomial-time Turing reductions (i.e., is closed in particular under union, intersection
and complementation) [FFK94].

A relaxation of the definition above leads toWPP (wide-PP), a class which was introduced in 1991
by Fenneret al. [FFK94].

Definition 4.3 ([FFK94]) The classWPP consists of all languagesL ⊆ Σ∗ for which there exist an
f ∈ GapP and ag ∈ FP with g > 0 such that for allx ∈ Σ∗:

x ∈ L =⇒ f(x) = g(x)
x /∈ L =⇒ f(x) = 0

Proposition 4.4 SPP ⊆WPP

Neither it is known whether this inclusion is strict nor it is known whetherWPP is closed under
polynomial-time Turing reductions [FFK94].

Another class that came up in the context ofPP-lowness isAWPP (almost-widePP) introduced by
Fenneret al. [FFKL93, FFKL]. Li [Li93a, Li93b] showed thatAWPP is closed under union, intersection
and complementation, and all languages fromAWPP are low forPP.

The original definition ofAWPP is such that the class admits amplification by definition. Recently,
Fenner showed [Fen02] that a weaker definition can be used equivalently. Here we use the characteriza-
tion of Fenner for the definition ofAWPP. Theorem 4.7 below establishes the connection to the original
definition.

Definition 4.5 The classAWPP consists of all languagesL ⊆ Σ∗ for which there exist anf ∈ GapP,
a polynomialp andε > 0 such that for allx ∈ Σ∗:

x ∈ L =⇒ (1 + ε) · 2
p(|x|)

2
< f(x) ≤ 2p(|x|)

x /∈ L =⇒ 0 ≤ f(x) < (1− ε) · 2
p(|x|)

2

Theorem 4.6 ([FFKL93, FFKL]) WPP ⊆ AWPP

Theorem 4.7 ([Fen02], amplification forAWPP) The following is equivalent forL ⊆ Σ∗.

1. L ∈ AWPP

2. There exist anf ∈ GapP and polynomialsp, q with q > 0 such that for allx ∈ Σ∗:

x ∈ L =⇒ (1 +
1

q(|x|)) · 2
p(|x|)

2
< f(x) ≤ 2p(|x|)

x /∈ L =⇒ 0 ≤ f(x) < (1− 1
q(|x|)) · 2

p(|x|)

2

3. For every polynomialr > 0 there exist anf ∈ GapP and a polynomialp such that for allx ∈ Σ∗:

x ∈ L =⇒ (1− 1
2r(|x|)

) · 2p(|x|) < f(x) ≤ 2p(|x|)

x /∈ L =⇒ 0 ≤ f(x) <
1

2r(|x|)
· 2p(|x|)

13

It turned out thatAWPP has also interesting connections to quantum computing: The quantum
classBQP (bounded-error quantum polynomial-time; think of this as the class of problems that can be
solved efficiently by quantum computers) is contained inAWPP [FR99] and is therefore low forPP.
In [BV97] it is shown thatBPP is a lower bound forBQP, i.e., we haveBPP ⊆ BQP ⊆ AWPP. Up
to now this is the best classification ofBQP w.r.t. traditional complexity classes. In particular we have
no evidence whetherBQP is in the polynomial-time hierarchy. In this connection [GP01] constructs
a relativized world whereEQP (exact quantum polynomial-time) is not contained inPNP. So in this
world, BQP 6⊆ PNP sinceEQP ⊆ BQP holds relativizable.

With the definition ofAPP (amplifiedPP), Li introduced another class of problems that are low for
PP [Li93a].

Definition 4.8 ([Li93a, Li93b]) The classAPP consists of all languagesL ⊆ Σ∗ such that for all
polynomialsr there existf, g ∈ GapP with f(1n) > 0 for n ≥ 0 such that for alln, x with n ≥ |x|:

x ∈ L =⇒ (1− 1
2r(n)

) · f(1n) < g(x, 1n) ≤ f(1n)

x /∈ L =⇒ 0 ≤ g(x, 1n) < 1
2r(n)

· f(1n)

It is known thatAPP ⊆ PP and thatAPP is closed under polynomial-time Turing reductions (in
particular it is closed under union, intersection and complementation) [Li93b].APP andAWPP were
introduced independendly and for both was independendly shown that they are low forPP. However,
Fenner [Fen02] showed thatAWPP ⊆ APP thus giving another proof of the lowness ofAPP for PP.

Theorem 4.9 ([Fen02])AWPP ⊆ APP

Remember thatSPP can be considered as theGapP analog ofUP. With the following definition we
start fromAWPP and define its#P analog.

Definition 4.10 The classWAPP (weak almost-widePP) consists of all languagesL ⊆ Σ∗ for which
there exist anf ∈ #P, a polynomialp andε > 0 such that for allx ∈ Σ∗:

x ∈ L =⇒ (1 + ε) · 2
p(|x|)

2
< f(x) ≤ 2p(|x|)

x /∈ L =⇒ 0 ≤ f(x) < (1− ε) · 2
p(|x|)

2
Proposition 4.11 WAPP ⊆ AWPP

Proof: This is an immediate consequence of Definition 4.5. 2

It is not known whetherAWPP is in the polynomial-time hierarchy and we will see in section 5 that
there is a relativized world whereAWPP 6⊆ PH. However, in spite of the very similar definitions of
AWPP andWAPP we can show thatWAPP ⊆ PH. More precisely,WAPP is located between the
classesBP·UP andSBP.

Proposition 4.12 BP·UP ⊆WAPP ⊆ SBP.

Proof: Let L ∈ BP·UP, i.e., there exists anf ∈ #P, a polynomialp, andε > 0 such that for all
x, y ∈ Σ∗, f(x, y) ≤ 1 and for allx ∈ Σ∗,

x ∈ L =⇒ #
{
y ∈ Σp(|x|) : f(x, y) = 1

}
>

(
1
2

+ ε

)
· 2p(|x|)

x /∈ L =⇒ #
{
y ∈ Σp(|x|) : f(x, y) = 1

}
<

(
1
2
− ε
)
· 2p(|x|).

Let g(x) df=#{y ∈ Σp(|x|) : f(x, y) = 1} and note thatg ∈ #P sincef(x, y) ≤ 1. It follows that
L ∈WAPP.

LetA ∈WAPP and consider definition 4.10. Multiply the right-hand sides of the implications with
2. Since2 · f(n) ∈ #P and2p(n) ∈ FP we can apply proposition 3.3.4 and obtainA ∈ SBP. 2

14

ΣP
2 ΠP

2PP

AM coAM

SBP

MA coMABP·UP

U·BPP

NP BPP coNP

P

WAPP

∃·BPP

AWPP

APP

WPP

SPP

Few

BQP

EQP

BPPpath

Figure 1: Relationships betweenSBP and known complexity classes
(inclusions hold from bottom to top)

15

5 Separation Results

In the previous sections our observations aimed at the localization ofSBP w.r.t. known complexity
classes. In particular this yieldedBPP ⊆ SBP ⊆ BPPpath andMA ⊆ SBP ⊆ AM. However, up
to now we have not provided any evidence of the strictness of these inclusions. So the objective of this
section is to find hints that separate the classesBPP, BPPpath, MA andAM from SBP. Furthermore,
we will prove separation results w.r.t.ΣP

2 and w.r.t. the classes defined in section 4.
As usual in complexity theory we cannot expect to find absolute separations since these would imply

P 6= NP. Instead of this either we show that the equivalence ofSBP with other classes implies an
unlikely complexity-theoretic consequence (like a collapse of the polynomial-time hierarchy) or we show
thatSBP differs from other classes in suitable relativized worlds. We start with the separation ofSBP
from BPP andBPPpath.

Theorem 5.1 If BPP = SBP or SBP = BPPpath then the polynomial-time hierarchy collapses to its
second level.

Proof: If SBP ⊆ BPP thenNP ⊆ BPP. Sipser [Sip83] showed that this implies thatNP has small
circuits. By Karp and Lipton [KL82] it follows that the polynomial-time hierarchy collapses to its second
level.

If BPPpath ⊆ SBP then we getcoNP ⊆ BPPpath ⊆ SBP ⊆ AM from the Theorems 2.7 and 3.8.
The result of Boppana, Håstad, and Zachos [BHZ87] shows thatcoNP ⊆ AM implies a collapse of the
polynomial-time hierarchy to its second level. 2

Corollary 5.2 There exists an oracleA such thatBPPA 6= SBPA andSBPA 6= BPPpath
A.

Proof: This holds since theorem 5.1 is relativizable and since there exists a relativized world where the
polynomial-time hierarchy is infinite [Yao85]. 2

In contrast to Theorem 5.1, concerning the separation ofSBP from MA andAM we could not prove
similar unlikely consequences. Therefore, we approach this question with the construction of suitable
relativized worlds where the conjectured separations hold. On one hand this gives some evidence that
the separations could still hold in the nonrelativized case. On the other hand the oracles show that even
if equalities likeMA = SBP andSBP = AM hold then they can only be proved with nonrelativizable
proof techniques. Since these techniques are known to be rare and difficult it is most likely that we are
still a long way off from the final solution of these separation questions.

The separation results below will be derived on one hand from known oracle constructions [Yao85,
Ver92, Bei94, For99] and on the other hand from a new construction that is described in the proof of
Theorem 5.15. In particular, in this new relativized world,SBP is not contained inΣP

2 . SinceSBP ⊆
BPPpath holds relativizable we will see that our oracle shows thatBPPpath 6⊆ RNP andBPPpath 6⊆
ΣP

2 in some relativized world. This solves an open question of Hanet al. [HHT97]. We start our
considerations with an oracle from Vereshchagin.

Theorem 5.3 ([Ver92]) There exists an oracleA such thatAMA ∩ coAMA 6⊆ PPA.

Corollary 5.4 There exists an oracleA such thatAMA 6⊆ SBPA andcoAMA 6⊆ SBPA.

Proof: DefineA to be the oracle from Theorem 5.3. The corollary follows sinceSBP ⊆ PP in all
relativized worlds. 2

The following oracle goes back to a construction of Beigel.

Theorem 5.5 ([Bei94]) There exists an oracleA such thatPNPA 6⊆ PPA.

16

Corollary 5.6 There exists an oracleA such that the following holds for every complexity class
C ∈ {APP,AWPP,WAPP,BP·UP,BPP,P,WPP,SPP,Few,BQP,EQP}.

1. NPA 6⊆ CA

2. ∃·BPPA 6⊆ CA
3. MAA 6⊆ CA

4. SBPA 6⊆ CA
5. AMA 6⊆ CA

6. ΣP
2
A 6⊆ CA

Proof: DefineA to be the oracle from Theorem 5.5 and assume thatNPA ⊆ APPA. In [Li93a, Li93b]
Li proved thatAPP is low for PP. Since the proof is relativizable,APPA is low for PPA. In particular
this meansPPNPA ⊆ PPA and thereforePNPA ⊆ PPA. This contradicts the assumption onA and we
getNPA 6⊆ APPA. This proves statement 1 forC = APP. The remaining statements forC = APP
follow sinceNP is relativizable contained in∃·BPP, MA, SBP, AM andΣP

2 . The statements for the
remaining classesC hold because these classes are subsets ofAPP in all relativized worlds. 2

Corollary 5.7 There exists an oracleA such thatΣP
2
A 6⊆ BPPpath

A.

Proof: This follows from Theorem 5.5 sincePNP ⊆ ΣP
2 andBPPpath ⊆ PP holds in all relativized

worlds. 2

At this point we want to mention another oracle that is interesting when looking atAWPP. In
[FFKL93, FFKL] Fenner, Fortnow, Kurtz, and Li study the notion ofSP-genericy. In particular it
is shown that under anySP-generic oracle it holds that the polynomial-time hierarchy is infinite and
P = UP = AWPP (see [FFKL93] for definitions of and discussions on various genericy notions).

The next oracle we want to make use of is due to Fortnow.

Theorem 5.8 ([For99]) There exists a relativized world whereSPP strictly contains an infinite poly-
nomial-time hierarchy.

Corollary 5.9 There exists an oracleA such that for everyC ∈ {SPP,WPP,AWPP,APP,PP}:

1. CA 6⊆ AMA

2. CA 6⊆ SBPA

3. CA 6⊆ MAA

4. CA 6⊆ ∃·BPPA

5. CA 6⊆ NPA

6. CA 6⊆WAPPA

7. CA 6⊆ BP·UPA

8. CA 6⊆ BPPA

9. CA 6⊆ U·BPPA

Proof: Let A be the oracle from Theorem 5.8. SinceAM ⊆ PH holds relativizable we haveSPPA 6⊆
AMA which shows statement 1 forC = SPP. The remaining statements forC = SPP follow from the
fact that the classesSBP, MA, ∃·BPP, NP, WAPP, BP·UP, BPP, andU·BPP are subsets ofAM in all
relativized worlds. Finally, we obtain the statements corresponding toC ∈ {WPP,AWPP,APP,PP}
sinceSPP ⊆WPP ⊆ AWPP ⊆ APP ⊆ PP holds relativizable [Fen02]. 2

Corollary 5.10 There exists an oracleA such thatΣP
2
A 6⊆ SBPA andΣP

2
A 6⊆ AMA.

Proof: This follows from Theorem 5.8 since in all relativized worlds,SBP ⊆ AM ⊆ ΠP
2 , and a collapse

of the polynomial-time hierarchy is implied byΣP
2 ⊆ ΠP

2 . 2

Remember thatAM contains classes likeNP,BPP,MA, and it is unlikely thatAM is contained in
ΣP

2 . So in this lightAM seems to be quite powerful. However, Boppana, H˚astad and Zachos [BHZ87]
showed that unless the polynomial-time hierarchy collapsesAM (and therefore alsoSBP) is not powerful
enough to containcoNP. Together with Yao’s oracle this has the following consequence.

17

Theorem 5.11 ([Yao85, BHZ87])There exists an oracleA such thatcoNPA 6⊆ AMA.

Proof: Yao [Yao85] constructed a relativized worldA where the polynomial-time hierarchy is infinite.
Boppana, Håstad, and Zachos [BHZ87] showed with a relativizable proof thatcoNP ⊆ AM implies a
collapse of the polynomial-time hierarchy to its second level. So we getcoNPA 6⊆ AMA. 2

Corollary 5.12 There exists an oracleA such thatcoNPA 6⊆ SBPA andΣP
2
A 6⊆ SBPA.

Proof: This follows sinceSBP ⊆ AM andcoNP ⊆ ΣP
2 holds relativizable. 2

We come now to a new oracle construction showing that it even holds that a certain subclass of
BP·UP is not contained inΣP

2 . In order to specify this subclass we define the following operator.

Definition 5.13 For a complexity classC let R·C be the class that consists of all languagesL such that
there exist anB ∈ C, a polynomialp andε > 0 such that for allx ∈ Σ∗:

x ∈ L =⇒ #{y ∈ Σp(|x|) : (x, y) ∈ B} = 2p(|x|)

x /∈ L =⇒ #{y ∈ Σp(|x|) : (x, y) ∈ B} < (1− ε) · 2p(|x|)

The idea of this operator bases oncoR, i.e., the complement of the probabilistic classR [Gil72, Gil77,
the classVPP]. Note that in order to describe some classR·C we cannot go back to some operatorR·
which is derived from the classR, sinceR·C = co(R·C) holds only ifC is closed under complementation.

Proposition 5.14 (Amplification for R·) If C is closed under≤P
ctt then for everyL ∈ R·C and every

polynomialq there exist aB′ ∈ C and a polynomialp′ such that for allx ∈ Σ∗:

x ∈ L =⇒ #{y ∈ Σp′(|x|) : (x, y) ∈ B′} = 2p
′(|x|)

x /∈ L =⇒ #{y ∈ Σp′(|x|) : (x, y) ∈ B′} < 1
2q(|x|)

· 2p′(|x|)

Proof: SinceL ∈ R·C there exists aB ∈ C, a polynomialp andε > 0 such that for allx ∈ Σ∗:

x ∈ L =⇒ #{y ∈ Σp(|x|) : (x, y) ∈ B} = 2p(|x|)

x /∈ L =⇒ #{y ∈ Σp(|x|) : (x, y) ∈ B} < (1− ε) · 2p(|x|)

W.l.o.g. we may assume thatε < 1. Let c df=d−1/ log2(1− ε)e, p′(n) df= c · p(n) · q(n), and observe that
c > 0 and(1− ε)c ≤ (1− ε)−(log2 2)/ log2(1−ε) = (1− ε)− log(1−ε) 2 = 1/2.

B′ df={(x, y) : x ∈ Σ∗, y = y1y2 · · · yc·q(|x|) for suitableyi ∈ Σp(|x|)and
∧

1≤i≤c·q(|x|)

(x, yi) ∈ B}.

Obviously,B′≤P
cttB and thereforeB′ ∈ C. Now consider an arbitraryx ∈ Σ∗. If x ∈ L then(x, y) ∈ B

for all y ∈ Σp(|x|) which in turn implies#{y ∈ Σp′(|x|) : (x, y) ∈ B′} = 2p
′(|x|). If x /∈ L then

#{y ∈ Σp′(|x|) : (x, y) ∈ B′} =
(
#{y ∈ Σp(|x|) : (x, y) ∈ B}

)c·q(|x|)

< (1− ε)c·q(|x|) · 2c·q(|x|)·p(|x|)

≤ 1
2q(|x|)

· 2p′(|x|).

2

When we apply this proposition toUP we see that the classR·UP admits amplification. In contrast,
we cannot show the same forBP·UP.

We turn to the construction of an oracleA with SBPA 6⊆ MAA. We will prove a result which is
stronger, namely that there exists a relativized world whereR·UP 6⊆ ΣP

2 . SinceR·UP ⊆ BP·UP ⊆ SBP
andMA ⊆ ΣP

2 in all relativized worlds, we will finally getBP·UPA 6⊆ MAA andSBPA 6⊆ MAA.

18

Theorem 5.15 There exists an oracleA such thatR·UPA 6⊆ ∃·∀·PA.

Before we prove this theorem let us summarize some immediate consequences.

Corollary 5.16 There exists an oracleA such that the following holds for every complexity class
C ∈ {ΣP

2
BPP

,ΣP
2 ,MA,∃·BPP,NP,BPP, coAM, coMA, coNP}.

1. R·UPA 6⊆ CA

2. BP·UPA 6⊆ CA
3. WAPPA 6⊆ CA

4. AWPPA 6⊆ CA
5. SBPA 6⊆ CA

6. AMA 6⊆ CA

Proof : Let A be the oracle from Theorem 5.15 and note that∃·∀·PA = ΣP
2
A

. In [Sch89] Sch¨oning
showed thatBPP is low for ΣP

2 . Since this theorem is relativizable we obtain the statement 1 for
C = ΣP

2
BPP

. The remaining statements forC = ΣP
2

BPP
hold sinceR·UP is relativizable contained in

the classesBP·UP, WAPP, AWPP, SBP, andAM. The statements for the remaining classesC follow
since these classes are subclasses ofΣP

2
BPP

in all relativized worlds. 2

Corollary 5.17 There exists an oracleA such thatSBPA is not closed under complementation. In
particular, SBPA neither is closed under Turing-reductions nor is closed under truth-table reductions.

Proof: By Theorem 3.8,SBP ⊆ AM. Since this proof and the proof forAM ⊆ ΠP
2 are relativizable

we haveSBP ⊆ ΠP
2 in all relativized worlds. But by Corollary 5.16 there exist an oracleA such that

SBPA 6⊆ ΣP
2
A

. HenceSBPA is not closed under complementation. 2

In [HHT97] Han et al. introduce and investigate the threshold classBPPpath. We have seen (cf.
Proposition 3.10) thatBPPpath is closely related toSBP, i.e., if we start fromSBP’s characterization in
Proposition 3.3.4 and if we allowg to be a#P function then we meetBPPpath. [HHT97] compares in
particular the classesBPPpath andBPP, and poses as an open question whether Sipser’s [Sip83] result
BPP ⊆ RNP ⊆ ΣP

2 can be transferred toBPPpath. With the oracle from Theorem 5.15we have found a
relativized world where this question has a negative answer.

Corollary 5.18 There exists an oracleA such thatBPPpath
A 6⊆ ΣP

2
A

.

Proof: Since the proof of Corollary 3.11 is relativizable, we haveSBP ⊆ BPPpath in all relativized

worlds. So from Corollary 5.16 it follows that there is an oracleA with BPPpath
A 6⊆ ΣP

2
A

. 2

The corollaries above show that ifSBP coincides with known complexity classes then the corre-
sponding proofs cannot relativize. Moreover, we have seen thatSBP and APP (resp.,AWPP) are
incomparable under relativizing proof techniques. These oracle results give evidence that also in the real
world SBP does not coincide with known complexity classes. A summary of inclusions and separations
concerningSBP is given in Figure 2 below.

We turn now to the remaining proof of Theorem 5.15. In this oracle construction we will need the
following estimation.

Proposition 5.19 Leta1
df=212 andai+1

df=2ai for i ≥ 1. Then2ai/4 ≥ (ai)i for i ≥ 1.

Proof: This can be seen as follows.
ai ≥ 16 · i2

=⇒
√
ai

4 ≥ i

=⇒ ai
log2 ai

· log2 21/4 ≥ i since
√
x ≥ log2 x for x ≥ 4

=⇒ ai · log2 21/4 ≥ i · log2 ai
=⇒ log2 2ai/4 ≥ log2(ai)i

=⇒ 2ai/4 ≥ (ai)i

19

2

Proof of Theorem 5.15: We will construct oracle stagesA1, A2, . . . and at the end we will define
A

df=
⋃
i≥1Ai. As an abbreviation for intervals of stagesAi we useA[k, j] df=

⋃
k≤i≤j Ai. Let a1

df=212

andai+1
df=2ai for i ≥ 1. Moreover, for everyB ⊆ Σ∗ and everyi ≥ 1 we define the following

conditions:

C1(B, i) df= for everyx ∈ Σai/4 there exists at most oney ∈ Σai·3/4 with xy ∈ B

C2(B, i) df= |B ∩ Σai | = 2ai/4 ∨ |B ∩ Σai | ≤ 1
2
· 2ai/4

The oracle construction will be such thatAi ⊆ Σai ∧C1(A[1, i], i) ∧C2(A[1, i], i) for eachi ≥ 1 (note
that these conditions are equivalent toAi ⊆ Σai ∧ C1(Ai, i) ∧ C2(Ai, i)). ForB ⊆ Σ∗ let

W (B) df={0ai : i ≥ 1 and for allx ∈ Σai/4 there exists exactly oney ∈ Σai·3/4 with xy ∈ B}.

We will useW (A) as a witness language: Assume thatAi ⊆ Σai ∧ C1(A[1, i], i) ∧ C2(A[1, i], i)
holds for alli ≥ 1, and letA df=

⋃
i≥1Ai. Then, sinceC1(A[1, i], i) holds, the setW ′(A) df={(0ai , x) :

x ∈ Σai/4 and there is exactly oney ∈ Σai·3/4 such thatxy ∈ A} is in UPA. So if 0ai ∈ W (A) then
#{x ∈ Σai/4 : (0ai , x) ∈ W ′(A)} = 2ai/4. If 0ai /∈ W (A) then there is anx ∈ Σai/4 such that
there is noy ∈ Σai·3/4 with xy ∈ A. SinceC2(A[1, i], i) holds, this implies#{x ∈ Σai/4 : (0ai , x) ∈
W ′(A)} ≤ 1

2 ·2
ai/4. Therefore, we haveW (A) ∈ R·UPA. Additionally,A will be constructed such that

W (A) /∈ ∃·∀·PA.
Let T1, T2, . . . be an enumeration of all triples of the formT = (M, r, s) whereM is a deterministic

polynomial-time oracle machine andr, s are polynomials. Without loss of generality we may assume that
if Ti = (Mi, ri, si) thenri(n) ≤ ni and there exists a polynomialti(n) ≤ ni such that the computation
MB
i (x, y, z) halts inti(|x|) steps for any oracleB and anyx ∈ Σ+, y ∈ Σr(|x|), z ∈ Σs(|x|).

In order to achieveW (A) /∈ ∃·∀·PA, during the construction of stageAi we diagonalize against
the tripleTi in the following sense: We interpretTi as a possible “∃·∀·P-machine” forW (A) and we
constructAi such that the machine fails to give the right answer w.r.t. the question0ai ∈ W (A). More
precisely, ifTi = (Mi, ri, si) then with the construction ofAi we will preventthe following equivalence.

0ai ∈W (A[1, i]) ⇐⇒ (∃y ∈ Σri(ai))(∀z ∈ Σsi(ai))[(0ai , y, z) ∈ L(MA[1,i]
i)]

So our construction will additionally satisfy the conditionsC3(A[1, i], i) for i ≥ 1 which are defined as
follows: ForB ⊆ Σ∗ andi ≥ 1 let

C3(B, i) df=¬
(
0ai ∈W (B) ⇐⇒ (∃y ∈ Σri(ai))(∀z ∈ Σsi(ai))[(0ai , y, z) ∈ L(MB

i)]
)
.

As an abbreviation for the conditions defined so far we useC(B, i) df=C1(B, i) ∧ C2(B, i) ∧ C3(B, i).

Claim 5.20 There exist oracle stagesA1, A2, . . . such thatAi ⊆ Σai andC(A[1, i], i) for all i ≥ 1.

Before we prove this claim let us see that it implies the correctness of the theorem. We have already seen
that withA df=

⋃
i≥1Ai it holds thatW (A) ∈ R·UPA. Assume thatW (A) ∈ ∃·∀·PA, i.e., there exist a

deterministic polynomial-time oracle machineM and polynomialsr, s such that for allx ∈ Σ∗:

x ∈W (A) ⇐⇒ (∃y ∈ Σr(|x|))(∀z ∈ Σs(|x|))[(x, y, z) ∈ L(MA)] (8)

Hence there exists somei ≥ 1 such thatTi = (Mi, ri, si) = (M, r, s). We consider equation (8) for
x df=0ai . Note that0ai ∈ W (A) ⇐⇒ 0ai ∈ W (A[1, i]). Moreover, by Proposition 5.19 the sequence of
ai’s grows fast enough such that for every oracleB ⊆ Σ∗ the computationsMB(0ai , y, z) cannot ask
for words of length≥ ai+1 (remember our assumption on the enumeration of the triplesTi). Therefore,
for these computations it is equivalent to use oracleA[1, i] instead ofA. So from equation (8) we obtain

0ai ∈W (A[1, i]) ⇐⇒ (∃y ∈ Σri(ai))(∀z ∈ Σsi(ai))[(0ai , y, z) ∈ L(MA[1,i]
i)]. (9)

20

By Claim 5.20,C(A[1, i], i) holds. In particular this impliesC3(A[1, i], i) which in turn contradicts
equation (9). So we getW (A) /∈ ∃·∀·PA; this proves the theorem.

So it remains to show Claim 5.20. We will prove this by contradiction, i.e., we will derive a contra-
diction from the following assumption.

A1 df= there exists somen ≥ 1 and oracle stagesA1, A2, . . . , An−1 such thatAi ⊆ Σai ∧
C(A[1, i], i) for 1 ≤ i < n, and there does not exist anA′ ⊆ Σan with C(A[1, n−1]∪A′, n).

So assumeA1. Let α = 3
4 · an, β = 2

α
3 = 2

an
4 , andψ = α·β

4 . We will show that under this
assumption we could encode an arbitrary numberN ∈ [0, 2ψ) with less thanψ bits. For simplicity, we
will write M, r, s instead ofMn, rn, sn, respectively. Choose a prime numberp ∈ (2α−1, 2α]; this is
possible by Bertrand’s postulate1 which says that for everyk ≥ 1 there is some prime numberp with
k < p ≤ 2k. EachN ∈ [0, 2ψ) can be represented as aβ2 -digit number with digits from[0, 2α−1) since

2ψ = 2
α
2
·β
2 ≤ (2α−1)

β
2 . These digits can be considered as elements of the finite fieldGF(p). So each

suchN can be thought of as aβ2 -dimensional vector~zN ∈ GF(p)
β
2 .

Now, we make the vectors~zN redundant, i.e., we double their dimension and transform them into
vectors~yN ∈ GF(p)β in such a way that~zN can be reconstructed when knowing an arbitrary half of the
components of~yN . For this, we define the following matrix overGF(p) which can be considered as a
generalization of a Vandermonde matrix.

M df=

11 12 13 · · · 1
β
2

21 22 23 · · · 2
β
2

31 32 33 · · · 3
β
2

...
...

...
. ..

...

β1 β2 β3 · · · β
β
2

.

It is known that if one deletesβ2 arbitrary rows in this matrix then one obtains a quadratic matrix which is

invertible inGF(p). Therefore, if one knowsβ2 components from theβ-dimensional vector~yN
df=M·~z TN

(i.e., the inner product modulop), then one can reconstruct the vector~zN ; or equivalently, if~yN1
=

M · (~zN1
)T , ~yN2

= M · (~zN2
)T and the vectors~yN1

and~yN2
coincide in at leastβ2 many components,

then~zN1
= ~zN2

and~yN1
= ~yN2

. Sincep ≤ 2α, the vector~yN can be represented as the oracle stageAN ,

AN
df={w ∈ Σan : w = w1w2, |w1| = an/4 andw2 is the binary

representation of thew1-th component of~yN}.

So, in this sense, eachN ∈ [0, 2ψ) induces a vector~zN which induces a redundant vector~yN which in
turn induces an oracle stageAN . We get the following claim from our above observations.

Claim 5.21 EachN ∈ [0, 2ψ) can be reconstructed from an arbitrary half of the words inAN . Formally,
if N1,N2 ∈ [0, 2ψ) and|AN1

∩AN2
| ≥ β

2 , thenN1 = N2.

Note that0an ∈ W (A[1, n − 1] ∪ AN) for eachN ∈ [0, 2ψ). Moreover, it holds thatAN ⊆ Σan and
C1(A[1, n− 1] ∪AN , n) ∧ C2(A[1, n− 1] ∪AN , n). But by the assumptionA1, we have¬C(A[1, n−
1]∪AN , n) and therefore¬C3(A[1, n−1]∪AN , n). Together with0an ∈W (A[1, n−1]∪AN) it follows

(∃y ∈ Σr(an))(∀z ∈ Σs(an))[(0an , y, z) ∈ L(MA[1,n−1]∪AN)]. (10)

For eachN ∈ [0, 2ψ), let yN be the lexicographically smallest witness of this condition. Although the
length ofyN is polynomial inan, it contains much information aboutN; we will use this information

1This was first conjectured by J. Bertrand and in 1850 proved by P. Chebychev. In 1937, A. E. Ingham [Ing37] showed that
there is at least one prime number between neighboured cubic numbers. It is still an open question whether the same holds for
neighboured squares.

21

to reconstructN. Informally, our further way is as follows: we use certain subsetsB ⊆ A[1, n − 1] ∪
AN asoracle and look for wordsz such that the computationMB(0an , yN , z) rejects. Each of these
computations asks for at least one word inAN . If we repeat these considerations for severalz then
this reveals many different words fromAN . A single such word is characterized by its position in the
computationMB(0an , yN , z) which can be described inO(log2 an) bits. So, only a few bits are needed
to encode the wordsz, and with these words at hand we are able to reconstructAN andtherefore alsoN.

For everyN ∈ [0, 2ψ), Q ⊆ Σan andz ∈ Σs(an) we defineqQN,z as the sequence(w0, w1, . . . , wj)
of oracle queries that are asked in the computationMA[1,n−1]∪Q(0an , yN , z). For convenience we will
use this query sequence also in the sense of a set. Consider the following algorithmApproxA for every
N ∈ [0, 2ψ).

1. Q := ∅

2. for i := 1 to β
2

3. choose the smallestz ∈ Σs(an) such thatMA[1,n−1]∪Q(0an , yN , z) rejects

4. choose the smallest element fromqQN,z ∩ (AN \Q) and add it to the setQ

5. nexti

6. returnQ

This algorithm looks for words fromAN and it collects these words in the setQ. So,ApproxA can be
considered as an approximation procedure forAN . However, it is not immediately clear that the steps 3
and 4 always can be carried out. The following two claims make sure that this is possible.

Claim 5.22 LetN ∈ [0, 2ψ) and consider the computation ofApproxA. The choice ofz in step 3 is
always possible, i.e.,(∃z ∈ Σs(an))[(0an , yN , z) /∈ L(MA[1,n−1]∪Q)].

Assume that there exists a moment where the choice in step 3 is not possible. Of course it holds that
Q ⊆ AN and|Q| ≤ β

2 . So we obtainQ ⊆ Σan ∧ C1(A[1, n − 1] ∪ Q,n) ∧ C2(A[1, n − 1] ∪ Q,n).
Additionally we have0an /∈ W (A[1, n − 1] ∪ Q). From the assumption of this claim it follows that
(∃y ∈ Σr(an))(∀z ∈ Σs(an))[(0an , y, z) ∈ L(MA[1,n−1]∪Q)] and thereforeC3(A[1, n − 1] ∪Q,n). So
we getC(A[1, n− 1] ∪Q,n) which contradicts the assumptionA1. This proves claim 5.22.

Claim 5.23 LetN ∈ [0, 2ψ) and consider the computation ofApproxA. The choice in step 4 is always
possible, i.e.,qQN,z ∩ (AN \Q) 6= ∅.

By the choice ofyN and by claim 5.22 the following holds for each value ofQ that is possible in
step 3.

• (∀z ∈ Σs(an))[(0an , yN , z) ∈ L(MA[1,n−1]∪AN)]

• (∃z ∈ Σs(an))[(0an , yN , z) /∈ L(MA[1,n−1]∪Q)]

• Q ⊆ AN

If z is a witness of the second condition then(0an , yN , z) ∈ L(MA[1,n−1]∪AN) \ L(MA[1,n−1]∪Q). This
means that there is at least one oracle queryq such thatq ∈ AN \Q andq is asked during the computa-
tionMA[1,n−1]∪Q(0an , yN , z), i.e.,qQN,z ∩ (AN \Q) 6= ∅. This proves claim 5.23.

By the previous claims, each step ofApproxA can be carried out. So it is easy to see thatApproxA
returns a setQ with |Q| = β

2 andQ ⊆ AN . But we still have the problem thatApproxA on inputN
makes use of the oracle stageAN . However, we will see that with help of a few bits of information one
can abstain fromAN . We just need to knowyN and the information which word fromqQN,z was chosen in
step 4. The latter can be described withO(log2 an) bits since the cardinality ofqQN,z is polynomial inan.

22

By our assumption, there exists a polynomialt(n) ≤ ni such that for all oraclesB and allx ∈ Σ+,
y ∈ Σr(|x|), z ∈ Σs(|x|) the computationMB

n (x, y, z) halts int(|x|) ≤ |x|n steps. Letm df=dlog2 t(an)e.
Consider the computation ofApproxA for an arbitraryN ∈ [0, 2ψ) and assume that we are in the
i-th pass of the loop in step 4. Here we choose a certain word from the query sequenceqQN,z =
(w0, w1, . . . , wj) and we add this word toQ. Note thatj < t(an) holds by the definition ofqQN,z. If
we choose the wordwk with 0 ≤ k ≤ j then definewN,i to be them-digit binary representation ofk. For
everyN ∈ [0, 2ψ) we define the packed encoding ofN asCode(N) df= yN · wN,1 · wN,2 · wN,3 · · ·wN,β

2
.

Claim 5.24 EachN ∈ [0, 2ψ) can be reconstructed fromCode(N). Formally, ifN1,N2 ∈ [0, 2ψ) and
Code(N1) = Code(N2) thenN1 = N2.

Let N ∈ [0, 2ψ) and assume that we are givenCode(N) = yN · wN,1 · wN,2 · wN,3 · · ·wN,β
2
. First

of all we see that we can simulate the computation ofApproxA (without the knowledge ofN andAN)
because

1. step 3 can be simulated with help ofyN , and

2. in step 4 with help of the wordswN,j we chose the right word fromqQN,z.

We know that this simulation yields a setQ with Q ⊆ AN and|Q| = β
2 . Therefore, ifN1,N2 ∈ [0, 2ψ)

and if we useCode(N1) = Code(N2) for the simulation then we get a setQ with Q ⊆ AN1
∩ AN1

and
|Q| = β

2 . From claim 5.21 it follows thatN1 = N2. This proves claim 5.24.

In order to determine|Code(N)| we make the following estimation: Forx ≥ 6 it holds that2x < 2x

4 .
If we let y df=22x then we obtainlog2 y <

√
y/4 for y ≥ 212. It follows that(log2 y)2 <

3
16y for y ≥ 212.

Sinceai ≥ 212 we get fori ≥ 1,

(log2 ai)
2 <

3
16
ai. (11)

For everyN ∈ [0, 2ψ) the length ofCode(N) can be estimated as follows.

|Code(N)| = r(an) + dlog2 t(an)e ·
β

2

≤ (an)n + dlog2((an)
n)e · β

2
(by the assumptions aboutr andt)

≤ (an)n + 2n · log2(an) · β
≤ 3n · log2(an) · β (by proposition 5.19)

≤ (log2 an)
2 · β (sinceange23n)

< ψ (by equation (11))

This means that the number of code words is less than2ψ. Hence there exist two different numbers
N1,N2 ∈ [0, 2ψ) such thatCode(N1) = Code(N2). This contradicts claim 5.24. Therefore, our
assumptionA1 is false. This proves claim 5.20 and completes the proof of the theorem. 2

Following definition 2.2, for a complexity classC we say that a languageL belongs to∃!·C if and
only if there exist a setB ∈ C and a polynomialp such that the equivalencex ∈ L ⇔ count=pB (x) = 1
holds for allx ∈ Σ∗. Note that the oracle construction above also shows thatW (A) ∈ ∀·∃!·PA and
W (A) /∈ ∃·∀·PA. This yields the following oracle which could be of interest in connection with leaf
languages.

Corollary 5.25 There exists an oracleA such that∀·∃!·PA 6⊆ ΣP
2
A

.

23

ΣP
2 ΠP

2PP

AM coAM

SBP

MA coMABP·UP

U·BPP

NP BPP coNP

P

�

WAPP

� -

?

?

∃·BPP

AWPP

	
�

*

-

APP

�

*

/

7

WPP

SPP

Few

BQP

EQP

?

K

U

K

U

o

w

}

~

U

K

^

]

R

I

j

z

W

O

W

O

N

M

R

s

q

i

9

:
-�

BPPpath

�

�*

	

�-

M

NN

M I

R

1

)

*

�

~

Figure 2: Inclusions and Oracle Separations in the Context ofSBP

• inclusions hold from bottom to top

• C −→ D meansC 6⊆ D in some relativized world

• C ←→ D is an abbreviation forC −→ D andD −→ C

24

6 Conclusions and Open Questions

We have seen that with the definition ofSBP one meets an interesting complexity class which is located
betweenMA andAM on one hand, and betweenBPP andBPPpath on the other hand. By means of
collapse consequences and oracle separations we obtained evidence thatSBP does not coincide with
these classes. In particular we know thatSBP is closed under union and in some relativized world it is
not closed under complementation. For intersection this question is open, i.e., neither we can prove that
SBP is closed under intersection, nor we can construct an oracle where this does not hold. Note that in
contrast toGapP, it is not known whether#P is closed under subtraction. So the methods showing that
PP is closed under intersection [BRS95] cannot be transferred directly toSBP.

Other open questions address the separation ofSBP from MA andAM. Can one extend the oracle
separations to collapse consequences? Note that Theorem 5.1 shows that such an extension is possible
for the separations fromBPP andBPPpath. In addition it would be nice to find an unlikely consequence
of the assumptionSBP ⊆ ΣP

2 (cf. Corollary 5.16 for the respective oracle separation).
In [HHT97] the authors ask whetherBPPpath has complete sets. The same question is also interest-

ing with respect toSBP. Since we expect a negative answer, one should ask whether there is a relativized
world whereSBP does not have complete sets? Note that there exists an oracle [HH88] where this holds
for BPP.

It seems (at least when looking at the definitions) that the classesBPPpath andAM do not have much
in common. However,SBP is contained in both classes. So it would be desirable to know more about
the intersectionBPPpath ∩ AM. Is it equal toSBP? If so, sinceBPPpath andAM are closed under
intersection, this would imply that alsoSBP is closed under intersection. IfBPPpath ∩ AM does not
coincide withSBP it would be possible that it coincides at least withSBP’s closure under intersection.
Definitely, this would be a very nice characterization of the common features ofBPPpath andAM.

In section 4 we considered complexity classes that are defined viaGapP and#P functions. We have
seen thatUP is the#P counterpart ofSPP. Moreover, with the definition ofWAPP we introduced the
#P counterpart ofAWPP. Correspondingly, when we restrict Definition 4.3 such thatf ∈ #P we meet
the#P counterpart of the classWPP. What can one say about this class?

Acknowledgements.We thank Klaus W. Wagner for initiating this work and for many helpful discus-
sions. In particular, the idea of the classSBP is due to him. Furthermore, we thank Stephen A. Fenner,
Frederic Green, Lane A. Hemaspaandra, Sven Kosub, and Heribert Vollmer for helpful hints.

References

[Bab85] L. Babai. Trading group theory for randomness. InProceedings 17th Symposium on Theory
of Computing, pages 421–429. ACM Press, 1985.

[BDG95] J. L. Balcázar, J. Dı́az, and J. Gabarró.Structural Complexity I. Texts in Theoretical
Computer Science. Springer Verlag, Berlin Heidelberg, 2nd edition, 1995.

[Bei94] R. Beigel. Perceptrons, PP, and the polynomial hierarchy.Computational Complexity,
4:339–349, 1994.

[BHZ87] R. B. Boppana, J. H˚astad, and S. Zachos. Does co-NP have short interactive proofs?Infor-
mation Processing Letters, 25(2):127–132, 1987.

[BRS95] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection.Journal of
Computer and System Sciences, 50:191–202, 1995.

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory.SIAM Journal on Computing,
26(5):1411–1473, 1997.

25

[dLMSS56] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Computability by probabilistic
machines. In C. E. Shannon, editor,Automata Studies, volume 34 ofAnnals of Mathemati-
cal Studies, pages 183–198. Rhode Island, 1956.

[Fen02] S. Fenner. PP-lowness and a simple definition of AWPP. 2002. To appear.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes.Journal of Computer
and System Sciences, 48:116–148, 1994.

[FFKL] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. Journal submission.
An earlier version appeared in Proceedings 8th Structure in Complexity Theory, pages 120–
131, 1993.

[FFKL93] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. InProceedings 8th
Structure in Complexity Theory, pages 120–131, 1993.

[For99] L. Fortnow. Relativized worlds with an infinite hierarchy.Information Processing Letters,
69(4):309–313, 1999.

[FR99] L. Fortnow and J. Rogers. Complexity limitations on quantum computation.Journal of
Computer and System Sciences, 59(2):240–252, 1999.

[Gil72] J. Gill. Probabilistic Turing Machines and Complexity of Computations. PhD thesis, Uni-
versity of California Berkeley, 1972.

[Gil77] J. Gill. Computational complexity of probabilistic turing machines.SIAM Journal on
Computing, 6:675–695, 1977.

[GP01] F. Green and R. Pruim. Relativized separation of EQP from P(NP).Information Processing
Letters, 80(5):257–260, 2001.

[Gup91] S. Gupta. The power of witness reduction. InProceedings 6th Structure in Complexity
Theory, pages 43–59. IEEE Computer Society Press, 1991.

[HH88] J. Hartmanis and L. A. Hemachandra. Complexity classes without machines: On complete
languages for UP.Theoretical Computer Science, 58:129–142, 1988.

[HHT97] Y. Han, L. A. Hemaspaandra, and T. Thierauf. Threshold computation and cryptographic
security.SIAM Journal on Computing, 26(1):59–78, 1997.

[Ing37] A. E. Ingham. On the difference between consecutive primes.Quarterly Journal of Math-
ematics, Oxford Series 8, pages 255–266, 1937.

[KL82] R. Karp and R. Lipton. Turing machines that take advice.L’enseignement mathématique,
28:191–209, 1982.

[Ko82] K.-I. Ko. Some observations on the probabilistic algorithms and NP-hard problems.Infor-
mation Processing Letters, 14:39–43, 1982.

[KW94] J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. Tech-
nical Report 94-11, Fakult¨at für Mathematik, Universit¨at Ulm, 1994.

[Lau83] C. Lautemann. BPP and the polynomial hierarchy.Information Processing Letters, 17:215–
217, 1983.

[Li93a] L. Li. On PP-low classes. Technical Report 3, University of Chicago, 1993. available at
http://www.cs.uchicago.edu/research/publications/techreports/TR-93-03.

26

[Li93b] L. Li. On the Counting Functions. PhD thesis, University of Chicago, 1993. available at
http://www.cs.uchicago.edu/research/publications/techreports/TR-93-12.

[OH93] M. Ogiwara and L. Hemachandra. A complexity theory of feasible closure properties.
Journal of Computer and System Sciences, 46:295–325, 1993.

[Pap94] C. H. Papadimitriou.Computational Complexity. Addison-Wesley, Reading, MA, 1994.

[Sch89] U. Sch¨oning. Probabilistic complexity classes and lowness.Journal of Computer and
System Sciences, 39:84–100, 1989.

[Sip83] M. Sipser. A complexity theoretic approach to randomness. InProceedings of the 15th
Symposium on Theory of Computing, pages 330–335, 1983.

[Val76] L. G. Valiant. Relative complexity of checking and evaluation.Information Processing
Letters, 5:20–23, 1976.

[Ver92] N. K. Vereshchagin. On the power of PP. InProceedings 7th Structure in Complexity
Theory, pages 138–143. IEEE Computer Society Press, 1992.

[Yao85] A. C. C. Yao. Separating the polynomial-time hierarchy by oracles. InProceedings 26th
Foundations of Computer Science, pages 1–10. IEEE Computer Society Press, 1985.

[Zac82] S. Zachos. Robustness of probabilistic computational complexity classes under definitional
perturbations.Information & Control, 54:143–154, 1982.

27

