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Abstract

After a short introduction to tag systems and their significance in
the context of research on the limits of solvability, a method will be de-
scribed to reduce the 3n+ 1-problem to a tag system which is surprisingly
small. This method will be generalized to arbitrary Collatz-like functions,
proving how any such functions can be easily simulated by a tag system,
thus providing an alternative proof of the general unsolvability of tag sys-
tems. Finally, these results will be related to some findings concerning
the reducibility of Collatz-like functions to Turing machines studied in
the context of the boundaries of solvability in Turing machines.

1 Introduction

Already in 1921 Emil Leon Post proved the unsolvability of certain decision
problems, rooted in what Martin Davis has called Post’s thesis [7][8]. In 1943
a paper appeared by Post that summarizes the main results from this earlier
research [37], but it was only in 1965 that Martin Davis posthumously published
a manuscript by Post describing these earlier results in more detail [38]. As was
argued in [29], basic to these results was Post’s construction of tag systems.
After nine months of research, trying to prove the solvability of tag systems, he
concluded for a reversal of his entire program. He was now convinced that there
might exist unsolvable decision problems in mathematics and logic. Since he
never wanted to work on tag systems again, he never proved them unsolvable.
In the end it was Marvin Minsky who proved that tag systems are indeed un-
solvable, by proving that any Turing machine can be simulated by a tag system
[25].

1.1 A short introduction to tag systems

A tag system consists of a finite alphabet ¥ = {ao, a1, ...,a,—1} of u symbols,
a shift number v € N and a finite set of p words defined over the alphabet,



including the empty word e. Each of these words corresponds with one of the
letters from the alphabet as follows:

apn — 00,120,2---Q0,n¢
al — 01,101,2...41,n,

Au—1  —  Qp-1,10p—1,2---Cu—1,n,, 1

where each a;; € 3,0 < ¢ < p. Now, given an initial word w, the tag system
tags the word associated with the leftmost letter of w at the end of w, and
deletes its first v symbols. This process is iterated until the tag system halts,
i.e. produces a word wj;, after i iterations, having a length smaller than v. If
this does not happen the tag system can become periodic or show divergent
behaviour.

To give an example, consider the case where v = 3, 0 — 00, 1 — 1101, with
w = 10111011101000000. We then get:

10111011101000000
110111010000001101
1110100000011011101
01000000110111011101
0000011011101110100
001101110111010000
10111011101000000

The word w is reproduced after 6 steps, w thus giving rise to a period of length
6.

As simple as the definition of a tag system might be, they are very hard to
study, and until now not very much is really known about these systems. Even
the case where u = 2,v > 2 is still an open problem. Indeed, the seemingly
simple example mentioned above, first described by Post [38],[37] is still not
known to be solvable. Watanabe [44] studied this one specific case, trying to
get a more formal grip on this tag system, without much success. Although
Watanabe’s paper is very interesting, it contains rather fundamental errors,
leading to wrong conclusions about the possible periodic structures found in
this tag system. Besides Watanabe, Minsky and Brian Hayes did some research
on this one tag system (See for example [11], [12], [13], [28]) again without any
definite results concerning the solvability of this tag system.

Despite the fact that tag systems have not been that well-studied, there are
some results concerning their limits of solvability. In his posthumously published
paper [38], Post mentions that the class of tag systems for which v =1or p=1
is trivially solvable. He furthermore notes that he completely solved the case
with 4 = v = 2, and considered this proof as the major result from his Procter
fellowship in Princeton (1920-1921). The proofs however were never published.
Wang [43] provided the proof of the solvability for the case where v = 1. We
were able to find such a proof for the class p = v = 2, involving the application
of a combinatorial kind of method applied to a rather large number of different



subcases (unpublished). Cocke and Minsky proved that any Turing machine can
be simulated by a tag system for which v = 2 (See [1], [26]). Maslov generalized
this result and proved that for any v > 1 there exists at least one tag system
with an unsolvable decision problem and, independent of Wang, furthermore
proved that any tag system for which v = 1 is solvable [21].

Both p and v can thus be regarded as decidability criteria [20] for tag systems,
since their solvability depends on the size of these parameters. Another such
criterion for tag systems, is the length of the words. Let [,,;, denote the length
of the smallest word of a tag system and [,,,, the length of the lengthiest word
(introduced by [34]). Wang proved that any tag system for which l,,;, > v
or lmaz < v is solvable [43]. Tt should be added here that Maslov proved that
the tag systems with an unsolvable decision problem that can be constructed
using his method, for each v > 1 all satisfy the following condition: l,,;, = v—1,
lmaz = v+1 [21]. Taking into account Wang’s result, he describes this condition
as a kind of minimal condition for unsolvability in tag systems. This result was
independently proven by Wang for a tag system with v = 2 [43].

As is clear from the previous, while u, the number of symbols of a tag system
determining the number of words and thus production rules, is not taken into
account in studying the limits of solvability in tag systems, except by Post, it
is clear that its role should not be underestimated in this context. Since the
common measure used to determine the size of a Turing machine also includes
the number of states and symbols, while p is a decidability criterion for tag
systems, it is natural to include p in the definition of a measure for the size of
tag systems. In this respect we would like to propose the following measure for
tag systems:

Definition 1.1 The size of a tag system is defined as the product of u and v,
where TS(p,v) denotes the class of tag systems with p symbols and a shiftnumber
v.

The length of the words is not taken into account, since the decidability criterion
with respect to l,,;, and l,,4. is defined relative to v.

1.2 Tag systems and small universal systems

Although tag systems have not been studied as intensively as e.g. Turing ma-
chines, they are basic to the research on small universal systems and thus the
limits of solvability. In [27], Minsky constructed a small 4-symbols, 7-state uni-
versal Turing machine, a machine able to simulate any tag system with a shift
number v = 2. For years Minsky’s machine was the smallest universal Turing
machine known. For about the last twenty years a number of researchers have
tried to find still smaller machines, their research being situated in the context
of the limits of solvability and unsolvability. The smallest known classes contain-
ing a universal Turing machines are: TM(18,2) (Neary 2006, mentioned in [33]),
TM(9,3) (Neary 2006, mentioned in [33]), TM(7,4) (Minsky 1961, [25]), TM(5,5)
(Rogozhin 1982, [42]), TM(4,6) (Rogozhin 1982, [42]), TM(3,9) (Kudlek and
Rogozhin 2002, [16]) and TM(2, 18) (Rogozhin 1996, [41]), where TM(m,n)



denotes the class of Turing machines with m states and n symbols. As far as
solvability is concerned, it should be noted that Minsky mentions that he and
Bobrow had been able to prove that the class of machines TM(2,2) is decid-
able, through a reduction to thirty-odd cases (See [28], p. 281), a shorter proof
was published by Pavlotskaya [35]. She also proved that the class of machines
TM(3,2) is solvable [36].

Significant here is the fact that all the known small Turing machines are proven
to be universal because they are able to simulate any tag system with a shift
number v = 2. One of the long-standing problems with respect to these small
universal machines was that they are inefficient simulators of Turing machines.
The reason for this is the fact that the universality of tag systems, with v = 2,
is proven through their ability to simulate any Turing machine. This simulation
however is exponentially slow. Recently this problem was resolved by Neary and
Woods. They proved that tag systems, with v = 2, efficiently simulate cyclic tag
systems [31], and furthermore proved that cyclic tag systems efficiently simulate
Turing machines [32].

Turing machines are not the only class of computational systems in which small
universal systems are proven to exist on the basis of the universality of tag
systems. Matthew Cook’s proof of the universality of the very small cellular au-
tomaton rule 110 is indirectly based on the simulation of tag systems, through
its simulation of cyclic tag systems [4]. This proof however does not follow the
definition of universality as given by Davis [5], since it involves the infinite rep-
etition of the encoding of the production rules of the cyclic tag system in the
initial condition. Another such class of examples is the universality of small
circular Post machines [15].

Since tag systems lie at the basis of the known small universal systems, it is
important to further study the limits of unsolvability in tag systems. Such re-
search might provide a better insight in the question as to why one needs these
systems to find small universal machines. A possible explanation for tag sys-
tems lying at the basis of the small universal systems is that their syntax is
in a certain way much more simple. As a consequence, one expects that their
boundaries of unsolvability will be considerably lower as compared to those for
other computational systems such as cellular automata and Turing machines.
The fact that there is no clear method at all to prove the solvability of the very
simple class of tag systems pu = 2, v > 2, serves as an indication of this idea. In
this paper we will show that the 3n + 1-problem can be reduced to a tag system
for which p = 3,v = 2.1 As will be argued in Sec. 3, this fact is yet a further
reason to suppose that the limits of unsolvability in tag systems might indeed
be very low.

11t should be noted that Brian Hayes also mentioned the possible connection between the
3n + 1-problem and tag systems [11].



2 A simple, efficient encoding of Collatz-like func-
tions in tag systems

Let C : N — N be defined by:

5 if n is even

C’(n):{ 3n+1 ifnisodd

The 3n + 1-problem is the problem to determine for any n € N, whether C(n)
will end in a loop C(4) = 2,C(2) = 1,C(1) = 4, after a finite number of iterates.
The well-known 3n+ 1-problem is one of those problems from number theory for
which the statement of the problem is as simple as the problem is intractable. A
survey on the 3n+1 problem can be found in [17, 18], where [18] is a more recent
and seriously extended version of [17]. An annotated bibliography can be found
via Arxiv [19]. Although the general consensus is that C'(n) will always end in
the same loop after a finite number of iterates for arbitrary n, no proof has been
found until now. Some even claim that the 3n + 1-problem is unprovable (see
e.g. [9]). A nice illustration of the difficulties involved with the 3n 4+ 1-problem
is given by the following quote by Kakutani:?

For about a month everybody at Yale worked on it, with no result.
A similar phenomenon happened when I mentioned it at the Uni-
versity of Chicago. A joke was made that this problem was part of
a conspiracy to slow down mathematical research in the U.S.

In [24] Pascal Michel considers generalized functions of C, called Collatz-like
functions. These are based on the following equivalent form of the 3n + 1-

function:
C(2m) = m,
C2m+1)=3m+2.

Given integers d > 2;aq, a1, ..., 4g—1;70,71, ---, Td—1; € N a Collatz-like function
is defined as follows:?

mo If n=0modd

mq If n=1modd
G(n) =

mg—1 Ifn=(d—1)modd
where m; is either undefined or denotes an operation of the following form:

a;(n —1)
d

2Quoted in (18] from a private conversation dated 1981, Kakutani describing what hap-
pened after he circulated the problem around 1960

31t should be noted that Michel further extends these functions to functions of pairs of
integers.

+r;




Similar generalizations were already considered by Conway [2] in 1972. He
proved that these generalizations lead to Collatz-like problems which are gen-
erally unsolvable. L.e. he proved that there exists no method to decide whether
a Collatz-like function G, when applied to a number n, will produce 1 after a
finite number of iterates by proving that any register machine can be simulated
by such a function. About 15 years later, Conway developed a developed a sim-
ple universal programming language called Fractran [3], for doing arithmetic,
its syntax being based on the methods he used in 1972. He furthermore con-
structed a universal fraction game, called the Polygame, on the basis of which
one can rather easily construct a universal Collatz-like function. In [14], Kascdk
gives an explicit construction of a universal one-state linear operator algorithm,
involving a generalization of the Collatz-problem similar to Michel’s, with a
small modulus, equal to 396.

2.1 Reduction of the 3n + 1-function in tag systems

In this section we will prove the following theorem:

Theorem 2.1 The function C(n) is reducible to a tag system Te with p = 3,
v =2.

Let A’ denote a string A repeated i times, A — B is the string B produced
from A, after all the letters from A have been erased. Let ¥ = {a,¢,y} and
n € N. Then, each iteration of C'(n) corresponds to the production of a string
a®® from a string o™ in To. The production rules are:

Now, if n is of the form 2m, T produces a? from a”:

o
- (ey)*
o
—

(&%

If n is of the form 2m + 1, Tc produces a3("2)+2 (= a®™+2) from o™

o n—1
= y(ey) =
yley) T 5 QPCTI

a’ﬂ

This encoding allows for efficient simulation of C'(n) for any n. If n is even, Cp
needs n iterations, with n uneven, n + 1, to simulate one iteration of C'(n). The
reason for the simplicity of this encoding is that C(n) relies on modulo oper-
ations, while tag systems themselves can be regarded as some kind of modulo
systems. Indeed, the encoding is based on this one feature of tag systems. Con-
sider a string A of length |A|, and let A > B. Clearly, the length of B depends
on |A| mod v, in that the “original” length of B (the addition of the lengths of



the words produced from A) will be decreased with the additive complement of
|A| mod v (the additive complement of b mod v is defined as —b mod v evaluated
to its least positive remainder, 0 included) In this respect, |A| mod v determines
what sequence of letters in B will and will not be scanned by the tag system.
This feature is not only basic to our encoding, but is also the main ingredient in
Minsky’s and Cocke’s proof of the universality of tag systems with v = 2 (See
Sec. 1.1). To return to our encoding of C' in Tg, if |a”| is even, || = (cy) %,
with |(cy)2 | mod v = 0, guaranteeing that only the letter ¢ will be scanned in
B. Similarly, since |(cy) 2| is even, no letter from a2 will have been erased after
all the letters of |(cy)?| have been erased. In case |a"| is uneven, |a"| > B,
with |B| mod v = 1, the first leading ¢ being erased when the last o in a”
has been scanned. As a result, the tag system will scan the sequence of letters
y. Although, taking together all the y’s results in 043(%1)4'3, the oddness of
y(cy)nT_1 guarantees that the leading a will be erased after the last y has been
scanned, thus leading to the desired result.

It should be noted here that T satisfies the minimal condition discussed by
Maslov (Sec. 1.1). Indeed, l,nin =v — 1 and lpe, = v + 1.

Furthermore, the problem to decide for any n, whether C(n) will ever lead to
1 after a finite number of iterations, reduces to the question of whether T
will ever produce a. In other words, the 3n + 1-problem can be reduced to a
reachability problem for T¢.

2.2 Generalization of the method to arbitrary Collatz-like
functions

By generalizing and slightly changing the encoding from the previous section,
we were able to prove the following theorem:

Theorem 2.2 Given an arbitrary Collatz-like function G(n), with modulus d.
Then, there is always a tag system T withv = d, p < 2d+3,3 = {h, a, g, Bo, 1y -y Ba—1,00, b1 -y ba—1}
that simulates G(n) for any n.

Note that p and v are completely determined by the modulus. The symbol A
functions as a kind of halting symbol, used for those cases when G(n), n =
dm +1, 0 < ¢ < d, is undefined for . It is also important to note that the
encoding of the present section needs the extra symbols aq, By, 81, .-es Ba—1-
Each iteration of G over a number n corresponds to the production of a string
apa®™ from a string apa™. The production rules for aq, o are:

ag —  Bia—1Ba—2---Po
« — bd_lbd_g...bo

If G(n) is defined, with n = dm + ¢, 0 < ¢ < d, the production rules for 3; and
b; are : ‘

Bi — (@) ag(a)™

b, — (Oz)ai



where j is the additive complement of (i + 1) relative to d [i.e. : — (i 4+ 1) mod d
evaluated to its least positive remainder ], with ¢ = n mod d.
If G(n) is undefined, n = dm + 14, 0 < i < d, the production rules for 3; and b;

are:
Bi h

—

The production rule for h is:
h—e

Now, applying the production rules of T to a given string aga™, in case G(n)
is defined, we get:

o™ > BiBi—1...00(ba—1ba—2...bo) T (1)
Note, that we again use the property, mentioned in Sec. 2.1, that the length
of a string B produced from a string A, through —, is completely determined
through |A| mod v, i.e. if the additive complement ¢ of |A| mod v > 0, then
the first ¢ letters of the first word(s) produced from A will be erased, when the
last letter of A has been scanned. Note that it is because the number of letters
erased is equal to ¢, that the order of the indices of the letters in the words
produced from «y, «, B;,b;,0 < i < d is reversed, thus being able to keep track
of the remainder. Furthermore, by adding the extra symbol «g, the rules assure
that bg_1b4_2...bg will be repeated m = ";i times.
After the application of one iteration on the string produced in (1), T produces:

bibi—l~-~b0(bd—1bd—2-~-b0)%71(a)jao(a)ri (2)

From (2), T produces

bibi_l...bo(a)j Olo(a)ai(nd
~———

d

1) (3)

after (n-1)/d - 1 iterations. As is clear, the symbol ; produced through «q is
used to assure the tag system will start scanning o after one iteration of G has
been completed, through the addition of j times «, since

i+14j=d.

Furthermore, §; is used to add r; if G(n) is defined and r; > 0. The letter b; is
used to perform the multiplication of m with a;, since b; is repeated m = (n—i)/d
times.

From (3) T¢ finally produces:

ag(a)® T (4)

after one more iteration.
If we apply the production rules to a string apa™, in the case G(n) is undefined,
the production given in (1) remains unchanged. Then

n—i

BifBi—1.--Bo(ba—1ba—2...bg) @

S (5)



From (5) we finally get:
pUT LS (6)

leading the tag system to a halt.

As is clear, the encoding of Collatz-like functions into tag systems is very
straightforward, the input n for G being directly encoded as a string of length
n—+1. As was the case for the reduction of the 3n+ 1-problem, the simulation of
Collatz-like functions is efficient, where one iteration of G(n) maximally takes
2([n/d] +1) iterations in Tg.

Given the fact that any Turing machine can be reduced to a Collatz-like func-
tion, the reduction of the present section serves as another proof of the existence
of a universal tag system. Furthermore, the unsolvable problem to determine
whether a Collatz-like function G, given an integer n, will ever produce the
number 1 after a finite number of steps, reduces to the reachability problem to
determine for any tag system T whether it will ever produce the string aga.
In comparing the encoding of the present section with that from Sec. 2.1, it
is clear that the encoding of the present section leads to the simulation of the
3n + 1-problem in a larger tag system, with p = 6. This is due to the use of the
symbol ag. One might thus wonder whether there is a condition under which a
tag system T, encoding a function G(n) using ag, can be reduced to a smaller
tag system Tp,, without ap.? The following theorem gives such a condition as
well as the production rules of T/, which are based on the encoding of the
3n + 1-problem from Sec. 2.1 in T¢.

Theorem 2.3 Given a Collatz-like function G(n) with modulus d, where for
each n, G(n) either undefined or equal to w +r,1=0,1,....d—1. Then
G(n) can always be reduced to a tag system T, with v = d,p < 2+ d, X =
{h,a,bo,b1,....,ba—1} iff. for every i defined, i < a;, if i > 0, r; = a; — 1, if
i= 0,7, = 0, where i is the additive complement of i. For each i defined, the
production rules of T} are: a — bobg—1..bab1;b; — a®. For i undefined, the
production rules are b; — h; h — €

The details of the proof are left to the reader.

3 Collatz-like functions and limits of solvability.

It is generally known that in order to prove the halting problem for a particular
Turing machine is solvable or unsolvable, one must either find a (finite) method
that proves it solvable, or else prove that it is universal. The same goes for any
other class of systems equivalent to Turing machines, such as tag systems.

It is equally known that there still exists a rather huge gap between the known
limits of solvability and unsolvability for Turing machines, and there are thus
some classes of Turing machines for which it is not known whether they are
solvable or not. Furthermore, for many of these machines it is by no means
clear whether they are solvable — they show intractable behaviour — nor is there

4] am indebted to Pascal Michel for pointing out this problem to me.



any clear method to prove them universal. Indeed, as is noted by Neary and
Woods ([30], p. 29):

At present it seems technically challenging to further reduce the size
of our machines so we suspect that a radically different approach is
required.

An example that might show the way to such methods, is given by the proof
of the universality of rule 110, and the universality of some rather small Turing
machines by Matthew Cook (based on the proof of the universality of rule 110).
Although there are clear problems involved with the notion of universality used
by Cook (See 1.2), it is clear that the proofs heavily rely on a detailed analysis of
the behaviour of rule 110. Closely connected to the intricate question of closing
the gap between the known limits of solvability and unsolvability, as compared
to the known ones, is the problem to prove a specific known Turing machine
unsolvable independent of its universality. However, here one is confronted with
the similar problem of finding a method to prove this.

In [23], Pascal Michel proved that the 3n 4+ 1-problem is reducible to the class
TM(6, 3) of Turing machines. In [20], Margenstern proved that it can be re-
duced to the classes TM(11,2), TM(5,3), TM(4,4), TM(3,6) and TM(2,10) and
calls the set of these machines the present 3n + 1-line, to be situated between
the present solvability and universality line. Margenstern furthermore mentions
that Baiocchi has further improved this result, through reduction to the classes
TM(10,2), TM(3, 5), and TM(2, 8). Michel also proved that the halting prob-
lem for some other Turing machine classes depend on the decision problem of
some other Collatz-like functions. He proved this for the classes TM(5,2) [23],
TM(2,4), TM(3,3) and TM(5,2) [24] and calls this set of machines the present
Collatz-like line, situated between the present 3n+ 1-line and solvability line. In
Fig. 1 a summary is given of the known limits of solvability and unsolvability in
Turing machines, including the 3n + 1-line. As was said, the 3n 4 1-problem is
known as an intractable problem. Proving the reducibility of the 3n+ 1-problem
to classes of machines considerably smaller than the known universal ones, can
then serve as an indication of the difficulties that might be involved in proving
machines from this class solvable. Based on these results, Margenstern [20] con-
jectures that all points on the 3n+ 1-line contain a machine with an undecidable
halting problem or an undecidable reachability problem or an undecidable mod-
ified reachability problem (a conjecture that assumes of course nothing about
the status of the 3n + 1-problem). One of the important questions to be asked
here is what methods would be needed here to prove these classes of Turing
machines unsolvable.

In drawing from this research, the reduction of the 3n + 1-problem to a tag
systems with g = 3, v = 2, implies that proving the solvability of this class of
tag systems will be very hard. This is further strengthened by the fact that
even the tag system mentioned by Post, with p = 2, v = 3, is still not known
to be solvable. It should be noted here that we have studied the general class
of tag systems with 4 = 2,v > 3, including Post’s tag system. Many of the tag
systems investigated give rise to the same kind of intractability one is confronted
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Figure 1: Limits of solvability and unsolvability in Turing machines. A full line denotes
the solvability line, the dotted line the current 3n + 1-line, and the dashed line is the
current unsolvability line.

with in studying Post’s tag system, there being no clear reason to consider them
solvable nor a method to prove them universal.
Given the intractability of the class of tag systems for which p = 2,v > 2, and
the reducibility of the 3n + 1 problem to a tag system with u = 3, v = 2, we
would like to propose the following conjecture:

Conjecture 1 There exists at least one unsolvable tag system in every set of
tag systems for which p=2,v > 2 or p > 2,v =2

If this conjecture could be proven to be true, the gap between the known limits
of solvability and unsolvability in tag systems would be closed. Fig. 2 gives an
overview of the present situation of the limits of solvability and unsolvability in
tag systems. Note that that shortest universal tag system known, depends on
the smallest known two-symbolic universal Turing machine TM(18,2), since it is
constructed by using the encoding by Cocke and Minsky from Turing machines
into tag systems [1], [26]. In general, given this encoding, any two-symbolic Tur-
ing machine with m states, can be reduced to a tag system with v =2, u = 16m
that simulates it.

In comparing the 3n 4 1-line for Turing machines and tag systems it is clear
that T is considerably smaller than the size of the known Turing machines to
which the 3n+ 1-problem can be reduced. Furthermore, whereas the class of tag
systems TS(3, 2), contains T, the class of Turing machines TM(3, 2) is known
to be solvable. Given this result, together with the known intractability of the
class of tag systems TS(2,3) (see Post’s tag system), one is led to the conclusion
that the limits of unsolvability in tag systems are indeed considerably lower as
compared to those in Turing machines. This is indeed what we suspected given
the fact that tag systems lie at the basis of the known small universal machines.

11
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Figure 2: Limits of solvability and unsolvability in Tag systems. The full line indicates
the solvability line, the dotted line is the conjectured unsolvability line, the dashed line
is the known unsolvability line.

Concluding this section, it is suggested here that to further explore the limits of
solvability and unsolvability — possibly independent of the universality line — tag
systems might offer a valuable complementary framework. Especially in con-
necting them to known intractable problems from domains further removed from
mathematical logic, further research on these systems seems interesting.
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