3. The Hahn-Banach separation theorem

Klaus Thomsen matkt@imf.au.dk

Institut for Matematiske Fag Det Naturvidenskabelige Fakultet Aarhus Universitet

September 2005

We read in W. Rudin: Functional Analysis Covering Chapter 3, Theorem 3.4 and its proof. The presentation is based on 'Noter og kommentarer til Rudin'

The Hahn-Banach separation theorem

Theorem

Let X be a topological vector space, and A, B convex non-empty subsets of X. Assume that $A \cap B = \emptyset$.

a) If A is open there is continuous linear functional $\Lambda \in X^*$ and a $\gamma \in \mathbb{R}$ such that

$$\operatorname{Re}\Lambda(a)<\gamma\leq\operatorname{Re}\Lambda(b)$$

for all $a \in A$ and all $b \in B$.

b) If A is compact, B is closed and X is locally convex there is continuous linear functional $\Lambda \in X^*$ and a $\gamma \in \mathbb{R}$ such that

$$\operatorname{Re}\Lambda(a) < \gamma < \operatorname{Re}\Lambda(b)$$

for all $a \in A$ and all $b \in B$.

Assume first that X is a real vector space.

Let $a_0 \in A$, $b_0 \in B$, and set $x_0 = b_0 - a_0$.

Then $x_0 \neq 0$ since $A \cap B = \emptyset$.

Set $C = A - B + x_0$. Then $0 = a_0 - b_0 + x_0 \in C$ and C is open since A is.

Note that $x_0 \notin C$ since $A \cap B = \emptyset$.

Let $x \in X$. Since C is an open neighborhood of C there is a t > 0 such that $t^{-1}x \in C$.

We define $p: X \to [0, \infty[$ such that

$$p(x) = \inf \{ t > 0 : t^{-1}x \in C \}.$$

We want first to prove that $p(x + y) \le p(x) + p(y)$ and p(tx) = tp(x) when $x, y \in X$ and $t \ge 0$.

Let $a_1, a_2 \in A, b_1, b_2 \in B$, and $t \in [0, 1]$. Then

$$t(a_1 - b_1 + x_0) + (1 - t)(a_2 - b_2 + x_0)$$

= $ta_1 + (1 - t)a_2 - (tb_1 + (1 - t)b_2) + x_0 \in C$

proving that C is convex.

It follows that

$$s \ge t > 0, \ t^{-1}x \in C \implies s^{-1}x \in C$$
 (1)

since $s^{-1}x = s^{-1}tt^{-1}x + (1 - s^{-1}t) \in C$. Let $x, y \in X$ and a > p(x), b > p(y). Then (1) implies that $a^{-1}x, b^{-1}y \in C$. Hence

$$(a+b)^{-1}(x+y) = \frac{a}{a+b}a^{-1}x + \frac{b}{a+b}b^{-1}x \in C.$$

Thus $a + b \ge p(x + y)$, and we conclude that in fact $p(x) + p(y) \ge p(x + y)$.

Let t > 0. If a > p(x) we know that $(at)^{-1}tx = a^{-1}x \in C$ and hence $at \ge p(tx)$. It follows that $tp(x) \ge p(tx)$.

But then $p(x) = p(t^{-1}tx) \le t^{-1}p(tx) \implies tp(x) \le p(tx)$. It follows that

$$p(tx)=tp(x),\ t\geq 0.$$

In short: p has the properties required in the first version of the Hahn-Banach extension theorem.

Set $M = \mathbb{R} x_0$, and note that we can define a linear map $f: M \to \mathbb{R}$ such that

$$f(tx_0) = t$$
.

Since we want to apply the Hahn-Banach extension theorem we must show that $f(x) \le p(x)$ for all $x \in M$.

Since $x_0 \notin C$, it follows from (1) that $t^{-1}x_0 \notin C$ when $t \in]0,1[$.

Thus $p(x_0) \ge 1$ and $f(tx_0) = t \le tp(x_0) = p(tx_0)$ when $t \ge 0$.

When t < 0 we find that $f(tx_0) = t < 0 \le p(tx_0)$, proving want we wanted.

Theorem 3.2 gives us now a linear functional $\Lambda: X \to \mathbb{R}$ such that $\Lambda(y) = f(y), y \in M$, and $\Lambda(x) \leq p(x)$ for all $x \in X$.

We claim now that Λ is continuous. To justify this we must take an open neighborhood W of 0 in \mathbb{R} , and find an open neighborhood U of 0 in X such that $\Lambda(U) \subseteq W$.

When $z \in C$, $p(z) \le 1$, so $\Lambda(z) \le p(z) \le 1$. It follows that $\Lambda(-z) = -\Lambda(z) \ge -1$.

Hence $-1 \le \Lambda(z) \le 1$ when $z \in C \cap (-C)$.

Since W is an open neighborhood of 0 there is a $\delta > 0$ such that $[-\delta, \delta] \subseteq W$.

Set $U = \delta(C \cap (-C))$. Then U is an open neighborhood of 0 in X and we conclude that Λ is continuous since

$$\Lambda(U) = \delta \Lambda (C \cap (-C)) \subseteq [-\delta, \delta] \subseteq W.$$

It remains now only to show that Λ separates A and B in the prescribed way.

Let $a \in A, b \in B$. Then $a - b + x_0 \in C$. Since C is open there is an $\epsilon > 0$ such that $(1 + \epsilon)(a - b + x_0) \in C$.

It follows that $p((1+\epsilon)(a-b+x_0)) \le 1$ or $p((a-b+x_0)) \le \frac{1}{1+\epsilon}$.

Hence $\Lambda(a)-\Lambda(b)+1=\Lambda(a-b+x_0)\leq p\left((a-b+x_0)\right)\leq \frac{1}{1+\epsilon}$ and hence

 $\Lambda(a) - \Lambda(b) \leq \frac{1}{1+\epsilon} - 1 < 0.$

Set $\gamma = \sup \{ \Lambda(a) : a \in A \} \in \mathbb{R}$, and note that

$$\Lambda(a) \le \gamma \le \Lambda(b)$$

for all $a \in A, b \in B$.

To finish the proof we must show that there is no $a \in A$ with $\Lambda(a) = \gamma$.

Assume therefore that $\gamma = \Lambda(a')$ for some $a' \in A$.

Since $\Lambda \neq 0$ there is a vector $z \in X$ with $\Lambda(z) \neq 0$.

Since A is open there is an $\kappa > 0$ such that $a' + sz \in A$ for all $s \in [-\kappa, \kappa]$.

Then $\gamma \geq \Lambda(a'+sz) = \gamma + s\Lambda(z)$ for all $s \in [-\kappa, \kappa]$, which is absurd.

The proof of a) is complete in the real case.

Assume now that X is a complex vector space. It follows from the real case that there is a continuous linear *real-valued* functional $I:X\to\mathbb{R}$ and a $\gamma\in\mathbb{R}$ such that

$$I(a) < \gamma \le I(b)$$

when $a \in A, b \in B$.

Define $\Lambda: X \to \mathbb{C}$ such that

$$\Lambda(x) = I(x) - iI(ix).$$

Then $\Lambda \in X^*$ (!!), and $I = \text{Re } \Lambda$. This completes the proof of a)

b): By Theorem 1.10 there is a neighborhood V of 0 such that

$$(A+V)\cap B=\emptyset.$$

Since X is locally convex in case b) we may assume that V is convex.

Then A + V is convex, and open.

It follows from a) that there is $\Lambda \in X^*$ and $\gamma_2 \in \mathbb{R}$ such that

$$\operatorname{\mathsf{Re}} \Lambda(a) < \gamma_2 \leq \operatorname{\mathsf{Re}} \Lambda(b)$$

for all $a \in A, b \in B$.

Since A is compact and Re Λ is continuous,

 $\alpha = \sup \{ \operatorname{Re} \Lambda(a) : a \in A \} < \gamma_2.$ (See the following lemma.)

Then $\gamma_1 = \frac{1}{2} (\gamma_2 + \alpha)$ works!

A lemma

Lemma

Let Z be a non-empty compact Hausdorff space and $g:Z\to\mathbb{R}$ a continuous function. There is then an element $z\in Z$ such that

$$g(x) \leq g(z)$$

for all $x \in Z$.

Proof.

Let A be the collection of the real numbers α for which

$$W_{\alpha} = \{ x \in Z : g(x) \ge \alpha \}$$

is not empty.

A lemma

Proof.

Note that each W_{α} is closed in Z and hence compact (!!). Since \mathbb{R} is totally ordered, the intersection $\bigcap_{\alpha \in F} W_{\alpha}$ is not empty when $F \subseteq A$ is a finite subset. It follows (!!) that $\bigcap_{\alpha \in A} W_{\alpha} \neq \emptyset$. Let $z \in \bigcap_{\alpha \in A} W_{\alpha}$. Then $g(x) \leq g(z)$ for all $x \in Z$ because $z \in W_{g(x)}$.