
 1

The Software Measurement Laboratory of Magdeburg (SMLAB)

Metrics-based Evaluation of Object-Oriented
Software Development Methods

Reiner R. Dumke, Erik Foltin

University of Magdeburg
Postfach 4120, D-39016 Magdeburg, Germany

Tel: +49-391-67-18828, Fax: +49-391-67-12810
email: {dumke, foltin}@irb.cs.uni-magdeburg.de

http://irb.cs.uni-magdeburg.de/sw-eng/us/

Preprint Nr. 10, Fakultät für Informatik, 1996

 2

Contents

1 Introduction ..3

2 Evaluation and Metrication of one OO Method - An Example4

2.1 The General Approach... 4
2.2 The Process Measurement ... 5
2.3 The Product Measurement ... 7
2.4 The Resource Measurement ... 9
2.5 Conclusions ... 9

3 Recent Work in OO Software Metrics ... 12

3.1 General Research Areas ... 12
3.2 Metrics for OO Systems .. 13
3.3 Conclusions........ .. 15

4 A General Object-Oriented Measurement and Evaluation Framework 17

4.1 Measurement Choice ... 17
4.2 Measurement Adjustment .. 17
4.3 Measurement Migration .. 19
4.4 Measurement Efficiency .. 19

5 Process Evaluation of Chosen OO Software Development Methodologies 21

5.1 Evaluation Foundations ... 21
5.2 Software Quality Agents.. 23
5.3 Methodology Related Evaluations .. 25
5.4 Evaluation of Further OO Techniques .. 30

6 Conclusions .. 37

7 References .. 38

8 Glossary .. 41

Abstract

 3

The efficiency of software development (i. e. to produce good software products based on an efficient
software process) must be controlled by a quantification of the software development methodologies.
The description of object-oriented (OO) methods or comparisons of some of these methods are
usually given by a listing of their features. These presentations describe the functionality of a
particular development method, but often fail to address quality issues like efficiency, maintainability,
portability, maturity etc.
The quantification by means of software measurement needs a unified strategy, methodology or
approach as one important prerequisite to guarantee the goals of quality assurance, improvement
and controlled software management to be achieved. Nowadays, plenty of methods such as
measurement frameworks, maturity models, goal-directed paradigms, process languages etc. exist to
support this idea.
This paper describes an object-oriented approach of a software measurement framework aimed at
evaluating OO development methods themselves. It reasons the applicability of metrics-based
evaluation as indicator for the quality assurance of the OO development process.

Keywords: object-oriented software development, software quality, process quality, measurement
framework

1 Introduction

The benefits of the use of the object-oriented software development techniques are widely discussed in
many papers ([Brown 96a], [Hitz 95], [Jacobson 95], [Jones 94], [Moser 96] etc.). However, most of
these discussions and presentations only enumerate the features of the OO development methods and
programming environments, e. g. in [Embley 95] as

 Feature OOSA(Embly OMT (Rum- OOSA (Shlaer, OOA (Coad, OOA/D OORA
 Name et al.) baugh et al.) Mellor) Yourdon) (Booch) (Firesmith)

 Objects Yes Yes Yes Yes Yes Yes
 Object classes Yes Yes Yes Yes Yes No
 Relationships Yes Yes Yes Yes Yes Yes
 Relat. Object
 classes Yes Yes No No Yes Yes
 Full integrated
 submodels Yes No No Yes No No
 Aggregation Yes Yes Yes Yes Yes Yes
 Gen/Spec Yes Yes Yes Yes No Yes
 Interobject
 concurrency Yes Yes Yes Yes Yes Yes
 Intraobject
 concurrency Yes Yes No No No Yes
 Exceptions Yes No No No No Yes
 Temporal
 conditions Yes No No No Yes No
 Interaction
 details Yes No No No No No
 Attributes or
 methods No Yes Yes Yes Yes Yes
 Method clas-
 sification No No No No Yes Yes
 etc.

 4

and in the presentation by Khan et al. [Khan 95] given the following table of OO features.

OOP language feature C++ Object Pascal Smalltalk CLOS

Abstraction Instance variables Y Y Y Y
 Instance methods Y Y Y Y
 Class variables Y N Y Y
 Class methods Y N Y Y

Encapsulation Attributes public,private public,private private reader,writer
 protected accessor

 Methods public,private public,private public public
 protected
Moduls files units none packages
Inheritance multiple single single multiple
Polymorphism single single single multiple
Generic units Y N N Y
Strongly typed Y Y N optional
Metaclass N N Y Y
Class library (# classes) > 300 < 100 > 300 < 100

Of course, these features are essential with respect to the implementable semantics of an object-oriented
system. But the enumeration of feature is often not sufficient to explain about the size, complexity, and
quality characteristics of the implemented products or of the development process itself. We do not find
enough information about the process maturity and process quality that gives reasons for choosing a
specific method. Hence, we will discuss some essential aspects for a metrics-based object-oriented
method evaluation [DuFW 95].

2 Evaluation and Metrication of one OO Method - An Example

2.1 The General Approach

The principal ideas of this measurement framework are given in [DFKW 96] and are suited to
understand and to quantify the chosen the object-orientated method. A standardized metric set for
OOSE does not yet exist (only a metrics definition standard [IEEE 93]). Therefore, it is necessary to
define metrics and to analyze them. The validation of this metric set is the main problem in the
application of software metrics. The software measurement is directed to three main components in the
(object-oriented) software development (see also [Fenton 97])

• the process measurement for understanding, evaluation and improvement of the deve-lopment
method,

• the product measurement for the quantification of the product (quality) characteristics and

validation these measures,

• the resource measurement for the evaluation of the supports (CASE tools, measurement tools

etc.) and the chosen implementation system.

Some main ideas and some short results of an application of the Software Measurement Laboratory of
the University of Magdeburg (SMLAB) is given in the following (see also http://irb.cs.uni-
magdeburg.de/ sw-eng/us/).

 5

2.2 The Process Measurement

The chosen OO software engineering method is the Coad/Yourdon approach (described in [Coad 93]). It
begins with the transformation of the problem definition into a graphical representation with an
underlying documentation. The documentation contains all information that cannot be presented in the
drawings. The drawings (which are possible in some variants) and the documentation constitute the
OOA model. In a first evaluation of this method we can establish the following goals of the process
measurement and the realized activities:

How we can measure the object definition process? This question leads us to the first step of the
software development - the problem statement. We need a computational stored problem definition to
measure the object definition. The SMLAB problem definition must be accessible to all members

of the software engineering team and the document
itself is an essential source for many outputs
such as milestones or an overview for some
administrational purposes. Therefore, we
decided for a html file set of the World-Wide
Web Intranet as a living document system.
The elements of our problem statement are a
list of contents (as problem description,
constraints, given situation, functional
requirements, management requirements
(controlling and quality)) and a list of
components (as notions, names, dates,

pictures, and (hypertext) relations). An implementation of a measurement tool to measure the problem
definition (PDM) was necessary [Foltin 95]. A more detailed list of life cycle metrics types is given in
the following (see also [DFKW 96]).

PROCESS LIFE CYCLE METRICS:

♦ Problem definition metrics

• kinds of problem definitions
• used standards for problem definitions
• tool-based level
• stability metrics

♦ Requirement analysis and specifi-cation metrics
• flow level from the problem definition
• average participatory level
• team structure
• development methods metrics
• level of (cost) estimation methods
• integration level
• test cases metrics

♦ Design metrics
• automatization level
• knowledge-based level

• (class) library metrics
• reusability level

♦ Implementation metrics
• generation level
• average code quality level
• test metrics
• performance metrics
• distribution level

♦ Maintenance metrics
• error management metrics
• changeability metrics
• extendibility metrics
• tuning metrics
• reliability metrics
• configuration control metrics

How we can measure the OOA/OOD model itself? The OOA model must be ‘open’ for measurement.
This is the case because the models of the used CASE tool - the ObjecTool - are

 6

stored in a set of files in an interpretable descriptive
language. So, the measurement tool OOM [Papritz
93] was implemented to measure the OOA model. The
evaluation of the OOA step proved a missing
inheritance documentation and a rather small and not
very helpful critique generated by the tool that is only
directed to an object/class symbol. Further, the
estimation of effort, costs and quality is not possible in
this development phase without prior knowledge about
similar projects (a general problem in the OO software
engineering). The OOD step ensures a full continuity
with the OOA step. It extents (or updates) the OOA
model with respect to the chosen implementation
environment, i. e. by including libraries for the

realization of the user interface or data storage engines. The resulting OOD model is the primary model
used later in the maintenance phase. Hence we do not have a method independent specification. There is
also no mechanism provided to relate the design to the object-oriented implementation (programming)
system. Therefore, some form of browsing the OOP system is required in the OOD phase. To support
this activity we have implemented the OOC tool for browsing in the Smalltalk class library [Lubahn
94]. In general it is necessary to quantify the management activities based on the following metrics
[DFKW 96].

PROCESS MANAGEMENT METRICS:

♦ Project Management Metrics:
• milestone metrics

∗ number of milestones
∗ number of proved requirements per

milestone
∗ controlling level metrics

• risk metrics
∗ probability of resources availa-

bility
∗ probability of the requirements

validity
∗ risk indicators (long schedules,

inadequate cost estimating,
excessive paperwork, error-prone
modules, canceled projects,
excessive schedule pressure, low
quality, cost overruns, greeting
user requirements, excessive time
to market, unused or unusable
software, unanticipated accep-
tance criteria, hidden errors)

∗ application risk metrics
• workflow metrics

∗ walkthrough metrics
∗ traceability metrics
∗ variance metrics

• controlling metrics
∗ size of control elements
∗ structure of control elements
∗ documentation level
∗ tool application level

• management database metrics
∗ data quality metrics
∗ management data complexity
∗ data handling level (performance

metrics)
∗ visualization level
∗ safety and security metrics

♦ Quality Management Metrics:
• customer satisfaction metrics

∗ characteristics size metrics
∗ characteristics structure metrics
∗ empirical evaluation metrics
∗ data presentation metrics

• review metrics
∗ number of reviews in the process
∗ review level metrics
∗ review dependence metrics
∗ review structure metrics
∗ review resources metrics

• productivity metrics
∗ actual vs. planned metrics
∗ performance metrics
∗ productivity vs. quality metrics

• efficiency metrics
∗ time behavior metrics
∗ resources behavior metrics
∗ actual vs. planned metrics

• quality assurance metrics
∗ quality evaluation metrics
∗ error prevention metrics
∗ measurement level
∗ data analysis metrics

♦ Configuration Management Metrics:
• change control metrics

∗ size of change
∗ dependencies of changes
∗ change interval metrics
∗ revisions metrics

• version control metrics
∗ number of versions
∗ number of versions per customer
∗ version differences metrics
∗ releases metrics (version of

architecture)
∗ data handling level

 7

How we can measure the OOP system? Here we must choose a special OOP system or an OOP
language. The ObjecTool is intended to support C++ or Smalltalk implementations. The evaluation
of this phase indicates that a direct re-engineering of the OOD based on experience of the OOP is not
supported by the tool. Therefore it is very likely to introduce maintenance problems at this

stage. The knowledge of the existing OOP
systems or libraries is one of the main
obstacles for an efficient OO software
engineering. The measures added in this
development phase are mainly code
measures. For the quality measurement of
the process we use the development
complexity (see [DKFW 96]) to assess the
used methods and tools and their structure.
Other measures (performance etc.) have not
been included in this first approach of
development complexity evaluation. The
measurement tools used in this sample

evaluation were implemented in the same method and programming language to reduce development
complexity. We have implemented a C++ measurement tool [Kuhrau 94] in C++ and a Smalltalk
measurement extension [Heckendorff 95]. The given description of the process measurement is a good
example for the method understanding. Some missing tools for the completion of an measurable OOSE
method on this basis have been designed and implemented. In general, the following measures help to
quantify the maturity of the development process [DFKW 96].

PROCESS MATURITY METRICS

♦ Organization metrics
• personal structure metrics (characteristics of the development teams and hierarchy, CSCW level, staff experience)
• management metrics (existence or level of the project, quality and configuration management)

♦ Resources, personnel and training metrics
• development team metrics (experience, efficiency, flexibility)
• training’s metrics (cycles of courses, necessary enrollments)
• availability of computer resources
• brainstorming metrics

♦ Technology management metrics
• evaluations of the technology level
• technology replacing metrics

♦ Documented standards metrics
• standards application metrics (IEEE, ANSI, national etc.)
• number of used standards (for documentation, life cycle, reviews, and maintenance)

♦ Process controlling metrics
• management support metrics
• productivity metrics
• efficiency metrics
• process quality metrics
• actual vs. planned metrics (especially error estimation etc.)
• traceability measures

♦ Data management and analysis metrics
• data management level (metrics data base, evaluation techniques etc.)
• use of statistical methods metrics
• visualization level metrics

2.3 The Product Measurement

For product measurement the measure mutations were analyzed, for example the number of
notions/names in the problem definition (#notions/names) was related to the number of defined classes
in the OOA/OOD model and in the implementation. Other measurements relate adjectives/adverbs to

 8

class attributes or variables, verbs to the classes services or methods and dates/constraints to the model
documentation and implementation. We can see the essential approach in analyzing the mutations of the
µ, m, and M measures. According to [ISO9126 91], the evaluation of the product quality in every
development phase is defined as comprehensibility, clarity and usability of the problem statement on the
basis of the measures use frequency, availability, size and structure; the completeness, conformity and
feasibility for the OOA/OOD phase based on measures consistency, performance, size and structure;
and the understandability, stability and effort for the OOP phase on the basis of measures testability,
size, structure and reusability. Most of these measures are based on an ordinal scale and can therefore
be used to classify the achieved quality. The general metrication of the software product is summarized
in the following table[DFKW 96].

PRODUCT METRICS

Size Metrics:

• number of elements
∗ lines of code
∗ number of documentation pages
∗ etc

• development metrics
∗ number of test cases
∗ consumption of resources metrics

• size of components
∗ number of modules/objects
∗ average size of components

Architecture Metrics:

• components metrics
∗ number of (language) paradigms
∗ part of standard software
∗ quality level

• architecture characteristics
∗ open system level
∗ integration level

• architecture standard metrics
∗ used standards metrics
∗ part of standardization

Structure Metrics:

• component characteristics
∗ number of structure elements
∗ part of component per structure element
∗ average connection level

• structure characteristics
∗ composition level
∗ decomposition level
∗ component coupling metrics
∗ tree structure metrics

• psychological rules metrics
∗ orientation for structure width
∗ orientation for structure depth
∗ visualization level

Quality Metrics:

• functionality metrics
∗ suitability
∗ accuracy
∗ interoperability
∗ compliance
∗ security

• reliability metrics

∗ maturity
∗ fault tolerance
∗ recoverability

• usability metrics
∗ understandability
∗ learnability
∗ operability

• efficiency metrics
∗ time behavior
∗ resource behavior

• maintainability metrics
∗ analyzability
∗ changeability
∗ stability
testability

• portability metrics
∗ adaptability
∗ installability
∗ conformance
∗ replaceability

Complexity Metrics:

• computational complexity metrics
∗ algorithmic complexity
∗ informational complexity
∗ data complexity
∗ combinatorial complexity
∗ logical complexity
∗ functional complexity

• psychological complexity metrics
∗ structural complexity
∗ flow complexity
∗ entropic complexity
∗ cyclomatic complexity
∗ essential complexity
∗ topologic complexity
∗ harmonic complexity
∗ syntactic complexity
∗ semantic complexity
∗ perceptional complexity
∗ organizational complexity
∗ diagnostic complexity

 9

2.4 The Resource Measurement

One essential aspect in the introduction of OO software engineering are the initial measures of the
chosen resources (CASE tools, measurement tools programming environment etc.). In accordance with
our validation aspect we can quantitatively evaluate the usefulness of the chosen object-oriented
programming system. The evaluation of C++ or Smalltalk/V for Windows for example shows
functional characteristics and we can expect a lot of maintenance effort.

The metrication aspects of the software development resources are given in the following [DFKW 96].

RESOURCES METRICS

Personnel Metrics:

♦ programming experience metrics

• programming language experience
• development methods experience
• management experience

♦ communication level metrics
• teamwork experience

• communication hardware/ software level
• personal availability

♦ productivity metrics
• size productivity
• productivity statistics
• quality vs. productivity

♦ team structure metrics
• hierarchy metrics
• team stability metrics

 Software Metrics:

♦ performance metrics

• method productivity
• programming language productivity
• development environment level

♦ paradigm metrics
• development method trends
• programming languages trends
• paradigm quality

♦ replacement metrics
• level of software portability
• software development complexity

Hardware Metrics:

♦ performance metrics

• computer performance
• network performance
• benchmarks
• performance profile

♦ reliability metrics
• Mean Time to Failure (MTTF)
• Mean Time Between Failure (MTBF)
• Mean Time To Repair (MTTR)
• Mean Recurrence Time (MRT)
• Mean Waiting Time in Error States (MWTE)

♦ availability metrics
• time availability
• security constraints

• local availability

2.5 Conclusions

Briefly stated, the metrication of a development method has to include the definition/ application of
(object-oriented) software metrics for the elements/components of the method as well as the workflow of
the requirements/elements along the development phases and life cycle activities. A simplified
description is given in the following based on the experience from our SMLAB project [DuWi 96].

Note, that the presentation covers only the evaluation of the product structure and architecture
metrication aspects.

Problem definition (PD)

 10

 (as HTML document system):

 verbal text

 notions adjectives verbs
 PD/OOA
 OOA model in the Coad/Yourdon approach specification
 specif. (drawing element): indicators
 classes attributes services

 designed classes, OOA/OOD
 attributes, services OOD model in the same approach design
 organiz. (the same drawing element): indicators
cl., attr., serv.

 impl. classes, . OOD/OOP
 attr., serv. Implementation in Smalltalk implementation
 reused (a class method): indicators
 cl.a.s. new cl. attr. serv.

 11

In a first approximation the following indicators are used to characterize the aspects typical to OO
software engineering in the given development method. The specification indicators as

• class definition indicator (CDI) as
 number of defined classes per number of notions,
 (CDI

SMLAB
= 0.02)

• attribute definition indicator (ADI) as
 number of defined attributes per number of adjectives or predicates,
 (ADI

SMLAB
= 0.03)

• service definition indicator (SDI) as

 number of verbs or adverbs per number of defined services,
 (SDI

SMLAB
= 0.06).

The design indicators as

• class modification indicator (CMI) as
 number of organizational classes per number of all designed classes,
 (CMI

SMLAB
= 0.33)

• attribute modification indicator (AMI) as
 number of organizational attributes per number of all designed attributes,
 (AMI

SMLAB
= 0.22)

• service modification indicator (SMI) as

 number of organizational services per number of all designed services,
 (SMI

SMLAB
= 0.21).

And the implementation indicators as

• class implementation indicator (CII) as
 number of new implemented classes per number of designed classes,

 (CII
SMLAB

= 0.31)

• attribute implementation indicator (AII) as
 number of new implemented attributes per number of designed attributes,

 (AII
SMLAB

= 0.51)

• service implementation indicator (SII) as

 number of new implemented services per number of designed services,
 (SII

SMLAB
= 0.22).

We want to stress the point that these indicators are intended to reflect relations over all development
phases in a special workflow manner, both for the characterization of the product type (degree of the
class reuse, for instance) and of the process efficiency (i. e. degree of the automatization).

3 Recent Work in OO Software Metrics

 12

3.1 General Approaches

The recent work in software measurement for object-oriented software development can be subdivided
in:

• statistical analysis of elements of an object-oriented development system (Smalltalk-80)
by Rochache [Rocache 89]; of a C++ communication system by Szabo and Khoshgoftaar
[Khoshgoftaar 94]; or for different metrics and different C++ libraries and Eiffel programs
by Abreu and Melo [Abreu 96],

• metrics set definitions by Abreu and Carapuca in [Abreu 94] for C++ with the two

vectors category (design, size, complexity, reuse, productivity, and quality), and
granularity (system, class, and method); by Binder in [Binder 94] as a set of C++ metrics
to measure encapsulation, inheritance, polymorphism, and complexity; or by Arora et al. in
[Arora 95] for real-time software design in C++, by Dumke et al. in [DFKW96] for all
phases of the object-oriented development, and by Lorenz and Kidd in [Lorenz 94] as a
metrics set that can be used for the C++ language and Smalltalk,

• OO aspect measurement by Ott et al. in [Bieman 94] or by Lee et al. in [Lee 95] or by

Hitz and Montazeri in [Hitz 95] or by Han et al. in [Han 94] of class coupling and
cohesion; or by Bieman in [Kurananithi 93], John in [John 95], and Pant et al. in [Pant 96]
to measure reusability, or by Chung et al. [Chung 95] to measure the inheritance
complexity, or to support object-oriented testing (Chung and Lee in [Chung 94]) and
maintenance (Lejter in [Lejter 92]),

• information theoretical approaches like the measure of conceptual entropy by Dvorak in

[Dvorak 94] or the cognitive approach by Henderson-Sellers et al. in [Henderson 96] with
the landscape idea along the method routes or the learnability aspects in the use of class
libraries in [Lee 94], and

• validation of enclosed approaches by Chidamber and Kemerer in [Chidamber 94] as an

approach of metrics definition based on a measurement theoretical view (with
‘’viewpoints’’ as empirical evaluation), the extension of these measures by Li et al. in [Li
95], the (algebraic) analysis approach of Churcher and Shepperd in [Churcher 95], and the
investigations of Zuse in [Zuse 94] and [Zuse 97].

The grey areas in the following simplified object-oriented software development scheme indicate the
shared existing metrics approaches.

 object-oriented object-oriented object-oriented
 problem analysis and design implementation
 definition specification OOP
 OOD
 OOA
 existing OOP
 existing class system
 hierarchies or
 organizational libraries
 information

3.2 Metrics for OO Systems

 13

For a narrowly-focused presentation of the existing OO metrics we use our general metrics
classification [DFKW 96] as

 PROCESS METRICS PRODUCT METRICS RESOURCES METRICS

 Maturity Metrics Size Metrics Personnel Metrics
 - organization metrics - elements counting - programmer experience metrics
 - resources, personnel and - development size metrics - communication level metrics
 training metrics - size of components metrics - productivity metrics
 - technology management metrics Architecture Metrics - team structure metrics
 - documented standards metrics - components metrics Software Metrics
 - process controlling metrics - architecture characteristics - performance metrics
 - data management and analysis - architecture standards metrics - paradigm metrics
 Management Metrics Structure Metrics - replacement metrics
 - milestone metrics - component characteristics Hardware Metrics
 - risks metrics - structure characteristics - performance metrics
 - workflow metrics - psychological rules metrics - reliability metrics
 - controlling metrics Quality Metrics - availability metrics
 - management data base metrics - functionality metrics
 - quality management metrics - reliability metrics
 - configuration management m. - usability metrics
 Life Cycle Metrics - efficiency metrics
 - problem definition metrics - maintainability metrics
 - requirement analysis and - portability metrics
 specification metrics Complexity Metrics
 - design metrics - computational complexity metrics
 - implementation metrics - psychological complexity metrics
 - maintenance metrics

Based on the recent work on OO metrics, we can establish the following metrics to evaluate the OO
products and the processes including some empirical evaluations.

Process maturity metrics: (0)

Process management metrics: (4)

• person-days per class (PDC) (product class ≤
40 [Lorenz 94])

• change dependency between classes (CDBC)
(transparency principle [Hitz 95])

• cognitive complexity (CCM) (case study based
[Cant 94])

• time to fix the known errors (TKE) in minutes
(minimizing principle [Harrison 96])

Process life cycle metrics: (10)

 14

• conceptual specificity (OOCM) (difference
principle [Dvorak 94])

• conceptual consistency (OOCM) (difference
principle [Dvorak 94])

• conceptual distancy (OOCM) (difference
principle [Dvorak 94])

• number of scenario scripts (NSS) (transparency
principle [Lorenz 94])

• unit repeated inheritance (URI) testing (test
coverage Cn, n>2 [Church 94])

• number of methods overridden (NMO)
(transparency principle [Lorenz 94])

• number of methods inherited (NMI)
(transparency principle [Lorenz 94])

• number of methods added (NMA) (transparency
principle [Lorenz 94])

• number of modifications requests (MR)
(minimizing principle [Harrison 96])

• time to implement modifications (TMR)
(minimizing principle [Harrison 96])

Product size metrics: (17)
• number of abstract classes [Dumke 94]
• number of object/classes [Dumke 94]
• total number of (class/instance) attributes (NIV,

NCV [Lorenz 94])
• total number of (class/instance)

services/methods (NOM, [Li 95]; NIM,NCM
[Lorenz 94]) (Smalltalkinitial =22*#classes
[LaLonde 94])

• number of object connections [Dumke 94]
• number of message connections [Dumke 94]
• number of the subclasses [Dumke 94]
• number of the subject domains [Dumke 94]
• code/text lines of method [Dumke 94]
• length of attribute name [DFKW 96]
• number of ADTs defined in a class (DAC)

(transparency principle [Li 95])
• number of semicolons in a class (SIZE1) (case

study [Li 95])
• number of attributes + number of local methods

(SIZE2) (case study [Li 95])
• number of root classes (case study = 3 [Lake

92])
• number of key classes (NCK) (completeness

principle [Lorenz 94])
• number of support classes (NSC) (completeness

principle [Lorenz 94])
• number of subsystems (NOS) (transparency

principle [Lorenz 94])

Product architecture metrics: (2)

• verbatim reuse (VR) (optimization principle
[Bieman 95])

• generic reuse (GR) (optimization principle
[Kurananithi 93])

Product structure metrics: (22)

• average number of attributes per class [Dumke
94]

• average number of services per class (not more
than 20 [Lorenz 94])

• average number of object connections per class
[Dumke 94]

• average number of message connections per
class [Dumke 94]

• maximal depth of the inheritance (DIF)
(applica-tioninitial 3 [Chidamber 94])

• method hiding factor (MHF) (initial 19,6 %
[Abreu 95])

• attribute hiding factor (AHF) (initial 79,7 %
[Abreu 95])

• method inheritance factor (MIF) (initial 73,5 %
[Abreu 95])

• attribute inheritance factor (AIF) (initial 56,2 %
[Abreu 95])

• polymorphism factor (POF) (initial 6,5 %
[Abreu 95])

• coupling factor (COF) (initial 10,8 % [Abreu
95])

• number of children (NOC) (initial 0.9
[Chidamber 97])

• coupling between object classes (CBO)
(applicationinitial 1.3 [Chidamber 97])

• response for a class (RFC) (initial 10
[Chidamber 97])

• lack of cohesion (LCOM) (initial 4.1
[Chidamber 97])

• average code/text lines of methods
(Smalltalk/Vinitial = 3 [Wilde 92], Smalltalk=8,
C++=24 [Lorenz 94])

• strong functional cohesion (SFC) (exampledemo
0.18 [Bieman 94])

• I-based coupling (ICP) (exampledemo [Lee 95])
• I-based cohesion (ICH) (exampledemo [Lee 95])
• strength of cohesion as part of operations that

apply one ADT domain (case study in C++:
26% [Han 94])

• method coupling (non-coupling (nc), concealed
coupling (cc) (only directly operation use),
partial coupling (pc) (also general operation
use), open coupling (oc) (also domain use) case
study in C++: nc=20%, cc=10%, pc=45%,
oc=25% [Han 94])

• locality of data (LD) (transparency principle
[Hitz 95])

• computing cohesion (CH) (maximum = 1 [Wech
96])

Product quality metrics: (6)

• understandability (= average number of
attributes per class, average LOC per method)
(maximum reducing [Barnes 93])

• average length of classes/attributes/methods
names (general mnemonic aspects)

 15

• test order for class firewall (CFW) (case study:
192 stubs per test order [Kung 95])

• number of known errors (KE) during testing
(minimizing principle [Harrison 96])

• percentage of commented methods (PCM)
(transparency principle [Lorenz 94])

• problem reports per class (PRC) (empirical
criteria [Lorenz 94])

Product complexity metrics: (8)
• weighted method per class (WMC) (initial 10

[Chidamber 94])

• weighted attribute per class (WAC) (method
evaluation case study [Sharble 93])

• leveraged reuse (LR) (optimization principle
[Bieman 95])

• subjective assessment of complexity (SC)
(ordinal: 1...5 [Harrison 96])

• message passing coupling (MPC) (transparency
principle [Li 93])

• number of tramps (NOT) (method evaluation
case study [Sharble 93])

• operation complexity (OC) (case study = 78.5
[Chen 93])

• attribute complexity (AC) (case study = 2.2
[Chen 93])

Resource personnel metrics: (1)
• classes per developer (CPD) (empirical criteria

[Lorenz 94])
Resource software metrics: (2)

• paradigm related development time (case study:
OO vs. procedural [Lee 94])

• violations of the law of demeter (VOD) (method
evaluation case study [Sharble 93])

Total number of OO metrics: 72

3.3 Conclusions

The charts below characterize the facilities and the situation in the OO metrics area. Note, that the
charts provide only an approximate overview about the metrics situation. We use pc for the process
metrics, pr for the product metrics, and rs for the resources metrics.

System Model Granularity

 for the class icon for the drawings/ for the whole system
 scenarios

 �

 #metrics #metrics #metrics
 50 50 50
 40 40 40
 30 30 30
 20 20 20
 10 10 10

 pc pr rs pc pr rs pc pr rs

Life Cycle Phase Related

 O O A O O D O O P
 #metrics #metrics #metrics
 50 50 50
 40 40 40
 30 30 30

 16

 20 20 20
 10 10 10

 pc pr rs pc pr rs pc pr rs

Measurement Area Related

 (model-based) metrics (empirical-based) measures

 #metrics #metrics
 50 50
 40 40
 30 30
 20 20
 10 10

 pc pr rs pc pr rs

Furthermore, we can establish the following general characteristics of OO software metrics:

• most of the metrics are not language independent (some of them are especially C++
related),

• most of the OO metrics are metrics and not measures (they are relations or quotients of

OO characteristics),

• the empirical evaluations are divided into

∗ not available (only feasibility test of the metric for intuitive (quality) aspects),

∗ a general principle of minimizing or maximizing,

∗ case-study-based as sample initial values,

∗ experience-based as classification or evaluation values for a quality ‘’area’’,

∗ unit including ratio scaled forms;

• comparing the metrics set with our product metrics classification tree yields a lack of

knowledge especially in the following areas

∗ very few documentation metrics,

∗ rare architecture metrics,

∗ only a few empirical evaluations for the quality-oriented metrics are given;

• some metrics are given in functional form (#methods = 22 × #classes) or tuple form
(understandability = (average #attributes, average LOCmethod)),

 17

• the OO metrics are defined for different kinds of development components but not for
monitoring the development process over time,

• the metrics are mostly used for an assessment but not for measurement-based

controlling,

• in general, the given OO metrics are not really object-oriented themselves.

Last but not least the following quote on the general situation in software measurement also applies to
the OO metrics area [Pfleeger 97]: ‘’Researchers, many of whom are in academic environments, are
motivated by publication. In many cases, highly theoretical results are never tested empirically, new
metrics are defined but never used, and new theories are promulgated but never exercised and modified
to fit reality. Practitioners want short-term, useful results. Their projects are in trouble now, and they
are not always willing to be a testbed for studies whose results won’t be helpful until the next project.’’

Based on this experience, we defined an object-oriented measurement framework that will be described
in a short manner in the next section.

4 A General Object-Oriented Measurement and Evaluation Framework

We define a general software measurement framework with the following components (see also [DFKW
96], [DuWi 96], [DuWi97]):

4.1 Measurement Choice

This step includes the choice of the software metrics and measures from a general metrics class
hierarchy (including the process, product, and resources measurement) with the following contents
(derived from an analysis of the SQA literature and standards) (see also 3.2).

 Software Metrics

 process metrics product metrics resources metrics

 maturity life cycle size architecture quality personnel hardware

 management structure complexity software

 18

(see above for detailed classification)

The second part in the measurement choice is the definition of an object-oriented software metric as a
class/object in the Coad/Yourdon approach manner with the default contents as

• attributes: the metrics value characteristics, and

• services: the metrics application algorithms.

4.2 Measurement Adjustment

The adjustment is related to the experience (expressed in values) of the measured attributes for the
evaluation. The adjustment includes the metrics validation and the determination of the metrics
algorithm based on the measurement strategy. The strategy can be model-based measurement (e. g.
metrics based on the control flow graph; service form: count, execute), direct measurement (such as
execution time, storage size; service form: read the (operating) system dates and/or execute),
evaluations (as classification of tools, or process level identification; service form: evaluate), and
estimations (as formula-based execution of software characteristics; service form: estimate). In
estimation the software measurement results are comprised in the estimation formula.

The following table gives an overview of the validation problem.

 software develop- measurement theoretical view evaluation (empi-
 ment component model (statistical analysis) model rical) criteria

 numerical SCALE empirical
 relative relative
 design
 documents flow graph ESTIMATION classification tree costs

 drawings call graph factor-criteria effort
 CALIBRATION tree
 charts text schemata grade
 cause and effect
 source code structure tree ADJUSTMENT diagram quality

 test tables code schemata CORRELATION decision tree actuality

 etc. etc. etc. etc.

 abstraction metrication VALIDATION metrication abstraction

 (internal) metrics (external) metrics
 measures

The steps of the measurement adjustment are

• the determination of the scale type and the unit,
• the determination of the initial values of the metrics based on prior experience or an

assessment,

 19

• the use of these values as favorable values for the evaluation of the measurement
component,

The measurement adjustment in our example is realized by the Prolog metrics tool (PMT) [Kompf 96]
and in the Smalltalk measure extension [Heckendorff 96] in the following way. The tool starts with an
evaluation of a chosen piece of software (in Smalltalk a part of the system itself). The obtained
measures are used as initial empirical evaluation criteria to define ‘acceptable’ quality. Here is a simple
example to further explain the idea of measurement adjustment. An application of a Java CAME tool
[Patett 97] for JAVA ‘’standard’’ libraries gives the following selected results:

• average number of methods in a JAVA class: 10,
• average lines of code of a JAVA class method: 11.4,
• average number of parameters per method: 1.3.

This values can be used as evaluation criteria (limits) for a ‘good’ Java application. One Java
application of our Measurement Laboratory (a measurement data base interface [Fix 96]) can be
described in a classical manner with the following values:

• total lines of JAVA code: 1320,
• JAVA classes: 25,
• average number of methods per class: 12,
• average number of parameters per method: 0.88,
• average lines of code per methods: 4.04, etc.

In general we see a conformity of our Java application with the evaluation criteria.

4.3 Measurement Migration

The migration includes refinement and the tracing of the metrics ‘mutations’ throughout the
development phases for the given development paradigm, e. g. metrics splitting or transforming for
different levels of granularity. Thus we define metrics as ‘quality agents’ in the software development
process. The activities of these agents are reasoning on the software development complexity [DuWi
96] that is based on the product or project dependency, the development methodology dependency, the
basis software dependency, the development team dependency, the company area dependency, and the
time dependency of the developed software components.

It is necessary to cover both directions in the measurement and evaluation paradigm for all components.
An example that is described in [Dumke 95] is

phase: Problem OO analysis OO design OO implementation
 definition

 NumberOf NumberOf NumberOf NumberOf
 Notions SpecClasses DesignClasses ImplClasses

It shows an adaptive metric class NumberOfClasses for the primary phases of an OO development. In
the same manner ‘traces’ from adjectives and predicates to the NumberOfAttributes or from verbs and
adverbs to the NumberOfServices can be defined.

 20

Further, it is necessary to repeat the determination of the ‘environmental’ metric values in time intervals
to allow for a tuning of the favorableValues and their conditional variations as validityConstraints to
guarantee the achievement of selected quality aspects. Note, that the migration may require a repetition
of the adjustment step.

4.4 Measurement Efficiency

This step includes the instrumentation or the automatisation of the measurement process by tools. It
requires to analyze the algorithmic character of the software measurement and the possibility of the
integration of tool-based ‘control cycles’ in the software development process.
The acronym of our framework is measurement choice, adjustment, migration, and efficiency
(CAME). We use the same acronym (with another meaning) for the tools supporting our framework
[Dumke 96].

A digest of this framework is given in the next figure. It includes the extension of the metric class to
include the facilities necessary to evaluate object-oriented software development

.

Measurement Choice: the static background

 SoftwareMetricClass
 metrics attributes which
 contents the value aspects choice from the general metrics
 metrics services for handling class hierarchy
 the metrics values in the
 measurement framework

Measurement Adjustment: the empirical evaluation

 SoftwareMetricClass
 value measure characteristics
 scaleType
 validity aspects unit
 initialValue
 favorableValues
 execute
 count
 estimate kinds of metric calculation
 evaluate
 adjust
 assess

Measurement Migration: the behavior model

 SoftwareMetricClass
 value
 scaleType
 unit
 migration aspects valueMutations
 initialValue
 favorableValues message
 validityConstraints connection
 execute/count ...
 adjust
 assess

 21

 tune
 tracking

Measurement Efficiency: the supporting tools
 services functionality:

 SoftwareMetricClass execute value
 value • count the
 scaleType estimate initialValue
 unit evaluate
 valueMutations
 initialValue • adjust the favorableValues
 favorableValues
 validityConstraints • assess the value relating to the favorableValues and the
 execute/count ... validityConstraints in the scaleType and the unit
 adjust
 assess • tune the favorableValues and the validityConstraints
 tune
 tracking • tracking the valueMutations
 transform • transform the value (with unit and/or scaleType)
 present • present the value by display or indicate

5 Process Evaluation of Chosen OO Software Development Methodologies

5.1 Evaluation Foundations

The evaluation includes the general product, process and resources measurement aspects for the OO
development methods themselves as

♦ OO method product evaluation:
• size,
• architecture,
• structure,
• quality (functionality, reliability, usability, efficiency, maintainability, portability),
• complexity;

♦ OO method process support evaluation:
• maturity,
• management (project, quality, configuration),
• life cycle;

♦ OO method resource evaluation:
• personnel (team structure),
• software (paradigm, replacement).

On the other hand we must consider the general components of an OO development methodology as (see
also [Jacobson 95], [Marciniak 94], [Wasserman 88] and [Tepfenhart 97])

• theoretical foundations,
• symbols and techniques,
• (CASE) tools,
• standards.

Hence, we must consider the following main areas for a metrication of an object-oriented development
methodology:

 workflow evaluation local evaluations evaluation background

 22

 PD ?
 • the level and the uniformity of the
 ? theoretical foundations
 oooo
 o o o
 OOA ?

 • the uniformity and general applica-
 ? bility of the symbols and notations
 . .. OO
 .. -oo
 OOD OO - ?
 • the tool support level
 ?

 OOP ? • the standardization level

The discussion in [Shet 97] includes that ‘’activity-based methodologies focus on modeling activities
instead of modeling the commitments among people’’ and that ‘’advanced workflow management
systems allow mobile clients’’. First workflow measurement ideas can be found in [Ebert 93]. However,
they are aimed at only one issue - the complexity.

A recent description of local evaluations is given in section 3 of [Kaschek 96]. Metrics related to the
text (size and readability) are also used in the specification and design phases [Kitchenham 89]. Local
evaluations may be considered as the ‘’classical’’ measurement approach. A general concept is given in
[Brown 96a] and [Brown 96b]. The main idea of this approach is the technology delta principle. The
framework includes the following phases related to a given (exemplary) result:

 evaluation framework evaluation result example

 candidate technology(ies)

 Descriptive
 Modeling
 Phase policy enforcement

 framework
 situated technology administration
 business objectives process
 management

 Experiment communication
 Design Phase

 experiments and
 evaluation criteria user

 23

 object interface
 management
 Experimental operating
 Evaluation Phase system

 technology assessment PCTE

 CORBA

The background evaluation should be used as indicator for the evaluation of all aspects in the software
process.

In following we will discuss the workflow evaluation based on so-called quality agents with the
ingredients of the local and background evaluation aspects.

5.2. Software Quality Agents

The quality agent was based on the idea of the (mobile) intelligent agent in the area of distributed
systems and networks. Mobile agents are computational processes which are capable of moving from
node to node around a network [Appleby 94]. They may be considered as a natural extension of the
object-oriented programming philosophy to include features which are tailored to distributed control.
Whereas a mobile agent helps to manage the performance of the network processes, the quality agent
controls the software product or process quality in a given software development environment. The idea
of the software quality agent is opposite to the total quality management (TQM, see [Marciniak 94])
which want to address the quality assurance in a wholeness manner. The TQM has practice relevance
for assessment, whereas software agents are suitable for the process controlling. The quality agent has
the following characteristics

• it incorporates quality knowledge as a set of metrics/measures based on the measurement
choice step of our framework,

• decision rules for the action or reaction of the agent based on the empirical (initial)

evaluation values of the chosen metrics (as result of the measurement adjustment step) are
defined,

• it is able to navigate in the software development environment based on the measurement

migration step of our framework,

• it provides visualization/presentation forms based on the measurement efficiency step.

The (product) quality aspects based on ISO 9126 [ISO9126 91] are used as a guide for empirical
evaluation. The product functionality and reliability and the process maturity and life cycle aspects are
controlled by the requirement workflow agents. These agents include the duality of the functionality as
characteristic of the implemented product and the given development method. The product
maintainability and portability, the process management and the resource personnel and software
aspects should be served by the complexity workflow agents. Complexity means software development
complexity as described above. A visualization is given in the following figures which include examples

 24

of development components (OOA model, OOD review, and C++ program) with their different
polygons related to several complexity aspects.

 development time related
 team related OOD review
 (extension of the methodology related (extension polygonC++
 given team set) of the given method set)
 C++ program

 polygonOOD
 company related
 (use of extern product/project related
 components) (kinds of applications)
 OOA model basis software related polygonOOA
 (variance

The product size, structure, architecture, usability, efficiency and complexity, the process management
and the resource software performance aspects should be described by the component workflow
agents. These agents observe the specification, design and implementation components defined by the
used development method. In the following table we define the concrete agents contents and
characteristics for the development paradigm evaluation.

Software Agent Choice Adjustment Migration Efficiency
Requirement
 Workflow

Agent

kindsOfRequirements
(Process Life Cycle, Product
Functionality Metric)
kinds:‘functional’, ‘quality’,
 ‘system’ (platform: hard- and
software), ‘control’ (project
planning)

values: 0, 1, ..., 4
scaleType: ordinal
initialValue: 4
favorableValues: <3: no pro-
 ject, =3 (incl. ‘funct.’): in-
 complete, = 4: complete
service: count of kinds

valueMutations:reduction
 along the life cycle
validityConstraints: full
 functional requirements re-
 duction in the spec. phase,
 system requirement reduc-
 tion in the design phase

evaluation level:
 - monolithically,
 - differently
presentation: four
 bars with colored
 part of the requi.
 reduction

 tracesOfRequirements

(Product Reliability Metric)

traces: #requirements bet-
 ween two related phases

values: [0, 4]
scaleType: ordinal
initialValue: 1
favorableValues: 4 (ideal)
service: execute median requ.
 passing of the 4 types above

valueMutations: quotient
 should remain constant (=1)
validityConstraints: a mis-
 sing requirement indicates
 a singularity; milestones
 are the measurement points

evaluation level:
 - passing,
 - interrupting
presentation:
 colored indication,
 of the anomalies

 storageOfRequirements

(Process Maturity Metric)

storage: #requirements in
 a computational form

values: [0, 4]
scaleType: ordinal
initialValue: 1
favorableValues: 4 (ideal)
service: execute the median of the
storage requirement kinds along the
life cycle

valueMutations: can be
 changed along the life cycle
validityConstraints: the sto-
 raged requirements obtain
 along the life cycle a higher
 topological binding to the
 method components

evaluation level:
 - verbal/textual,
 - formal/analyzable
presentation: sto-
 rage attributing of
 the method com-
 ponents

Complexity
Workflow

Agent

similarityOfMethods

(Product Portability Metric,
Resource Software Replace-
ment Metric)
methods: SA, OO, Petri Nets,
 ERM, JSD etc.

values: ‘continuous’,‘similar’,
 ‘transferable’, ‘stand alone’
scaleType: ordinal
initialValue: ‘stand alone’
favorableValues: ‘similar’
service: estimate the change
to the new (OO) methodology

valueMutations: the simila-
 rity can change along the
 life cycle
validityConstraints: the esti-
 mated values are depended
 on the given tools and tech-
 niques of the new method

evaluation level:
 - approach related,
 - components rela-
 ted
presentation:
 estimation per dev-
 elopment phase

 varianceOfPlatforms

(Resource Metric)
platforms: mainframe, PC,
 WS, distributed etc.

values:‘fixed’,‘various’,‘free’
scaleType: ordinal
initialValue: ‘fixed’
favorableValues:‘free’ (ideal)
service: evaluate method dep.

valueMutations: can be
 changed along the life cycle
validityConstraints: the
 value ‘fixed’ is also ideal
 if it is given before

evaluation level:
-computer related,
-architecture related
presentation:
 appropriate

 kindsOfApplications

(Product Architecture Metric)

application: IS, Real-time etc.

values: ‘defined’, ‘free’
scaleType: ordinal
initialValue:’free’
favorableValues: ‘free’
service:evaluate method dep.

valueMutations: can be
 changed along the life cycle
validityConstraints:‘defined’
 can also be favorable in the
 given environment

evaluation level:
- paradigm related,
- resource related
presentation:
 appropriate

 changingOfTeams

(Resource Personnel Metric)

teams: spec., test, quality etc.

values: ‘splitting’,’indiffer-
 ently’, ‘reducing’
scaleType: ordinal
initialValue: ‘indifferently’
favorableValues: ‘reducing’
service: estimate

valueMutations: can be
 changed along the life cycle
validityConstraints:
 the final value is the maxi-
 mum of the estimation du-
 ring the life cycle

evaluation level:
 - temporary group,
 - permanent group

presentation:
 appropriate

 25

 differingOfComponents

(Process Management Metric)

components: (trademarked)
tools, (involved) standards etc.

values: 0,1,2,...,k
scaleType: ordinal
initialValue: 0
favorableValues: 0
service:evaluate method de-
pendent

valueMutations: can be
 changed along the life cycle
validityConstraints:
 the final value results from
 cumulative phases related
 values

evaluation level:
- intern implemen-
ted or planned,
- extern (impl./pl.)
presentation:
 appropriate

Component
Workflow

Agent

numberOfComponents

(Product Structure, Usability,
Efficiency Metric)
components: doc’s, charts,
code, library, repository etc.

values: 0,1,2,...,n
scaleType: ordinal
initialValue: m (from the ori-
 ginal method description)
favorableValues: m
service: count of components

 numberOfCharts
(Product Architecture, Com-
plexity Metric)
charts: ERM, Petri Nets,
 State Trans., DFD etc.

values: 0,1,2,...,n
scaleType: ordinal
initialValue: m (see above)
favorableValues: m
service: count of charts

 valueMutations: may be
 changed from one deve-
 lopment phase to another

 evaluation level:
 - opposite com-
 ponents,
 - similar com-
 ponents

 numberOfSymbols

(Resource Software Metric)

symbols: class/object icons,
 structural icons etc.

values: 0,1,2,...,n
scaleType: ordinal
initialValue: m (from the ori-
 ginal method description)
favorableValues: m
service: count of symbols

 validityConstraints: some
 of the counting compo-
 nents require a continuity
 along the development
 phases

 presentation:
 distance presen-
 tation depending
 on the similarity
during the life cycle

 numberOfRules

(Process Management Metric)

rules: statements for the de-
 finition of the components

values: 0,1,2,...,n
scaleType: ordinal
initialValue: m (see above)
favorableValues: m
service: count of rules or
 development principles

5.3 Methodology Related Evaluations

As a first application we used these agents to assess OO development methods. We have chosen seven
well-known OO development methods. The assessment includes a typical class icon from each method
to give a small impression of the features. Then we present the metrics values of the particular method.
The first assessed method is the Coad/Yourdon approach OOA [Coad 93] with the development steps
OOA,OOD, and OOP.

 class icon

 class connections
 whole-part object

gen-spec message

 n
 (underlying)
 documentation
 class name

 attributes

 services

 1 subjects

phases: OOA, OOD, OOP
steps per phase: 5 OOA, 4 (human interface, task,
 data, problem domain component) OOD, code
 frame generation
service description: verbal, state transition diagram

 quantitative method characteristics

Requirement workflow:
• kindsOfRequirements: 2 (‘functional’, ‘system’;

monolithically)
• tracesOfRequirements: PD→OOA: 0, OOA→

OOD: 2, OOD→OOP: 1; median: 1
• storageOfRequirements: median: 1 (textual)
Complexity workflow:
• similarityOfMethods: ‘stand alone’
• varianceOfPlatforms: ‘various’ (PC, Unix-WS)
• kindsOfApplications: ‘free’
• changingOfTeams: ‘indifferently’
• differingOfComponents: 2 (OS,OOP language)
Component workflow:
• numberOfComponents: 5 (doc, drawing(s),

tem-plates, critiques, code frames)
• numberOfCharts: 2 (classes, state transition

dia- gramm)
• numberOfSymbols: 7 (3 boxes, 4 connections)
• numberOfRules: 67 (principles)

The next one is the OOD method of Booch [Booch 91] with the following characteristics.

 26

 class icon
 class connections
 (uses, instantiates, inherits,
 metaclass)

 class name

 attributes

 services

 subclass

diagrams: object (symbols for main program,
 specification, subprogram, package, task and
 generic forms), state transition, system process,
 system block, timing and module

 quantitative method characteristics
Requirement workflow:
• kindsOfRequirements: 2 (‘functional’, ‘system’;

monolithically)
• tracesOfRequirements: PD→OOA: 0, OOA→

OOD: 2, OOD→OOP: 1; median: 1
• storageOfRequirements: median: 1 (textual)
Complexity workflow:
• similarityOfMethods: ‘similar’ to modul

concept
• varianceOfPlatforms: ‘various’
• kindsOfApplications: ‘free’
• changingOfTeams: ‘indifferently’
• differingOfComponents: 2 (OS, OOP language)
Component workflow:
• numberOfComponents: 3 (doc.,chart(s), code)
• numberOfCharts: 6
• numberOfSymbols: 30 (13 boxes, 17 connec-

tions)
• numberOfRules: 4 (general activity

descriptions)

The approach from Robinson et al [Robinson 92] is defined as hierarchical object-oriented design
(HOOD). An assessment of this method is given in following.

 class icon

 class (hierarchy) connection

 kind class name
 meassage
connection service

 sublass formal parameters

class diagram as: class hierarchy (HDT), class
intern structure and class refinement

kernel: program design language (PDL)

software requirement document (SRD) for functio-
nal consistency (relational table: requirement to
object)

 quantitative method characteristics

Requirement workflow:
• kindsOfRequirements: 2 (‘functional’, ‘system’;

monolithically)
• tracesOfRequirements: PD→OOA: 0, OOA→

OOD: 2, OOD→OOP: 2; median: 1.3
• storageOfRequirements: median: 1.3 (SRD,

analyzable)
Complexity workflow:
• similarityOfMethods: ‘stand alone’
• varianceOfPlatforms: ‘fixed’ (Ada related)
• kindsOfApplications: ‘free’
• changingOfTeams: ‘indifferently’
• differingOfComponents: 2 (OS, Ada)
Component workflow:
• numberOfComponents: 6 (SRD, doc., class dia-

gram(s), design tree, PDL codes, Ada code)
• numberOfCharts: 2(object diagram, design

tree)
• numberOfSymbols: 6 (1 structured Box, 5 con-

nections)
• numberOfRules: 21 (9 general and 12 special

principles) and 54 keywords of a PDL

For the approach of Wirfs-Brock et al [Wirfs-Brock 90] - defined as responsibility-driven design
(RDD) - we obtain the following assessment.

 class icon

 subsystem

 27

 class name
 attributes

 services transaction

 class name
 attributes

 services message
 connection

 class cooperation

diagrams: class hierarchy (with the class relations:
 is-kind-of, is-analogous-to, is-part-of), class co-
 operation (with: is-part-of, has-knowledge-of, de-
 pends-upon), Venn diagram for the responsibili-
 ties
quality rules for the design: suitable number of
classes, subsystems and responsibilities
 quantitative method characteristics

Requirement workflow:
• kindsOfRequirements: 3 (‘functional’, ‘system’,

‘quality’; differently)
• tracesOfRequirements: PD→OOA: 0, OOA→

OOD: 3, OOD→OOP: 0; median: 1
• storageOfRequirements: median: 1 (textual)

Complexity workflow:
• similarityOfMethods: ‘transferable’
• varianceOfPlatforms: ‘free’
• kindsOfApplications: ‘free’
• changingOfTeams: ‘indifferently’
• differingOfComponents: 3 (OS, OOP language,

Venn diagram)

Component workflow:
• numberOfComponents: 3 (doc., chart(s), code)
• numberOfCharts: 3 (hierarchy, class, Venn)
• numberOfSymbols: 11 (6 boxes, 5 connections)
• numberOfRules: 26

The Shlaer/Mellor approach ([Shlaer 96] OOSA) is based on the idea of an object as an entity used in
the ERM paradigm.

 class icon

 entity name

diagrams: data flow diagram (DFD), entity
relation-
 ship diagram (with the typical types of relations)
 and an additional class hierarchy diagram

no restrictions for OO

 quantitative method characteristics
Requirement workflow:
• kindsOfRequirements: 2 (‘functional’,’system’;
monolithically)
• tracesOfRequirements: PD→OOA: 2, OOA→

OOD: 2, OOD→OOP: 0: median: 1.3
• storageOfRequirements: median: 1 (textual)
Complexity workflow:
• similarityOfMethods: ‘continuous’
• varianceOfPlatforms: ‘various’
• kindsOfApplications: ‘defined’ (data base)
• changingOfTeams: ‘splitting’
• differingOfComponents: 3 (OS, programming

language, SA technique)
Component workflow:
• numberOfComponents: 3

(doc.,diagram(s),code)
• numberOfCharts: 3 (hierarchy, ER, DFD)
• numberOfSymbols: 13 (2 boxes, 11

connections)
• numberOfRules: 28

The Jacobson approach OOSE [Jacobson 92] defines several types of simple classes. The assessment
of this method is given in following.
 class icon symbols for the object diagram:
 functional represen- class name
 tation:
 object
 variables values
 use case

 28

 interface object
 operations implementation
 use relations

 control object

kinds of models: requirements, analysis, design, diagrams: use cases, object, interaction,
 implementation, test design, state transition diagram

 quantitative method characteristics

Requirement workflow:
• kindsOfRequirements: 3 (as use cases, without

‘control’; differently)
• tracesOfRequirements: PD→OOA: 3, OOA→

OOD: 3, OOD→OOP: 3; median: 3
• storageOfRequirements: median: 3 (textual)
Complexity workflow:
• similarityOfMethods: ‘transferable’
• varianceOfPlatforms: ‘various’
• kindsOfApplications: ‘free’
• changingOfTeams: ‘indifferently’

• differingOfComponents: 3 (OS, OOP language,
state transition diagram (SDL))

Component workflow:
• numberOfComponents: 5 (models)
• numberOfCharts: 5 (diagrams)
• numberOfSymbols:26 (18 boxes, 1 symbol, 7

connections)
• numberOfRules: implicite description

Last but not least, the representation used in the OMT approach by Rumbaugh et al [Rumbaugh 91] is
similar to the representation of the Coad/Yourdon approach. The method assessment is given in
following.

 class icon

 inherited associated

 class name

 attributes

 services

 aggre- ordered
 gation
 overlapping
 inheritance

diagrams: class diagram (including the ERM faci-
 lities), state transition diagram, data flow
 diagram

 quantitative method characteristics

Requirement workflow:
• kindsOfRequirements: 2 (‘functional’,’system’;

monolithically)
• tracesOfRequirements: PD→OOA: 2, OOA→

OOD: 2, OOD→OOP: 2; median: 2
• storageOfRequirements: median: 2 (textual)

Complexity workflow:
• similarityOfMethods: ‘similar’
• varianceOfPlatforms: ‘various’
• kindsOfApplications: ‘free’
• changingOfTeams: ‘indifferently’
• differingOfComponents: 3 (OS, OOP language,

SA methodology)

Component workflow:
• numberOfComponents: 3 (doc, model(s), code)
• numberOfCharts: 3 (object, dynamic, functio-

nal)
• numberOfSymbols: 19 (8 boxes, 11 connec-

tions)
• numberOfRules: 59

Of course, the evaluation is subject to refinement and therefore open for discussion. The following
charts provide a summarization of these evaluations to compare the chosen OO development methods.

 29

Note, that this evaluation is only an assessment, useful as start point of the use of software quality
agents. The ‘•‘ marked points denote the ‘ideal’ values of the given aspects.

The outer circle in the following chart describes the method related ‘ideal’ values of the software
development complexity aspect.

The quantitative evaluations of the method components are put together in the next chart.

 30

Component workflow

#c
om

po
ne

nt
s

0

10

20

30

40

50

60

70

components charts symbols rules

67

7

2
5 4

30

3
6

2
6

21

6

26

33

11

33

13

28

20

26

55

19

33

59

OOA

OOD

HOOD

RDD

OOSA

OOSE

OMT

The empirical evaluation of the component workflow values depends on the (psychological) experience
in the software development in general (usually presented in simple rules like: a maximum number of
three levels or parts, not more than seven elements etc.).
5.4 Evaluation of Further OO Techniques

The first evaluated OO technique are the Design Patterns [Gamma 95]. The essential objective of this
technique is to improve the software design and implementation by formalizing the experience of OO
applications in the abstract notion of patterns. The improvement aspects are

• reducing of product architecture components (by means of standardization),

• increasing the process efficiency in the life cycle,

• using experience for a better process maturity,

• decreasing the structural complexity in the software design,

• increasing of the resource personnel productivity in general.

The following table describes the defined patterns with their design aspects and their characteristics that
can vary (in parentheses).

Scope Creational Purpose Structural Purpose Behavioral Purpose
Class Factory Method (subclass of

object that is instantiated)
Adapter (class) (interface to
an object)

Interpreter (grammar and
interpretation of a language)

 Template Method (steps of
an algorithm)

Object Abstract Factory (families
of product objects)

Adapter (object) (interface
to an object)

Chain of Responsibility
(object that can fulfill a
request)

 Builder (how a composite
object gets created)

Bridge (implementation of
an object)

Command (when and how a
request is fulfilled)

 Prototype (class of object
that is instantiated)

Composite (structure and
composition of an object)

Iterator (how an aggregate’s
elements are accessed,

 31

that is instantiated) composition of an object) elements are accessed,
traversed)

 Singleton (the sole instance
of a class)

Decorator (responsibilities
of an object without sub-
classing)

Mediator (how and which
objects interact with each
other)

 Facade (interface to a sub-
system)

Memento (what private
information is stored outside
an object, and when)

 Flyweight (storage costs of
objects)

Observer (number of objects
that depend on another
object; how the dependent
objects stay up to date)

 Proxy (how an object is
accessed; its location)

State (states of an object)

 Strategy (an algorithm)

 Visitor (operations that can
be applied to object(s) with-
out changing their class(es))

On the other hand, these patterns are related among themselves in their application in an OO software
system. The following chart gives an overview of these relationships.

 32

The application of our method evaluation is described in a short form in the following

• design patterns are a typical approach of solution by example,

• the application of design patterns follows the TQM idea in a constructive manner (in order

to reduce the analysis/evaluation effort, to keep quality),

• the influence of this approach to our software agents are the followings

∗ the kindsOfRequirements are extended by the implicit keeping of special quality
aspects,

∗ the design pattern method is similar to the OMT (similarityOfMethods),

∗ the numberOfRules are reduced by an dominant use of these patterns.

The design patterns are mainly an architecture related approach supporting software development.

 33

The second (not only OO related) approach is the Component-Based Software Engineering (CBSE)
[Brown 96]. The basic idea is the practice of composing software by combining self developed parts
with so-called components of-the-shelf (COTS) with the permanent underlying question ‘make or buy’
of software components. The CBSE is not really an OO approach, but it involves the general idea of an
(instantiated) object. The general characteristics of the CBSE are that [Brown 96, p. 8] the components

• ‘’are ready ‘off-the-shelf’, whether from a commercial source (COTS) or re-used from
another system;

• have significant aggregate functionality and complexity;
• are self-contained and possible execute independently;
• will be used ‘as is’ rather than modified;
• must be integrated with other components to achieve required system functionality.’’

CBSE defines five types of components (with an increasing level of visibility). The following table
explains these types of components together with characteristics of related metrics [DuWi 97].

state of components characteristics for metrication
off-the-shelf components

(COTS)
unknown/undefined interface; includes
the general problem of the estimation of the
 characteristics of commercial software

qualified components
(interface defined)

interface metrics; information hiding aspects

adapted components
(known interface; flexible adaptation (e. g.

with mediator, translator etc.))

metrics for standardization of classes; metrics
for interoperability; simple kinds of
architecture metrics

assembled components
(possibility of integration in a

given architecture)

‘full’ use of architecture metrics; quantifi-
cation of the general infrastructure (opera-
ting system, data base system etc.)

updated components
(adaptation to given infrastructure)

metrication of the infrastructure (architec-
ture, platforms, methods, enterprise goals,
‘peopleware’, environments etc.)

In relation to our software agents we can establish the following influences and evaluation aspects

• the use of components keep the application of all kindsOfRequirements for a chosen
functionality, but provide no insight into quality and maintenance (as control aspect of the
requirements),

• the tracesOfRequirements and the storagesOfRequirement in the CBSE include uncertain

evaluation partitions,

• the similarityOfMethods depends on the kind of the component design (see the variants of

components in the table above),

• the differingOfComponents is the most significant effect in the CBSE and a special form

of increasing the software development complexity,

• besides this, the CBSE does not produce a considerably different evaluation.

The CBSE is a typical software architecture related approach. The objective is to clarify the benefits
and the risks of the use of existing software products.

 34

The third approach is the Common Object Request Broker (CORBA) [OMG 95] from the Object
Management Group (OMG). This approach supports the implementation of distributed systems and is a
kind of so-called Middleware. The general overview about the CORBA elements is shown in the
following chart of Brown [Brown 96a].

The acronyms are: PCTE (Portable Common Tool Environment; an object management mechanism),
OLE (Microsoft’s Object Linking and Embedding), OMA (Object Management Architecture), DCE
(Distributed Computing Environment of the Open Systems Foundation Group (OSF)), RPC (Sun’s
Remote Procedure Call), and ToolTalk (a communication mechanism). The main component OMA
includes

• the Applications Objects: these object are specific and not subject of standardization by the
OMG,

• the Common Facilities: these facilities are objects that provide useful but less widely-used

functionality, e. g. electronic mail, naming service, copy and delete of objects etc.,

 35

• the Common Object Services (COS): these services are widely applicable services, e. g.,
transactions, event management, general supports, printer service, security and safety
service, and persistence and

• the Object Request Broker (ORB) for communication between the components above.

The communication between these components is realized with the middleware CORBA among the
Object Request Broker that is responsible for all the mechanisms required to find the object
implementation for a (client) request. Supports of the ORB are

• the Interface Definition Language (IDL) for the definition of the server operations that
generate the so-called IDL-stub (including access routines), the interface repository
(provides persistent objects in a form available at runtime), the IDL skeleton (including
language mapping) and the implementation repository (contains information that allows the
ORB to locate and activate implementations of objects),

• the inter-ORB protocols for the interoperability (including the Internet and general

gateways),

• the language mapping facilities (especially for supporting C, C++, and Smalltalk),

• the integration facilities as Basic Object Adapter (BOA) for object embedding and the

Object Database Adapter (ODA) for data base embedding.

According to our methodology evaluation, we can establish the following effects of the CORBA
approach:

• the general evaluation is similar to the CBSE (see above), because CORBA can be
considered as a special kind of component-based development (chosen functionality as
kindsOfRequirements; some uncertainties in relation to the tracesOfRequirements and
storagesOfRequirements; the similarityOfMethods is given by a language-oriented
interface definition form (IDL) to the general PDL paradigms),

• on the other hand, we can establish a similarity to the design patterns as standardization of

(here distributed) system functionalities and we can assume a continuity of some
implemented qualities,

• the kindsOfApplications are reduced, but we can see an increasing of the

differingOfComponents,

• the numberOfComponents are increased, because CORBA is a middleware that requires

an additional methodology for software production.

Note, that CORBA is also an architecture related approach to implement distributed and heterogeneous
systems.

 36

The fourth considered approach is the Unified Modeling Language (UML) [UML 97] [UML 97a].
The development of UML began in October 1994 and is an unification of the Booch’s OOD, the OMT,
and the Jacobson’s OOSE method. The method goals are

• to model systems (and not just software) using object-oriented concepts,
• to establish an explicit coupling to conceptual as well as executable artifacts,
• to address the issues of scale inherent in complex, mission-critical systems,
• to create a modeling language usable by both humans and machines.

The UML defines eight types of diagrams: the use case diagram, the class diagram, the behavior
diagrams (state diagram, activity diagram, sequence diagram, and collaboration diagram), the
implementation diagrams (component diagram and deployment diagram).

separates File!

 37

UML is a visual modeling language not a programming language and is based on the diagrams above
and a semantic definition [UML 97a]. For special constraints in UML can be used an Object Constraint
Language (OCL) specification form.

The UML methodology is a good example of an evaluation process in the three steps as (a) the separate
evaluation of the three source methods, (b) a methods evaluation summary, and (c) a (separate) UML
evaluation. The evaluation of the UML is given in the following

Requirement workflow:
• kindsOfRequirements: 3 (‘functional’, ‘system’, ‘quality’; differently)
• tracesOfRequirements: PD→OOA: 3, OOA→ OOD: 3, OOD→OOP: 3;

median: 3
• storageOfRequirements: median: 3 (textual)

Complexity workflow:

• similarityOfMethods: ‘similar’
• varianceOfPlatforms: ‘various’
• kindsOfApplications: ‘free’
• changingOfTeams: ‘indifferently’
• differingOfComponents: 4 (OS,OOP language, two other methods)

Component workflow:

• numberOfComponents: 4 (models, diagrams, language, code frames)
• numberOfCharts: 8
• numberOfSymbols: 35 (18 boxes, 17 connections)
• numberOfRules: implicit principles

The following table shows a simplified overview of these evaluations.

metric OOD OOSE OMT ∅ (min) ∅ (max) UML
 Requirement workflow
kindsOfRequ. 2 3 2 2 3 3
tracesOfRequ. 1 3 2 1 3 3
storagesOfRequ. 1 3 2 1 3 3
 Complexity workflow
similarityOfMeth. similar transferable similar transferable similar similar
varianceOfPlatf. various various various various various various
kindsOfApplic. free free free free free free
changingOfTeams indifferently indifferently indifferentl

y
indiff. Indiff. indiff.

differingOfComp. 2 3 3 3 2 4
 Component workflow ∅ (no min, no max)
numberOfComp. 3 5 3 4 4
numberOfCharts 6 5 3 4 8
numberOfSymbols 30 26 19 25 35
numberOfRules 4 ca. 20 59 28 implicit

Note, that the average of ‘min’ and ‘max’ is related to the ‘weakest’ and ‘best’ in the ordinal manner.
On the other hand, there is only few experience with the UML in practice.

 38

6 Conclusions

Every company must perform the decision about the use of new software development methods.
However, we can establish the following situation about software development methodologies:

1. the description of a new development method of a method/tool distributor includes all
(possible) benefits of this method and starts in general with a lack of tool supporting, no
support for paradigm changing, and with a lot of ‘motivation’ for a maximal spread in the
marketing;

2. the description of a development method in the literature according to the comparison of

different (OO) methods usually includes a comparison of the features and does not address
maintenance, porting, and quality issues.

Our paper includes a first analysis of the following software process evaluation aspects and
characteristics:

• the aspects and approaches of software measurement in general,

• the short description of the current situation in the object-oriented software metrics

research area,

• the definition of a software measurement framework that is opposite to the general TQM

approach and is based on the idea of intelligent/mobile agents in computer networks,

• the first application of this framework to evaluate OO software development methods,

especially with respect to the requirements, the so-called software development complexity,
and the counting of the methods symbols, charts etc.

In this manner we can define in a first approximation the ‘ideal’ development method with the following
characteristics

• a consideration of all requirements (especially the ability to store and trace);

• a low software development complexity with a similarity of the method (e. g. with

migration supports from the old method to the new one), with a minimum of platform
changing (e. g. with support for the portability), with no restrictions to the application area,
with clear statements to the necessary team set and structure, and with a clear description
of the external components required;

• a counting of the different components of a method for a characterization of their usability

(the empirical evaluations are still necessary).

In our evaluation process, we have also seen one typical effect in the software measurement: the
realization of the measurement starts with the definition of the measured components and leads to a
clear understanding of the considered area that should be a necessary premises.

Further investigations are directed on the implementation of really workflow agents in a Java- oriented
software development environment.

 39

7 References

[Abreu 94] Abreu, F.B.; Carapuca, R.: Candidate Metrics for Object-Oriented Software within a Taxonomy

Framework. Journal of Systems and Software, 26(1994), pp. 87-96
[Abreu 95] Abreu, F. B.; Goulao, M; Esteves, R.: Toward the Design Quality Evaluation of Object-Oriented

Software Systems. Proc. of the Fifth International Conference on Software Quality, Austin, October
23-25, 1995, pp. 44-57

[Abreu 96] Abreu, F. B.; Melo, W.: Evaluating the Impact of Object-Oriented Design on Software Quality.
Proc. of the Third International Software Metrics Symposium, March 25-26, Berlin, 1996, pp. 90-99

[Appleby 94] Appleby, S.; Steward, S.: Mobile software agents for control in telecommunications networks. BT
Technl. Journal, 12(1994)2, pp. 25-34

[Arora 95] Arora, V. et al.: Measuring High-Level Design Complexity of Real-Time Objet-Oriented Systems.
Proc. of the Annual Oregon Workshop on Software Metrics, June 5-7, 1995, pp. 2/2-1 - 2/2-11

[Barnes 93] Barnes, G.M.; Swi, B.R.: Inheriting software metrics. JOOP, Nov./Dec. 1993, pp. 27-34
[Bieman 94] Bieman, J.M.; Ott, L.M.: Measuring Functional Cohesion. IEEE Transactions on Software

Engineering, 20(1994)8, pp. 644-657
[Bieman 95] Bieman, J.M.; Zhao, J.X.: Reuse Through Inheritance: A Quantitative Study of C++ Software.

Software Engineering Notes, August 1995, pp. 47-52
[Binder 94] Binder, R.V.: Design for Testability in Object-Oriented Systems. Comm. of the ACM, 37(1994)9,

pp. 87-101
[Booch 91] Booch, G.: Object Oriented Design. The Benjamin/Cummings Publ., 1991
[Brown 96] Brown, A.W.: Component-Based Software Engineering. IEEE Computer Society, 1996
[Brown 96a] Brown, A.W.; Wallnau, K.C.: A Framework for Evaluating Software Technology. IEEE Soft-

ware,September 1996, pp. 29-49
[Brown 96b] Brown, A.W.; Wallnau, K.C.: A Framework for Systematic Evaluation of Software Technologies.

in: Brown, A.W.: Component-Based Software Engineering, IEEE Computer Society Press, 1996, pp.
27-40

[Cant 94] Cant, S.N.; Henderson-Sellers, B.; Jeffery, D.R.: Application of cognitive complexity metrics to
object-oriented programs. Journal of Object-Oriented Programming, July-August 1994, pp. 52-63

[Chen 93] Chen, J.Y.; Lu, J.F.: A new metric for object-oriented design. Information and Software Technology,
35(1993)4, pp. 232-240

[Chidamber 97] Chidamber, S.R.; Darcy, D.P.; Kemerer, C.F.: Managerial Use of Object Oriented Software
Metrics. University of Pittsburgh, Graduate School of Business, Working Paper Series #750

[Chidamber 94] Chidamber, S.R.; Kemerer, C.F.: A Metrics Suite for Object-Oriented Design. IEEE
Transactions on Software Engineering, 20(1994)6, pp. 476-493

[Chung 95] Chung, C. et al.: A Metric of Inheritance Hierarchy for Object-Oriented Software Complexity.
Proc. of the Fifth Int. Conf. on Software Quality, October 23-26, Austin, 1995, pp. 255-266

[Chung 94] Chung, C.M.; Lee, M.C.: Object-Oriented Programming Testing Methodology. Int. Journal of
Mini and Microcomputers, 16(1994)2, pp. 73-81

[Churcher 95] Churcher, N.I.; Shepperd, M.J.: Towards a Conceptual Framework for Object-Oriented
Software Metrics. Software Engineering Notes, 20(1995)2, pp. 68-75

[Coad 93] Coad, P,; Nicola, J.: Object-Oriented Programming. Prentice-Hall Inc., 1993
[Dumke 96] Dumke, R.: CAME Tools - Lessons Learned. Proc. of the Fourth International Symposium on

Assessment of Software Tools, May 22-24, Toronto, 1996, pp. 113-114
[Dumke 95] Dumke, R.: Software Quality Measurement in Object-Oriented Software Development. in:

Muellerburg/Abran: Metrics in Software Evolution, Oldenbourg Publ. Germany, 1995, pp. 179-199
[DFKW 96] Dumke, R.; Foltin, E.; Koeppe, R.; Winkler, A.: Measurement-Based Object-Oriented Software

Development of the Software Project ‘’Software Measurement Laboratory’’. Preprint Nr. 6, 1996,
University of Magdeburg (40 p.)

[DFKW 96a] Dumke, R.; Foltin, E.; Koeppe, R.; Winkler, A.: Softwarequalität durch Meßtools. Vieweg Publ.,
1996

[DuFW 95] Dumke, R.; Foltin, E.; Winkler, A.: Measurement-Based Quality Assurance in Object-Oriented
Software Development. Proc of the ECOOP’95, Dublin, 1995, pp. 315-319

[Dumke 94] Dumke, R.; Kuhrau, I.: Tool-Based Quality Management in Object-Oriented Software
Development. Proc. of the Third Symposium on Assessment of Quality Software Development Tools,
Washington D.C., June 7-9, 1994, pp. 148-160

[DuWi 97] Dumke, R.; Winkler, A.: Management of the Component-Based Software Engineering with Metrics.
Fifth Int. Symposium on Assessment of Software Tools, Pittsburgh, June 2-5, 1997, pp. 104-110

 40

[DuWi 96] Dumke, R.; Winkler, A.: Object-Oriented Software Measurement in an OOSE Paradigm. Proc. of
the Spring IFPUG’96, February 7-9, Rome, Italy, 1996

[DuZu 94] Dumke, R.; Zuse, H.: Software Metrics in Object-Oriented Software Development. (German) in:
Lehner: Die Wartung von Wissensbasierten Systemen. Haensel Publ., Germany, 1994, pp. 58-96

[Dvorak 94] Dvorak, J.: Conceptual Entropy and its Effect on Class Hierarchy. IEEE Computer, June 1994,
pp. 59-63

[Ebert 93] Ebert, C.: Complexity Traces - An Instrument for Software Project Management. Proc. of the 10th
Annual Conf. on Application of Software Metrics and Quality Assurance in Industry, Amsterdam,
1993, Chapter 17 (13 p.)

[EbDu 96] Ebert, C.; Dumke, R.: Software-Metriken in der Praxis. Springer Publ., 1996
[Embley 95] Embley, D.W.; Jackson, R.B.; Woodfield, S.N.: OO Systems Analysis: Is It or Isn’t It? IEEE

Software, July 1995, pp. 19-33
[Fenton 97] Fenton, N.; Plfeeger, S.: Software Metrics - A rigorous & practice approach. Chapman & Hall

Publ., 1997
Fetcke, T.: Software Metrics in Object-Oriented Programming. (German) Diploma Thesis, GMD Bonn/TU

Berlin, 1995
[Fix 96] Fix, A.: Conception and Implementation of a Measurement Data Base for Distributed Use. Diploma

Thesis, University of Magdeburg, July 1996
[Foltin 95] Foltin, E.: Implementation of a problem definition measurement tool PDM. Technical Report,

University Magdeburg, 1995
[Gamma 95] Gamma, E. et al.: Design Patterns. Addison-Wesley Publ., 1995
[Han 94] Han, K.J.; Yoon, J.M.; Kim, J.A.; Lee, K.W.: Quality Assessment Criteria in C++ Classes.

Microelectron. Reliability, 34(1994)2, pp. 361-368
[Harrison 96] Harrison, R.; Samaraweera, M.R.; Lewis, P.M.: Comparing programming paradigms: an

evaluation of functional and object-oriented programs. Software Engineering Journal, 11(1996)4,
pp. 247-254

[Heckendorff 96] Heckendorff, R.: Design and Implementation of a Smalltalk Measurement Extension.
Diploma Thesis, University of Magdeburg, 1996

[Henderson 96] Henderson-Sellers, B.: Object-Oriented Metrics - Measures of Complexity. Prentice Hall Inc.,
1996

[Hitz 95] Hitz, M.; Montazeri, B.: Measuring Product Attributes of Object-Oriented Systems. Proc. of the
ESEC’95, Sitges, Spain, 1995, pp. 124-136

[EEE 93] IEEE Standard for a Software Quality Metrics Methodology. IEEE Publisher, March 1993
[ISO9126 91] ISO/IEC 9126 Standard for Information Technology, Software Product Evaluation - Quality

Characteristics and Guidelines for their Use. Geneve 1991
[Jacobson 95] Jacobson, I.: A confused world of OOA and OOD. JOOP, September 1995, pp. 15-20
[Jacobson 92] Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley Publ., 1992
[Jones 94] Jones, C.: Gaps in the object-oriented paradigm. IEEE Computer, June 1994, pp. 90-91
[John 95] John, R.; Chen, Z.; Oman, P.: Static Techniques for Measuring Code Reusability. Proc. of the

Annual Oregon Workshop on Software Metrics, June 5-7, 1995, pp. 3/2-1 - 3/2-26
[Kaschek 96] Kaschek, R.; Mayr, H.C.: A Characterization of OOA Tools. Proc. of the Fourth International

Symposium on Assessment of Software Tools, May 22-24, Toronto, 1996, pp. 59-67
[Khan 95] Khan, E.H.; Al-Aali, M.; Girgis, M.R.: Object-Oriented Programming for Structured Procedure

Programmers. IEEE Computer, October 1995, pp. 48-57
[Khoshgoftaar 94] Khoshgoftaar, T.M.; Szabo, R.M.: ARIMA models of software system quality. Proc. of the

Annual Oregon Workshop on Software Metrics, April 10-12, 1994, Oregon
[Kitchenham 89] Kitchenham, B. A.; Walker, J.G.: A quantitative approach to monitoring software

development. Software Engineering Journal, January 1989, pp. 2-13
[Kompf 96] Kompf, G.: Conception and Implementation of a Prolog Measurement and Evaluation

Tool.(German) Diploma Thesis, University of Magdeburg, July 1996
[Kuhrau 94] Kuhrau, I.: Design and Implementation of a C++ Measurement Tool. Diploma Thesis, University

of Magdeburg, March 1994
[Kung 95] Kung, D.C. et al: Class firewall, test order, and regression testing of object-oriented programs.

JOOP, May 1995, pp. 65
[Kurananithi 93] Kurananithi, S.; Bieman, J.M.: Candidate Reuse Metrics for Object-Oriented and Ada

Software. Proc. of the First Int. Metrics Symposium, May 21-22, Baltimore, 1993, pp. 120-128
[Lake 92] Lake, A.; Cook, C.: A Software Complexity Metric for C++. Proc. of the Fourth Annual Workshop

on Software Metrics. Oregon, March 22-24 1992, 15 p.

 41

[LaLonde 94] LaLonde, W.; Pugh, J.: Gathering metric information using metalevel facilities. JOOP, March/
April, 1994, pp. 33-37

[Lee 95] Lee, Y.; Liang, B.; Wu, S.; Wang, F.: Measuring the Coupling and Cohesion of an Object-Oriented
Program Based on Information Flow. Proc. of the ICSQ’95, Slovenia, pp. 81-90

[Lee 94] Lee, A.; Pennington, N.: The effects of paradigm on cognitive activities in design. Int. Journal of
Human-Computer Studies, (1994)40, pp. 577-601

[Lejter 92] Lejter, M.; Meyers, S.; Reiss, S.P.: Support for Maintaining Object-Oriented Programs. IEEE
Transactions on Software Engineering, 18(1992), pp. 1045-1052

[Li 93] Li, W.; Henry, S.: Maintenance Metrics for the Object-Oriented Paradigm. Proc. of the First Int.
Software Metrics Symposium, May 21-22, Baltimore 1993, pp. 52-60

[Li 95] Li, W.; Henry, S.; Kafura, D.; Schulman, R.: Measuring object-oriented design. JOOP, July-August
1995, pp. 48-55

[Lorenz 94] Lorenz, M.; Kidd, J.: Object-Oriented Software Metrics. Prentice Hall Inc., 1994
[Lubahn 96] Lubahn, D.: The Conception and Implementation of an C++ Measurement Tool.(German)

Diploma Thesis, University of Magdeburg, March 1996
[Lubahn 94] Lubahn, D.: The OOC tool description. Technical Report, University of Magdeburg, 1994
[Marciniak 94] Marciniak, J.J.: Encyclopedia of Software Engineering. Vol. I and II, John Wiley & Sons, 1994
[Moser 96] Moser, S.; Nierstrasz, O.: The Effect of Object-Oriented Frameworks on Developer Productivity.

IEEE Computer, September 1996, pp. 45-51
[OMG 95] The Common Object Request Broker: Architecture and Specification. Revision 2.0, Mass., July

1995
[Pant 96] Pant, Y.; Henderson-Sellers, B.; Verner, J.M.: Generalization of Object-Oriented Components for

Reuse: Measurement of Effort and Size Change. JOOP, May 1996, pp. 19-31
[Papritz 93] Papritz, T.: Implementation of an OOM tool for the OOA model measurement. (German)

Technical Report, TU Magdeburg, July 1993
[Patett 97] Patett, I.: Implementation of a JAVA metrics tool. (German) Diploma Thesis, University of

Magdeburg, 1997
[Pfleeger 97] Pfleeger, S.L.; Jeffery, R.; Curtis, B.; Kitchenham, B.: Status Report on Software Measurement.

IEEE Software, March/April 1997, pp. 33-43
[Robinson 92] Robinson, P.J.: Hierarchical Object-Oriented Design. Prentice Hall Inc., 1992
[Rocache 89] Rocache, D.: Smalltalk Measure Analysis Manual. ESPRIT Project 1257, CRIL, Rennes, France,

1989
[Rumbaugh 91] Rumbaugh, J. et al.: Object-Oriented Modeling and Design. Prentice Hall Publ., 1991
[Sharble 93] Sharble, R.C.; Cohen, S.S.: The Object-Oriented Brewery: A Comparison of Two Object-Oriented

Development Methods.Software Engineering Notes, 18(1993)2, pp. 60-73
[Shet 97] Shet, A. et al.: Report from the NSF Workshop on Workflow and Process Automation in Information

Systems. Software Engineering Notes, 22(1997)1, pp. 28-38
[Shlaer 96] Shlaer, S.; Mellor, S.J.: Objektorientierte Systemanalyse. Hanser Publ., 1996 (Original: 1988)
[Tepfenhart 97] Tepfenhart, W.M.; Cusick, J.J.: A Unified Object Topology. IEEE Software, January 1997, pp.

31-35
[UML 97] Unified Modeling Language - Summary. version 1.0.1, Santa Clara, USA, March 1997
[UML 97a] Unified Modeling Language - Glossary & Notation Guide. version 1.0, Santa Clara, January 1997
[Wasserman 88] Wasserman, A.I.: Tool Integration in Software Engineering. Lecture Notes in Computer

Science, Volume 467, 1988, pp. 137-149
[Welch 96] Welch, L.R.; Lankala, M.; Farr, W; Hammer, D.K.: Metrics for quality and concurrency in object-

based systems. Annals on Software Engineering, 2(1996), pp. 93-119
[Wilde 92] Wilde, N.; Huitt, R.: Maintenance Support for Object-Oriented Programs. IEEE Transactions on

Software Engineering, 18(1992), pp. 1038-1044
[Wirfs-Brock 90] Wirfs-Brock, R.; Wilkerson, B.; Wiener, L.: Object-Oriented Design. Englewood Cliffs Publ.

1990
[Zuse 94] Zuse, H.: Foundations of the Validation of Object-Oriented Software Measures. in: Dumke/Zuse:

Theory and Practice of Software Measurement (German). DU-Publ., 1994, pp. 136-214
[Zuse 97] Zuse, H.: The Software Measurement Framework. to be published

8 Glossary

AC Attribute Complexity:
 sum of the attribute values of a class;
 based on the evaluation: Boolean

 or integer (0), char (1), real (2),
 array (3-4), pointer (5), record,
 struct (6-9), file (10)

 42

ADI Attribute Definition Indicator
AHF Attribute Hiding Factor:
 sum of all visible/usable attributes of all

classes divided by all attributes of all
classes

AIF Attribute Inheritance Factor:
 sum of all inherited attributes in all classes
AII Attribute Implementation Indicator
AMI Attribute Modification Indicator
BOA Basic Object Adapter
CAME Measurement Choice, Adjustment, Migra-

tion and Efficiency
CAME Tool Computer Assisted Software
 Measurement and Evaluation Tool
CASE Computer Aided Software Engineering
CBO Coupling Between Object classes:
 the number of other classes to which it is

coupled
CBSE Component-Based Software Engineering
CCM Cognitive Complexity Model:
 sum of chunk understanding, complexity
 and difficulty of tracing
CDBC Change Dependency Between Classes:
 the potential amount of follow-up work
 to be done when a server class is being
 modified
CDI Class Definition Indicator
CFW Class FireWall: the set of classes that could
 be affected bay changes to a special class;
 the test order is the topological sorting of
 the CFW graph including the dependence
 relation
CH Computing Cohesion
CII Class Implementation Indicator
CLOS Common LISP Object System
CMI Class Modification Indicator
COF Coupling Factor:
 maximum possible number of couplings

in all classes
CORBA Common Object Request Broker Archi-

tecture
COS Comon Object Services
COTS Components Off-The-Shelf
CPD Classes Per Developer
DAC number of ADTs defined in a class
DCE Distributed Computing Environment
DIT Depth of Inheritance Tree:
 the maximum length from the node to the
 root of the tree
GR Generic Reuse: reuse by generic functions/

macros
HOOD Hierarchical Object-Oriented Design
HTML Hypertext Markup Language
ICH I-based cohesion:
 information flow-based, message
 argument related, internal count
ICP I-based coupling:
 information flow-based, message
 function related, external count

IDL Interface Definition Language
KE number of Known Errors
LCOM Lack of Cohesion in Methods:
 the set of instance variables used by the

method
LD Locality of Data:
 the sum of the non-public and inherited
 protected instance variables divided by
 the sum all variables of a class
LR Leveraged Reuse: reuse by method inheri-

tance
MHF Method Hiding Factor:
 sum of all visible/callable methods of all

methods divided by the number of all
methods of all classes

MIF Method Inheritance Factor:
 sum of all inherited methods in all classes
MPC Message Passing Coupling:
 number of send-statements defined
 in a class
MR number of modifications requested
NCM Number of Class Methods
NCV Number of Class Variables
NIM Number of Instance Methods
NIV Number of Instance Variables
NKC Number of Key Classes
NMA Number of Methods Added
NMI Number of Methods Inherited
NMO Number of Methods Overridden
NOC Number Of Children:
 the number of immediate subclasses
NOM Number Of Methods
NOS Number Of Subsystems
NOT Number of Tramps:
 number of extraneous (not referred to
 by the method body) parameters
NSC Number of Support Classes
NSS Number of Scenario Scripts
OC Operation Complexity:
 sum of the method values for a class
 based on the empirical evaluation as
 null (0), very low (1-10), low (11-20),
 nominal (21-40), high (41-60), very
 high (61-80), extra high (81-100)
OCL Object Constraint Language
ODA Object Database Adapter
OLE Object Linking and Embedding
OMA Object Management Architecture
OMG Object Management Group
OMT Object Modeling Technique
OO object-oriented
OOA Object-Oriented Analysis
OOC Object-Oriented classes Comparison
OOCM Object-Oriented Conceptual Modeling is

based on entropy measures for the OOA
relating to class hierarchy as specificity
(class refinement), as (semantically)
consistency and (semantically) distance

OOD Object-Oriented Design

 43

OOP Object-Oriented Programming
OORA Object-Oriented Requirements Analysis
OOSA Object-Oriented Systems Analysis
OOSD Objet-Oriented Software Design
OOSE Object-Oriented Software Engineering
ORB Object Request Broker
OS Operating System
OSF Open Systems Foundation
PCM Percentage of Commented Methods
PCTE Portable Common Tool Environment
PD Problem Definition
PDC Person-Days per Class
PDL Program Design Language
PDM Problem Definition Metrics Tool
PMT Prolog Metrics Tool
POF Polymorphism Factor:
 actual number of possible different poly-
 morphic situations
PRC Problem Reports per Class
RDD Responsibility-Driven Design
RFC Response For a Class:
 the response set for a class
RPC Remote Procedure Call
SC Subjective assessment of Complexity
 provided by the system developer
 in ordinal integer scale
SDI Service Definition Indicator
SFC Strong Functional Cohesion:

 the token of the data slices divided by
 all data tokens in a program
SII Service Implementation Indicator
SIZE1 number of semicolons in a class
SIZE2 number of attributes + number of local
 methods in a class
SMI Service Modification Indicator
SMLAB Software Measurement Laboratory of the

University of Magdeburg
SQA Software Quality Assurance
SRD Software Requirement Document
TKE Time to fix Known Errors in minutes
TMR Time to implement Modifications
UML Unified Modeling Language
URI Unit Repeated Inheritance:
 a set of class hierarchy regions with the
 Euler’s region number 2 for reducing
 the OO test cases
VOD Violations of the Law of Demeter:
 coupling between classes in both
 directions (as minimizing)
VR Verbatim Reuse: reuse of library compo-

nents
WAC Weighted Attributes per Class:
 number of attributes weighted by their
 size
WMC Weighted Methods per Class:
 sum of the (McCabe) complexities

