
Appeared in The Fourteenth Symposium on Operating System Principles.

The Impact of Operating System Structure
on Memory System Performance

J. Bradley Chen Brian N. Bershad
School of Computer Science Department of Computer Science
Carnegie Mellon University and Engineering

5000 Forbes Avenue University of Washington
Pittsburgh, PA 15213 Seattle, WA 98195

Abstract 1. Introduction
In this paper we quantitatively evaluate the memory

In this paper we evaluate the memory system behavior of system behavior of two different implementations of the
two distinctly different implementations of the UNIX UNIX operating system. One system, DEC’s Ultrix, has a
operating system: DEC’s Ultrix, a monolithic system, and monolithic structure. The other, Mach 3.0 with CMU’s
Mach 3.0 with CMU’s UNIX server, a microkernel-based

UNIX server [1, 21], has a microkernel structure. Bothsystem. In our evaluation we use combined system and
systems are derived from 4.2 BSD UNIX and share auser memory reference traces of thirteen industry-standard
nearly identical application programming interface, asworkloads. We show that the microkernel-based system
well as large amounts of code. We explore these twoexecutes substantially more non-idle system instructions
systems within the framework of seven popular assertionsfor an equivalent workload than the monolithic system.
about the memory reference behavior of modern operatingFurthermore, the average instruction for programs running

on Mach has a higher cost, in terms of memory cycles per systems. These assertions, listed in Table 1-1, arise from
instruction, than on Ultrix. In the context of our traces, we past experiences [16], extrapolated microbenchmarks
explore a number of popular assertions about the memory [9, 31], and extensive measurements of real systems run-
system behavior of modern operating systems, paying spe- ning real programs [3, 4, 5, 14, 15, 28, 35, 36]. Our
cial attention to the effect that Mach’s microkernel ar- evaluation relies on combined system and user memory
chitecture has on system performance. Our results indicate reference traces generated through software instrumen-
that many, but not all of the assertions are true, and that a

tation of the systems running a broad selection offew, while true, have only negligible impact on real sys-
workloads.tem performance.

Previous trace-based studies have focused on variations
in memory system structure [2, 3, 4, 10, 13, 28, 32], mul-
tiprocessors and multiprocessor workloads [35, 36], or

______________________________ subcomponents of the memory system [30]. In contrast,
our goal is to explore the impact of operating system struc-This research was sponsored in part by the Advanced Research Projects

Agency, Information Science and Technology Office, ARPA Order Nos. ture on the performance of a complete uniprocessor
7330 and 7597, the Avionics Laboratory, Wright Research and Develop- memory system. The rest of this paper is structured asment Center, Aeronautical Systems Division (AFSC), U. S. Air Force,

follows. In Section 2 we describe our trace methodologyWright-Patterson AFB, OH 45433-6543 under Contract F33615-90-
C-1465, and Digital Equipment Corporation. Bershad was partially sup- and present a broad summary of our measurements. In
ported by a National Science Foundation Presidential Young Investigator Section 3 we discuss the major differences in system be-Award.

havior and performance between Mach and Ultrix. In Sec-
The views and conclusions contained in this document are those of the tion 4 we evaluate the monolithic and microkernel im-authors and should not be interpreted as representing the official policies,

plementations in the context of the assertions in Table 1-1.either expressed or implied, of Digital Equipment Corporation or the U.S.
Government. Finally, in Section 5 we summarize our results.

2. Trace overview
We measured the behavior of Ultrix and Mach running

the thirteen industry-standard workloads described in
Table 2-2. Each program and operating system was in-
strumented with epoxie [10, 37], which is a program that
rewrites assembly code to record a complete address trace

Assertion Implication

1. The operating system has less instruction and data locality The operating system isn’t getting faster as fast as user
than user programs [14, 15]. programs.

2. System execution is more dependent on instruction A balanced cache system for user programs may not be
cache behavior than is user execution [35]. balanced for the system.

3. Collisions between user and system references lead to A split user/system cache could improve performance.
significant performance degradation in the memory
system (cache and TLB) [30, 35, 36].

4. Self-interference is a problem in system instruction Increased cache associativity and/or the use of
reference streams [28, 35]. text placement tools could improve performance.

5. System block memory operations are responsible Programs that incur many block memory operations will
for a large percentage of memory system reference run more slowly than expected.
costs [31, 35].

6. Write buffers are less effective for system (as A write buffer adequate for user code may not be
opposed to user) reference streams [5, 18]. adequate for system code.

7. Virtual page mapping strategies can have Systems should support a flexible page mapping interface,
significant impact on cache performance [25, 29]. and should avoid default strategies that are prone to

pathological behavior.

Table 1-1: Seven assertions about the memory behavior of operating systems.

of instruction and memory references. Traces are ac- There are two main reasons for simulating the memory
curately interleaved both within a single context and system from the DS5000/200. First, the DS5000/200
across user and system contexts. Traced addresses are memory system is fairly conventional, with no unusual
corrected to reflect those of the original and not the traced properties such as an extremely small TLB, virtually in-
instruction stream. The same traced binaries are run on dexed cache, or untagged cache or TLB, that would reduce
both Ultrix and Mach. the generality of our results. Second, Mach 3.0 and Ultrix

both run on the DS5000/200, allowing us to verify ourWe collected our traces on a DECstation 5000/200
simulation results against observed system behavior [11].1system, running Ultrix and Mach 3.0 with CMU’s UNIX

2server. We ran the programs one at a time in single-user
The two operating systemsmode. The only activity was due to the program itself, the

Both operating systems implement the UNIX systemkernel, and in the case of Mach, the user-level operating
call interface, although their underlying implementationssystem server. Some of the experiments described in this
differ substantially. Ultrix is a monolithic system in whichpaper required that we run the same program several times
all operating system code is implemented in the kernel. Aagainst different simulated memory systems. To ensure
program running on Ultrix invokes the operating systemconsistency from run to run, the system was rebooted be-
through a system call interface. In contrast, Mach 3.0 is afore every experiment.
microkernel that exports and implements a small number

The trace is fed into a simulation of the DS5000/200 of orthogonal abstractions including interprocess com-
memory system using the parameters shown in Table 2-1. munication (IPC), threads, and virtual memory. Higher-
The simulator consumes user and system traces while they level operating system services are implemented in a user-
are generated, and does not write them to non-volatile level process called the UNIX server. A program running
storage [10]. on Mach 3.0 contacts the UNIX server through the Mach

kernel’s IPC interface [19], together with a user-level
transparent emulation library, which is a shared library
that is loaded into the address space of every process. The
microkernel reflects UNIX system calls back to the calling

1 program’s emulation library, which converts the calls intoThe DECstation 5000/200 has a 25 MHz MIPS R3000 processor.
Our machine used CPU version 2.0 implementation 2, and FPU version RPCs to the UNIX server. (Simple UNIX services such as
2.0 implementation 3. getpid() and signal masking are handled within the

2 emulation library.) Virtual memory in Ultrix is derivedThe version numbers are: Ultrix V4.2 Rev. 96, Mach 3.0 MK78,
CMU UNIX server UX39.

2

Workload Description Mach Ultrix
instruction cache: 64 KB, direct-mapped, time time
physical, 16 byte line, 15 cycle miss penalty.

sed The UNIX stream editor run three 0.58 0.57
times over the same 17K input file.

data cache: 64 KB, direct-mapped, physical,
egrep The UNIX pattern search program run 2.01 1.904 byte line, write allocate, 15 cycle read miss

three times over a 27K input file.penalty, read miss fetches 16 aligned bytes.

yacc The LR(1) parser-generator run on an 1.75 1.82
write buffer: six entries, page-mode writes 11K grammar.
complete in 1 cycle, non page-mode writes

gcc The GNU C compiler (gcc) translating 3.70 4.20complete in 5 cycles; CPU reads have priority
a 17K (preprocessed) source file intofor memory access, but wait for writes that
optimized Sun-3 assembly code.have already started. 4 KB page size for

page-mode writes. compress Data compression using Lempel-Ziv 1.32 1.32
encoding. A 100K file is compressed

translation buffer: 64 entries, 56 random/8 then uncompressed.
wired entries, trap to software on TLB miss.

ab The Andrew Benchmark with gcc. 112.18 98.96Each TLB entry maps a 4 KB page.
The assembler was not traced.

page mapping: Deterministic. The physical espresso A program that minimizes boolean 6.23 6.46
page used to back a given virtual page is function run on a 30K input file.
determined by the virtual page number and its

lisp The 8-queens problem solved in LISP. 56.46 54.97address space identifier. The deterministic
strategy prevents conflicts within any 64 KB eqntott A program that converts boolean 66.05 65.85

equations to truth tables using a(cache size) range of virtual addresses.
1390 byte input file.

kernel memory: All kernel text and most fpppp A program that does quantum 25.20 16.78
kernel data is in unmapped physical memory. chemistry analysis. This program

is written in Fortran.

doduc Monte-Carlo simulation of the time 22.94 24.56Table 2-1: Memory system simulation parameters.
evolution of a nuclear reactor

from the original BSD abstractions [6], and is relatively component described by 8K input file.
This program is written in Fortran.machine-dependent. Mach uses a more flexible and ag-

gressive virtual memory system which is partitioned into a liv The Livermore Loops benchmark. 1.24 1.22

machine-dependent and a machine-independent layer [33]. tomcatv A program that generates a 139.42 155.44
vectorized mesh. This program isFor our cross-system comparisons, the major UNIX
written in Fortran.

components of Ultrix and CMU’s server are similar but
not identical. Although both systems are derived from the Table 2-2: Experimental workloads with execution
same code base, they have matured in different environ- times for a DECStation 5000/200.
ments. We have nevertheless attempted to eliminate ob-

Execution times (shown in seconds) in this table are for runs
vious superficial differences between the two systems. For of an untraced binary on an untraced system. Except where

indicated, all programs are written in C. The bottom fourexample, both systems are compiled at the same optimiza-
workloads are floating-point intensive. None of the programstion level with DEC’s Ultrix compiler from MIPS Com-
have been reordered or tuned for the underlying memory sys-3puter Systems, and both systems use a large file buffer tem.

cache (12 MB).
large physical memory so that pageouts do not occur. We
contain TLB effects by simulating rather than tracing
those TLB misses that could be affected by memory dila-2.1. Sources of distortion
tion. On the DECstation, there are two kinds of TLBA traced program is both larger (about a factor of two)
misses. A TLB miss on a user virtual address (UTLBand slower (about a factor of 15) than its untraced counter-
miss) is handled by a lightweight miss handler. Thispart. The first effect, called memory dilation, can increase
routine is not traced, but is simulated using referencespaging and TLB miss rates. We avoid perturbations due
from the traces. A TLB miss to mapped kernel memoryto paging by collecting our traces on a machine with a
(KTLB miss) is handled by a more general TLB miss
handler. The KTLB miss routine is traced, but the only
KTLB misses that could be affected by tracing are those to

3The compiler is Version 2.1. The optimizations levels are those page-table pages. Each page-table page, though, maps a
provided by the standard system makefiles (-O2), although some Ultrix

four megabyte text segment, which is large enough to con-device drivers are compiled without optimization.
tain even our largest traced program.

3

Memory cycles per instructionThe second effect, called time dilation, causes activity
We use our simulation results to calculate memorydependent on external events to appear to complete faster

cycles per instruction (MCPI), which is the number ofthan in an uninstrumented system. To counter this, we
CPU stall cycles due to the memory system divided by thehave configured the system clock to interrupt at 1/15th the
number of instructions executed. MCPI is one of severalstandard rate. We have not modified either system’s I/O
components of cycles per instruction (CPI), which is abehavior to account for time dilation, as this would require
metric commonly used to evaluate computer systems [22].subtle system changes that might themselves introduce
Other components of CPI, such as one cycle per instruc-other distortions. Instead, we separate the instruction ref-
tion for instruction execution, interlocks during multiply,erence stream into non-idle and idle references. Idle
divide, and floating point operations, and no-ops insertedreferences, which occur during I/O operations as part of a
by the compiler for load and branch delays, remain rela-system’s idle loop in a uniprogrammed environment, are
tively constant even as processor cycle time decreases. Inmultiplied by the system code’s expansion factor.
contrast, MCPI is a function of the ratio of memory speedAn address trace contains virtual addresses, yet the ac-
to processor speed, is less dependent on processor ar-tual and simulated cache are indexed by physical ad-
chitecture, and will dominate overall CPI if current trendsdresses. A third source of distortion is therefore due to the
in processor and memory speed continue. As mentioned,simulator’s model of the virtual memory system’s page
we have excluded idle-loop activity from our MCPI cal-mapping strategy. The Ultrix mapping strategy, similar to
culations. The idle loop rarely misses in the cache, so athe one described in Table 2-1, is deterministic. In con-
system could achieve an artificially low MCPI by execut-trast, Mach’s strategy is random (a virtual page is bound to
ing an arbitrarily large number of idle instructions.the first free physical page on the free list). This difference

The MCPI for each workload under Ultrix and Mach iscan have a measurable impact on system behavior (We
shown in Figure 2-1. Each bar is shaded to denote dif-isolate the effects of the page-mapping strategies in a later
ferent MCPI components, with the system and user con-section.) Our simulator uses the deterministic mapping
tributions separated by a vertical bar. The figure showsstrategy described in Table 2-1, which improves the
that data and instruction cache misses in user and systemrepeatability of simulation results, and eliminates a source
mode are only partially responsible for the total MCPI.of variability between the two systems.
Other components include CPU write-stalls and kernel un-
cached memory reads. CPU write-stalls are reflected in
Figure 2-1 in the wbuffer component, which shows the2.2. Workloads and summary of results
average per-instruction penalty from writes to a full writeA summary of the trace results for each program is
buffer, as well as reads that stall pending the completionshown in Table 2-3, with aggregate results shown in Table
of a five-cycle write. A system uncached memory read2-4. For Ultrix, system behavior is confined to the kernel.
occurs when the kernel accesses memory through the un-For Mach, system behavior includes the kernel, the UNIX
cached segment [24] such as for I/O or device control.server, and the emulation library.

The MCPI components of the various programs reflectFor a given workload, Ultrix issues more disk requests
their internal behavior. The programs sed, egrep, yacc,than Mach, resulting in greater idle instruction counts and
gcc, and compress all have relatively high system MCPIdelays. Ultrix is more conservative than Mach’s UNIX
components due to their greater reliance on the operatingserver in forcing meta-data updates to disk. Additionally,
system, especially the file system. The gcc compiler, whileprograms under Mach are demand-paged, whereas under
run on a relatively small input file, has a large programUltrix they are loaded entirely at program startup, some-
text and requires more system activity during programtimes leading to unnecessary disk accesses. On the
loading. The scientific workloads (fpppp, liv, doduc,average, we saw about 1.4 times more I/O requests for
tomcatv) are dominated by user activity, as shown by theirworkloads under Ultrix than for Mach. Because this dif-
small system MCPI component.ference in I/O behavior is orthogonal to the issue of kernel

architecture, we exclude idle references from our remain- The counts from Table 2-3 along with the MCPIs from
ing discussion. Figure 2-1 can be used to estimate actual run times for

Ultrix, which uses a page mapping strategy similar to theFor workloads that rely heavily on UNIX services, the
simulator’s. The cycle count, ignoring arithmetic inter-combined Mach system components (microkernel, UNIX
locks, can be approximated by the idle cycle count + non-server, and emulation library) execute more instructions
idle cycle count. Assuming an idle loop CPI of 1, theand generally require more data references than Ultrix.
cycle count is then equal to the sum of the non-idle in-
struction count multiplied by (1 + MCPI) and the idle in-

4

� ���

i
non-idle idle instruction data cache data cache

nstructions instructions cache misses reads read misses ��
Ultrix %s Mach %s Ultrix Mach Ultrix %s Mach %s Ultrix %s Mach %s Ultrix %s Mach %s�� ���

sed 5704 24 7763 44 5876 1270 51 96 149 98 1515 17 2015 38 16 97 70 98
7egrep 43277 4 45029 7 2495 914 43 93 140 98 8965 3 9425 8 32 91 71 9

yacc 32799 6 34539 10 13220 2809 69 89 166 96 6893 6 7283 11 48 50 93 71
1

c
gcc 29318 22 35939 36 63684 27027 485 42 999 71 8257 12 9941 27 120 44 318 7

ompress 16896 19 19926 31 5555 2225 70 96 215 97 4778 12 5452 23 166 28 271 50
6

e
ab 869732 33 1198172 51 689324 247969 15612 52 28619 73 223588 26 295572 44 6658 79 11262 8

spresso 135385 2 137806 4 21601 8069 187 45 344 70 32034 2 32652 3 93 32 168 58
8

e
lisp 1288027 3 1276619 2 1005 0 222 61 2004 54 468287 2 467668 2 655 45 734 6

qntott 1414369 1 1417868 1 10632 0 126 88 254 97 296691 1 297901 1 14328 3 14489 4
7

d
fpppp 265457 8 262998 7 17102 5667 4135 21 3735 19 139172 2 139036 2 131 27 177 4
oduc 321325 1 325351 2 18474 4983 6239 5 6292 7 122009 0 123020 1 550 9 612 21

6
t

liv 23008 3 23778 6 1585 639 21 93 72 98 7968 2 8176 4 17 88 30 9
omcatv 2005703 1 2005590 1 10823 134 138 82 326 84 967474 0 968074 0 85451 0 85522 0�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
� ���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 2-3: Summary of trace results.

This table shows the number of non-idle memory system events, and the percentage due to system behavior for each program on both
operating systems. Additionally, the table gives the number of idle instructions executed. All counts are in thousands.

system i-cache misses
system d-cache misses
system wbuffer stalls
system uncached reads
user i-cache misses
user d-cache misses
user wbuffer stalls

MCPI

sed+U 0.227
+M 0.495

egrep+U 0.035
+M 0.081

yacc+U 0.067
+M 0.129

gcc+U 0.434
+M 0.690

compress+U 0.250
+M 0.418

ab+U 0.427
+M 0.534

espresso+U 0.041
+M 0.068

lisp+U 0.015
+M 0.038

eqntott+U 0.154
+M 0.157

fpppp+U 0.262
+M 0.243

doduc+U 0.338
+M 0.341

liv+U 0.117
+M 0.158

tomcatv+U 0.674
+M 0.675

Figure 2-1: Baseline MCPI for Ultrix and Mach.

The top horizontal bar of each pair is for Ultrix (+U), and the bottom is for Mach (+M). Components to the left of the vertical line are due
to system activity, and those to the right are due to user activity. The number at the right of each bar is the MCPI for that workload.

struction count. As an example, consider gcc with a cycle 3. Comparative system behavior
count of (29318000 × (1 + 0.434)) + (63684000) = As shown in the previous section, the most significant
105726012. Dividing the cycle count by the clock speed difference between Mach and Ultrix is the number and
(25 MHz), we compute a runtime of 4.22 seconds, which cost of non-idle instructions required to run an application.
is close to the actual runtime (Table 2-2) of 4.20 seconds. In this section we discuss the influence that major system
Using MCPI to compute execution times for the Mach components have on system performance.
workloads is less accurate as Mach’s page mapping

In Figure 3-1 we separate system overheads into 11
strategy is non-deterministic.

major components, and compare Ultrix and Mach in terms
of these components. The components are: trap (system

5

This comparison should not be taken to mean that one
system is better or worse than the other, since Mach’s
virtual memory interface provides substantially more
functionality and portability than Ultrix’s.

���
i-cache d-cache tlb wbuffer
cycles cycles cycles cycles ��

Ultrix user 0.07 0.08 0.00 0.02
2

U
Mach user 0.07 0.08 0.00 0.0

ltrix system 0.43 0.23 0.00 0.05
7� Mach system 0.57 0.29 0.01 0.0���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

A third point of comparison is the relative instruction
cost of UNIX service in Ultrix, which is larger than thatTable 2-4: Summary penalty cycles (per instruction).
under Mach. For Ultrix, the UNIX service category in-

These figures, which are the average over all the workloads,
cludes many machine-dependent services such as devicecharacterize system execution (non-idle system cycles / non-

idle system instructions) vs. user execution (user cycles / user management that are counted as part of Mach’s
instructions). As such, they do not reflect the impact of system Microkernel category. On the other hand, the Microkernel
execution on overall performance.

category indicates that there is a measurable cost for
call and exception handling), UTLB (user TLB miss), providing those services through a separate set of kernel
KTLB (kernel TLB miss), VM-md (machine-dependent interfaces. The UNIX service category also includes some
virtual memory), VM-mi (Mach’s machine independent services that are implemented in Mach’s transparent
virtual memory), Block Ops (block memory moves and emulation library. For example, lisp has a relatively high
zeroes), UNIX service (the remaining routines in the Ultrix UNIX service component under Ultrix, but almost none
kernel and Mach UNIX server), Microkernel (Mach’s under Mach. This is because lisp frequently modifies
microkernel, including device management and schedul- UNIX signal state to support garbage collection, and sig-
ing), IPC (the Mach kernel’s message system), Emulator nal state can be manipulated from within Mach’s trans-
(Mach’s transparent emulation library), and S-MCPI (sys- parent emulation library.

4tem memory cycles per system instruction). The first ten
Lastly, Figure 3-1 shows that the overhead of Mach’s

categories reflect relative overheads in terms of non-idle
IPC, in terms of instructions executed, is responsible for a

system instructions executed. The last category, S-MCPI,
small portion of overall system overhead. This suggests

reflects relative memory system overhead for system
that microkernel optimizations focusing exclusively on

references. Four of the activities (Microkernel, Emulator,
IPC [8, 18, 20, 26, 34], without considering other sources

IPC, VM-mi) occur only in Mach. Block Ops for Mach
of system overhead such as MCPI, will have a limited

includes operations from both the Mach kernel and the
impact on overall system performance [7].

UNIX Server.

The number at the top of each bar is system cycles as a
percentage of total cycles. The Ultrix instruction counts 4. Seven assertions
have been normalized to one for all workloads. The In this section we evaluate the strength of the seven
heights of the bars reflect system, but not total execution, assertions enumerated in the introduction. Our basic
overheads. For workloads where system activity is small strategy is to address each assertion in the context of our
relative to total activity (doduc, for example), system con- traces. In several cases we present the results of additional
tribution to performance is minor. simulations in which we vary the base architecture to

determine the sensitivity of system performance to theSeveral characteristics of system behavior are worth
assertion in question.noting from Figure 3-1. First, memory penalty for system

instructions is from one to three times greater for Mach
than for Ultrix. The difference in the system MCPI, while

4.1. System and user localityoften small (Figure 2-1), can contribute substantially to
As cache behavior is an indication of locality, Table 2-3overall system performance because of the large number

supports the first assertion: the operating system has lessof system instructions executed.
instruction and data locality than user programs. The

Second, Mach’s virtual memory system executes more system can contribute up to 51% of non-idle instruction
instructions than the one implemented in Ultrix, which has cache references, but in most cases (17 of 26) the system
been flattened into a single machine-dependent layer. contribution is less than 10%. Given this, a dispropor-
Mach has an additional machine-independent layer that is tionately large number of instruction cache misses are due
more costly than either systems’ machine-dependent layer. to the system (greater than 70% for two-thirds of the

workload/system pairs).

In terms of data references, the system contributes a
4 larger percentage of misses than references, again support-S-MCPI is computed as the system cycles / system instructions, and

differs from MCPI due to the system in that it includes only system ing the assertion that the system’s data locality is worse
instructions.

6

Sy
st

em
 o

ve
rh

ea
d

no
rm

al
iz

ed
 to

 U
ltr

ix
 in

st
ru

ct
io

n
co

un
t

0

1

2

3

4

5

6

Trap

UTLB

KTLB

VM-md

VM-mi

Block Ops

UNIX service

Microkernel

IPC

Emulator

S-MCPI

se
d+

U
 3

9.
6

+
M

 6
3.

0

eg
re

p+
U

 6
.5

+
M

 1
4.

4

ya
cc

+
U

 7
.4

+
M

 2
0.

0

gc
c+

U
 3

0.
5

+
M

 5
7.

1

co
m

pr
es

s+
U

 2
5.

9
+

M
 4

3.
5

ab
+

U
 4

1.
4

+
M

 6
2.

7

es
pr

es
so

+
U

 3
.4

+
M

 7
.9

lis
p+

U
 3

.7
+

M
 4

.1

eq
nt

ot
t+

U
 1

.6
+

M
 2

.0

fp
pp

p+
U

 1
0.

9
+

M
 9

.9

do
du

c+
U

 2
.2

+
M

 4
.2

liv
+

U
 6

.6
+

M
 1

1.
9

to
m

ca
tv

+
U

 0
.9

+
M

 1
.0

Figure 3-1: Relative system overheads for programs running on Ultrix and Mach.

This figure shows the relative system instruction and system memory overheads for programs running on Ultrix (+U) and Mach (+M).
Ultrix instruction counts are normalized to one. The top component of each bar reflects the system MCPI, which is an aggregate of the
MCPI for the instruction components. The number at the top of each bar is the percentage of total (instruction and memory) cycles that are
due to the system. For programs where the system is responsible for a small percentage of total cycles, system overheads are relatively
unimportant.

than the user’s. Even so, in only five of the cache behavior between Ultrix and Mach is small. As
workload/system combinations does the system contribute Mach incurs a larger number of cache misses than Ultrix,
more than 90% of data misses, and only twelve if the and as nearly every additional cache miss is due to the
threshold is lowered to 50%. Although the system’s con- system, the percentage of misses due to the system is
tribution of instruction and data references are com- larger.
parable, the percentage of misses is not. Instruction
references miss more often than data references for both
Mach and Ultrix. From this, we conclude that instruction 4.2. System instruction locality
locality is worse than data locality during system execu- Percentages are useful for comparing system and user
tion. behavior, but they cloud overall performance effects. For

example, although 97% of instruction cache misses forThe percentage of instruction and data misses due to the
eqntott under Mach are due to the system, the system in-system is generally larger under Mach than Ultrix. Figure

2-1 and Table 2-4 together show that the difference in user

7

5 4.3. Competition between the user and systemstruction cache miss rate is insignificant.
The increased cache activity in Mach suggests that user

A better indicator of the performance impact of locality code running on Mach may run more slowly than on
is the cache’s contribution to MCPI. In Table 4-1 we com- Ultrix due to increased cache competition. To evaluate
bine our baseline data from Table 2-3 with cache miss this, we ran the workloads against a simulated memory
penalties for the simulated memory system to yield the system that had independent 64 KB system and user
MCPI contributions from the cache. The component of caches. Again, by "system" for Mach, we mean the Mach
MCPI due to system instruction cache references kernel, the UNIX server, and the emulator.
dominates that due to the user in 20 of 26 cases. In con-
trast, the system data cache component dominates in only
thirteen cases. Furthermore, the majority of system (as
opposed to user) cache penalties is due to poor instruction
cache behavior; only five runs show greater penalties for
data than instructions, and in these runs the system’s con-
tribution to MCPI is small. This behavior supports the
second assertion: system execution is more dependent on
instruction cache behavior than is user execution.
However, many of the programs in our workload have
small working sets that fit entirely in the instruction cache.
Larger programs such as gcc, which do not fit in the
cache, can have instruction cache penalties that rival that
of the system.

Instruction Data
sed+U

+M

egrep+U
+M

yacc+U
+M

gcc+U
+M

compress+U
+M

ab+U
+M

espresso+U
+M

lisp+U
+M

eqntott+U
+M

fpppp+U
+M

doduc+U
+M

liv+U
+M

tomcatv+U
+M

legend:
system user system user

Without competition With competition

Figure 4-1: User/system interference.

For each workload/system pair, this figure shows interference
effects for instruction and data references for each program
under Ultrix (+U) and Mach (+M). Each bar is composed of
four regions. The two rightmost regions represent the fraction
of misses that are due to competition. The two leftmost regions

���
� instruction cache

��
data cache���

w
Ultrix Mach Ultrix Mach

orkload sys user sys user sys user sys user ��
sed 0.129 0.005 0.283 0.005 0.041 0.001 0.132 0.003

0egrep 0.014 0.001 0.046 0.001 0.010 0.000 0.023 0.00
yacc 0.028 0.004 0.069 0.003 0.011 0.011 0.029 0.012

9
c

gcc 0.103 0.145 0.294 0.123 0.027 0.034 0.094 0.03
ompress 0.060 0.002 0.157 0.005 0.042 0.106 0.101 0.102

0
e

ab 0.139 0.130 0.261 0.098 0.091 0.024 0.121 0.02
spresso 0.009 0.012 0.026 0.011 0.003 0.007 0.011 0.008

3
e

lisp 0.002 0.001 0.013 0.011 0.003 0.004 0.006 0.00
qntott 0.001 0.000 0.003 0.000 0.005 0.147 0.006 0.147

5
d
fpppp 0.050 0.184 0.040 0.173 0.002 0.005 0.005 0.00
oduc 0.014 0.277 0.020 0.270 0.002 0.023 0.006 0.022

0
t

liv 0.013 0.000 0.045 0.000 0.010 0.001 0.018 0.00
omcatv 0.000 0.000 0.002 0.000 0.005 0.634 0.005 0.634�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

represent the fraction of misses that remain when user/system
Table 4-1: MCPI contributions from the cache. competition is eliminated.

For each workload/system pair, this table shows the MCPI The effects of user/system competition on instruction
component due to the instruction and data caches. Runs for

and data cache behavior for both systems are shown inwhich the system contribution to MCPI dominates that of the
user are shown in boldface. Figure 4-1. Each instruction and data bar has four com-

ponents. The two leftmost components correspond to the
Table 4-1 quantifies the difference in MCPI between

case of separate system and user caches, and represent the
Mach and Ultrix that was represented visually in Figure

fraction of misses that remain with the independent
2-1. Memory penalties due to system instruction and sys-

caches. The two rightmost components show the ad-
tem data references are larger for Mach than for Ultrix,

ditional fraction of system and user misses that occur
while user memory penalties are similar. Increased sys-

when the cache is unified.
tem activity in Mach, as is shown in Figure 3-1, results in

Although our separate user and system caches doublea larger cache contribution to MCPI.
the effective cache size, the general dominance of the two
leftmost components in Figure 4-1 indicates that they do5The system instruction cache miss rates can be calculated with data
not significantly reduce miss rates relative to a smallerfrom Table 2-3 as the number of system instruction cache misses /

number of system instruction cache references. For example, for eqntott: unified cache. The largest interference effects (for ex-
ample, lisp) occur when the cache miss rate is low, such254 × 0.97

= 0.017 that a few interference misses can result in a large relative1417868 × 0.01

change. The absolute contribution of competition missesSimilarly, the user instruction cache miss rate is nearly zero (0.0005%).

8

to MCPI is shown in Table 4-2. These points imply that lier research has shown that this structure can cause a sig-
the third assertion, collisions between user and system nificant increase in TLB activity [5, 30]. Table 4-3 con-
references lead to significant performance degradation in firms this, showing an order of magnitude increase in the
the memory system, is not true for these workloads. number of system TLB references for Mach when com-

pared to Ultrix.

In terms of MCPI, though, the absolute contribution of
system TLB misses to performance is generally not large,
shown by the last four columns of Table 4-3. Moreover,
high TLB MCPI is an indication of poor locality, which is
also reflected in more severe cache penalties. Even in
runs with the most extreme behavior, TLB penalties are
consistently dominated by cache penalties (Table 4-1) for
both Ultrix and Mach.

� ���
� Ultrix Mach���

� workload inst data total inst data total���

e
sed 0.010 -0.006 0.004 0.009 0.004 0.013

grep 0.003 0.000 0.003 0.002 0.002 0.004
9yacc 0.005 0.002 0.007 0.004 0.005 0.00

gcc 0.050 0.007 0.057 0.047 0.018 0.065
4compress 0.004 0.018 0.022 0.010 0.034 0.04

ab 0.038 0.006 0.044 0.029 0.000 0.029
8espresso 0.005 0.002 0.007 0.004 0.004 0.00

lisp 0.002 0.006 0.008 0.022 0.004 0.026
5eqntott 0.000 0.004 0.005 0.000 0.005 0.00

fpppp 0.072 0.002 0.074 0.047 0.002 0.049
8doduc 0.023 0.002 0.025 0.016 0.002 0.01

liv 0.001 0.004 0.005 0.000 0.001 0.002
6� tomcatv 0.000 0.005 0.006 0.000 0.005 0.00���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

4.4. System self-interference
Self-interference occurs when insufficient cache as-Table 4-2: MCPI contributions from

sociativity results in cache misses. The impact of self-cache competition.
interference in user-code is well-understood [23]. To

This table shows MCPI contributions from additional system
evaluate the impact of system self-interference, we simu-misses occurring when cache competition with user references

is present. The negative value for sed running on Ultrix is lated a two-way LRU set associative cache of the same
because user references can actually reduce the number of size as our direct-mapped cache. As in the previous sec-
system misses due to data that is shared between the user and

tion, user references are isolated from the system-onlysystem.
cache, although they continue to generate TLB misses and
subsequent system activity.Voluntary context switches

In a client-server system such as Mach, voluntary con- Figure 4-2 illustrates the effect of the increased system
text switches can occur every time the client and server associativity on instruction and data miss rates. In each
interact through IPC. For the workloads we consider, the bar, the light region represents the fraction of system
cache miss penalty following a voluntary context switch is misses that associativity does not eliminate, while the dark

6not significant. On the client side, where the instruction region represents that fraction eliminated by associativity.
cache miss rates are generally low but data cache miss This representation emphasizes variations in the relative
rates are high, the cost of reloading the cache after a con- benefit of associativity between workloads. The number
text switch is amortized over a large number of instruc- at the left side of each bar is the absolute MCPI contribu-
tions. On the server side, instruction and data locality are tion of cache misses for a system-only direct-mapped
already poor, limiting the impact of interleaved user cache. Figure 4-2 shows that the increased associativity
references. This behavior is consistent with earlier results eliminates a significant fraction of misses, and is more
on competition in client-server systems [28]. However, effective for instruction than data references. This con-
the penalty from competition clearly depends on the firms the fourth assertion: self-interference is a problem
client-server system in question. Recent studies of the in system instruction reference streams.
X11 window server, for example, have shown that larger Self-interference has the largest relative impact when
programs and more frequent voluntary context switches MCPI is low, and the smallest relative impact when MCPI
create more severe penalties [12]. is high. A high MCPI implies that the cache is full, which

is a situation that cannot be helped by increased as-
TLB behavior sociativity. For example, sed, egrep, and liv have high

The Ultrix kernel binary runs in unmapped kernel MCPIs, but gain relatively little from associativity. In
memory, largely isolating it from the TLB. In contrast, contrast, associativity helps most with lisp and tomcatv,
only Mach’s microkernel component runs unmapped; the where MCPI is relatively low. Associativity is generally
UNIX server and emulator run in mapped memory. Ear- less beneficial for Mach than for Ultrix because applica-

tions on Mach tend to have a higher MCPI.

6We distinguish between competition from voluntary context switches,
as occurs in a client-server system, and competition from involuntary
context switches, as occurs in a multitasking workload.

9

Table 4-3: TLB activity.

���
� TLB refs (x1000) UTLB misses (x1000) KTLB misses (x1) UTLB MCPI KTLB MCPI���
� workload user Ultrix Mach U-user M-user Ultrix Mach Ultrix Mach Ultrix Mach Ultrix Mach���

e
sed 5596 423 1079 0.09 0.49 0.06 6.67 441 2132 0.000 0.012 0.021 0.063

grep 50399 546 1116 0.07 0.39 0.10 6.41 472 1847 0.000 0.002 0.003 0.009
5yacc 37460 571 1323 0.25 1.26 0.04 7.89 359 2280 0.000 0.003 0.003 0.01

gcc 30093 1582 2951 32.33 35.87 0.10 17.87 1521 3305 0.013 0.018 0.016 0.022
5compress 17892 986 2085 82.58 82.06 0.12 10.24 712 3982 0.045 0.045 0.012 0.04

ab 755092 90958 195492 1148.79 1208.04 12.83 1457.98 95058 578598 0.014 0.025 0.030 0.108
5espresso 164313 660 1281 0.86 2.64 0.05 7.67 452 3111 0.000 0.001 0.001 0.00

lisp 1706833 12974 26783 0.10 12.69 0.04 15.68 376 8063 0.000 0.000 0.000 0.002
2eqntott 1690678 3579 3697 692.01 692.57 0.11 24.03 1321 9760 0.007 0.007 0.000 0.00

fpppp 380307 3632 1169 4.72 13.54 0.34 9.02 366 2273 0.000 0.001 0.000 0.003
5doduc 438563 899 2162 16.78 30.53 0.04 18.26 402 5811 0.001 0.002 0.000 0.00

liv 30123 232 417 0.03 0.11 0.04 2.62 197 701 0.000 0.002 0.003 0.007
1� tomcatv 2949614 4480 2684 317.34 321.79 0.14 25.69 1608 8135 0.002 0.003 0.000 0.00���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

This table shows TLB references (× 1000), UTLB misses (× 1000), KTLB misses (× 1), UTLB MCPI, and KTLB MCPI for system and
user across the various workloads. The number of user UTLB references is the same for both systems, as the same user code is executed.
UTLB miss counts depend on competition from the system, so the table shows separate numbers for Ultrix and Mach. KTLB misses do not
occur in user code.

high relative penalty for block operations because program
loading overheads dominate its cache behavior. From the
measurements, we conclude that assertion five: system
block memory operations are responsible for a large per-
centage of memory system reference costs is true, and
most important in I/O intensive applications.

� ���
� Ultrix Mach���

� workload MCPI %total MCPI %total���

e
sed 0.066 29.2 0.131 26.6

grep 0.014 39.3 0.017 20.9
9yacc 0.017 25.6 0.027 20.

gcc 0.116 26.8 0.159 23.0
0compress 0.055 22.1 0.071 17.

ab 0.100 23.4 0.057 10.7
9espresso 0.009 21.3 0.013 19.

lisp 0.000 0.3 0.000 0.0
6eqntott 0.000 0.4 0.001 0.

fpppp 0.003 1.2 0.005 2.2
9doduc 0.003 0.9 0.006 1.

liv 0.008 7.1 0.013 7.9
0� tomcatv 0.000 0.0 0.000 0.���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Instruction Data
 0.11 0.04sed+U
 0.24 0.11+M

 0.01 0.00egrep+U
 0.04 0.02+M

 0.02 0.01yacc+U
 0.06 0.02+M

 0.07 0.02gcc+U
 0.23 0.08+M

 0.05 0.03compress+U
 0.13 0.08+M

 0.10 0.08ab+U
 0.21 0.11+M

 0.00 0.00espresso+U
 0.02 0.00+M

 0.00 0.00lisp+U
 0.00 0.00+M

 0.00 0.00eqntott+U
 0.00 0.00+M

 0.01 0.00fpppp+U
 0.01 0.00+M

 0.00 0.00doduc+U
 0.00 0.00+M

 0.01 0.00liv+U
 0.04 0.02+M

 0.00 0.00tomcatv+U
 0.00 0.00+M

Table 4-4: MCPI from block memory operations.Figure 4-2: System self-interference.
For each system, this table shows the MCPI contribution ofFor each workload/system pair this figure shows system self-

block moves (and subsequent interference), and also the per-interference effects, as indicated by miss rates from direct-
centage of total MCPI due to block moves.mapped and two-way associative caches of the same size. Each

bar is composed of two regions. The darker region represents
In terms of MCPI, Table 4-4 shows that block opera-misses eliminated by associativity (those due to self-

interference). The lighter region represents misses that as- tions incur a larger absolute overhead for programs run-
sociativity does not eliminate. The number on the left end of ning on Mach than on Ultrix. Table 4-5 shows that Machthe bar is MCPI for the system-only direct-mapped cache.

generally references more data than Ultrix in block opera-
tions, and that more of those references go through to
memory. Block operations in Mach occur within the ker-4.5. Block operations
nel as part of the VM and IPC systems, and within theOperating systems perform block memory operations to
UNIX server as part of the file system. In contrast, Ultrixtransfer data between I/O devices and memory, and to
block operations, which occur entirely within the kernel,copy data between address spaces. Table 4-4 shows that
are due mostly to VM and file system operations.block memory operations and their subsequent inter-

ference can be responsible for a substantial fraction of
total MCPI, especially for programs that perform sig-
nificant I/O. Espresso, while not I/O intensive, pays a

10

���
� Ultrix

��
Mach���

� MCPI data reads memory reads MCPI data reads memory reads���
� workload B-Ops %total cacheable uncacheable total % B-Ops %total cacheable uncacheable total %���

e
sed 0.066 29.2 57 17 28 37.7 0.131 26.6 132 26 70 44.2

grep 0.014 39.3 88 19 42 40.0 0.017 20.9 126 15 51 36.6
6yacc 0.017 25.6 105 27 42 32.3 0.027 20.9 136 27 64 39.

gcc 0.116 26.8 53 253 277 90.3 0.159 23.0 237 289 414 78.6
5compress 0.055 22.1 168 35 68 33.5 0.071 17.0 180 45 98 43.

ab 0.100 23.4 16729 1897 6118 32.9 0.057 10.7 10311 609 4442 40.7
8espresso 0.009 21.3 43 80 93 75.7 0.013 19.9 143 87 133 57.

lisp 0.000 0.3 1 2 3 100.0 0.000 0.0 76 0 0 1.0
4eqntott 0.000 0.4 258 23 56 20.0 0.001 0.6 232 0 94 40.

fpppp 0.003 1.2 19 63 71 84.8 0.005 2.2 125 69 99 51.1
2doduc 0.003 0.9 36 62 75 76.5 0.006 1.9 115 85 147 73.

liv 0.008 7.1 19 8 14 51.1 0.013 7.9 52 8 20 34.2
3� tomcatv 0.000 0.0 113 23 60 44.5 0.000 0.0 297 4 76 25.���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4-5: Block memory operations and memory reads.

For each system, this table shows the MCPI due to block memory operations and subsequent interference, and its percentage of total
MCPI (Figure 2-1). The table also shows the number of data reads from cacheable and uncacheable memory that are due to block
operations, the number of those reads that go to memory resulting in a CPU read stall, and the percentage of overall CPU memory stalls due
to block operations. Reads from uncacheable memory are due primarily to I/O operations and always go through to memory. All counts are
in thousands.

in a larger number of stalls. Additionally, the interleaved4.6. Streaming writes
read misses decrease the frequency of low-latency page-Operating systems stream data to memory during block
mode writes.transfers, such as for I/O and IPC, and during context

switches and exception handling. Write buffers expedite
streaming writes by allowing the CPU to run ahead of

4.7. Page mapping strategymemory. The effect of streaming write operations on sys-
The system’s virtual page mapping strategy can affecttem performance can be measured by counting stall cycles

the performance of a physically indexed cache, as it deter-due to writes. The number of write stall cycles per in-
mines the placement and overlap of virtual pages in thestruction for user and system code under Ultrix and Mach
cache. As an example, the operating system can reduceis shown in Table 4-6. In most cases system behavior is
self-interference misses for small applications by using aworse than user behavior, supporting the sixth assertion:
virtual-to-physical mapping that uniformly distributes con-write buffers are less effective for system references.
secutive virtual pages throughout the cache. For localities
smaller than the cache size, such a strategy prevents col-
lisions in the cache. This strategy also makes possible
tools that rearrange the layout of text and data in memory
to improve cache performance [27, 17].

In our discussion so far, we have simulated a deter-
ministic strategy for both the Ultrix and Mach reference
streams. As previously mentioned, Ultrix uses a deter-
ministic strategy, while Mach’s strategy is random (a vir-
tual page is assigned to the next physical page on the free
list). To isolate the effect of the page mapping strategy,

���
� Ultrix Mach���

� workload system user system user���

e
sed 0.061 0.000 0.076 0.000

grep 0.050 0.002 0.065 0.002
0yacc 0.062 0.000 0.076 0.00

gcc 0.106 0.012 0.129 0.012
3compress 0.043 0.011 0.063 0.01

ab 0.040 0.009 0.043 0.010
1espresso 0.093 0.001 0.111 0.00

lisp 0.007 0.004 0.064 0.005
0eqntott 0.014 0.000 0.024 0.00

fpppp 0.030 0.017 0.037 0.015
8doduc 0.101 0.018 0.095 0.01

liv 0.052 0.090 0.075 0.090
3� tomcatv 0.023 0.033 0.044 0.03���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

we modified our simulator to use random mappings, and
to maintain page tables so that page mappings do notTable 4-6: Write buffer stall cycles per instruction.
change during a given run. Figure 4-3 shows MCPI for a

This table shows write buffer stall cycles per user instruction run of the workloads with random page mapping. Whenand write buffer stall cycles per system instruction. Runs in
compared to Figure 2-1 (both are on the same scale), mostwhich system behavior is worse than user behavior are shown in

bold face. of the workload/system pairs perform better with random
page mapping, and gcc, compress, eqntott, fpppp, doducSystem write buffer stalls per instruction are generally
and tomcatv show the greatest improvement. The programhigher for Mach than for Ultrix. Overall cache miss rates
tomcatv offers a good example of the effect that mappingare higher with Mach, and the DECstation 5000/200
strategy can have on program performance. This programmemory system gives CPU reads priority over outstanding
uses several matrices that are rough multiples of the cachewrites. Consequently, fewer memory cycles are available
size, and allocated contiguously in virtual memory. Thefor the write buffer to retire outstanding writes, resulting

11

system i-cache misses
system d-cache misses
system wbuffer stalls
system uncached reads
user i-cache misses
user d-cache misses
user wbuffer stalls

MCPI

sed+U 0.304
+M 0.423

egrep+U 0.204
+M 0.303

yacc+U 0.057
+M 0.103

gcc+U 0.194
+M 0.470

compress+U 0.120
+M 0.237

ab+U 0.177
+M 0.350

espresso+U 0.018
+M 0.041

lisp+U 0.157
+M 0.016

eqntott+U 0.003
+M 0.006

fpppp+U 0.029
+M 0.057

doduc+U 0.012
+M 0.036

liv+U 0.400
+M 0.487

tomcatv+U 0.002
+M 0.004

Figure 4-3: MCPI for random page mapping.

This figure shows MCPI for Mach and Ultrix, as in Figure 2-1, but for a system that uses random page mapping. The elimination of user
cache misses reduces memory contention, so write buffer stalls are virtually eliminated for many workloads. This figure shows the results
of a single run. As the page-mappings are random, behavior can vary significantly between runs.

virtual-to-physical mapping induced by the deterministic 5. Conclusions
strategy causes frequent collisions between corresponding For the majority of workloads we consider, the number
matrix elements during computation. and cost of non-idle instructions executed is substantially

higher for Mach than for Ultrix. Six of the assertionsIn some cases, the deterministic strategy yields a page
about operating systems and memory system behavior aremapping with low user cache miss rates. Specific ex-
true, although two have little or no impact on system per-amples are sed and lisp under Ultrix, and egrep and liv for
formance. One is false. Several are sensitive to the operat-both systems. In these cases the deterministic strategy
ing system architecture. Specifically:leads to good behavior, and the random strategy can per-

• System and user locality. System locality isform significantly worse. Our results, though, suggest that
measurably worse than user locality, and thesuch cases are infrequent in the absence of program reor-
performance impact can be significant. Thedering. Mach microkernel-based system has poorer
system locality than Ultrix.Overall, these observations confirm the seventh asser-

tion: virtual to physical page mapping strategy can have • System instruction locality. Relative to user
behavior, system text shows less locality thansignificant impact on cache performance. Moreover, a
system data. However, user workloads suchdeterministic strategy can have a negative impact on per-
as gcc with large text can have instructionformance for a direct-mapped cache when program reor- cache penalties that rival that of the operating

dering tools are not used. In such cases, a random strategy system.
is less likely to induce consistently poor behavior. • User/system competition. User/system com-

petition is a measurable component of cache
and TLB miss rates. For these workloads,
though, system performance is not affected by
user/system competition. The impact of
Mach’s microkernel structure on competition
is not significant.

12

2. Anant Agarwal, Richard L. Sites, and Mark Horowitz.• System self-interference. Self-interference
ATUM: A New Technique for Capturing Address Traces Usingaccounts for a significant number of system
Microcode. The Proceedings of the 13th International Sym-misses, particularly in system text. However,
posium on Computer Architecture, June, 1986, pp. 119-127.the cases with the worst overall behavior are

also those that benefit least from associativity. 3. Anant Agarwal, John Hennessy, and Mark Horowitz.Compared to Ultrix, associativity eliminates a
"Cache Performance of Operating System and Multiprogram-lower percentage of Mach’s cache misses be-
ming Workloads". ACM Transactions on Computer Systems 6,cause of its greater demand for cache
4 (November 1988), pp 393-431.resources.
4. Anant Agarwal. Analysis of Cache Performance for• Block operations. Block operations can be
Operating Systems and Multiprogramming. Kluwer Academicresponsible for a large component of overall
Publishers, Boston, MA, 1989.MCPI, particularly for applications that per-

form I/O. Mach moves more data with block 5. Thomas E. Anderson, Henry M. Levy, Brian N. Bershad,
operations and has a larger MCPI due to block and Edward D. Lazowska. The Interaction of Architecture and
operations than Ultrix. Operating System Design. The Proceedings of the Fourth

International Conference on Architectural Support for Pro-• Streaming writes. System code presents a
gramming Languages and Operating Systems, April, 1991, pp.higher load to the write buffer than user code.
108-120.Mach’s increased cache MCPI results in a

larger number of write buffer stalls due to
6. Ozalp Babaoglu and William Joy. Converting a Swap-competition between memory reads and
Based System to do Paging in an Architecture Lacking Page-writes.
Referenced Bits. The Proceedings of the 8th ACM Inter-

• Page mapping strategy. Page mapping national Symposium on Operating System Principles, Decem-
strategies can have a large effect on cache ber, 1981, pp. 76-86.
performance. The page mapping strategy is

7. Brian N. Bershad. The Increasing Irrelevance of IPC Per-independent of operating system architecture.
formance for Microkernel-Based Operating Systems. The

The performance of the operating system, either Proceedings of the First USENIX Microkernels and Other Ker-
nels Workshop, April, 1992, pp. 204-211.monolithic or microkernel-based, is more sensitive to

memory system latency than that of applications. The 8. Brian N. Bershad, Thomas E. Anderson, Edward
locality of system code and data is inherently poor, and D. Lazowska and Henry M. Levy. "Lightweight Remote Pro-

cedure Call". ACM Transactions on Computer Systems 8, 1changes to memory systems that help application perfor-
(February 1990), pp. 37-55.mance by taking advantage of locality are unlikely to

bring proportional improvements to the system. 9. Brian N. Bershad, Richard P. Draves, and Alessandro Forin.
Using Microbenchmarks to Evaluate System Performance. The
Proceedings of the Third Workshop on Workstation Operating
Systems, April, 1992, pp. 148-153.6. Acknowledgements

Ali-Reza Adl-Tabatabai, Alan Eustace, Jay Lepreau, 10. Anita Borg, R.E. Kessler, Georgia Lazana, and David
Wall. Long Address Traces from RISC Machines: GenerationKai Li, Stefan Savage, Daniel Stodolsky, Mark Swanson,
and Analysis. WRL Research Report 89/14, Digital EquipmentDoug Tygar, and Terri Watson provided valuable feed-
Corporation Western Research Laboratory, 1989.back on earlier drafts of this paper. Alessandro Forin and
11. J. Bradley Chen. Software Methods for System AddressMary Thompson helped with our instrumentation of Mach.
Tracing. The Proceedings of the Fourth Workshop onBob Wheeler helped us understand the differences in I/O
Workstation Operating Systems, October, 1993.behavior between Mach and Ultrix. David Wall provided
12. J. Bradley Chen. Memory Behavior for an X11 Windowus with an initial version epoxie, and was helpful in
System. The Proceedings of the Winter 1994 USENIX Con-making it work. The design of the tracing system is based
ference, January, 1994.on prior work by Anita Borg, and her contributions con-

tinued throughout this project. 13. J. Bradley Chen, Anita Borg, and Norman P. Jouppi. A
Simulation Based Study of TLB Performance. The Proceed-
ings of the 19th Annual International Symposium on Computer
Architecture, May, 1992, pp. 114-123.References
14. Douglas W. Clark. "Cache Performance in the
VAX-11/780". ACM Transactions on Computer Systems 1, 1
(February 1983), pp. 24-37.1. Michael J. Accetta, Robert V. Baron, William Bolosky,

David B. Golub, Richard F. Rashid, Avadis Tevanian, Jr., and 15. Douglas W. Clark and Joel S. Emer. "Performance of the
Michael W. Young. Mach: A New Kernel Foundation for Unix VAX 11/780 Translation Buffer: Simulation and Measure-
Development. Proceedings of the Summer 1986 USENIX ment". ACM Transactions on Computer Systems 3, 1
Conference, July, 1986, pp. 93-113. (February 1985), 270-301.

13

16. M. DeMoney, J. Moore, and J. Mashey. Operating System 31. John K. Ousterhout. Why Operating Systems Aren’t Get-
Support on a RISC. Proceedings of the 31st Computer Society ting Faster As Fast As Hardware. Proceedings of the Summer
International Conference (Spring Compcon ’86), March, 1986, 1991 USENIX Conference, June, 1991, pp. 247-256.
pp. 138-143.

32. Steven A. Przybylski. Cache Design: A Performance-
17. Digital Equipment Corporation. cord. Ultrix manual page. Directed Approach. Morgan-Kaufmann, San Mateo, CA,

1990.
18. Richard P. Draves, Brian N. Bershad, Richard F. Rashid
and Randall W. Dean. Using Continuations to Implement 33. Richard Rashid, Avadis Tevanian, Jr., Michael Young,
Thread Management and Communications in Operating Sys- David Golub, Robert Baron, David Black, William Bolosky
tems. Proceedings of the 13th ACM Symposium on Operating and Jonathan Chew. Machine-Independent Virtual Memory
Systems Principles, October, 1991, pp. 122-136. Management for Paged Uniprocessor and Multiprocessor Ar-

chitectures. Proceedings of the Second International Con-
19. Richard P. Draves. A Revised IPC Interface. Proceedings ference on Architectural Support for Programming Languages
of the First Mach USENIX Workshop, October, 1990, pp. and Operating Systems, April, 1987, pp. 31-39.
101-121.

34. M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Giend,
20. Peter Druschel, Larry L. Peterson, and Norman M. Guillemont, F. Herrmann, P. Leonard, S. Langlois, and
C. Hutchinson. Beyond Microkernel Design: Decoupling W. Neuhauser. "Chorus Distributed Operating Systems".
Modularity and Protection in Lipto. The Proceedings of the Computing Systems 1, 4 (1988), pp. 305-370.
12th International Conference on Distributed Computing Sys-
tems, June, 1992. 35. Josep Torellas, Anoop Gupta, and John Hennessy. Charac-

terizing the Caching and Synchronization Performance of a
21. David Golub, Randall Dean, Alessandro Forin and Richard Multiprocessor Operating System. The Proceedings of the
Rashid. UNIX as an Application Program. Proceedings of the Fifth International Conference on Architectural Support for
Summer 1990 USENIX Conference, June, 1990, pp. 87-95. Programming Languages and Operating Systems, October,

1992, pp. 162-174.22. John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan Kaufmann, 36. Bart C. Vashaw. Address Trace Collection and Trace
Palo Alto, CA, 1990. Driven Simulation of Bus Based, Shared Memory

Multiprocessors. Ph.D. Th., Carnegie Mellon University,23. Mark D. Hill. Aspects of Cache Memory and Instruction
1992. Department of Electrical and Computer Engineering.Buffer Performance. Ph.D. Th., University of California at

Berkeley, Computer Sciences Division, November 1987. Num- 37. David W. Wall. Systems for Late Code Modification. In
ber UCB/CSD 87/381. Code Generation --- Concepts, Tools, Techniques, Springer-

Verlag, 1992, pp. 275-293.24. Gerry Kane. MIPS RISC Architecture. Prentice Hall,
Englewood Cliffs, NJ, 1987.

25. R.E. Kessler and Mark D. Hill. "Page Placement Al-
gorithms for Large Real-Indexed Caches". ACM Transactions
on Computer Systems 10, 4 (November 1992).

26. Jay Lepreau, Mike Hibler, Bryan Ford, Jeffrey Law, and
Douglas Orr. In-Kernel Servers on Mach 3.0: Implementation
and Performance. Proceedings of the Third USENIX Mach
Symposium, April, 1993, pp. 39-56.

27. Scott McFarling. Program Optimization for Instruction
Caches. The Proceedings of the Third International Conference
on Architectural Support for Programming Languages and
Operating Systems, April, 1989, pp. 183-191.

28. Jeffrey C. Mogul and Anita Borg. The Effect of Context
Switches on Cache Performance. The Proceedings of the
Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, April, 1991,
pp. 75-84.

29. David Nagle, Richard Uhlig, and Trevor Mudge. Monster:
A Tool for Analyzing the Interaction Between Operating Sys-
tems and Computer Architectures. University of Michigan,
November, 1992. CSE-TR-147-92.

30. David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest,
Trevor Mudge and Richard Brown. Design Tradeoffs for
Software-Managed TLBs. Proceedings of the 20th Annual
International Symposium on Computer Architecture, May,
1993, pp. 27-38.

14

Table of Contents
1. Introduction 1
2. Trace overview 1

2.1. Sources of distortion 3
2.2. Workloads and summary of results 4

3. Comparative system behavior 5
4. Seven assertions 6

4.1. System and user locality 6
4.2. System instruction locality 7
4.3. Competition between the user and system 8
4.4. System self-interference 9
4.5. Block operations 10
4.6. Streaming writes 11
4.7. Page mapping strategy 11

5. Conclusions 12
6. Acknowledgements 13
References 13

i

List of Figures
Figure 2-1: Baseline MCPI for Ultrix and Mach. 5
Figure 3-1: Relative system overheads for programs running on Ultrix and Mach. 7
Figure 4-1: User/system interference. 8
Figure 4-2: System self-interference. 10
Figure 4-3: MCPI for random page mapping. 12

ii

List of Tables
Table 1-1: Seven assertions about the memory behavior of operating systems. 2
Table 2-1: Memory system simulation parameters. 3
Table 2-2: Experimental workloads with execution times for a DECStation 5000/200. 3
Table 2-3: Summary of trace results. 5
Table 2-4: Summary penalty cycles (per instruction). 6
Table 4-1: MCPI contributions from the cache. 8
Table 4-2: MCPI contributions from cache competition. 9
Table 4-3: TLB activity. 10
Table 4-4: MCPI from block memory operations. 10
Table 4-5: Block memory operations and memory reads. 11
Table 4-6: Write buffer stall cycles per instruction. 11

iii

