UNIVERSAL POSTAL UNION

Postal Operations Council

STANDARDS BOARD

Berne, 29 March 2006

(Agenda item 4c)

S43 Electronic PostMark (EPM) interface - Proposed update

| Document by Canada Post

POC SB 2006-2 Doc 4c.Rev 1

1

Subject

Update to the UPU Technical Standard S43 Electronic PostMark
(EPM) interface.

References/Paragraphs

§8§1-3

2

Decisions expected

Approve the update as presented in Annex 1.

§ 4 and Annex 1

I. Background
1. This is a resubmission of the request to update the S43 standard that was rejected in
the previous Standards Board meeting in Sydney. Based upon the comments and
guidance of this meeting, Canada Post, leaders of the EPMSpec group of the
Telematics Cooperative, has taken email dialogue with IPC and UPU Standards
Programme in the attempt to clearly understand the documentation requirements
and present a standard that conforms to the requirements of the Standards Board.
The document in Annex 1 is the result of this dialogue.
2. The USPS has provided notice to allow the UPU to continue to use the term
“Electronic PostMark” within the standard, without trademark infringement.
II. Updates to S43
3. This significant update to the standard reflects the experiences of the Telematics
Cooperative members in implementing systems based upon the EPM S43-2 standard.
These updates reflect the following:
a) rationalization of the PostMarkedreceipt structure to tighten up integrity, provide
extensibility, and support XMLDSIG in a more symmetric way;
b) enumerations added to all elements with a finite list a values for better schema
integrity;
o) automatic extension of Lifecycles for RetrieveResults and ChecklIntegrity;
d) merging of the CheckIntegrity DataType with the MimeType for consistency;
e) added use case for end-to-end confidentiality;
DOT.PN
GdS

| 17.03.2006

f) vastly improved documentation and explanations right across the board;

g) LogEvent moved to the Extended category, split is now 5 core verbs 7 extended
verbs;

h) notion of a re-encrypt added to Encrypt operation;
i) multiple recipient encryption lists now included;

i) version element added to all operations to better handle backward compatibility.

III. Decision expected

4. The SB is requested to approve the update to S43 as presented in Annex 1 on
condition that prior to publication CEN have approved the document. If substantial
changes are made the document will be referred back to the SB at its July 2006.3
meeting.

Annex:

1. S43 Electronic PostMark (EPM) interface (Draft E)

DOT.PN
GdS
| 17.03.2006

POC SB 2006.2-Doc 4c.Annex 1

S43-3 Draft E

UNIVERSAL POSTAL UNION

Identification/Codification Standards

Electronic PostMark (EPM)
Interface Specification

e UPU status: 1
e Date of adoption at this status: 20 November 2003

e Date of approval of this version: n.a.

Users are reminded that there is only one current version of any document so it is important
that users verify that they have the most recent one. UPU Standards are updated in their
entirety. To ensure that you have the most recent update, please refer to our Catalogue of
UPU Standards on our website at www.upu.int

© UPU 2005 — All rights reserved

$43-3 Draft E

Disclaimer

This document contains the latest information available at the time of publication. The Universal Postal Union offers
no warrants, express or implied, regarding the accuracy, sufficiency, merchantability or fitness for any purpose of
the information contained herein. Any use made thereof is entirely at the risk and for the account of the user.

Warning - Intellectual Property

The Universal Postal Union draws attention to the possibility that the implementation of this standard might involve
the use of a claimed intellectual property right. Recipients of this document are invited to submit, with their
comments, notification of any relevant rights of which they are aware and to provide supporting documentation.

As of the date of approval of this standard, the Universal Postal Union had not received such notice of any
intellectual property which might be required to implement this standard, other than what is indicated in this
publication. Nevertheless, the Universal Postal Union disowns any responsibility concerning the existence of
intellectual property rights of third parties, embodied fully or partly, in this Universal Postal Union Standard.

Copyright notice

© UPU, 2006. All rights reserved.

This document is copyright-protected by the UPU. While its reproduction for use by participants in the UPU
standards development process is permitted without prior permission from the UPU, neither this document nor any
extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written
permission from the UPU.

Requests for permission to reproduce this document for other purposes should be addressed to:

Universal Postal Union — International Bureau
Standards Programme

3000 Berne 15

SWITZERLAND

Tel: +41 31 350 3111

Fax: +41 313503110

E-mail: standards@upu.int

Reproduction for sales purposes might be subject to royalty payments or a licensing agreement.

ii © UPU 2005 — All rights reserved

$43-3 Draft E

Contents

Lo T =31 o] (o O TP PR PP SUPPP TP Vi
a1y To (0o (1] o I TP UPPPP vii
High-Level EPM Service DefiNItiONcooo ittt e ettt e e e e e e e e et e e e e e aansbneaaaaeannns vii
1. ST o] o= PSPPSR 1
2. NOIMALIVE REFEIENCES. ...ttt et e ettt e ettt et e e e ne e e anneee s 2
3. Terms and DefinifiONSooi ittt e et e e e e enes 4
4. Symbols, Abbreviations and ACTONYMScocuiiiiiiii ettt sn e neeees 7
5. Electronic PostMark (EPM) Interface SpecifiCationccccooiiieiiiiriiee e 8
5.1 EPM Core BUuSiNeSs ServiCes - GENETAL..........ciiiiiiiiiiiiiie ettt sreennee e 8
5.1.1 Digital Signature VerifiCation SEIVICES.ci ittt e e e e s e e nnneee s 8
51.2 TiMe STAMPING SEIVICEScoiiiiiieiie ettt ettt et b e sttt e e s e et naeeenaes 8
5.1.3 CoNfIdENTIAlItY SEIVICESeei ettt e et e e st e e ettt e e s e e e ne e e seeeeanneeeeneeeeennees 8
514 NON-REPUAIALION SEIVICES.ciiiiiiieiiii ettt et e et e et e e et e e e ateeeaneeeeanneee s 8
51.5 EVENt LOGGING SEIVICES.uiiiiieiiiietie ettt ettt ettt e b e st et e e nenen e e steeeaneennee e 8
5.1.6 Non-Repudiation Challenge SUPPOrt SEIVICEScoiiuiiiiiiiieiiiie et 9
5.2 Overview Of EPM OPEratioNsoooiiiiiiiiiieiiie ettt ettt e e s e e s e e e e e nneeas 9
5.2.1 (1T 0= = | PRSP PR PPRO 9
522 VBIITY et st a e .11
5.2.3 PostMarkcueeeeiiiiii e .1
524 Checklntegritycccc... .1
525 RetrieveResults................. .12
5.2.6 LOgEVENtooiiiiiiiiie .12
5.2.7 SIGN e .12
5.2.8 StartLifecycle.......ccccoovveiiiiiie .12
5.2.9 ENCIYPL e .13
5.2.91 (1T T | S PTTTOP U P PP TPPRRPPPTON .13
5.2.9.2 Delegated Confidentiality SEIVICEccoviireiiiiieii e 13
5.2.10 [= o Y/ o) RSO 13
5.2.11 LOCALE13
5212 RetrieveSummary..........ccccooiiiiiiiciieee e .13
5.2.13 RetrievePostalAttributes.... .14
5.3 Common Concepts............ .14
5.3.1 Authentication14
5.3.2 Transaction Handling15
5.3.3 Lifecycle Managemento.o i e 15
5.3.4 = o] g F= oo | 13T IR PP UPPPPI 16
5.3.5 Processing Directives or Options16
5.3.6 PostMarking ... 16
54 Common Schema Types used across EPM Operationscccooiuiiiiiiiiiiiieeiiiee e 16
5.4.1 TransactionStatus and TransactionStatusDetail Typeoiiiiiiiiiiiii e 16
54.2 TransactionKeyType

5.4.3 QualifiedDataType.............
544 ST le e 101 C= [l (ol)Y o1 YU PRPR PP
545 D101 g1 o 1Y/ o =SOSR
5.4.6 PostMarkedReceipt ..o,

547 PostMarkedReceipt (XMLDSIG considerations)
5.4.8 (@4 To [0 F=1 (@701 (=T oY i 5o 1= USRS
5.4.9 PartiCipatiNngPartyTYPEcooo it e e e e et e e e e e et a e e e e e
5.4.10 Claimedldentity

5.4.11 AccessScope and Scopes
54.12 ENCryptRESPONSE OPLIONeeiiiiie ettt s e e st e e et e e e st e e e nnt e e e enneeanneeeeaneee s
5.4.13 (070701 (T 11V =Y = To o1 - USRS
5.4.14 A =1L e (@] oTT =1 i o] o NSO SR PSP PUPPPRRRRPNY

© UPU 2005 - All rights reserved iii

$43-3 Draft E

5.4.15 AVZ= 1o (@] o] 1 o] o H PRSP UPPPTRPNY
5.4.16 =T o | PSP PP PP UPPPPPI
5.4.17 (@] 1Y 0 72 o] o1 Toz= 1 1T o USRS
5.4.18 Contentldentifier .
5.4.19 Version......cccoceeeeecieeennenn.

5.4.20 SignaturePolicyldentifier

5.5 EPM Interface Specification — “Core” Operations in Detail.............cccveiiiiiiiiiei e 37
5.5.1 RV L= 1S

5.5.1.1 Verify Edit Rules Summary
55.1.2 VerifyOptions REQUEST FIAGS........iiiiiiiie ettt e et e et e e et e e e neeesneeeenneee s 37
55.1.3 Verify REQUEST EIBMENTScoiiiii ettt e re e 39
5514 Verify Response Object .42
552 PostMarkccocevvieiiieeeiee ... 43
55.21 PostMark Edit RUIES SUMMANYooiiiiiiiii ettt 43
55.2.2 PostMarkOptions ReQUEST FIAGS..........eeiiiiiiiiie e 43
55.2.3 Postmark Request Elements

5524 PostMark Response Object......
5.5.3 REHEVE RESUIES ...ttt et ettt e e et e e ane e e aneeeeennee s
5.5.3.1 RetrieveResults Edit RUIES SUMMAIYcoooiiiiiiii e et e e 46
5.5.3.2 RetrieveResultsOptions Request Flags.... .47
5.5.3.3 RetrieveResults Request Elements.......... .
5534 RetrieveResults RESPONSE ODJECTc...uiiiiiiieiiie et e e et e e e e e e snreeaeeeannes
554 (07 aT=Te3 4[] (= [11U
5.5.4.1 Checkintegrity Edit Rules Summary.........

55.4.2 ChecklintegrityOptions Request Flags
5543 Checklintegrity ReqUEeSt EIBMENLSoiiiiii e e e e e s neeennaeeennees
5544 Checkintegrity RESPONSE ODJECL..........ueiiiiiie et see st e et e e st e e e st e e sneeeesnneeesnaeennneeennnes
555 SN e

5.5.5.1 Sign Edit Rules Summary
55.5.2 SignOPLioNs REQUESTE FIAGS.iiiiiiiiiiii ettt sttt
5553 SigN REQUESE EIBMENEScooiiiieiie ettt e et e et e e st e e e anneeeeneeeeeneeeanneeeennneeennnes
5554 Sign Response ODbJect........ ..o

5.6 EPM Interface Specification — “Extended” Operations in Detail
5.6.1 Tt oY/ o] ST O U TP PP U R OO PP TOPPR PR
5.6.1.1 Encrypt Edit RUIES SUMMAYooiiiii et
5.6.1.2 EncryptOptions Request Flags....

5.6.1.3 Encrypt Request Elements..........
5.6.14 ENCrypt RESPONSE ODJECT. ...t e e ettt e e e e et e e e e e e nbe e e e e e nsebeeaaeaennns
5.6.2 (=Tt Y/ o) S SO PPPPPPPI
5.6.2.1 Decrypt Edit Rules Summary

5.6.2.2 DecryptOptions Request Flags ...
5.6.2.3 Decrypt ReqQUEST EIEMENTS......... ettt e e et e e e e e abe e e e e enteeeaaeaaannes
5.6.24 Decrypt RESPONSE ODJECT ...t e et e e e e et e e e e e e nnbb e e e e enteeeaaeaaannes
5.6.3 Locatecoccvviiiiiiiieee

5.6.3.1 Locate Edit Rules Summary .
5.6.3.2 LocateOptions REQUESE FIAGSuiiiiiiee ittt ettt e et e e et e e s et e e e naeeesnteeennaeeennnes
5.6.3.3 Locate REQUESE EIBMENTSccooiiieiiie ettt e e et e e e e s e ee e e neaeeeeeeas
5.6.3.4 Locate Response Object

5.6.4 LogEvent......cccconiiiiiiiiiiiiiee,
5.6.4.1 LogEvent Edit RUIES SUMMAIYoooiiiiieiiie ettt e e e e e s e e e e e sneeeesnneeesseeennneeennnes
5.6.4.2 LogEventOptions ReQUESE FIAGS.......cc.uuiiiiieeiieee et e e e e s e e e e e e
5.6.4.3 LogEvent Request Elements

5.6.4.4 LogEvent Response Object......
5.6.5 SEAMLIFECYCIE ...ttt et e ettt st
5.6.5.1 StartLifecycle Edit RUIES SUMMANYccoiiiiiiie et
5.6.5.2 StartLifecycleOptions Request Flags

5.6.5.3 StartLifecycle Request Elements
5.6.5.4 StartLifecycle ReSPONSE ODJECLcocuuiiiiiiii ettt
5.6.6 REIHEVESUMIMAIY ...ttt e ettt e ettt e e ettt e e ant e et e e snn e e e anneeen
5.6.6.1 RetrieveSummary Edit Rules Summary.......

5.6.6.2 RetrieveSummaryOptions Request Flags

iv © UPU 2005 - All rights reserved

$43-3 Draft E

5.6.6.3 RetrieveSummary ReqUest EIEMENTSoooiiiiiiiiiiie et e e e e e ea e
5.6.6.4 RetrieveSummary Response Object
5.6.7 RetrievePostalAttributes..........ccccoiiiininns
5.6.7.1 RetrievePostalAttributes Edit Rules Summary

Annex A (Informative) European and International Standards Inter-relationships and Evolutionc..cccceeeveen. 81

ANnnex B (INfOrmative) EXAMIPIES ettt e e e ettt e e e e e e et ee e e anebeeea e e e nnraeaaaaeaanns
Example 1 — Standalone PostMarkedReceipt over a Verified Signature............ccoooiiiiiiiiii e
Example 2 — Standalone <PostMarkedReceipt> over Data when using PostMark operationcccccooiiieee.
Example 3 - Embedded <PostMarkedReceipt> over a Verified Signaturec.ccccovevivieiiniieens
Example 4 - RequesterSignature over TransactionKey for any operation in protected Lifecycle.........
Example 5 — RequesterSignature over OriginalContent when used in a CheckIntegrity operation

Annex C (Informative) EPM XML Schema File V.15 ...ttt 91
Annex D (Informative) Web Services Description Language (WSDL) Fileccooiiiiiiiiiie e 108
=TT o] oo | =T o] 0) PO 116

© UPU 2005 - All rights reserved \"

$43-3 Draft E

FOREWORD

Postal services form part of the daily life of people all over the world. The Universal Postal Union (UPU) is
the specialised institution of the United Nations that regulates the universal postal service. The postal
services of its 190 member countries form the largest physical distribution network in the world. Some 5
million postal employees working in over 660 000 post offices all over the world handle an annual total of
424 billion letter-post items in the domestic service and 6 billion in the international service. Some 4,4
billion parcels are sent by post annually. Keeping pace with the changing communications market, postal
administrations are increasingly using new communication and information technologies to move beyond
what is traditionally regarded as their core postal business. They are meeting higher customer
expectations with an expanded range of products and value-added services.

Standards are important prerequisites for effective postal operations and for interconnecting the global
network. The UPU's Standards Board develops and maintains a growing number of standards to improve
the exchange of postal-related information between postal operators and promotes the compatibility of
UPU and international postal initiatives. It works closely with postal handling organisations, customers,
suppliers and other partners, including various international organisations. The Standards Board ensures
that coherent standards are developed in areas such as electronic data interchange (EDI), mail encoding,
postal forms and meters.

UPU standards are drafted in accordance with the rules given in Part V of the "General information on
UPU standards" and are published by the UPU International Bureau in accordance with Part VII of that
publication.

This document S43-3, is the UPU equivalent of CEN/TS 15121:2004. It may be amended only after prior
consultation, between CEN/TC 331 and the UPU Standards Board, in accordance with the Memorandum
of Understanding between CEN and the UPU.

This Electronic PostMark (EPM) Interface specification has been developed in close relationship with the
following technical standards:

- UPU Standard S33: Interoperability Framework for Postal Public Key Infrastructures. This standard is
currently at Status 0.

- UPU Standard S39: Trusted Time Stamp. This standard is currently at Status 1.
- Annex A: European and International Standards Inter-relationships and Evolution, is informative.

This document is the fourth version of the specification. Substantive changes to the previous version
S43-3, have been marked as changed using the Microsoft Word “Track Changes” feature and appear in
an alternate color when the document is viewed from within Microsoft Word.

S43-3 Draft D itself underwent a series of interim sub-version changes as a result of implementation
experiences gained while implementing the Initial Draft D sub-version 1.1. The technical highlights of this
evolution from the S43-3 Draft D V1.1 and the currently tabled S43-3 Draft E sub-version 1.15 are
outlined in an accompanyting document entitled “S43-3 Draft E Revision History”.

vi © UPU 2005 - All rights reserved

$43-3 Draft E

INTRODUCTION

This interface specification represents a standardized way for a postal administration or its system
development teams to build an Electronic PostMark capability which they can then choose to offer to their
own customers as part of their electronic service inventory.

The definition of what an EPM is and what service capability a post would have if they either built or
acquired an EPM implementation that supports this standard specification is as follows.
HIGH-LEVEL EPM SERVICE DEFINITION

The EPM is essentially a digital signature verification and timestamping authority which verifies and logs
as evidence, the content integrity of electronic information. The collection of technical services in an EPM
can cryptographically verify and store all electronic evidence in support of potential disputes which may
challenge the authenticity of events within a postal customer’s automated transaction.

An EPM Service which is constructed to this specification, can support the capture and reproduction of
evidence data attesting to the fact that a target business transaction was conducted and completed in an
environment of integrity and trustworthiness with respect to one or more of the following attributes:

- Who originated the transaction

- Who participated in the transaction

- Were the terms, conditions, and commitments understood by all parties

- When was the document agreed to by the stakeholders, and sent to each participating party
- When was it received by each participating party

- Was the content intact throughout transmission

- Have all parties been notified of all agreed events of significance

The EPM'’s non-repudiation service involves selected combinations of the following key service
components in order to ensure end-to-end transaction integrity and evidence collection in a confidential
and auditable environment. The EPM service is a set of standardized application layer software security
services aimed at facilitating the introduction and integration of these core capabilities into an target
customer’s business applications:

- digital signature verification

- certificate status verification

- timestamping of verified signatures (i.e. a PostMarkedReceipt)

- receiptissuance

- content timestamping

- digital signature creation

- capture of signature intent (context and user commitment)

- creation of encrypted envelopes

- decryption of encrypted envelopes

- evidence logging of all EPM Service events

- logging of user events deemed relevant to the business transaction
- tying together of EPM events into a business transaction lifecycle

- retrieval of evidence data in support of dispute resolution and future challenges in a non-repudiation

© UPU 2005 - All rights reserved Vi

$43-3 Draft E
context

These services can be utilized individually or in any combination to enhance the integrity and validity
associated with application events which transpire within a target customer’s automated business
transaction. The process of integrating these features into an automated application is termed “EPM-
enabling” the target application. Each call to the EPM Service can be looked at as a non-reputable EPM
event or EPM transaction within the application’s overall business workflow. These non-repudiation
events can be logically linked and tracked within an application’s business workflow to provide additional
business context to an arbitrator should a challenge to the event’s authenticity be presented by any of the
involved parties.

When used in EPM-prescribed and documented fashion, the EPM Service can support the following
capabilities:

- non-repudiation of origin
- non-repudiation of submission
- non-repudiation of delivery

- non-repudiation of receipt

viii © UPU 2005 — All rights reserved

$43-3 Draft E

1. ScoPE
The scope of this S43-3 Draft E update is restricted to the following items:

- A substantial change in the clarity of the documentation associated with the EPM Interface
Specification.

- Better coverage of the individual elements that make the request and response detail associated with
EPM operational verbs.

- Associated changes to the Web Services Description Language (WSDL) and its associated XML
Schema (XSD) as a result of larger participation from member Posts in the implementation of the
EPM Interface Standard.

The scope of this update does NOT include:

- A description of the issues surrounding inter-operability between multiple postal EPM
implementations when a business transaction lifecycle requires the participation of more than one
EPM implementation in a cross-postal Administration scenario.

- Issues surrounding EPM usage in a ‘multiple Certificate Authority’ scenario where inter-operating
posts are participating in a cross-border transaction as described above

- Examination of “Certificate Authority deployment model” alternatives necessitated by the cross-border
scenarios described above.

© UPU 2005 - All rights reserved 1

$43-3 Draft E

2. NORMATIVE REFERENCES

The following referenced documents are indispensable for the application of this document. For dated
references, or references to a version number, only the edition cited applies. For undated references and
where there is no reference to a version number, the latest edition of the referenced document (including
any amendments) applies.

UPU Standards glossary [1]

Internet Engineering Task Force (IETF) documents

IETF Internet RFCs [2] are available at http://www.ietf.org

RFC 3161 — Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP) (August 2001), C.
Adams, P. Cain, D. Pinkas, R. Zuccherato. [3] http://www.fags.org/rfcs/rfc3161.html

RFC 3126 — Electronic Signature Formats for long term electronic signatures (September 2001), D.
Pinkas, J. Ross, N. Pope [4] http://www.fags.org/rfcs/rfc3126.html

RFC 2315 — PKCS #7 V1.5 [5] http://www.fags.org/rfcs/rfc2315.html

RFC 2630 — Cryptographic Message Syntax (June 1999), R. Housley [5]
http://www.fags.org/rfcs/rfc2630.html

RFC 3447 — PKCS #1 RSA Cryptography Specifications V2.1 http://www.fags.org/rfcs/rfc3447.html

RFC 3275 — XML-Signature Syntax and Processing (March 2002), D. Eastlake, J. Reagle, D. Solo [6]
http://www.fags.org/rfcs/rfc3275.html

RFC 2560 — X.509 Internet Public Key Infrastructure Online Certificate Status Protocol — OCSP (June
1999), M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams [7] http://www.fags.org/rfcs/rfc2560.html

RFC 2617 — HTTP Authentication: Basic and Digest Access Authentication (June 1999) Franks, P.
Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L. Stewart.
http://www.fags.org/rfcs/rfc2617.html

RFC 3280 - Internet X.509 Public Key Infrastructure Certificate and CRL Profile (supersedes RFC 2459)
http://www.fags.org/rfcs/rfc3280.html

RFC 2822 — Internet Message Format http://www.fags.org/rfcs/rfc2822.html

Organization for the Advancement of Structured Information Standards (OASIS) [8]

SAML Core 1.1 — Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) V
1.1. OASIS, November 2002 E. Maler et al. http://www.oasis-
open.org/committees/download.php/3406/o0asis-sstc-saml-core-1.1.pdf

OASIS DSS - Digital Signature Services 3" Committee Draft
http://www.oasis-open.org/committees/tc_home.php?wg abbrev=dss

OASIS DSS - Digital Signature Services - EPM Profile
http://docs.oasis-open.org/dss/oasis-dss-1.0-profiles-epm-spec-cd-01.pdf

2 © UPU 2005 — All rights reserved

$43-3 Draft E

Footnotes:

[1] UPU Standards are obtainable from the UPU International Bureau, whose contact details are given in
the Bibliography; the UPU Standards glossary is freely accessible on URL http://www.upu.int.

[2] Internet RFCs (Requests for Comment) are available from the Internet Engineering Task Force, c/o
the Corporation for National Research Initiatives, 1895 Preston White Drive, Suite 100, RESTON, VA
20191-5434, UNITED STATES OF AMERICA. Tel: (+1 703) 620 8990, Fax: (+1 703) 620 9071,
www.ietf.org

[3] References within the EPM WSDL specifications that pertain to time stamp tokens, time stamp values,
or any other time stamp attributes should be assumed by any reader or implementer to be RFC 3161
compliant.

[4] This RFC is considered by most authorities to be the essential definition of what constitutes a
legitimate non-repudiation service. It describes the technical criteria and pre-requisites for minimum
compliance as a non-repudiation service capability. The EPM interface specification honours ES-C
mandatory requirements, i.e. qualified as “required” or “shall” in the text.

[5] Defines the ASN.1 layout for all relevant PKCS objects utilised by the EPM.

[6] This RFC, commonly referred to as XMLDSIG, is the W3C’s landmark standard to which nearly all
XML-based attempts to capture ASN.1 PKCS7 syntax in XML refer. The current WSDL interface allows
for both PKCS7 binary ASN.1 formatting of signature objects as well as the more recent XMLDSIG
signature formatting.

[7] The ValidationData element defined in the WSDL interface specification refers directly to this RFC. If
an EPM implementation does not utilise an OCSP responder in its implementation, then it needs to
capture the essential information described in this RFC as it pertains to ValidationData required at non-
repudiation challenge time for successful evidencing. This can be accomplished through CRL evidence
capture as well as signed OCSP responses, the latter being more credible. This new version of the
specification provides an extensibility model whereby individual posts may implement their own
ValidationData complexType to extend the abstract GenericValidationData now in the schema.

[8] OASIS (Organization for the Advancement of Structured Information Standards) is a non-profit,
international consortium that drives the development, convergence, and adoption of e-business
standards. The consortium produces web services standards along with standards for security, e-
business, and standardisation efforts in the public sector and for application-specific markets.

© UPU 2005 - All rights reserved 3

$43-3 Draft E

3. TERMS AND DEFINITIONS

For the purposes of this document, the terms and definitions given in the UPU Standards glossary and
the following apply.

asymmetric cryptographic algorithm

cryptographic algorithm using two related keys, a public key and a private key. One key can decrypt what
has been encrypted with the other one

certificate (e.g. X509)

the public CA certified portion of a key pair in a PKI environment which binds an entity’s unique name and
their public key to the corresponding privately-generated private key

Certificate Revocation List (CRL)

list of revoked certificates

certification

process of creating a public key certificate binding an entity’s identity to its public key

Certification Authority (CA)

entity trusted by one or more other entities to create, assign, revoke or suspend public key certificates

certification path

ordered sequence of certificates of entities which, together with the public key of the initial entity, can be
processed to obtain the public key of the final entity in the path

RSA

Short for Rivest, Shamir and Adelman, RSA is an encryption algorithm developed by RSA Data Security,
Inc.

Cross-certification

mechanism by which two CAs exchange certificates to implement a trusted relationship

cryptographic key

parameter controlling the operation of a cryptographic function

cryptography

discipline embodying the principles, means and methods for the transformation of data in order to hide its
information content, or to prevent its undetected modification, or to prevent its unauthorized use or any
combination thereof

digital signature

value, cryptographically derived from selected data using a public key algorithm, which when associated
with the corresponding public key and its owner, allows a recipient of the data to authenticate its origin
and verify its integrity

4 © UPU 2005 - All rights reserved

$43-3 Draft E
distinguished name

globally unique name for an entity

end entity

person, organisation, computer system or group thereof that is the subject of or uses a certificate but is
not a CA or RA

NOTE An end entity is a subscriber or a relying party or both.

entity
a CA, RA or end entity

hash

one-way mathematical function that maps values from a large (possibly very large) domain into a smaller
domain and that satisfies the following two properties:

- for a given output, it is computationally infeasible to find an input which maps to this output
- foragiven input, it is computationally infeasible to find a second input which maps to the same output

NOTE Hashing is used to reduce a potentially long message into a “hash value” or “message digest” of
fixed length, which is sufficiently compact to be inputted into a digital signature algorithm.

key
see cryptographic key

key pair

the set of keys, consisting of a public key and a private key, that are associated with an entity in a public
key cryptography system

Public Key Infrastructure (PKI)

set of hardware, software, people, policies and procedures needed to create, manage, store, distribute
and revoke certificates based on public key cryptography

non-repudiation

service providing proof, beyond reasonable doubt, of the integrity and origin of data which can be
validated by a third party

object identifier

a sequence of integer components identifying an object such as an algorithm or attribute type

Registration Authority (RA)

entity responsible for the identification and authentication of certificate subjects but which does not sign or
issue certificates

relying party

recipient of a certificate who acts in reliance on that certificate and/or on a digital signature that is verified
using that certificate

© UPU 2005 - All rights reserved 5

$43-3 Draft E
RSA algorithm

a cryptographic method created by Rivest, Shamir, and Adelman for which the intellectual property rights
are held by RSA Data Security.

Secure Socket Layer (SSL)

protocol developed by Netscape for encrypted transmission over TCP/IP networks

subject

an entity whose public key is certified in a public key certificate

subscriber

an end entity or subject that is considered to have an account with an EPM Service Provider providing
them with the ability to subscribe to the service subject to some pre-determined contractual arrangement

Trusted Time Stamp (TTS)

record mathematically linking a data item to a time and date assured by a trusted time stamping authority

Time Stamp Authority (TSA)

trusted third party which issues and/or verifies trusted time stamps

X.509 V3 certificate extension

mechanism, defined in Version 3 of the X.509 standard, supporting the embedding of usage and policy
information in a certificate

6 © UPU 2005 - All rights reserved

$43-3 Draft E

4. SYMBOLS, ABBREVIATIONS AND ACRONYMS

For the purposes of this document, the symbols, abbreviations and acronyms given in the UPU Standards
glossary and the following apply:

CMS
EPM
IETF
LDAP
NA
ocsP
PA
PKCS#n:
PKI
RDBMS
RFC
RSA

SAML
SNMP
SSL
TSA
TSP
TTP
TTS
UPU
WSDL
XAdES
XSD

XSLT

Cryptographic Message Syntax (the evolution of PKCS#7)
Electronic PostMark

Internet Engineering Task Force

Lightweight Directory Access Protocol

Not Applicable.

Online Certificate Status Protocol

Postal Administration

Public Key Cryptography Standard #n (e.g. PKCS#7 or PKCS#1)
Public Key Infrastructure

Relational Database Management System

Internet Request For Comments

Short for Rivest, Shamir and Adelman, RSA is an encryption algorithm developed by RSA
Data Security, Inc.

Security Assertion Markup Language
Simple Network Management Protocol
Secure Socket Layer

Time Stamp Authority

Trusted Service Provider

Trusted Third Party

Trusted Time Stamp

Universal Postal Union

Web Services Description Language
XML Advanced Electronic Signatures
XML Schema Definition

XML Stylesheet Language Transformation

© UPU 2005 - All rights reserved 7

$43-3 Draft E

5. ELECTRONIC POSTMARK (EPM) INTERFACE SPECIFICATION

5.1 EPM CORE BUSINESS SERVICES - GENERAL

This clause will describe the key services that an implementation of this specification would allow a post
to support as part of formal EPM service offering to it customer base. The clause will then go on to cover
the details of each operation supported by the service along with detailed descriptions of each element
making up the request and response structures each operation.

NOTE This Electronic PostMark (EPM) Interface Specification describes the functionality and edit rules
of the actual technical specification artifacts, which are represented by an XML Schema (XSD) and an
associated Web Services Definition Language (WSDL). The current version of the both these files is
contained in this document as Annexes. They can also be obtained in electronic format from the UPU
Technical Standards CD-ROM or can be obtained from the UPU Standards Programme.

5.1.1 Digital Signature Verification Services

The Electronic PostMark ensures that the electronic content of all messages can be verified for both
content and signer integrity as well as ensuring that all input is maintained as evidence and can be re-
verified at any point in the future should a challenge be launched. Verifying digital signature integrity and
certificate status is performed using PKI-based digital fingerprinting and signature verification
technologies to check for both content and certificate integrity.

5.1.2 Time Stamping Services

All signature verification services are time stamped with a unique Electronic PostMark™ (or EPM)
attesting to the fact that the post providing the EPM Service stands behind the evidence gathered during
the signing ceremony, as well as the subsequent verification status. Additionally the time at which the
transaction was conducted is captured both in the Electronic Postmark’s logging facility as well as within
the verified signatures themselves.

5.1.3 Confidentiality Services

The Electronic PostMark offers PKI-based encryption services, which provide a high degree of confidence
that sensitive business information is hidden from all but the intended recipients. Encryption at origin and

decryption at destination guarantees absolute security and privacy for business transaction stakeholders.

5.1.4 Non-Repudiation Services

The Electronic PostMark retains all customer-required tracking and evidence records of significance
within the business transaction life cycle.

The EPM'’s non-repudiation service supports non-repudiation of the following types:
- Non-repudiation of Origin

- Non-repudiation of Submission

- Non-repudiation of Delivery

- Non-repudiation of Receipt

Combined with user-authentication, timestamping, and message integrity, these tracking records ensure
an extremely trustworthy end-to-end business transaction process. It is intended that the EPM Service,
through the implementation of jurisdiction-specific legislative requirements, can act as a legally binding
transaction notarization service both within and across Postal domains.

5.1.5 Event Logging Services

The physical storage of the evidence (i.e. escrow) data associated with EPM-logged and verified
business transaction data is a core capability of the Electronic PostMarking service. These electronic
records are maintained by the EPM Service provider for as many years as required by the customer and
the postal service (for example the USPS maintains records for at least 7 years, the Government of

8 © UPU 2005 - All rights reserved

$43-3 Draft E

Canada has mandated that Canada Post maintain its records for a minimum of 11 years.)

5.1.6 Non-Repudiation Challenge Support Services

The Postal Administration provides the individual or organization any and all required evidence of the
existence, integrity, and logged time of any business transaction tracked by the service. This information
can be re-produced digitally or physically and can be sent to any required arbitrating party for their
assessment.

5.2 OVERVIEW OF EPM OPERATIONS

5.2.1 General

This clause introduces the major operations (i.e. verbs) supported by the EPM Service. A short
description of the functionality will be described. This will be followed by an overview of the common
concepts reused across all operation within the EPM support environment.

This XML Schema describes the latest version of the EPM interface specification for the EPMService
moving forward. This document represents Version 1.15 of the standard.

The EPM Service Interface specification is a digital signature platform supporting basic crypto service
operations as well as a comprehensive framework for the delivery of evidentiary, witnessing, and non-
repudiation services. This interface specification is dedicated to the continued support of legacy
CMS/PKCSY binary signatures. This approach allows subscribing applications to leverage the strengths
of both protocols and can aid in the migration from one to the other. The schema will continue to support,
in an interchangeable way, use of both CMS/PKCS7 and XMLDSIG artifacts.

The schema coverage begins by describing the details of the repetitively used Complex Types and then
itemizes the core EPM SOAP operations or verbs which are supported. Each operation has three
clauses: the RequestType clause, the OptionsType clause, and the ResponseType clause.

EPM implementations are free to support the "XML Signature Syntax and Processing" standard (i.e.
XMLDSIG) for all elements presently carrying PKCS7 content. Selection of either format is supported
across the two prevalent signature formats within this domain. XML Encryption is also supported.

The table below itemizes the updated operations supported by the EPM as well as the options that can be
invoked by these operations. Both the operations and the options have been categorized according to
status as either ‘core’ or ‘extended’.

To qualify as a UPU-branded EPM, the EPM implementation SHALL support the updated ‘core’
operations and options at a minimum

© UPU 2005 - All rights reserved 9

paniesas sbl 1Y — G00Z NdN ® oL

‘Buissaooud siyj uy djay o} pasn aq ueod

3dTenoypeyIBNISOd 8y} Ul papnjoul osfe pue jsanbai Aiens uo jJuasaid Si YoIym Juswale UOTSISA oy “YSim Aay] Se SUOISIoA 89elia)ul 8)8.SIp
9S8} JoUOY 0} 88.f 8.1e SJSOH "ljio8ds UOISIoA pUE JoaJdsSIp 84 [[IM Jjos} Uoeal10ads ewayds Nd3 oy} Aes o} sijey 31 ees Aay) se abusjeyo
Aupgredwos piemyoeq Sy} sSaippe 0] 88.) a.e S)SO4 [eo0] 8y S}diadaypaxiepiSod penssi Aisnoineud buLiouoy pue sesuodsal/sjsenbal
buissesoud yjoq o} seydde j se uoneoyoads aoepdiul AT 8y} 4o Ayjiqiedwod piemyoeq poddns o) pabliqo ale (GL LA OF #L LA

woJy "b-8) uoneolyoads siyj JO SUOISIBA JomMaU Jasjjal 0} uolejuswaldul 82IA8S T J1ey) pepeibdn eney oym suonesjSiuiupy [ejIsod JLON

uonesadQ 10y uondQ pilepA- A

Aubayupppeyy - |9
910) Nd3 NdN - s)nsoyoAsLay — HY
S ypnydwejgawijuinioy
A 2 2 S 2 asuodsayjdAioug
S S Vs 2 Y VA 0ju|60GXUINIY
S A A A A ojujainjeubiguiniay
P 2 S A S ydisoaypaysepsodanss|
S 2 2 2 2 A adojaaugbuiwosujydAioag
A P A A A S S aouapiaguoljeipndayuoNaIo}g
P P A ajeoiedALIaN
» , £ £ A » A A a1ohoay1puz
Vs Ve Ve Ve Ve Vs Ve Ve ajoAo9ypua)xg
:uondo

s9InquUY

319A2941 Arewwng JuaAg yiepy
|eysod ajeoo | idAiseq ydAiouz 19 Uy fjuap | ubig
veis onaLeY anaLey 607 }sod :uopesado

‘guenjuonelsado yoes Joj pejsenbal aq ues yoliym suondo ajgejieAR ay) pue 8oeu8)Ul 80IAI8S NdT Yl 10 Alewwns e seplaoid mojaq a|ge)
8y -suoneoidde jusio 0} a|gejieAR ale Jey) ‘0] pa.llajel SawWsWos ale Aay) se sqiaA Jo ‘suonesado 90IAI8S N 8yl Saquosep asnejogns siy |

GL'LA suondo pue suonesadQ 991A19S INDT

3 yeiq €-evs

$43-3 Draft E

5.2.2 Verify

The Verify operation is the heart of the EPM Service, since fundamentally the EPM is a Digital Signature
Verification Authority. The Verify operation performs a cryptographic Verify on the incoming signature
which can be in any of the following formats:

a. PKCS7/CMS SignedData ASN.1 object - ISO OID value 12 840 11354917 2

b. PKCS7/CMS EnvelopedData ASN.1 object - ISO OID value 12 840 11354917 3
c. XML Digital Signature and Processing (i.e. XMLDSIG) compliant XML signature

d. XML Encryption (i.e. XMLENC) compliant XML EncryptedData document

NOTE 1 It should be noted that the encrypted versions b. and d. above must actually contain a signature
after decryption. The decryption is specified by simply turning on the DecryptincomingEnvelope option.
The Verify operation can optionally return a PostMarked receipt by turning on the
IssuePostMarkedReceipt option. The receipt on a Verify operation is the Postal Administration’s
attestation of having successfully verified the signature and validated the certificate used to create that
signature. This receipt, which also has a unique identifier called the TransactionKey, can be retained by
the subscriber if desired. All captured and derived evidence information retained by the EPM Service.

NOTE 2 The Verify operation is invoked by the originator of the document when the originator requires
Proof of Origin (i.e. non-repudiation of origin). It is often the first event in a business transaction Lifecycle.
When the document is Verified and optionally PostMarked at origin, it can then can be checked by the
recipient using the Verify or Checkintegrity operation also described below.

NOTE 3 The PostMarkedReceipt carries different semantic meaning when used in conjunction with a
PostMark operation where no signature is actually being verified. The attestation by the Postal
Administration would be different in this case as they only may be able to attest to the existence of a
particular datum at a given time as no signature verification is taking place.

5.2.3 PostMark

This operation is a superset of an elementary TimeStamp as described by RFC 3161. Additional semantic
meaning is carried with the PostMark and its returned PostMarkedReceipt. This operation is normally
performed as a consequence of the IssuePostMarkedReceipt option on a Verify operation. It can
however, be invoked directly as well. This explicitly requested version of a PostMark, sometimes termed a
Level 1 or elementary PostMark, only attests to the existence of a piece of data before a particular time.
The caller can pass in several content formats to be timestamped (i.e. PostMarked), and the EPM Service
will return a PostMarkedReceipt containing an RFC 3161-compliant timestamptoken as well as summary
information and a signed receipt.

5.2.4 Checkintegrity

The Checklintegrity operation allows clients to pass in content from a previous operation (a previous
Verify, PostMark, or Sign are valid operations upon which to perform a Checkintegrity) and have that
content compared against the original version stored in the EPM's non-repudiation log under the
requested TransactionKey. By passing in the TransactionKey of the original operation along with the
content to be checked, the EPM will validate whether that content is authentic. A common use case would
be as a Proof-of-Delivery, Proof-of-Possession tool whereby a sender can be reassured that the recipient
has received the signed document. This is ensured since the recipient not only signs the ChecklIntegrity
request but also passes in the document received from the sender. In this fashion denial of receipt by the
intended recipient cannot be made. The MimeType attribute of the OriginalContentType which specifies
the valid values for the type of the eContent being compared. See the description of OriginalContentType
in subclause 5.4.8.

If senders require Proof of Delivery, implementers should use the Checkintegrity operation not the Verify

© UPU 2005 — All rights reserved 1

$43-3 Draft E

operation, as that is the only way to ensure that the specific document (or its hash) was actually received
by the recipient. If the recipient is passing in the document on the Checklntegrity request, as well as
signing over that content See also

Claimedldentity in subclause 5.4.10. then the sender can enjoy Proof of Delivery and non-repudiation of
receipt. This operation does not perform a cryptographic verification but rather simply compares the
OriginalContent passed in to that which already exists within the non-repudiation database under the
requested TransactionKey.

5.2.5 RetrieveResults

The RetrieveResults operation is normally reserved for challenge-time requests. However EPM
implementations are free to use this operation as a ‘document pickup’ facility. When used in this way the
“sign for pickup” facility provides end-to-end non-repudiation and proof-of-delivery without the involvement
of any public eMail service provider. The PosteCS service from Canada Post and LaPoste is an example
of this type of a service. See also

Claimedldentity in subclause 5.4.10. The qualified form of the TransactionKey including the Sequence
element is required in multi-event transaction lifecycles when more than one Verify event exists within the
NonRepudiation database under the selected TransactionKey. The Sequence qualifier is used to select
which signature verification operation the caller wants the results for. For a list of all events in a Lifecycle,
refer to the RetrieveSummary in subclause 5.6.6 operation for details.

5.2.6 LogEvent

The LogEvent operation is available to allow subscribers to log and system timestamp any content they
believe is of significance to the non-repudiation life cycle. This facility is also useful when the EPM
Service is participating with other system components which are supporting other events within the non-
repudiation lifecycle which needs to be logged. For specific use-case examples of use of the LogEvent,
please refer to subclause 5.6.4.1.

NOTE Clients wishing to have submitted data timestamped should use the PostMark operation.

5.2.7 Sign

The Sign operation is another ‘special use’ operation normally used in a ‘Corporate Seal’ scenario when a
particular subscribing organization wants to sign something with an organizational or role-based identity.
It should be noted that this operation, is a server-side Sign and not the Sign performed by the client
endpoint (normally a customer or ISV application). It can be also used by subscribing organizations
wishing to ensure their partners that they are in fact receiving content that originated from them.

NOTE The Sign operation is not intended to be used for client-side signing. The more conventional
signature-creation usage scenario is when an individual using a desktop signing application signs content
which they subsequently pass to the EPM for verification and PostMarking using the Verify operation.

5.2.8 StartLifecycle

The EPM Service supports the notion of business transaction lifecycle. Realizing that business
transactions often involve multiple parties dealing with multiple documents over an extended time frame
and often across country borders, the EPM Service is designed to be able to ‘tie together’ any number of
events that are deemed ‘of significance’ to the participating parties.

The Startlifecycle operation can be started explicitly using this operation verb, or can be started implicitly
on any other operation verb simply by initializing the TransactionKey element to a pre-existing value. The
EPM Service will tie the incoming operation and all its content and results to the key specified.

The explicit version of the operation is required when the subscriber wishes to specify a ParticipatingParty
list. Please refer to ParticipatingPartyType in subclause 5.4.9 for details. If the subscriber does not wish to
specify ParticipatingParty entries and is willing to allow a value of ‘Global’ for the AccessScope element,

12 © UPU 2005 — All rights reserved

$43-3 Draft E

then an explicit StartLifecycle operation is not required. This is termed implicit use of lifecycle. That is a
subscriber can still start a Lifecycle by leaving the TransactionKey as null on the first (or only) operation.
By default every operation is part of a lifecycle of one event.

5.2.9 Encrypt

5.2.9.1 General

This operation (together with the Decrypt) provides the native EPM’s confidentiality support. The EPM
Service additionally supports the ability to retrieve the public encryption certificate to be used for the
encrypt operation by means of the ‘CertificatelD’ parameter. This service is normally used by
organizational subscribers wishing to encrypt content for parties they are dealing with. This service is not
normally used for clients interfacing with the service from their desktops. This encryption is performed by
the client desktop application.

Encryption takes place with any valid public key associated with the intended recipient.

5.2.9.2 Delegated Confidentiality Service

Another ‘Special Case’ usage of the EPM’s confidentiality capability is the optional ‘delegated
confidentiality’ service. This capability frees individuals from having to manage the public keys of intended
recipients. When a subscriber wishes to encrypt content for confidentiality reasons, they simply encrypt
that content with a public key provided to them by the Postal Administration. This single public key
belongs to the post and is the only public key the customer needs to maintain on their desktop. After
having encrypted the content with this post-specific public key the content is now secured for transport.
This envelope can be sent to the recipient.

At the recipient’s end, the recipient does not have the private key required to decrypt this envelope they
just received and consequently shall ask the post’s local EPM Service to Decrypt it for them. It would not
make sense for the EPM to simply Decrypt the content and pass it back to the caller in the clear. So what
the EPM does is encrypt the response as a result of the user turning on the EncryptResponse option on
the request. The EPM requires the caller’s public key in order to be able to actually encrypt the response
for the caller (who is the recipient in this scenario).In order to provide the EPM with the caller’s public key,
the caller is obliged to sign the request. This public key is used to subsequently encrypt the response
content for the caller. Please also refer to subclause 5.4.12 entitled EncryptResponse Option for more
detailed coverage.

5.2.10 Decrypt

This operation (together with the Encrypt) provides the native EPM’s confidentiality support. The EPM
Service utilizes its own private decryption key by default and uses it for all requests which have specified
the DecryptincomingEnvelope option. Where the EPM is deployed within a subscribing organisation, it
needs to be pre-configured to use customer-specific private decryption keys. Postal administrations are
free to choose whether to offer this deployment model to their subscribing customer’s.

EXAMPLE Canada offers this deployment model to its subscribers.

5.2.11 Locate

This EPM Service operation supports and friendly interface to public certificate retrieval. It is useful when
a client does not have the public key of a recipient they wish to encrypt content for.

5.2.12 RetrieveSummary

The RetrieveSummary operation is used to access a summary report of all the events that have taken
place in a particular Lifecycle. Selected elements from each the operation are returned as an unbound
repeating structure. Once the specific event within this returned list has been located, the client caller can
then access that specific event’s details using the RetrieveResults operation.

© UPU 2005 — All rights reserved 13

$43-3 Draft E

5.2.13 RetrievePostalAttributes

The RetrievePostalAttributes operation is used to access a list of localization attributes that are specific to
a country or region's EPM service provider. This operation is used to retrieve a list of country-specific
attributes by category, where each attribute is maintained as a Name/Value pair keyed by Locator and
maintained in a “Yellow Pages” like directory. These attributes are used to customize the visibility of a
country-issued PostMarkedReceipt when that receipt is viewed outside the country of receipt origin.
Since the PostMarkedReceipt contains a Locator element, this element can be used to access
receipt rendering detail specific to the country of receipt origin.

5.3 CoOMMON CONCEPTS

This subclause will describe the major concepts shared across EPM operations that are not specifically
associated with any individual operation. Additional non operation-related concepts is also covered

5.3.1 Authentication

The act of physically authenticating individual calls to the EPM is outside the scope of this specification.
The EPM delegates all authentication mechanisms to an implementation-specific authentication facility
which would normally sit out in front of the EPM. The chosen authentication mechanism can be specified
and deployed by each implementing post. Every post is obliged, at a minimum, to support some level of
basic or default authentication (see also AccessLevel = default and AccessLevel = Signed). This may
be the Basic Authentication as specified in the HTTP protocol and supported by all Web servers. It may
also be a strongly-authenticated 2-way Mutual Authentication supported by certificates. In any event all
sessions with the EPM shall be SSL-based. For example, in the case of HTTP’s Basic Authentication, the
Authorization header line sent by the client contains the username and password. The header line
starting with Authorization: shall supply the authentication scheme used and the user name and password
in the form username: password, as a base64 encoded string as specified in RFC 2617.

EXAMPLE |f the user name is "Aladdin" and the password is "open sesame”, the header would be:
Authorization: Basic QWxhZGRpbjpvcGVulHNIc2FtZQ==

In this scenario, this authentication would take place in the Web Server front-end shielding the EPM
Application Server from these duties. If HTTP Basic Authentication is used as the default
authentication mechanism, the EPM Application Server could look in the HTTP header passed to it by the
front-end Web server for this line in order to grant access and establish the billing entity.

Implementations have several choices as to how to pass this authentication information back to the EPM
Application Server for processing. This is the case regardless of what authentication mechanism as been
used. The default is to simply rely on the application server's container technology to support access from
the EPM server to the request's HTTP header. In this scenario, initialization of the BasicAuth element
within the ClaimedIdentity structure by the Web server is not required. Implementations can
alternatively extend the Web Server to extract the user from the Authorization line (and optionally the
password) and initialize the BasicAuth element before it travels on to the EPM application server (see
element descriptions below). In either case, the EPM will receive an already logged-in user identity
which has been pre-cleared by the post's Web server. How that logged-in user string is passed back to
the EPM Application Server is left to the implementing post to decide.

In this fashion postal implementations are free to authenticate users using standard approaches like
HTTP Basic Authentication, or may decide to use stronger techniques involving Digest Authentication,
encrypted cookies, one-time password schemes, two-factor tokens, 2-way mutual authentication using
X509 certificates (2-way SSL), wsse:UsernameToken, wsse:BinarySecurityToken and accompanying
dsig:Signature, or any of several other authentications schemes they chose, based on their choice and
their customers' preferences. Once authenticated, the logged-in user shall be passed back to the EPM
Application Server. This could be standardized and made independent of the authentication mechanism.

The AlternateIdentity element can also be used at the discretion of Postal implementations. This
element can be for example: a SAML Assertion, a Liberty Alliance Authentication Context, an X509

14 © UPU 2005 — All rights reserved

$43-3 Draft E

Certificate, or any other identity token deemed suitable to the Postal Administration and the UPU. This
element would be initialized by the appropriate authentication service which executes in front of the EPM
application server. Federated Identity Management servers could work in this fashion as well. This is
consistent with the delegated authentication approach used by the EPM, and provides the most
flexibility and choice for implementing Posts.

The BasicAuthType below can optionally be used for the default authentication scenario described
above. It represents Basic Authentication as would be supported in HTTP Server Authentication using the
"Authorization: Basic" HTTP Header line. This is but one of several authentication schemes that may be
employed. The AlternateIdentity elementis included for generic support for other schemes (e.g.
SAML, Liberty Alliance, other federated identity schemes, etc ...)

<xs:complexType name="BasicAuthType">
<xs:sequence>
<xs:element name="UserID" type="xs:string"/>
<xs:element name="Password" type="xs:string" nillable="true"/>
</xs:sequence>
</xs:complexType>

NOTE These elements only travel between the Web Server and the Application Server. These elements
are initialized by the calling client and passed up as part of the HTTP Header where the Web server will
perform the authentication.

Once logged in, the EPM Application Server only needs to know the identity or UserlD of the requester
who has already been authenticated by the Web Server normally for account management related
processing or Lifecycle checks. The Password has only been included for potential future use in
unforeseen authentication scenarios and should not be required by the EPM Application Server since
authentication has already taken place in the Web front-end. As such it is marked as nillable. See also

Claimedldentity in subclause 5.4.10.

5.3.2 Transaction Handling

Every request/response within the EPM Service is assigned a unique transaction identifier called the
TransactionKey. The TransactionKey is made up of three sub-elements making up the entire composite
key. The Locator, the Key, and the Sequence. The Locator identifies an instance of the entire EPM
Service. Usually there is one per Postal Administration, although there may be more for numerous
operational and jurisdictional reasons. The Key is the unique identifier and is generated by the EPM
Service when a new Lifecycle is created. This is the default (i.e. that every transaction is a single event in
a single business Lifecycle. This transaction handling is implicit, and the caller need do nothing special if
multi-event Lifecycles are not required. As one can see, transactions within the EPM Service are logical
transactions. Each atomic operation is completely logged to the database as part of a single DBMS
logical unit of work. When multiple events need to be tied together, this is termed a Lifecycle, or a multi-
event Lifecycle. This is the subject of the next subclause.

5.3.3 Lifecycle Management

The EPM Service supports the notion of business transaction lifecycle. Realizing that business
transactions often involve multiple parties dealing with multiple documents over an extended time frame
and often across country borders, the EPM Service is designed to be able to ‘tie together’ any number of
events that are deemed ‘of significance’ to the participating parties.

A lifecycle can be started explicitly using the StartLifecycle operation, or can be started implicitly on any
other operation verb simply by initializing the TransactionKey element to a pre-existing value and turning
on the ExtendLifecycle option. The EPM Service will tie the incoming operation and all its content and
results to the key specified.

NOTE In order to extend a Lifecycle beyond a single event, one shall always set the
ExtendLifecycle flag as well as specifying the TransactionKey of the Lifecycle to which this event
should be added.

© UPU 2005 - All rights reserved 15

$43-3 Draft E

Their exists an explicit mechanism for Lifecycle management whereby a StartLifecycle operation is used
and provides a way for the caller to specify a ParticipatingParty list. Please refer to
ParticipatingPartyType in subclause 5.4.9 for details. If the subscriber does not wish to specify
ParticipatingParty entries and is willing to allow a value of G1obal for the AccessScope element,
then an explicit StartLifecycle operation is not required. This is termed implicit use of lifecycle whereby
Lifecycles are extended by setting the TransactionKey to a known value. That is, a subscriber can still
start a Lifecycle by leaving the TransactionKey as null on the first (or only) operation. Subsequent
events can be added to this Lifecycle by supplying the same TransactionKey on subsequent calls. By
default every operation is part of a Lifecycle of one event.

The ParticipatingParty complex element (refer to ParticipatingPartyType in subclause 5.4.9 for
details) represents the restricted groups or individuals who are given access to the transaction contents of
a given lifecycle. AccessScopes, will be referenced when validating AccessLevel and permissions for
this lifecycle and its contents.

5.3.4 Error Handling

Error handling within the EPM Service has both a terse and verbose version. Applications wishing to test
overall outcome in a simple pass/fail sense can interrogate the TransactionStatus element. Its return
value is simply: 0 — success, 1 — warning, or #### — an error number relating to the specific error
encountered. Additional details are carried in the more verbose TransactionStatusDetail element.
Its sub-elements are broken down as per TransactionStatus and TransactionStatusDetailType in
subclause 5.4.1.

5.3.5 Processing Directives or Options

Every EPM Service has an Options structure where the caller can specify the special handling directives
they would like to have performed for their particular request. Each Options structure contains only the
options that are valid for that operation. The options which are valid for a given operation are enumerated
in the RequestOptions subclause of every verb. Additionally the schema reflects only the
ValidOptions.

5.3.6 PostMarking

A PostMarkedReceipt is a superset of a standard timestamptoken. PostMarking can be viewed as
attestation to the existence of datum in time as well as the integrity of its content. The integrity of its
content is the assurance that the data has not been modified since it was PostMarked. The PostMark can
also serve as attestation of a successful signature verification by logging all significant non-repudiation
events in a business transaction’s lifecycle.

Operations that support the IssuePostMarkedReceipt element perform an implicit PostMark and
return a PostMarkedReceipt. If you specify IssuePostMarkedReceipt in the RequestType element
for that operation, you will receive the PostMarkedReceipt in the operation’s response.

5.4 COMMON SCHEMA TYPES USED ACROSS EPM OPERATIONS

The following object types represent common WSDL element types that are sent to and returned from the
EPM Service. These common schema complexTypes are used by most operations. Complex types
contain a set of child elements that may reference other common complex or simple types.

5.4.1 TransactionStatus and TransactionStatusDetailType

For consistent error response handling, EPM-enabled applications are expected to check the overall
operation status returned in the TransactionStatus element. It should contain a value of O for
success or a specific error number related to the error encountered. More detailed error information is
optionally returned in the TransactionStatusDetail complex element. For instance, if a database
error occurs while writing to the non-repudiation log, the TransactionStatus might contain 5000 and
the ErrorNumber could contain for example the ORA- specific error number, and the ErrorMessage

16 © UPU 2005 — All rights reserved

$43-3 Draft E

could contain the Oracle specific text which accompanies the ORA- error number. The following are the
Transaction Status related elements:

<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail" type="epm:TransactionStatusDetailType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
<xs:complexType name="TransactionStatusDetailType">
<xs:sequence>
<xs:element name="ErrorNumber" type="xs:string"/>
<xs:element name="ErrorMessage" type="xs:string" nillable="true"/>
</xs:sequence>
</xs:complexType>

NOTE For the benefit of independent client handling, cross-border scenarios, and ISV applications, a
companion document which standardizes on handleable EPM ErrorNumber’s and their associated ranges
exists. It is titled Electronic PostMark Standardized Error Numbering Scheme V1.0. Please consult the
local Postal Administration for details and availability.

5.4.2 TransactionKeyType

This complex type contains three elements that make up the identifier for the specific events in a lifecycle.
When users or applications are adding another event to an existing lifecycle, they need only supply the
Key portion of the type. When they are referring to a particular event within the lifecycle, as is the case
with the Checklintegrity operation, then both the Key and the Sequence are required. See Lifecycle
Management in subclause 5.3.3 for more information. The Key is a unique identifier to that transaction.
By default a TransactionKeyType complex element is populated and returned by the EPM Service. For
targeted data retrieval functions such as Checklntegrity, RetrieveResults, and selected RetrieveSummary
scenarios, one shall provide the Locator, Key, and Sequence elements.

<xs:complexType name="TransactionKeyType">
<xs:sequence>
<xs:element name="Locator" type="epm:LocatorType"/>
<xs:element name="Key" type="xs:string"/>
<xs:element name="Sequence" type="xs:string" nillable="true"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="LocatorType">
<xs:sequence>
<xs:element name="CountryCode" type="xs:string"/>
<xs:element name="Version" type="xs:string"/>
<xs:element name="ServiceProvider" type="xs:string" nillable="true"/>
<xs:element name="Environment" type="xs:string" nillable="true"/>
</xs:sequence>
</xs:complexType>

Descriptions of the TransactionKey elements follow:

Locator — A complex type element representing a unique EPM Service instance identifier, usually the
post’s 2 character country code, as per ISO 3166 enumerated at

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html#af

and the Version number of the EPM Interface Specification (e.g. 1.15). This element is returned by the
EPM as part of the TransactionKey identifier. Caller's do not use this element to point at a particular
EPM instance, that is accomplished through the EPM’s SOAP URL identifier. The Locator plays a role
in cross-border EPM transactions involving more than one post or country. Since the CountryCode is

© UPU 2005 - All rights reserved 17

$43-3 Draft E

part of the TransactionKey, any PostMarked document can be traced back to the country that issued
the PostMark. If the post has delegated EPM hosting and facilities management to more than one service
provider, then that ServiceProvider name may be included in the Locator complex type. The
Environment element allows support for more than one instance of the EPM Service for posts who wish
to exploit this possibility (e.g. Production, Pilot, Training, etc ...) and qualifies the transaction. These sub-
elements do nor replace the need for discrete URLs for the specific EPM Service instance that callers
wish to access.

Key — A string element representing the unique transaction identifier. This Key is originally generated by
the EPM Service and returned as part of the Transaction Key identifier. This Transaction Key provides the
EPM Service with a mechanism that allows later retrieval of non-repudiation evidence for a particular
transaction. This element is set to null in the operation request unless: the caller is performing a
RetrieveResults, RetrieveSummary, or Checklntegrity operation in which the target Key shall be identified
for retrieval, or the caller wishes to extend the transaction lifecycle (See Lifecycle Management in
subclause 5.3.3 for more information).

Sequence — A string element uniquely identifying a particular event within a multi-event business
transaction lifecycle. Their exist a ‘sequence’ of operations within an extended business transaction that
involves multiple calls to the EPM Service using the same Locator and Key. Each time the same key is
used, the current sequence number is incremented by one, such that all the events within the business
transaction lifecycle are grouped under the same identifier (i.e. the first two elements of the composite
key: Locator and Key). Only the Sequence number varies in these transactions. By default, calls to the
EPM are not part of an extended business transaction lifecycle, and so they are assigned a unique
TransactionKey and always contain a sequence of ‘1. The Sequence element is always returned as
part of the complex TransactionKey identifier. The Sequence can be set to null in the operation
request, except when performing a RetrieveResult, RetrieveSummary, or a Checklntegrity.

5.4.3 QualifiedDataType

The QualifiedDataType is used throughout the EPM schema. It represents a base64Binary Data stream
qualified by a particular MimeType value. Please refer to the specific context and usage wherever
MimeType is used for verb-specific details. Examples include: application/octet-stream,
text/plain, text/xml, application/pkcs7-signature, etc ... Forresponses, if the EPM is
unable to determine the MimeType of the associated element, this attribute will not be present.

<xs:complexType name="QualifiedDataType">
<xs:simpleContent>
<xs:extension base="xs:base64Binary">
<xs:attribute name="MimeType" type="xs:string" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

5.4.4 SignatureinfoType

This complex type contains several sub-elements reflecting the outcome of the signature
creation/verification or encryption/decryption operation. This group of elements represent a further
detailed breakdown of the PKCS7 object acted upon as part of the operation, including the original
content or data that the operation was performed on. A SignaturelnfoType complex element is populated
and returned by the EPM Service. The following are the elements it contains. It should be noted that the
information associated with these elements is already present in XMLDSIG-based signatures and use of
this structure becomes academic.

SignedContent — A base64Binary encoded response element representing the original content when
either a Sign, Verify, Checklintegrity, RetrieveResults, or Encrypt (special case) is performed. For example
on a Verify of an incoming PKCS7 enveloping signature, the content that was originally signed will be
returned in the SignedContent element.

18 © UPU 2005 — All rights reserved

$43-3 Draft E

ContentHash— A string element representing the result of the one-way hash performed using the
specified hash algorithm. The hash is applied over the content to be signed. This value will be null for
encrypt or decrypt operations.

ContentHashAlgo — A string element representing the algorithm used to produce the one-way hash
value resulting from the signature creation process. This element is returned by the EPM implementation
for informational purposes only and will not affect inter-operability. Supported values are standardized but
remain EPM implementation specific. The value shalWithRSAEncryption is the default PKCS1
signature creation algorithm and SHALL be supported by EPM implementations when creating and
verifying signatures. This signature algorithm is also the default for cross-border signatures sent between
the EPMs of other Postal Administrations. The md5wWithRSAEncryption algorithm SHOULD also be
supported by posts for PEM and S/MIME compatibility. Individual Posts may introduce additional
signature algorithms as required. Examples might include: sha256WithRSAEncryption or
sha512WithRSAEncryption. Please refer to RFC 2315 PKCS #7 V1.5 and the evolutionary series of
standards starting with RFC 2313, RFC 2437, and RFC 3447 covering PKCS #1.

XMLDSIG-based signatures are self-documenting in this regard.

ContentEncryptAlgo — A string element representing the name of the algorithm used to perform
encryption or decryption of the content. This element is also EPM implementation specific. EPM
implementations SHALL support tripledes-cbc with RSA Key Transport as the default algorithm. This
value will be null except for encrypt or decrypt operations. See SessionKeyAlgo in the Encrypt operation
for further details on algorithm use.

SigningTime — A string element representing the time that the signature operation was performed. It is
extracted from the signature object. If a client application originally created the signature and is asking the
EPM Service to Verify it, this element will contain the signing time as created by the client application.
This value is provided in the standard UTC Format — YYYYMMDDHHMMSS plus the character ‘Z'.

PKCS1 —The SignatureValue from within the PKCS7 signature. Does not apply for XMLDSIG-based
signatures where the Signaturevalue element plays that role. Returned as a courtesy function to
relieve callers from having to parse ASN.1 binary signatures.

<xs:complexType name="SignatureInfoType">
<xXs:sequence>
<xs:element name="SignedContent" type="epm:QualifiedDataType"
nillable="true"/>
<xs:element name="ContentHash" type="xs:string" nillable="true"/>
<xs:element name="ContentHashAlgo" type="xs:string" nillable="true"/>
<xs:element name="ContentEncryptAlgo" type="xs:string" nillable="true"/>
<xs:element name="SigningTime" type="xs:string" nillable="true"/>
<xs:element name="PKCS1" type="epm:QualifiedDataType" nillable="true"/>
</xs:sequence>
</xs:complexType>

5.4.5 X509InfoType

This complex element contains several sub-elements reflecting information from the certificate used in the
particular EPM operation performed. It contains a concatenation of signing or encryption certificate
information. It will also contains information on any applicable certificate revocation status information.

NOTE The revocation attributes of the X509Info structure will be null if the either the certificate was not
revoked or the ‘VerifyCertificate’ option was not selected.

A X509InfoType complex element is populated and returned by the EPM Service. The following are the
elements it contains:

X509Subject — A string element representing the fully qualified Distinguished Name of the certificate

© UPU 2005 — All rights reserved 19

$43-3 Draft E

holder.

X509Issuer — A string element representing the Certificate Authority (CA) that issued and signed the
certificate.

X509Serial — A string element representing a unique serial number to identify the certificate issued by
the Certificate Authority.

X509StatusSource — A string element representing the name of the source used to validate that the
certificate has not been revoked. Valid values are: ‘CRL’ or ‘OCSP’.

X509ValidFrom — A string element representing the issue date of the certificate.
X509ValidTo — A string element representing the expiration date of the certificate.
X509Certificate — A base64-encoded public certificate.

X509RevocationReason — A string element representing the reason ‘code’ for the certificate revocation.
This value will be null unless a revoked user certificate is detected during a Verify, Locate, or Encrypt
operation in which the ‘VerifyCertificate’ option was set or defaulted to true. Valid values should be those
described in RFCs 2459 and 3280. Codes available only for Version 2 CRLs.

X509RevocationReasonString — A string element representing a description of the reason code for the
certificate revocation. This value will be null unless a revoked user certificate is detected during a Verify
or Encrypt operation in which the VerifyCertificate option was set to true. Valid values should be those
described in RFCs 2459 and 3280. Codes available only for Version 2 CRLs.

X509RevocationTime — A string element representing the time the signature was revoked by the
Certificate Authority. This value will be null unless a revoked user certificate is detected during a Verify or
Encrypt operation in which the VerifyCertificate option was set to true.

GenericValidationData — This element is post-specific and represents the evidence provided by the EPM
which attests to the fact that the certificate status has been checked. As such it is an abstract type which
can be implemented as the Posts see fit. A default implementation called X509validationData is
included representing a QualifiedDataType used to hold an RFC 2560 OCSP signed response. This
default implementation represents a binary value element holding a binary-encoded OCSP response
signature from the provider of the certificate validation information. This encoded element contains the
OCSP Validation Data returned. It is signed content as per RFC 2560 and also described in RFC 3126 as
would be returned by a standardized OCSP Responder.

If an EPM implementation is not using an OCSP responder, then that post is free to redefine their own
implementation of the abstract type. Sufficient certificate chain and revocation references should be
included here as would be mandated by local signature laws. Additionally, many jurisdictions (e.g. the
EU) require that this validation info be signed by the trusted service provider. This is not a problem when
using an RFC 2560-compliant OCSP. The default implementation contains a MimeType attribute
QualifiedDataType which will contain valid values of either text/xml when the
X509ValidationData is an XMLDSIG-formatted signature, or application/pkcs7-signature,
when it is an ASN.1 binary PKCS7 signature.

<xs:complexType name="X509InfoType">
<xs:sequence>
<xs:element name="X509Subject" type="xs:string"/>
<xs:element name="X509Issuer" type="xs:string" nillable="true"/>
<xs:element name="X509Serial" type="xs:string" nillable="true"/>
<xs:element name="X509StatusSource" type="xs:string"/>
<xs:element name="X509ValidFrom" type="xs:string"/>
<xs:element name="X509ValidTo" type="xs:string"/>
<xs:element name="X509Certificate" type="xs:string" nillable="true"/>
<xs:element name="X509RevocationReason" type="xs:string" nillable="true"/>
<xs:element name="X509RevocationReasonString" type="xs:string"
nillable="true"/>
<xs:element name="X509RevocationTime" type="xs:string" nillable="true"/>
<xs:element name="X509ValidationData" type="epm:X509ValidationDataType"

20 © UPU 2005 — All rights reserved

$43-3 Draft E

nillable="true"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="GenericValidationDataType" abstract="true">
<xXs:sequence>
<xs:element name="GenericValidationData" type="xs:anyType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="X509ValidationDataType">
<xs:complexContent>
<xs:extension base="epm:GenericValidationDataType">
<XS:sequence>
<xs:element name="X509ValidationData" type="epm:QualifiedDataType"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

5.4.6 PostMarkedReceipt

The PostMarkedReceipt is returned when either the IssuePostMarkedReceipt option has been
specified or if a direct PostMark operation has been requested over user-supplied content. When the
IssuePostMarkedReceipt elementis included on a Verify operation for example, the returned receipt
is the Postal Administration’s attestation of having successfully performed the requested operation. In the
case of a Verify for example, this would be an attestation of having successfully verified the signature and
the status of the certificate used to create it. When the IssuePostMarkedReceipt element is included
on a Sign operation, the returned receipt is the Postal Administration’s attestation of having created this
signature with the desired signing key and that this key/certificate is valid for its intended purpose. This
receipting mechanism is at the heart of the EPM’s non-repudiation capability. The PostMarkedReceipt
contains three core pieces of information, the Receipt, a TimeStampToken, and a signature of
authenticity binding everything together. The XML layout of the PostMarkedReceipt reflects the
signature type used to produced it. That is, when a PostMarkedReceipt is returned in response to a
PKCS7-based operation, the layout is made up of a Receipt structure containing basic receipt
information, optional receipt metadata, and a TimeStampToken, as well as a detached signature to
ensure authenticity. When the PostMarkedReceipt is in response to an XMLDSIG-based operation,
the XML digital signature, whose Reference’s cover the same information, itself represents the
PostMarkedReceipt. Thatis to say, the signature is the PostMarkedReceipt.

<xs:complexType name="PostMarkedReceiptType">
<xs:sequence>
<xs:choice>
<xs:element name="PKCS7SignedReceipt" type="epm:PKCS7SignedReceiptType" />
<xs:element name="XMLSignedReceipt" type="dsig:Signature"/>
</xs:choice>
</xs:sequence>
</xs:complexType>

<xs:complexType name="PKCS7SignedReceiptType">
<xXs:sequence>
<xs:element name="Receipt" type="epm:ReceiptType"/>
<xs:element name="ReceiptSignature" type="epm:QualifiedDataType"
nillable="true"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="ReceiptType">
<xs:sequence>

© UPU 2005 — All rights reserved 21

$43-3 Draft E

<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>

<xs:element name="Requester" type="xs:string"/>

<xs:element name="Operation" type="xs:string"/>

<xs:element name="TSAX509SubjectName" type="xs:string"/>

<xs:element name="TimeStampValue" type="xs:string"/>

<xs:element name="RevocationStatusQualifier" type="xs:string"/>

<xs:element name="TimeStampToken" type="epm:QualifiedDataType" nillable="true"
minOccurs="0" maxOccurs="1"/>

<xs:element name="MessageImprint" type="xs:base64Binary" nillable="true"/>

<xs:element name="PostMarkImage" type="epm:QualifiedDataType" nillable="true"/>

<xs:element name="ReceiptMetadata" type="epm:ReceiptMetadataType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ReceiptMetadataType">
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:choice>
<xs:element name="Value" type="xs:string"/>
<xs:element name="EncodedValue" type="epm:QualifiedDataType"/>
<xs:choice>
</xs:sequence>
</xs:complexType>

<xs:complexType> name="IssuePostMarkedReceiptType">
<XSs:sequence>
<xs:element name="Location" type="epm:ValidLocation" minOccurs="0"/>
<xs:element name="PostMarkImage" type="epm:PostMarkImageType" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="PostMarkImageType">
<xs:simpleContent>
<xs:extension base="xs:boolean">
<xs:attribute name="Format" type="xs:string" default="JPG"/>
<xs:attribute name="Size" type="epm:ValidImageSize" default="Small"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

TimeStampToken — This is the RFC 3161 timestamptoken taken over the appropriate content as dictated
by the context in which the PostMarkedReceipt was requested. For example, in the case of a
PostMarkedReceipt requested on a Verify or a Sign operation via the

IssuePostMarkedReceipt option, the timestamptoken will be a “signature” timestamp taken over the
signature value of the signature just verified (Verify) or created (Sign). In the case of direct invocation of a
PostMark operation, the timestamp is calculated over the content passed in on the request. The PostMark
operation supports several content types which can be timestamped.

For PKCS7-based signatures, as specified by the SignatureType on the PostMark operation or the
signature type being verified in the case of a Verify operation, the PostMarkedReceipt is returned
as a standalone receipt. The IssuePostMarkedReceipt element shall be included in the request in
order to obtain a receipt.

TimeStampToken is the actual timestamp formatted as a binary PKCS7 ASN1 signature. The default
signature creation algorithm for the EPM is shalWithRSAEncryption and SHALL be supported by
EPM implementations when creating and verifying signatures of all types including the TimeStampToken
described in this subclause.

NOTE The value of the Mime Type attribute of this element is the MimeType of the content that was

22 © UPU 2005 — All rights reserved

$43-3 Draft E

timestamped. For example if a binary file was timestamped, then the MimeType attribute of the
TimeStampToken will be application/octet-stream, and if the content being timestamped was a
signature, then the Mime Type of the TimeStampToken will be application/pkcs7-signature.

When a PostMarkedReceipt is issued in response to a Verify the PostMarkedReceipt will be either
standalone or embedded into the incoming signature being verified by the EPM. This is determined by
the value of the Location sub-element of the IssuePostMarkedReceipt.

The effect of the Location sub-element of the IssuePostMarkedReceipt option is as follows:
- For IssuePostMarkedReceipt on a Verify operation of an XMLDSIG signature

- Ifthe Location sub-element is specified as standalone, a standalone
PostMarkedReceipt structure will be returned in the Verify response.

- Ifthe Location sub-element is specified as embedded, the PostMarkedReceipt structure
will be included or embedded in the signed document being verified and will be returned in
the signatureData element of the Verify response.

- For IssuePostMarkedReceipt on a Verify operation of a CMS/PKCS?7 signature

- Ifthe Location sub-element is specified as standalone, a standalone
PostMarkedReceipt structure will be returned in the Verify response. This is consistent
with the XMLDSIG handling above.

- Ifthe Location sub-element is specified as embedded, the PostMarkedReceipt structure
will be returned as above, but additionally the RFC 3161 compliant timestamptoken will also
be embedded in the signature being verified as an unauthenticated attribute and will be
returned in the SignatureData element of the Verify response.

When a PostMarkedReceipt is issued in response to a PostMark operation whose primary intent is to
PostMark data or content, and if the SignatureType is XMLDSIG, the PostMarkedReceipt will
reference the incoming XML content via a signature reference whose object is the data being
PostMarked and timestamped. The content and the PostMarkedReceipt will be returned together as
part of the PostMarkedReceipt structure.

See Annex B (Informative) Examples for a description of layouts and references of both types. Please
also refer to the PostMark operation in subclause 5.5.2 for more details on supported content types.

ReceiptSignature — This element contains a detached signature over the contents of the Receipt. The
ReceiptSignature is only used for receipts issued in response to PKCS7-based operations. It is an EPM-
produced detached PKCS7 signature over the Receipt structure. It is used simply to protect the
authenticity of this standalone XML-formatted receipt information. It is not required with XMLDSIG-based
receipts whose references are protected by the PostMarkedReceipt signature itself. An example of the
required eContent which is input to the PKCS7 ReceiptSignature creation follows. The same serialization
rules described under the paragraph title Serialization Conventions in subclause 5.4.10 apply here as
well.

NOTE The default signature creation algorithm for the EPM is shalwithRSAEncryption and SHALL
be supported by EPM implementations when creating and verifying signatures of all types including the
ReceiptSignature described above.

<Receipt>

<TransactionKey>

<Locator>
<CountryCode>CA</CountryCode>
<Version>114</Version>
<ServiceProvider>1</ServiceProvider>
<Environment></Environment>
</Locator>
<Key>041019-133230-59841915</Key>

© UPU 2005 — All rights reserved 23

$43-3 Draft E

<Sequence>1</Sequence>

</TransactionKey>

<Requester>..... </Requester>
<RevocationStatusQualifier></RevocationStatusQualifier>
<TimeStampToken MimeType="application/pkcs7-signature">..... </TimeStampToken>
<ReceiptMetadata>

<Name>TimeStampValue</Name>
<Value>2004-03-27T17:47:18.750</Value>
</ReceiptMetadata>

<ReceiptMetadata>

<Name>..... </Name>

<Value>....</Value>

</ReceiptMetadata>

</Receipt>

Receipt —The ReceiptType element below is a sub-element of the PostMarkedReceipt and along
with the TimeStampToken and ReceiptSignature make up the PostMarkedReceipt for PKCS7-
based receipts. The Receipt links the timestamp to the TransactionKey as well as providing additional
summary information.

TransactionKey — The TransactionKey is included as part of the Receipt to allow client applications to
locate the source of the receipt, which is very important is cross-border transactions.

Requester — The element should contain the authenticated user. Its value should reflect the chosen
authentication method used by each particular post. Thus if a post is using strong 2-way X509 Mutual
Authentication, then this element could contain the X509SubjectName (i.e. the DN). If another post is
using delegated signing and employs One-Time-Passwords (OTPs) for example, this element could be
the pre-registered UserlD associated with the OTP token. If another post is using 1-way SSL Basic
Authentication, this element would contain the UserlD registered to the post’s front-end Web Server.

Operation — The EPM operation or verb upon which the PostMarkedReceipt was issued e.g. Verify,
Checklintegrity, RetrieveResults, etc.

TSAX509SubjectName —The TSAX509SubjectName (i.e. the DN) element is included for convenience
so users need not parse the PKCS?7 for it. It is redundant for XMLDSIG based TimeStampTokens as
illustrated in Annex B (Informative) Examples.

TimeStampValue —The TimeStampValue is the UTC time exactly as returned by the TSA in UTC Z (Zulu)
format as per RFC 3161. An example of a string in this format would be laid out as follows:
YYYYMMDDHHMMSS plus the character ‘Z’.

RevocationStatusQualifier — The RevocationStatusQualifier will reflect whether CRL checking was
performed or not. Valid values are Checked, Not Checked, and Not Applicable. The Not
Applicable value is required when this PostMarkedReceipt was returned as a result of a direct
PostMark operation over user-defined content. In this case no revocation checking of any sort is
performed. The PostMark is just attesting to the existence of that data before this point in time.

Messagelmprint — This element is a copy of the messagelmprint field from the TimeStampToken’s
TstInfo structure. It has been duplicated in the Receipt structure to facilitate verification (especially on
client desktop applications) since it alleviates the verifier from having to ASN.1 parse the
TimeStampToken in order to extract the messageImprint field containing the hash to be compared.
EPM implementations are obliged to initialize this element. Please also refer to the discussion dealing
with the verification of the PostMarkedReceipt in subclause 5.5.1.3 under the PostMarkedReceipt
topic. It is not required for XMLDSIG-based PostMarkedReceipts.

PostMarklmage — This is an optional element which can contain a post-specific image reflecting the
PostMark issued for this operation. It would be generated by the EPM implementation and returned as
part of the PostMarkedReceipt. Client applications could display this element to the caller in desktop
application usage scenarios. This element could also be useful for integration with ISV desktop
applications or post-specific desktop and browser applications. Please also refer to the Location sub-

24 © UPU 2005 — All rights reserved

$43-3 Draft E

element of the IssuePostMarkedReceipt where PostMarkImageSize and PostMarkImageType
can be used to instruct the EPM to create a PostMarkImage and return it in this response element.

ReceiptMetadata — This optional unbound element provides a vehicle for Posts to add any country-
specific textual or binary evidentiary content to be included in the PostMarkedReceipt. It is covered by
the ReceiptSignature and therefore shall be prepared on the EPM server when the PostMark is
initially created. Through the element choice construct, base64-encoded data, intended for use with
binary artifacts such as documents, additional signatures, audit signatures, etc ... can also be included.
Posts for example, could use this element to include the document and the signature that was signed and
PostMarked, thus allowing the PostMarkedReceipt to act as a single container for all relevant non-
repudiation information. It could also be used to hold an OCSP signed response or XAdES timestamps as
well. Posts are free to use this ReceiptMetadata element as they wish. lts intended use is for
additional evidentiary and attestation information a post may wish to add to the PostMarkedReceipt.

IssuePostMarkedReceipt — This element is included here for reference and does not appear in the
PostMarkedReceipt structure itself but rather appears in the RequestOptions subclause of the EPM
operations which support the PostMarkedReceipt i.e. Sign, Verify, RetrieveResults, CheckIntegrity,
and Encrypt. The presence of this option instructs the EPM to generate a PostMarkedReceipt and
include it in the response. This element as 3 sub-elements described below.

Location — This optional element instructs the EPM where to place the resultant PostMarkedReceipt.
Valid values are standalone and embedded. The default if omitted is standalone. A value of
standalone instruct the EPM to return the PostMarkedReceipt in its own response element distinct
from the signature. For Sign and Verify operations a value of embedded instructs the EPM to embed the
resultant PostMarkedReceipt in the signature just created or verified.

PostMarkimage — This optional boolean element when set to t rue instructs the EPM to return an image
associated with the PostMarkedReceipt. This image can be a fixed image set by the post, or it can be
dynamically rendered to contain a Postal logo as well as selected PostMark information such as the
Signator and/or the TimeStampValue. It however needs to be a displayable image. It has 2 attributes
Format and Size. The example below illustrates a PostMarkImage that has 4 pieces of dynamic
information painted on top of the image background and rendered as a JPG. This response element
alleviates the client or ISV application from having to render an image to represent that the document has
been PostMarked.

NOTE This image is not to be confused with the Universal EPM Logo which a simply a non-PostMark-
specific, non-Transaction-specific branding graphic for the Electronic PostMark.

CANADA POSTES Electronie

POST CANADA Postmark™

Signed by: Jé@r Q /D aﬁ&%

Date: 2005-10-02 | Time: 14:02:56 | Receipt ID: alF6J4m3BoA

~

Notice: This signed document has been verified, PostMarked, and logged by
the Canada Post EPM Service. The Receipt ID may be used in the future to
verify this document’s authenticity.

L 4

Format — This attribute specifies the desired format of the PostMark image to be returned. Examples of
valid values are: JPG, GIF, PNG, BMP, etc ... The default is JPG.

Size — This optional attribute instructs the EPM to return one of the supported sizes available from this
post’'s EPM implementation. Valid values are small, Medium, and Large. Each size is specified by the
Postal Administration in pixel width and height and is consistent across Postal EPM implementations.
Please consult your local Postal Administration for details. This information can also be extracted from the

© UPU 2005 - All rights reserved 25

$43-3 Draft E

Postal “Yellow Pages” directory using the RetrievePostalAttributes operation.

5.4.7 PostMarkedReceipt (XMLDSIG considerations)

The commentary which follows applies only to PostMarkedReceipt’s whose SignatureType is
XMLDSIG and covers the topic of PostMarks over both signatures and data. The PostMarkedReceipt
is itself an XML Digital Signature ...

An XMLDSIG-formatted PostMarkedReceipt is a superset of a conventional RFC 3161
TimeStampToken, and references both a TstInfo and a Receipt element, as well as a reference to
the signature or data being PostMarked, and is represented by a standard detached XMLDSIG
Signature structure. A PostMark can be over either a signature or just data. When the PostMark targets
a signature, the last Reference element of its Signedinfo will point to the SignatureValue element of that
target signature. Please refer to Annex B (Informative) Examples for further details.

When the PostMark targets data, the last Reference element of its Signedinfo will point to that detached
data, and is, as a consequence, a detached signature. Please refer to Example 2 — Standalone
<PostMarkedReceipt> over Data when using PostMark operation. This approach allows posts to use
conventional XMLDSIG libraries to create and validate the PostMark signature. The following describes
how the child elements of this standard Signature representing this PostMarkedReceipt signature are
formatted.

Keylnfo — A KeyName child element of KeyInfo identifies the certificate associated with the timestamp's
signature and MAY be used to locate, retrieve, and validate the timestamp token's public verification key.
This is not necessary if the EPM itself is acting as the TSA and controls the TSA's private and public keys
(i.e. trusts itself). It will however always be included for reference. Reference's of SignedInfo. There
are exactly 3 references in the PostMarkedReceipt signature.

1st <Reference> element — will reference the 1st Object element containing the TstInfo structure as
is the case in a conventional RFC 3161 timestamp token. This structure has been adopted directly from
the OASIS Digital Signature Services standard and both uses its schema and references its namespace.
Please consult this OASIS document for details.

A TstInfo element contained in an Object element referred to by the first Reference will be created
by the EPM. The Tstinfo element is patterned directly after the Tstinfo structure of RFC 3161 and is the
same layout as that used in the OASIS DSS standard. EPM implementations shall include this element as
a child of the first Object element of the signature.

2nd <Reference> element — will reference the 2nd Ob-ject element containing the Receipt structure
itself prepared and initialized by the EPM.

Similarly a 2nd Object element exist for the Receipt structure which includes the Receipt, and the
TimeStampToken contained therein. The ReceiptSignature elementis not required as the
PostMarkedReceipt structure is itself an XMLDSIG signature and therefore possess content integrity.
This ReceiptSignature element is only optional for XMLDSIG-based receipts. The TstInfo and
Receipt structures are described in Examples 1 and 2 in Annex B (Informative) Examples

3rd <Reference> element — is one whose URI attribute references either detached data as would be the
case in a direct PostMark operation over some content, or the Signaturevalue(s) of the specific
Signature(s) being verified (as in a Verify), or signed (as in a Sign).

On a Verify operation which requested a PostMark, the 3 0bject element will contain the
SignatureValue element(s) of the signature(s) being PostMarked. The EPM will Verify all signatures
specified in the SignatureSelector element. If the SignatureSelector elementis omitted, the
EPM will attempt to locate and verify all signatures contained in the incoming signed document. Please
refer to Example 3 - Embedded <PostMarkedReceipt> over a Verified Signature in Annex B (Informative)
Examples.

On a PostMark operation over data content passed in by the user, this 3rd Object Reference will

26 © UPU 2005 — All rights reserved

$43-3 Draft E

contain the data being PostMarked. Please refer to Annex B (Informative) Examples under Example 2 —
Standalone <PostMarkedReceipt> over Data when using PostMark operation.

The signature process itself will inherently calculate the Digestvalue over these 3 Reference
elements and therefore possesses cryptographic integrity.

NOTE In order to support embedding of the PostMarkedReceipt signature in the incoming XML
signature, users shall ensure the incoming signed document will not be invalidated by the inclusion of the
PostMarkedReceipt signature structure itself, as would be the case with an incoming enveloped
signature. For this reason users wishing to have their PostMarks embedded in their XMLDSIG signed
documents should utilize detached XML digital signatures in their original documents to ensure that the
introduction of the PostMarkedReceipt does notinvalidate the signature. In this manner the
introduction of the PostMark signature will not disturb the integrity of the original signed document being
verified. Other approaches can be explored by the client which allow the inclusion of the
PostMarkedReceipt Without invalidating the original signature. This could be accomplished by explicit
Transform’s which exclude appropriate nodesets.

5.4.8 OriginalContentType

The complex type OriginalContent is used in the CheckIntegrityRequest. The MimeType attribute
describes the content type of what is being compared against the original content referred to in the
referenced TransactionKey element. The most common use-case is to pass up the originally signed
data (normally the original document or a hash of the original document), to be re-checked. Valid values
for the MimeType attribute are:

- text/plain

- application/octet-stream

- application/vnd.upu-digest-value
- application/timestamp-token

- application/pkcs7-signature

- text/xml

When either of the first two MimeType's, i.e. text/plain, or application/octet-stream are specified, the
client is expected to pass in the original eContent over which the original signature was created and
subsequently verified. This eContent is usually referred to as the SignatureContent or the SignedInfo
Reference. It is meaningful as a MimeType on a previous Sign, Verify, or PostMark operation. For
XMLDSIG-based checks, the caller should pass in the eContent referred to in each of the XMLDSIG
Reference elements that are present in the signature being checked.

When a MimeType of application/vnd.upu-digest-value is specified, the actual value of the hash
calculation over the originally signed content shall be passed in and compared.

When a MimeType of application/timestamp-token is specified, the client is expected to pass in the
detached binary RFC 3161 TimeStampToken element contained in the PostMarkedReceipt
structure. This is normally inside the PostMarkedReceipt returned on a Verify operation which
requested a receipt via the IssuePostMarkedReceipt option. It is optionally present in XMLDSIG-
based signatures.

When a MimeType of application/pkcs7-signature is passed, the entire PKCS7 signature shall be
passed in and will be compared.

When a MimeType of text/xml representing an XMLDSIG signature is passed in, the contents of the
dsig:SignatureValue element, excluding the bounding tags, shall be passed in and will be
compared.

© UPU 2005 - All rights reserved 27

$43-3 Draft E

<xs:complexType name="OriginalContentType">
<xs:simpleContent>
<xs:extension base="xs:base64Binary">
<xs:attribute name="MimeType" type="xs:string"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

5.4.9 ParticipatingPartyType

When working within an EPM lifecycle, the EPM can restrict the access of all transaction information to a
finite set of parties termed the Participating Parties. This complex type represents the group of eligible
individuals or organizations who are permitted access or allowed to contribute to this lifecycle. It can be
specified when either

1) restriction of a lifecycle of business events to a selected set of parties is required,

2) Delegated Confidentiality is being used, or

3) Proof-of-Delivery (POD), Proof-of-Possession (POP) is required by the stakeholders
NOTE ClaimedIdentity used on its own can also provide POD/POP support.

Each participatingParty would be accessing the EPM Service utilizing the specified AccessLevel.
This element is also related to the AccessScope element which defines the overall scope of the
permitted access and at which level access should be granted. Each entry, if specified, shall be initialized
with the DistinguishedName of the party who is permitted to either access or contribute to the Lifecycle.

EXAMPLE CN=Joe Public,0O=Acme,OU=Purchasing, C=CA.

Each ParticipatingParty identified by PartyName would be accessing the EPMService utilizing the
specified AccessLevel. Valid string values for AccessLevel are Default and Signed. When
Default is specified, the PartyName can access this LifeCycle after having authenticated over the
primary authentication mechanism for this postal implementation. For example, in Canada that would be
HTTP Basic Authentication as supported in the Web server. When Ssigned is specified, the PartyName
shall initialize the RequesterSignature element of ClaimedIdentity in order to execute operations
against this Lifecycle. In either case the authenticated user string value shall match the PartyName string
value specified in this StartLifecycle request (see below for examples). Similarly when the AccessScope
element is marked as Organizational then the authenticated user's organization (derived from either
the certificate or information supplied at registration time) shall match the PartyName value specified this
PartyName entry. Any party from that organization, once authenticated, can participate in this Lifecycle.

EXAMPLE sample values:

1) for AccessLevel = Signed and AccessScope = Individual, PartyName values might look like this:
CN=Joe Public,0=Acme,OU=Purchasing,C=CA

2) for AccessLevel = Signed and AccessScope = Organizational, PartyName values might look like this:
O=Acme,OU=Purchasing,C=CA

3) for AccessLevel = Default and AccessScope = Individual, PartyName values might look like this: Joe
Public or CN=Joe Public

4) for AccessLevel = Default and AccessScope = Organizational, PartyName values might look like this:
O=Acme,OU=Purchasing,C=CA

NOTE For AccessScope = Organizational and AccessLevel = Default, implementations
would derive the authenticated user's organization from information captured at registration time, normally
kept in the EPM's registration database. The design of this registration sub-system is beyond the scope of
the EPM Specification.

The NotifyEvents element holds a list of the operations within this Lifecycle for which this Party will

28 © UPU 2005 — All rights reserved

$43-3 Draft E

be notified e.g. Verify, Checkintegrity, and LogEvent. The ContactID element contains the eMail
address of the ParticipatingParty and will be used to contact the PartyName whenever any of the
operations in the NotifyEvents list occurs.

<xs:complexType name="ParticipatingPartyType">
<Xs:sequence>
<xs:element name="PartyName" type=" epm:PartyNameType"/>
<xs:element name="AccessLevel" type="xs:string"/>
<xs:element name="NotifyEvents" type="epm:ValidOperation" nillable="true"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="ContactID" type="xs:string" nillable="true"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="PartyNameType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="ScopeQualifier" type="xs:string" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

5.4.10 Claimedldentity
Claimedldentity is an optional input element within the EPM and serves two main purposes.

1) as a verb-specific Proof-of-Delivery / Proof-of-Possession mechanism required by originators or
recipients.

2) as an alternate authentication mechanism in support of higher strength non-repudiability when
AccessLevel onthe ParticipatingParty elementof StartLifecycle is setto Signed

In the Proof-of-Delivery scenarios, the client is signing over content with their private signing key, as part
of, for example, a Checkintegrity operation. The content over which they are signing, in this example, is
the hash of the OriginalContent element of the ChecklIntegrity operation. As such they are irrefutably
attesting to having possessed the content (document) that they have presumably received from the
signer at origin. Please refer to subclause 5.5.4 entitled Checkintegrity for additional details on this
scenario.

<xs:complexType name="ClaimedIdentityType">
<xs:sequence>
<xs:element name="Name" type="epm:NameldentifierType"/>
<xs:element name="SupportingInfo" type="epm:SupportingInfoType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="NameIdentifierType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="NameQualifier" type="xs:string" use="optional"/>
<xs:attribute name="Format" type="xs:anyURI" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:complexType name="SupportingInfoType">
<Xs:sequence>
<xs:element name="BasicAuth" type="epm:BasicAuthType" nillable="true"/>

© UPU 2005 — All rights reserved 29

$43-3 Draft E

<xs:element name="RequesterSignature" type="epm:QualifiedDataType"
nillable="true"/>
<xs:element name="AlternateIdentity" type="epm:AlternateIdentityType"
nillable="true"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="BasicAuthType">
<xs:sequence>
<xs:element name="UserID" type="xs:string"/>
<xs:element name="Password" type="xs:string" nillable="true"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="AlternateIdentityType" abstract="true">
<Xs:sequence>
<xs:element name="IdentityToken" type="xs:anyType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="YourFavoriteIdentityTokenType">
<xs:complexContent>
<xs:extension base="epm:AlternateldentityType">
<xs:sequence>
<xs:element name="FirstElement" type="xs:string"/>
<xs:element name="SecondElement" type="xs:base64Binary"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

The NameldentifierType above is taken directly from SAML and included in this schema for convenience.
The NameldentifierType is used where different types of names are needed (such as email addresses,
Distinguished Names, etc). This type is borrowed from SAMLCore1.1 (http://www.oasis-
open.org/committees/download.php/3406/o0asis-sstc-saml-core-1.1.pdf). It consists of a string with the
attributes as indicated below.

NameQualifier — The security or administrative domain that qualifies the name of the subject. This
attribute provides a means to federate names from disparate user stores without collision.

Format — A URI reference representing the format in which the string is provided.

AlternateldentityType — This abstract type (i.e. abstract="true") cannot be directly implemented.
One needs to extended from this base type as shown in the YourFavoriteldentityTokenType example
above.

See subclause 7.3 of SAMLCore1.1 (http://www.oasis-open.org/committees/download.php/3406/0asis-
sstc-saml-core-1.1.pdf) for URI references that may be used as the value of the Format attribute.
Example: urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName (as defined in XMLDSIG) or
urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress (as defined in addr-spec of RFC 2822).

RequesterSignature — Under circumstances when RequesterSignature shall be initialized, as in a
Lifecycle whose AccessLevel has been specified as Signed, if the SignatureType is specified as
XMLDSIG, the RequesterSignature should be created as an enveloped XMLDSIG signature over
both the TransactionKey and the OrganizationID elements. The resulting signature shall then be
included in the RequesterSignature element of the Request.

The example below is when higher non-repudiability is requested by the owner of the Lifecycle. In this
scenario each ParticipatingParty is designated, by the owner, to have access to, and be allowed to
contribute to, and participate in, this Lifecycle. The owner is able to set the AccessLevel for this
Lifecycle to signed, which means that each ParticipatingParty, presumably adding events to the

30 © UPU 2005 — All rights reserved

$43-3 Draft E

Lifecycle, shall create a RequesterSignature within the ClaimedIdentity element. This signature
can be either a PKCS7 enveloping signature or an XMLDSIG enveloped signature over the
TransactionKey and OrganizationID elements. Please refer to Example 4 - RequesterSignature
over TransactionKey for any operation in protected Lifecycle in the Examples subclause.

RequesterSignature for SignatureType PKCS7

When the RequesterSignature is of SignatureType PKCS7, implementations shall follow the serialization
rules below. When signing XML elements which may have been serialized from a SOAP envelope, care
shall be taken to ensure that the content stream is identical across toolkits. For this reason, the
TransactionKey and OrganizationlD formatting rules shall be as follows:

Serialization Conventions
- only leaf node elements will have their start tag, end tag, and content all on the same line

- elements with child nodes will have their start tag and end tag on a line by themselves and will wrap
their descendants

- no pretty formatting or indenting will exist on any line
- carriage return line feed shall be used as the 2 character line separator (i.e. x'0d' x'0a')

- the first and last character of the eContent to the signature will be the opening < and the closing >
respectively

- all attributes (with the exception of MimeType) will be dropped from tags (e.g. xsi:type="xsd:string",
etc...)

EXAMPLE for SignatureType PKCS7

<TransactionKey>

<Locator>
<CountryCode>CA</CountryCode>
<Version>114</Version>
<ServiceProvider></ServiceProvider>
<Environment></Environment>
</Locator>

<Key>0311352e0C3</Key>
<Sequence>1</Sequence>
</TransactionKey>
<OrganizationID>Acme Corporation</OrganizationID>

The resultant PKCS7 signature shall contain the above eContent (i.e. is not a detached signature).

NOTE This is not an issue with XMLDSIG based signatures since the canonicalization which takes
place normalizes subtle formatting, tabbing, line wrapping, and white space differences.

5.4.11 AccessScope and Scopes

This element, which is specified in the StartLifecycle operation, determines the scope of who is allowed to
access the contents of, or contribute to, this Lifecycle. Valid values are Global, Organizational,
Individual, or Mixed.Global grants access to anyone. Global allows any user to access the
Lifecycle. Organizational grants access to anyone within the Organization, as initialized in the
ParticipatingParty element. For example, when a post is using strong authentication, access
privilege can be determined by comparing the DistinguisedName field of the certificate used to sign the
request against any of the occurrences of ParticipatingParty. Individual grants access to only
the selected Individual’s, again in or example determined by the DistinguisedName field of the
certificate used to sign the request. See also subclause 5.4.9 entitled ParticipatingPartyType for further
details. The party who issues the request shall authenticate that request if the AccessScope element is
not marked as Global. Thatis, if AccessScope is marked as Individual, there shall exist a

© UPU 2005 — All rights reserved 31

$43-3 Draft E

corresponding ParticipatingParty element, and the individual making the request shall be in that
list. Likewise, if the AccessScope is marked as Organizational, then the individual authenticating the
request shall be from an organization in the ParticipatingParty list. This identity is either compared
against the DistinguisedName field of the certificate used to sign the request, or the pre-registered user
that authenticated with the EPM. Mixed allows for both Organizational and Individual entriesin
the ParticipatingParty list.

<xs:simpleType name="Scopes">
<xs:restriction base="xs:string">
<xs:enumeration value="Global"/>
<xs:enumeration value="Organizational"/>
<xs:enumeration value="Individual"/>
<xs:enumeration value="Mixed"/>
</xs:restriction>
</xs:simpleType>

This simple object type Scopes> represents a list of access levels that is used to restrict groups or
individuals who are allowed to contribute to, or access the contents of events within a given lifecycle.
These scope values are used by the EPM Service to specify the granularity of the access rights for this
lifecycle and its contents. This simple object is used by the participating parties construct (Please refer to
ParticipatingPartyType in subclause 5.4.9 for details) and is references through its AccessScopes
element. The following are the permitted values:

Global — A string element representing ‘Global’ access to the events within this lifecycle. Global grants
access of the transactions within a lifecycle to anyone. ‘Global’ requests need not be signed.

Organizational — A string element representing ‘Organizational’ access to the events within this lifecycle.
Organizational grants access to anyone within the Organization to the events within this lifecycle.
Privilege is determined by comparing the DistinguishedName field of the certificate used to sign the
request against any of the occurrences of ParticipatingParty element.

Individual — A string element representing ‘Individual’ access to the events within this lifecycle. Individual
grants access to only the selected ‘Individual’s, again determined by the DistinguishedName field of the
certificate used to sign the request.

Mixed — A string element representing ‘Mixed’ access to the events within this lifecycle. This mode states
that the PartyName’s may be any of the above types. The specific type is specified on the PartyName
element.

5.4.12 EncryptResponse Option

This option is utilized on three possible EPM operations, a Verify, a RetrieveResults, and a Decrypt, and
is therefore covered here for reference.

EncryptResponse — This is a Special Case optional usage of the EPMs confidentiality capability, and
works in conjunction with a local encrypt operation issued by an individual client customer using the
EPM’s public encryption key. It is termed “Delegated Confidentiality” within the EPM context. This
capability frees individuals from having to manage the public keys of intended recipients. When a
subscriber wishes to encrypt content for confidentiality reasons, they simply encrypt that content locally
with a public key provided to them by the Postal Administration. This single public key belongs to the post
and is the only public key the customer needs to maintain on their desktop or within their application. After
having encrypted the content with this post-specific public key, the content is now secured for transport.
This envelope can be sent to the recipient.

At the recipients end, the recipient does not have the private key required to decrypt this envelope they
just received. Consequently they needs to ask the post's EPM Service to Decrypt it for them. It would not
make sense for the EPM to simply Decrypt the content and pass it back to the caller in the clear. To
prevent this exposure, the EPM “encrypts the response” when the EncryptResponse option is turned
on in the recipient's request. The EPM however requires the callers public key in order to be able to

32 © UPU 2005 — All rights reserved

$43-3 Draft E

actually encrypt the response prior to returning it (who is the recipient in this scenario). In order to provide
the EPM with the callers public key, the caller signs the request.

There exist scenarios whereby the EncryptResponse is utilized on a Verify request, a RetrieveResults
request, or a Decrypt request. can be exercised where the recipient turns on the EncryptResponse
option on a RetrieveResults operation and picks up a document signed by an originator which was left
with the EPM. This usage is termed “Sign for Pickup” which may also optionally employ the
EncryptResponse option.

Yet another scenario involves a Checklintegrity call by the recipient whereby the content is passed to the
EPM for comparison against its non-repudiation store to ascertain authenticity. Since the recipient is in
possession of the content when the call is made, Proof-of-Delivery and Proof-of-Possession are also
supported.

As such there are three scenarios involving end-to-end confidentiality which could be considered. They
differ primarily in how the document is transported and which operation the recipient uses. Only the first
ensures irrefutable Proof-of-Delivery and Proof-of-Possession.

1. Scenario: “Sender encrypts document with EPM public key and delivers document directly to
recipient”. Sequence of events as follows:

= Sender locally signs document
= Sender locally encrypts signed document with the EPM’s public key
= Sender calls EPM to Verify the document using the following options
= IssuePostMarkedReceipt
= DecryptincomingEnvelope
= EncryptResponse to protect the updated signature
= Sender decrypts Verify response using their own private key and checks status

= Sender re-encrypts signed document for recipient using recipient’s public key (assumed
to be either available or may be retrieved using the EPM’s Locate operation)

= Sender mails signed and encrypted document to recipient
= Recipient decrypts document with their own private key
= Recipient locally encrypts signed and PostMarked document with the EPM’s public key
= Recipient issues signed Checklintegrity request with the following option
= DecryptincomingEnvelope

= Recipient checks status

2. Scenario: “Sender encrypts document with EPM public key and deposits document with EPM for
pickup”. Sequence of events as follows:

= Sender locally signs document
= Sender locally encrypts signed document with the EPM’s public key
= Sender calls EPM to Verify the document using the following options
= IssuePostMarkedReceipt
= DecryptincomingEnvelope
= EncryptResponse to protect the updated signature
= Sender checks status

= Sender notifies recipient that they can pickup the signed document using this specific

© UPU 2005 — All rights reserved 33

$43-3 Draft E

TransactionKey which they pass to them “out of band”
= Recipient issues signed RetrieveResults request with the EncryptResponse option

= Recipient decrypts response using their own private key to extract the document

3. Scenario: “Sender Verifies document, re-encrypts verified document with recipient’s public key,
and delivers document directly to recipient”. Sequence of events as follows:

= Sender locally signs document
= Sender locally encrypts signed document with EPM public key
= Sender calls EPM to Verify the document using the following options
= IssuePostMarkedReceipt
= DecryptincomingEnvelope
= EncryptResponse
= Sender decrypts Verify response using their own private key and checks status

= Sender re-encrypts signed document for recipient using recipient’s public key (assumed
to be either available or may be retrieved using the EPM’s Locate operation)

= Sender mails signed and encrypted document to recipient
= Recipient decrypts document with their own private key
= Recipient locally verifies signature and optionally the PostMark

NOTE In situations where the EPM is deployed centrally as a shared service, the 2" scenario above
should be used with the ParticipatingParty feature of StartLifecycle to ensure that only intended
recipients are receiving confidential content. Additionally EPM implementations SHALL ensure that the
authenticated requests which involve decryption of sensitive content honor and respect restricted
ParticipatingParty lists within that Lifecycle.

5.4.13 ContentMetadata

This element can be optionally passed as input on most operations and can be used by the client
implementations to provide further contextual information as desired. Possible uses include: file name, file
date, file size, file owner information, special attributes pertaining to the Signedinfo, etc ... It is also used
within the Receipt element of the PostMarkedReceipt structure to allow individual Posts to extend
the information contained in a Receipt.

<xs:complexType name="ContentMetadataType">
<xXs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Value" type="xs:string"/>
</xs:sequence>
</xs:complexType>

5.4.14 ValidOperation

The 5 core operations below shall be supported by the implementation in order to be considered an UPU-
endorsed EPM. Support for lifecycle can be provided implicitly through the TransactionKey in order to
gain EPM endorsement. Explicit support of the StartLifecycle operation is not strictly required. This
element is also referenced by the NotifyEvents type. ValidOperation is used in NotifyEvents.

<xs:simpleType name="ValidOperation">
<xs:restriction base="xs:string">
<xs:enumeration value="Verify"/>

34 © UPU 2005 — All rights reserved

$43-3 Draft E

<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration

value="PostMark"/>
value="CheckIntegrity"/>
value="RetrieveResults"/>
value="Sign"/>

<!-- The 7 optional operations below are considered extensions
and may optionally be implemented by local Postal Admins. -->

<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
</xs:restriction>
</xs:simpleType>

value="StartLifecycle"/>
value="LogEvent" />
value="Encrypt"/>
value="Decrypt"/>

value="Locate"/>
value="RetrieveSummary" />
value="RetrievePostalAttributes"/>

5.4.15 ValidOption

ValidOption is used in OperationOptions, and constrains the list of valid options.

<xs:simpleType name="ValidOption">
<xs:restriction base="xs:string">

<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
</xs:restriction>
</xs:simpleType>

value="EndLifecycle"/>
value="ExtendLifecycle" />
value="VerifyCertificate"/>
value="DecryptIncomingEnvelope"/>
value="EncryptResponse" />
value="StoreNonRepudiationEvidence" />
value="IssuePostMarkedReceipt"/>
value="ReturnTimeStampAudit"/>
value="ReturnSignatureInfo"/>
value="ReturnxX509Info"/>

5.4.16 Event

This simple object type represents a list of all valid operations that the EPM Service will honor in support
of the NotifyEvents element within the StartLifecycle operation (See Lifecycle Management in subclause
5.3.3 for more information.). This simple object is used by the participating parties (refer to
ParticipatingPartyType in subclause 5.4.9 for details) and is referenced through it's ‘NotifyEvents’
element. The following are the valid values that this element supports:

- Verify

- PostMark

- Checklintegrity

- RetrieveResults
- Sign

- Encrypt

- Decrypt

- Locate

- LogEvent

- StartLifecycle

- RetrieveSummary

© UPU 2005 - All rights reserved

35

$43-3 Draft E

- RetrievePostalAttributes

5.4.17 ClientApplication

The ClientApplicationType is used in most requests to indicate the desktop client and
version from which the EPM operation originated. Examples include: MS Word Extension
V2.23, and the Acrobat Plugin V7.18. This element (through its attribute) also
identifies the scheme used to transform the document. That is, process any inclusion
and exclusion of document parts, as well as any optional transformation of that
content which may have been applied and subsequently used as input to the hash
algorithm. If this element is omitted, it is assumed that the entire document was used
as input to the hash calculation. It's use is optional, and when not specified, the
entire document will be assumed. <xs:complexType name="ClientApplicationType">
<xs:sequence>
<xs:element name="NameAndVersion" type="xs:string"/>
<xs:element name="ContentTransformScheme"
type="epm:ContentTransformSchemeType" nillable="true"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="ContentTransformSchemeType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="ContentTransformSchemeURI" type="xs:anyURI"
use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

5.4.18 Contentldentifier

This optional element can be used to provide an application-specific identifier for the type of form,
document, or file being operated on. Organizational level retrieval access and privileges can be set based
on this element when using the RetrieveSummary operation. This string element might contain values
such as PDF, Engineering Drawings, Form 628, etc ... or anything the client may wish to filter
transactions on.

5.4.19 Version

This mandatory element shall be present on every EPM request (except the RetrievePostalAttributes
which already contains the mandatory Locator element which itself contains the Vversion element) and
is used to help identify the version of the EPM Interface Specification schema this request is formatted as.
It is a string element and for example might contain: 1.14, 1.15, 2.0, etc ... Posts may use this element in
conjunctions with the URL of the EPM Service itself to identify the version of the EPM Interface that this
call is formatted under.

5.4.20 SignaturePolicyldentifier

This abstract type cannot be directly implemented. One needs to extended from this base type as shown
in the SomeSignaturePolicyldentifierType example below. This example is a simplified version of the
SignaturePolicyldentifierType in ETSI's XAdES schema TS 101 903. Possible use of this abstract type
might be in an implementation where the local jurisdiction mandates the explicit use of disclosed
signature policies. The SignaturePolicyldentifier could be returned as an additional signed reference or
property in, for example, a Sign response. An XMLDSIG Reference to this type could be specified as part
of a signing template passed in on a Sign operation.

<xs:complexType name="SignaturePolicyIdentifierType" abstract="true">

36 © UPU 2005 — All rights reserved

$43-3 Draft E

<Xs:sequence>
<xs:element name="SignaturePolicyIdentifier" type="xs:anyType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="SomeSignaturePolicyIdentifierType">
<xs:complexContent>
<xs:extension base="epm:SignaturePolicyIdentifierType">
<xs:sequence>
<xs:element name="SigPolicyID" type="xs:anyURI"/>
<xs:element name="SigPolicyURL" type="xs:string"/>
<xs:element name="SigPolicyHashAlgo" type="xs:anyURI"/>
<xs:element name="SigPolicyHashValue" type="xs:string"/>
<xs:element name="SigPolicyUserNotice" type="xs:string"
nillable="true"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

5.5 EPM INTERFACE SPECIFICATION — “CORE” OPERATIONS IN DETAIL

The following operations have been identified as required support services to be qualified as complaint to
the UPU EPM Core Specification:

- Verify

- Checklintegrity

- PostMark

- RetrieveResults

- Sign

A description of each of these operations and how to process them in conjunction with an EPM Web-
based Service follows.

5.5.1 Verify

5.5.1.1 Verify Edit Rules Summary

The Verify operation is normally invoked by the originator of the document, although it can be invoked by
the recipient as well. It is also normally the first event in the Lifecycle (after the StartLifecycle if specified).
After the document is Verified and optionally PostMarked at origin, it then can be checked using the Verify
or CheckIntegrity operation.

The Verify operation requires, as input, a PKCS7 or XMLDSIG signature object and an optional
PostMarkedReceipt. The EPM Service will perform a Verification on the signature object and optionally on
the PostMarkedReceipt’s signature(s). A Verify will perform an OCSP or CRL check to validate the
signing certificate when the VerifyCertificate option is specified.

5.5.1.2 VerifyOptions Request Flags

The following option flags can be set in the VerifyOptionsType element. These elements are normally of
type boolean (the IssuePostMarkedReceipt being an exception) and should be set to “True’ or
‘False’, the default value being ‘False’. This object will be added as an element reference to the
VerifyRequest element which is referenced in the next subclause.

© UPU 2005 - All rights reserved 37

$43-3 Draft E

<xs:complexType name="VerifyOptionsType">
<xXs:sequence>
<xs:element name="EndLifecycle" type="xs:boolean"/>
<xs:element name="ExtendLifecycle" type="xs:boolean"/>
<xs:element name="VerifyCertificate" type="xs:boolean"/>
<xs:element name="DecryptIncomingEnvelope" type="xs:boolean"/>
<xs:element name="EncryptResponse" type="xs:boolean"/>
<xs:element name="StoreNonRepudiationEvidence" type="xs:boolean"/>
<xs:element name="IssuePostMarkedReceipt"
type="epm: IssuePostMarkedReceiptType" nillable="true"/>
<xs:element name="ReturnSignatureInfo" type="xs:boolean"/>
<xs:element name="ReturnX509Info" type="xs:boolean"/>
</Xs:sequence>
</xs:complexType>

EndLifecycle — Set to ‘True’ to end the transaction lifecycle. (See Lifecycle Management in subclause
5.3.3 for more information.)

ExtendLifecycle — Set to ‘True’ to extend the transaction lifecycle. (See Lifecycle Management in
subclause 5.3.3 for more information.)

VerifyCertificate — Set to ‘True’ to enable certificate status checking. If set to ‘False’, the certificate status
checking will be bypassed, but the minimal certificate validation will still occur (e.g. from/to expiry check,
certificate present check, etc ...). All certificate validation results will be returned in the X509InfoType
complex element. Please refer to subclause 5.4.5 entitled X509InfoType for details..

DecryptincomingEnvelope — Set to ‘True’ to instruct the EPM Service to decrypt the following incoming
elements before performing its Verification: SignedConent and SignatureData. These 2 elements
included as EnvelopedData objects shall be encrypted with the public key portion of the EPM Service’s
private decryption key. This option is used to ensure confidential delivery of the transaction content to the
EPM Service. See also “EncryptResponse” below.

EncryptResponse — This option requires that the caller sign the request by initializing the
ClaimedIdentity request element. This option instructs the EPM to encrypt the SignatureData
element before returning it using the public key present in the incoming RequesterSignature.
Additionally if the caller has requested that the SignatureInfo be returned, then the SignedContent
sub-element should also be encrypted. Please also refer to subclause 5.4.12 entitled EncryptResponse
Option which covers the use of this option with examples of usage as they apply to the Verify, Decrypt,
and RetrieveResults operations.

StoreNonRepudiationEvidence — Set to ‘“True’ to turn on database logging of non-repudiation evidence.
If set to ‘False’, non-repudiation information is not logged to the database. If set to ‘False’ a
TransactionKey is still generated but only skeleton information relating to the transaction status is logged
to the database. This skeleton information is logged solely in order to support subsequent retrieval
operations and to allow this event to participate in Lifecycles.

IssuePostMarkedReceipt — If included as part of the Verify request, will cause the EPM to return a
receipt attesting to the validity and non-repudiability of the Verify operation. This returned receipt is
PostMarked using an EPM-generated timestamp. Please refer to subclause 5.4.6 entitled
PostMarkedReceipt for details. This timestamp and other receipt information is returned in a
PostMarkedReceipt element which is itself bound with a signature of authenticity. Valid values for the
Location sub-element are standalone and embedded and instructs the EPM where to place the
resulting PostMarkedReceipt element. For PKCS7 and XMLDSIG based signatures, a value of
standalone instructs the EPM to return a separate standalone PostMarkedReceipt as shown in
Example 1 — Standalone <PostMarkedReceipt> over a Verified Signature. For XMLDSIG signatures, a
value of embedded instructs the EPM to embed a PostMarkedReceipt structure into the incoming
signature upon successful verification as shown in Example 3 - Embedded <PostMarkedReceipt> over a
Verified Signature. This updated signed document, which is now also PostMarked, is returned in the
SignatureData element of the verify response. Lastly for PKCS7 signatures, a value of embedded

38 © UPU 2005 — All rights reserved

$43-3 Draft E

instructs the EPM to also embed an RFC 3161 binary TimeStampToken into the incoming signature upon
successful verification. The verified and updated PKCS7 signature now containing the embedded RFC
3161 timestamptoken is returned in the SignatureData element of the response, and the
PostMarkedReceipt is returned as requested. Essentially the embedded, as applied to the verification
of PKCS7 signatures really means “Create and return a PostMarkedReceipt structure, and also embed an
RFC 3161 timestamp token into my signature”. This overloaded meaning is necessary when verifying
XMLDSIG based signatures since the PostMarkedReceipt can much more naturally be embedded into
the incoming signed document.

<xs:complexType> name="IssuePostMarkedReceiptType">
<xs:sequence>
<xs:element name="Location" type="xs:string"/>
<xs:element name="PostMarkImageSize" type="epm:ValidImageSize"/>
<xs:element name="PostMarkImageType" type="xs:string"/>
</xXs:sequence>
</xs:complexType>

NOTE If an embedded timestamptoken already exists within an incoming PKCS7 signature, the EPM
implementation should verify it but shall not replace it. As described above, the separately returned
PostMarkedReceipt Serves as the receipt and timestamp for all subsequent Verify operations and any
number can be saved by the calling application.

ReturnSignaturelnfo — Set to ‘“True’ to return a detailed breakdown of the signature object, including the
original content. Please refer to subclause 5.4.4 entitled SignaturelnfoType for details.

ReturnX509Info — Set to ‘“True’ to return a detailed breakdown of the certificate used to perform the
operation. Please refer to subclause 5.4.5 entitled X509InfoType for details.

5.5.1.3 Verify Request Elements

Set the following parameters or elements of the VerifyRequestType element before invoking the EPM
Service as appropriate.

<xs:element name="VerifyRequest">
<xs:complexType>
<xs:sequence>

<xs:element
<xs:element
nillable="true"/>
<xs:element
nillable="true"/>
<xs:element
<xs:element
<xs:element
<xs:element
nillable="true"/>
<xs:element
nillable="true"/>
<xs:element
nillable="true"/>
<xs:element
nillable="true"/>
<xs:element

name="VerifyOptions" type="epm:VerifyOptionsType"/>
name="TransactionKey" type="epm:TransactionKeyType"

name="ClaimedIdentity" type="epm:ClaimedIdentityType"
name="OrganizationID" type="xs:string" nillable="true" />
name="ClientApplication" type="epm:ClientApplicationType"/>
name="ContentIdentifier" type="xs:string" nillable="true"/>
name="SignatureData" type="epm:QualifiedDataType"
name="SignedContent" type="epm:QualifiedDataType"
name="PostMarkedReceipt" type="epm:PostMarkedReceiptType"

name="SignatureSelector" type="epm:SignatureSelectorType"

name="ContentMetadata" type="epm:ContentMetadataType"

nillable="true" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
</xs:element>

VerifyOptions — An element whose type is a complex element defined by veri fyOptionsType from

the previous subclause.

© UPU 2005 - All rights reserved

$43-3 Draft E

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key, and Sequence elements should be initialized as ‘null’ for Verify requests unless one is
extending a Lifecycle. Please refer to TransactionKeyType in subclause 5.4.2.

Claimedldentity — The RequesterSignature element of Claimedldentity shall be initialized when either
Proof-of-Delivery or Proof-of-Possession is desired by the transacting parties, or when this operation is
partof a StartLifecycle whose AccessLevel is Signed. See also

Claimedldentity in subclause 5.4.10.

OrganizationlD — A string element representing the identifier of the organization requesting the service.
This value shall match against a list of valid Organization Identifiers that are registered with the EPM
Service.

ClientApplication — See ClientApplication subclause 5.4.17

Contentldentifier — See Contentldentifier subclause 5.4.18

SignatureData — The CMS-compliant PKCS7 to be verified in either encapsulated ASN.1 binary
PKCS7v1.5 or the XML Digital Signature Syntax and Processing standard, RFC 3275. In either case, the
application shall present the signature to be verified as an octet-stream to the SOAP layer which will
base64 encode it for transport. The EPM will determine the signature format from the MimeType attribute.
Valid values are either text/xml, in which case the EPM will assume that the caller is passing in an
XMLDSIG-formatted signature, application/pkcs7-signature, in which case the EPM will assume
the caller is passing in ASN.1 binary PKCS7, or application/pdf in which case the EPM will assume
a signed PDF.

MimeType — This is an attribute of the SignatureData element above and shall specify either
text/xml if Data contains an XMLDSIG signature, or application/pkcs7-signature if
SignatureData contains a PKCS7 SignedData object.

PostMarkedReceipt — This optional element allows the client caller to optionally pass up both the
signature to be verified (in the SignatureData element) and the PostMarkedReceipt. In this manner,
an EPM implementation can validate both the signature and the PostMarkedReceipt over that
signature. The PostMarkedReceipt passed in should be from the PostMarkedReceipt issued as
part of the original Verify of this signature. They are cryptographically bound to each other and this
binding will be verified by the EPM.

There are 2 scenarios to be addressed by the EPM implementation when Verifying a PostMarkedReceipt.
They are described below:

- When Verifying a PostMarkedReceipt which was originally created over a signature, the following
verification steps shall be performed:

- Verify the signature contained in the SignatureData request element

- Verify the ReceiptSignature element within the incoming PostMarkedReceipt.
Please note that for PKCS7-based receipts, the ReceiptSignature itself is a detached
signature over the serialized contents of the Receipt element.

- Lastly an equality check shall be performed to confirm that this PostMarkedReceipt is
bound to the signature in the incoming SignatureData. Thisis accomplished by
extracting the messagelmprint (i.e. the 3" field in the Tstinfo structure) from the
TimeStampToken element of the PostMarkedReceipt and comparing it against the
hash of the SignatureValue (PKCS1) of the signature in the SignatureData element.

- When Verifying a PostMarkedReceipt which was originally created over a data, as would be the case
when a PostMark operation was used, the following verification steps shall be performed:

- Verify the ReceiptSignature element within the incoming PostMarkedReceipt.
Please note that for PKCS7-based receipts, the ReceiptSignature itself is a detached

40 © UPU 2005 — All rights reserved

$43-3 Draft E

signature over the serialized contents of the Receipt element.

- Perform an equality check to confirm that this PostMarkedReceipt is bound to the data in
the incoming SignedContent. This is accomplished by extracting the messagelmprint (i.e.
the 3" field in the Tstinfo structure) from the TimeStampToken element of the
PostMarkedReceipt and comparing it against the hash of the data in the
SignedContent element.

SignedContent —This optional element is required for the verification of detached signatures. If this
element contains something (i.e. is not nil), the EPM will assume the signature to be verified is detached.
Applies only to PKCS7 based signatures. For XMLDSIG based signatures, the EPM supports same-
document detached signatures and expects the data to be part of the signed document.

NOTE When verifying a PostMarkedReceipt, as described in the second scenario above, this element
shall contain the data that was originally PostMarked. It is required to confirm the binding of the
TimeStampToken.

SignatureSelector — The optional SignatureSelector element qualifies the XMLDSIG signature(s) to
be verified by the EPM. This element may also serve useful if the user in unsure of exactly what has been
verified, and wishes to control the verification process more explicitly.

If the user wishes to Verify a particular signature or signatures, they have two choices has to how they
may specify the dsig:Signature nodes to be verified. Each choice is a sub-element of the
SignatureSelectorType below.

The First method allows users to specify any ancestor (parent) node of the signature(s) to be verified and
are specified by including these names as NodeName element(s). The value is expressed as a string. A
namespace URI qualifier may precede the actual signature NodeName value.

<xs:complexType name="SignatureSelectorType">
<xXs:sequence>
<xs:choice>
<xs:element name="NodeName" type="xs:string" minOccurs="1"
maxOccurs="unbounded" />
<xs:element name="XPathSelector" type="epm:XPathSelectorType"/>
</xs:choice>
</xs:sequence>
</xs:complexType>

<xs:complexType name="XPathSelectorType">
<xs:sequence>
<xs:element name="XPath" type="xs:string"/>
<xs:element name="NameSpace" type="xs:string" nillable="true" />
<xs:element name="Qualifer" type="xs:string" nillable="true"/>
</xs:sequence>
</xs:complexType>

EXAMPLE The user would specify string values of 1g1:Partyl and/or 1gl:Party2 to explicitly
instruct the EPM what to Verify. By default the EPM will search for signature nodes specified as
<dsig:Signature>, which appear as descendants of the document root.

<lgl:Partyl>
<dsig:Signature xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">

</dsig:Signature>
</lgl:Partyl>
<lgl:Party2>
<dsig:Signature xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">

© UPU 2005 — All rights reserved 41

$43-3 Draft E

</dsig:Signature>
</lgl:Party2>

The Second method involves specifying an XPath expression which when evaluated will return the
target <dsig:Signature> nodes to be verified. The actual Xpath expression is included in the XPath
element and any required namespace and qualifier can be specified in the NameSpace and Qualifier
elements.

EXAMPLE Using an XPath expression to select the target <dsig:Signature> nodes

<lgl:Document xmlns:lgl="http://www.lgl.org/SomeService"
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">
<lgl:Signatures>
<dsig:Signature>1lst</dsig:Signature>

<dsig:Signature>2nd</dsig:Signature>
<dsig:Signature>3rd</dsig:Signature>

</lgl:Signatures>
</1lgl:Document>

In the example above a value of //1gl:Signatures//dsig:Signature [position=2] would
select only the second signature to be verified.

Avalue of //1gl:Signatures//dsig:Signature in the XPath element would cause all signatures
to be verified.

In both examples a value of http://www.1lgl.org/SomeService and 1gl shall be specified for the
NameSpace and Qualifier elements respectively in order to allow the XPath string expression to
evaluate.

ContentMetaData — A string element containing custom details of the signed data that can be specified
by the client. Example usage could be the original file name, file date, file size or file owner information.
5.5.1.4 Verify Response Object

A VerifyResponseType complex element is populated and returned by the EPM Service. Here are the
elements it contains:

<xs:element name="VerifyResponse">
<xs:complexType>
<XS:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType"/>
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>
<xs:element name="PostMarkedReceipt" type="epm:PostMarkedReceiptType"
nillable="true"/>
<xs:element name="SignatureData" type="epm:QualifiedDataType"
nillable="true"/>
<xs:element name="SignatureInfo" type="epm:SignatureInfoType"
nillable="true"/>
<xs:element name="X509Info" type="epm:X509InfoType" nillable="true"/>
</xs:sequence>
</xs:complexType>
</xs:element>

TransactionStatus — A string element representing the result of the overall transaction. ‘0’ denotes
success. ‘1’ denotes that a warning was generated. Transaction failure is denoted by a specific numerical

42 © UPU 2005 — All rights reserved

$43-3 Draft E

value..

TransactionStatusDetail — An element whose type is a complex element defined by
TransactionStatusDetail Type. See TransactionStatus and TransactionStatusDetailType in subclause
5.4.1)

TransactionKey — An element whose type is a complex element defined by TransactionKeyType Please
refer to TransactionKeyType in subclause 5.4.2. The Locator, Key, and Sequence elements will be
populated and returned by the EPM Service.

PostMarkedReceipt — An optional PostMarkedReceipt structure returned when the
IssuePostMarkedReceipt option is specified and its Location element specifies standalone. For
XMLDSIG-based signatures if the Location element specifies embedded, then this element will be
empty as the entire receipt will be embedded in the XML signature. For PKCS7-based signatures if the
Location element specifies embedded, an RFC 3161 timestamp token will be embedded and this
element will also be returned. See IssuePostMarkedReceipt above for more details.

SignatureData —When verifying PKCS7-based signatures, if a value of embedded is specified in the
Location element of the IssuePostMarkedReceipt The SignatureData element will contain an
updated PKCS7 signature now containing a signature timestamp embedded in the updated PKCS7
signature as an unsigned attribute. For PKCS7-based signatures which do not request the embedded
option, this element will be empty.

When using XMLDSIG-based signatures, if a value of embedded is specified in the Location element of
the IssuePostMarkedReceipt, then after successful verification, the IssuePostMarkedReceipt
will be inserted into the incoming signed document and returned to the caller in this element. The
PostMarkedReceipt will cover all signatures that have been verified. The NodeName may affect the
scope of the PostMarkedReceipt signature, if specified.

ContentMetadata — A string element initialized by the Verify request is returned to the caller.

Signaturelnfo — An element whose type is a complex element defined by SignaturelnfoType. Please
refer to subclause 5.4.4 entitled SignaturelnfoType for details.

X509Info — An element whose type is a complex element defined by X509InfoType. Please refer to
subclause 5.4.5 entitled X509InfoType for details.

5.5.2 PostMark

5.5.2.1 PostMark Edit Rules Summary

The PostMark operation returns a PostMarkedReceipt structure containing both a timestamp and a
receipt. The PostMark can be over any of the 5 content types described below and specified in the
MimeType attribute of the Data input request element. As part of the PostMark operation, the EPM
Service will timestamp the content through its TSA or equivalent component and return a
PostMarkedReceipt structure containing an RFC 3161-compliant timestamptoken in the
TimeStampToken element, a Receipt structure, and a ReceiptSignature structure to the caller. It
will be returned in the PostMarkedReceipt sub-element of the response. Please refer to subclause
5.4.6 entitled PostMarkedReceipt for details.

5.5.2.2 PostMarkOptions Request Flags

The following option flags can be set in the PostMarkOptionsType complex element. These elements are
of type boolean and should be set to ‘True’ or ‘False’, the default value being ‘False’.

<xs:complexType name="PostMarkOptionsType">
<xs:sequence>
<xs:element name="EndLifecycle" type="xs:boolean"/>
<xs:element name="ExtendLifecycle" type="xs:boolean"/>
<xs:element name="DecryptIncomingEnvelope" type="xs:boolean"/>

© UPU 2005 — All rights reserved 43

$43-3 Draft E

<xs:element name="EncryptResponse" type="xs:boolean"/>
<xs:element name="StoreNonRepudiationEvidence" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>

EndLifecycle — Set to ‘True’ to end the transaction lifecycle. (See Lifecycle Management in subclause
5.3.3 for more information.)

ExtendLifecycle — Set to ‘True’ to extend the transaction lifecycle. (See Lifecycle Management in
subclause 5.3.3 for more information.)

DecryptincomingEnvelope — Set to ‘True’ to instruct the EPM Service to decrypt the Data element
before performing the PostMark operation. This element shall be included as an EnvelopedData object
and shall be encrypted with the public key portion of the EPM Service’s private decryption key. This
option is used to ensure confidential delivery of the transaction content to the EPM Service. See also
“EncryptResponse” below.

EncryptResponse — This option requires that the caller sign the request by initializing the
ClaimedIdentity request element. This option instructs the EPM to encrypt the SignatureData
element before returning it using the public key present in the incoming RequesterSignature. Please
also refer to subclause 5.4.12 entitled EncryptResponse Option which covers the use of this option with
examples of usage as they apply to the Verify, Decrypt, and RetrieveResults operations.

StoreNonRepudiationEvidence — Set to ‘True’ to turn on database logging of non-repudiation evidence.
If set to ‘False’, non-repudiation information is not logged to the database. If set to ‘False’ a
TransactionKey is still generated but only skeleton information relating to the transaction status is logged
to the database. This skeleton information is logged solely in order to support subsequent retrieval
operations and to allow this event to participate in Lifecycles.

5.5.2.3 Postmark Request Elements

Set the following parameters or elements in the PostMarkRequestType complex element before invoking
the EPM Service as appropriate:

<xs:element name="PostMarkRequest">
<xs:complexType>
<xs:sequence>
<xs:element name="PostMarkOptions" type="epm:PostMarkOptionsType"/>
<xs:element name="SignatureType" type="xs:string"/>
<xs:element name="TransactionKey" type="epm:TransactionKeyType"
nillable="true"/>
<xs:element name="ClaimedIdentity" type="epm:ClaimedIdentityType"
nillable="true"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"/>
<xs:element name="ContentIdentifier" type="xs:string" nillable="true"/>
<xs:element name="Data" type="epm:QualifiedDataType"/>
<xs:element name="ContentMetadata" type="epm:ContentMetadataType"
nillable="true" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

PostMarkOptions — An element whose type is a complex element defined by PostMarkOptionsType
from the previous subclause.

SignatureType — Specifies the signature type to be used by the EPM when creating the returned
PostMarkedReceipt structure. Valid values are PKCS7 and XMLDSIG. Although the
PostMarkedReceipt structure is itself XML, the internal signature type employed to create the signatures
are either PKCS7 or XMLDSIG.

44 © UPU 2005 — All rights reserved

$43-3 Draft E

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key and Sequence elements should be initialized as null for PostMark requests unless one is
extending a lifecycle. Please refer to TransactionKeyType in subclause 5.4.2.

Claimedldentity — The RequesterSignature element of Claimedldentity shall be initialized when either
Proof-of-Delivery or Proof-of-Possession is desired by the transacting parties, or when this operation is
part ofa StartLifecycle whose AccessLevel is Signed. (See also

Claimedldentity in subclause 5.4.10)

OrganizationID — A string element representing the identifier of the organization requesting the service.
This value shall match against a list of valid Organization Identifiers that are registered with the EPM

Service.

ClientApplication — See ClientApplication subclause 5.4.17

Contentldentifier — See Contentldentifier subclause 5.4.18

Data — A binary element initialized by the caller as a language-specific octet stream containing the
content to be time stamped.

MimeType — A string attribute describing the content type of the data contained in the Data element
above. Possible values are as follows:

>

Type 1 "text/plain” should be used when passing in plain text data. This data will be hashed (after
decoding), for caller convenience prior to internally calling the EPM's timestamping component. A
timestamptoken, formatted as per the SignatureType requested, will be returned in the
TimeStampToken element of the PostMarkedReceipt. When the SignatureType is XMLDSIG the
PostMarkedReceipt signature will be over the content. See Example 2 in the PostMarkedReceipt
description above.

Type 2 "application/octet-stream" should be used when passing in binary data. This data will also
be hashed (after decoding), for the caller's convenience prior to internally calling the EPM's TSA
component. A timestamptoken, formatted as per the SignatureType requested, will be returned in
the TimeStampToken element of the PostMarkedReceipt. When the SignatureType is XMLDSIG
the PostMarkedReceipt signature will be over the content. See Example 2 in the
PostMarkedReceipt description.

Type 3 "application/vnd.upu.hash-sha1" should be used when the clients themselves are creating
the hash of the data. This hash value passed in by the user will be used to construct the call to
the timestamping component. The hash algorithm used by the client to create the hash value
should be indicated as part of the MimeType attribute and should follow the hyphen. Presently
only shal and md5 are accepted. Postal implementations are free to support additional
algorithms as required. A TimeStampToken, formatted as per the SignatureType requested,
will be returned in the TimeStampToken element of the PostMarkedReceipt. When the
SignatureType is XMLDSIG the PostMarkedReceipt signature will be over the content.

Type 4 "application/pkcs7-signature” which is signature-specific, indicates that the required
timestamp is to be added to the incoming PKCS?7 signature structure. The timestamptoken's hash
will be calculated over the signature value of the incoming signature. The updated signature now
containing an embedded RFC 3161 ASN1 binary timestamptoken will be returned in the response
element SignatureData. Additionally a PostMarkedReceipt structure will also be returned.
This is consistent with Verify IssuePostMarkedReceipt processing.

Type 5 "text/xml", which is signature-specific, indicates that the required PostMarkedReceipt
is to be calculated over the incoming XMLDSIG-based signature structure. The
PostMarkedReceipt signature will reference the Signaturevalue element(s) of the
incoming signature(s), and will be returned in the PostMarkedReceipt response element.

ContentMetaData — A string element containing custom details of the PostMarked data that can be
specified by the client. Example usage could be the original file name, file date, file size or file owner

© UPU 2005 - All rights reserved 45

$43-3 Draft E

information.

5.5.2.4 PostMark Response Object

A PostMarkResponseType complex element is populated and returned by the EPM Service. Here are
the elements it contains:

<xs:element name="PostMarkResponse'">
<xs:complexType>
<xs:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>
<xs:element name="PostMarkedReceipt" type="epm:PostMarkedReceiptType"/>
<xs:element name="SignatureData" type="epm:QualifiedDataType"
nillable="true"/>
</xs:sequence>
</xs:complexType>
</xs:element>

TransactionStatus — A string element representing the result of the overall transaction. ‘0’ denotes
success. ‘1’ denotes that a warning was generated. Transaction failure is denoted by a specific numerical
value..

TransactionStatusDetail — An element whose type is a complex element defined by
TransactionStatusDetail Type. (see TransactionStatus and TransactionStatusDetailType in subclause
5.4.1)

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key, and Sequence elements will be populated and returned by the EPM Service. Please refer to
TransactionKeyType in subclause 5.4.2.

PostMarkedReceipt — The PostMarkedReceipt element is returned for all PostMark MimeType’s. A
standalone PostMarkedReceipt of the appropriate type as specified in the SignatureType request
element, and covering the appropriate content dependent on whether it is a PostMark over data or a
PostMark over a signature, will be returned. Please refer to subclause 5.4.6 entitled PostMarkedReceipt
for details.

SignatureData — If MimeType option is Type 4, then the timestamp will be part of the updated and
returned signature structure. For MimeType option type 4, the timestamp will be a conventional RFC
3161 binary timestamp token which will be embedded in the incoming PKCS7 signature and returned in
this element. The PostMarkedReceipt, or the embedded timestamp when using Type 4, is simply an
attestation of the existence of a particular piece of data at that moment in time and does not attest to the
validity of anything else.

5.5.3 Retrieve Results

5.5.3.1 RetrieveResults Edit Rules Summary

The RetrieveResults operation below is used primarily for accessing evidence required at challenge time.
Under this scenario it is executed by the post in support of these evidence requests. It allows the post to
retrieve response information from any previous operation identified by the specified TransactionKey
and Sequence qualifier. Therefore it is valid against most operations/verbs (exceptions are:
RetrievePostalAttributes, and RetrieveSummary which are already fundamentally retrieval operations and
not the subject of disputes.).

46 © UPU 2005 — All rights reserved

$43-3 Draft E

The other usage scenario for RetrieveResults is as a document pickup facility. In this use case, a
recipient can pickup a document originally placed with the EPM as a result of a sender locally signing a
document and subsequently requesting that the EPM Verify that signed document. The act of verifying
the document's signature via this origin Verify operation issued by the sender can place both the
signature and the signed document (whether embedded or detached) in the EPM's database under a
specific TransactionKey, which is returned to the sender. The sender would then pass the
TransactionKey “out of band” to the recipient instructing them to “pickup” the document. The recipient
would then issue a RetrieveResults operation with this specified TransactionKey, and pickup the
document. It should be noted that caution should be taken as to whom is allowed to pickup a document in
this fashion. If security is a concern, implementers are encouraged to use a StartLifecycle specifying the
ParticipatingParties allowed to perform actions against the content. See also AccessScope and
AccessLevel on the StartLifecycle for further access privilege details.

Thus it can be seen that through the use of the ParticipatingParty and ClaimedIdentity
elements, RetrieveResults can also be used as a more powerful "sign for pickup" facility providing end-to-
end non-repudiation and Proof-of-Delivery.

EXAMPLE John Smith can setup a Lifecycle by issuing a StartLifecycle operation with AccessScope
set to Individual. He could specify CN=Bill Graham, O=Acme Corporation, C=CA as a valid
ParticipatingParty and AccessLevel for Bill set to Signed when issuing the StartLifecycle
request. John could also set NotifyEvents for Bill to Verify so Bill would be eMailed when John posts
the document to the EPM via his Verify operation. John then signs the document and subsequently
verifies that document/signature using a Verify request to the EPM. This places the verified document and
signature along with all results in the EPM database, and triggers a notification to be sent to Bill Graham's
eMail address. Bill would then issue a RetrieveResults against John Smith's original TransactionKey in
order to "pickup"” the signed document. In order to strongly authenticate Bill, before returning the content
to him, Bill needs to sign his request, hence "Sign for Pickup". This is accomplished by initializing the
RequesterSignature element within ClaimedIdentity.

This entire sequence can be supported within EPM-enabled desktop applications or can be directly
implemented within subscriber EPM-enabled applications . Consult the local Postal administration for
details. The qualified form of the TransactionKey including the Sequence element is required in multi-
event transaction lifecycles when more than one Verify event exists within the NonRepudiation database
under the selected TransactionKey. The Sequence qualifier is used to select which signature verification
operation the caller wants the results for. The RequesterSignature elementof ClaimedIdentity
shall be initialized.

Public access rules apply to the RetrieveResults to prevent unauthorized access to the operation's
potentially sensitive contents. By default, retrieving results against a previous operation can only be
accessed by the same individual that initiated that previous operation. In order to allow wider access to
the response content of an operation, users needs to set up a ParticipatingParty list by issuing a
StartLifecycle operation and specifying the desired AccessScope, and as many ParticipatingParty
entries as desired, each with their designated AccessLevel. These Lifecycle-specified PartyName(s)
and the access rules that govern them, will apply for all operations which are part of this Lifecycle.

NOTE Proof-of-Delivery and Proof-of-Possession can also be accomplished using an origin Verify in
conjunction with a destination Checkintegrity. In this scenario, the signed document is sent directly to the
recipient and the EPM is witnessing the origin and destination events. That is, the Verify of the sender's
signature over the document, and the recipient upon receipt, passing up that same signed document on a
signed Checkintegrity request. The recipient is asked to sign the OriginalContent of the
Checkintegrity request thus ensuring Proof-of-Delivery and Proof-of-Possession.

5.5.3.2 RetrieveResultsOptions Request Flags

The following option flags can be set in the RetrieveResultsOptionsType complex element. These
elements are of type boolean and should be set to ‘True’ or ‘False’, the default value being ‘False’. This

© UPU 2005 - All rights reserved 47

$43-3 Draft E

object will be added as an element reference to the RetrieveResultsRequestType element which is
referenced in the next subclause.

<xs:complexType name="RetrieveResultsOptionsType">
<xs:sequence>
<xs:element name="IssuePostMarkedReceipt"
type="epm: IssuePostMarkedReceiptType" nillable="true"/>
<xs:element name="EncryptResponse" type="xs:boolean"/>
<xs:element name="StoreNonRepudiationEvidence" type="xs:boolean"/>
<xs:element name="ReturnTimeStampAudit" type="xs:boolean"/>
<xs:element name="ReturnSignatureInfo" type="xs:boolean"/>
<xs:element name="ReturnX509Info" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>

IssuePostMarkedReceipt — Set to ‘“True’ in order to cause the EPM to return a receipt attesting to the
validity and non-repudiability of the operation. This returned receipt is PostMarked using an EPM-
generated timestamptoken. Please refer to subclause 5.4.6 entitled PostMarkedReceipt for details. This
token and other receipt information is returned in the PostMarkedReceipt element which is itself bound
by a signature of authenticity. The TimeStampToken within the PostMarkedReceipt will be over the
Data response element returned to the caller. The embedded option of the TssuePostMarkedReceipt
is not supported for RetrieveResults.

EncryptResponse — This option requires that the caller sign the request by initializing the
ClaimedIdentity request element. This option instructs the EPM to encrypt the Data element of the
Results structure before returning it using the public key present in the incoming
RequesterSignature. Additionally if the caller has requested that the SignatureInfo be returned,
then the SignedContent element should also be encrypted. Please also refer to subclause 5.4.12
entitled EncryptResponse Option which covers the use of this option with examples of usage as they
apply to the Verify, Decrypt, and RetrieveResults operations.

StoreNonRepudiationEvidence — Set to ‘True’ to turn on database logging of non-repudiation evidence.
If set to ‘False’, non-repudiation information is not logged to the database. If set to ‘False’ a
TransactionKey is still generated but only skeleton information relating to the transaction status is logged
to the database. This skeleton information is logged solely in order to support subsequent retrieval
operations and to allow this event to participate in Lifecycles.

ReturnTimeStampAudit — Set to ‘True’ to populate the TimeStampAudit element of the
RetrieveResultsResponseType in the next subclause.

ReturnSignaturelnfo — Set to ‘“True’ to return a detailed breakdown of the signature object, including the
original content. Please refer to subclause 5.4.4 entitled SignaturelnfoType for details.

ReturnX509Info — Set to ‘“True’ to return a detailed breakdown of the certificate used to perform the
operation. Please refer to subclause 5.4.5 entitled X509InfoType for details.

NOTE Since a RetrieveResults is inherently associated with the target TransactionKey against which
it is operating, EPM implementations shall automatically create, or extend, the Lifecycle associating this
operation with the target transaction key in a Lifecycle. For example, if the target operation has
TransactionKey 1234 with sequence 1, then this RetrieveResults should be assigned
TransactionKey 1234 with sequence 2. If the target operation is already participating in a Lifecycle,
then the EPM implementation shall retain the transaction key and increment the sequence number by 1
for this operation. The same rules apply for Checkintegrity requests. If the Lifecycle has been explicitly
closed, an error should be returned. Applications wishing to continue supporting RetrieveResults and
Checkintegrity against Lifecycles should leave the Lifecycle opened.

5.5.3.3 RetrieveResults Request Elements

Set the following parameters or elements of the RetrieveResultsRequestType object type before invoking

48 © UPU 2005 — All rights reserved

$43-3 Draft E

the EPM Service as appropriate:

<xs:element name="RetrieveResultsRequest">
<xs:complexType>
<xs:sequence>
<xs:element name="RetrieveResultsOptions"
type="epm:RetrieveResultsOptionsType" />
<xs:element name="SignatureType" type="xs:string"/>
<xs:element name="TransactionKey" type="epm:TransactionKeyType" />
<xs:element name="ClaimedIdentity" type="epm:ClaimedIdentityType"
nillable="true"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"/>
</xs:sequence>
</xs:complexType>
</xs:element>

RetrieveResultsOptions — An element whose type is a complex element defined by
RetrieveResultsOptionsType from the previous subclause.

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator should contain the corresponding EPM application instance reference. Key should contain the
transaction identifier (key) from the previous target operation one wishes to “retrieve results” and content
for. Sequence should contain the respective sequence number of the target transaction. Please refer to
TransactionKeyType in subclause 5.4.2.

ClaimedIldentity — The RequesterSignature element of Claimedldentity shall be initialized when either
Proof-of-Delivery or Proof-of-Possession is desired by the transacting parties, or when this operation is
part ofa StartLifecycle whose AccessLevel is Signed. (See also

Claimedldentity in subclause 5.4.10)

SignatureType — Specifies the signature type to be used by the EPM when creating the returned
PostMarkedReceipt structure. Valid values are PKCS7 and XMLDSIG.

OrganizationlD — A string element representing the identifier of the organization requesting the service.
This value shall match against a list of valid Organization Identifiers that are registered with the EPM
Service.

ClientApplication — See ClientApplication subclause 5.4.17

5.5.3.4 RetrieveResults Response Object

A RetrieveResultsResponse complex element is populated and returned by the EPM Service. The
response covers two distinct categories of information. The first category contains response elements
pertaining to the actual execution of RetrieveResults operation itself including the
TransactionStatus, TransactionStatusDetail, the new TransactionKey generated for this
operation, and an optional PostMarkedReceipt if requested. The second category of information
returned pertains to the target transaction whose result information is being retrieved. All information
pertaining to the retrieved TransactionKey is contained in the Results element.

The results for the target TransactionKey specified in the request and retrieved from the EPM’s log are
populated and returned in the ResultsType structure. Description of all response elements follow:

<xs:element name="RetrieveResultsResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>

© UPU 2005 — All rights reserved 49

$43-3 Draft E

<xs:element name="PostMarkedReceipt" type="epm:PostMarkedReceiptType"
nillable="true"/>
<xs:element name="Results" type="epm:ResultsType"/>
</xs:sequence>
</xs:complexType>
</xs:element>

TransactionStatus — A string element representing the result of the overall transaction. ‘0’ denotes
success. ‘1’ denotes that a warning was generated. Transaction failure is denoted by a specific numerical
value..

TransactionStatusDetail — An element whose type is a complex element defined by
TransactionStatusDetail Type. (see TransactionStatus and TransactionStatusDetailType in subclause
5.4.1)

TransactionKey — This is the new TransactionKey generated by the EPM, not to be confused with the
target TransactionKey specified in the request and being retrieved. It is a complex type defined by
TransactionKeyType. Locator, Key, and Sequence elements will be populated by the EPM Service
Please refer to TransactionKeyType in subclause 5.4.2.

PostMarkedReceipt — An optional PostMarkedReceipt structure returned when the
IssuePostMarkedReceipt is specified. This is a receipt issued for having performed the
RetrieveResults operation itself and is normally used in “Sign for Pickup” scenarios when Proof-of-
Delivery is required. For PKCS7-based signatures, this element is always returned as a standalone
receipt when the IssuePostMarkedReceipt option is turned on.

NOTE When a PostMarkedReceipt is issued for a RetrieveResults operation, it will by definition
contain a content timestamp covering the Data element of the ResultsType which reflects the nature of
the target operation (see explanation of the Data element below).

ResultsType — This complexType and all its sub-elements contain all information relating to the target
transaction being retrieved. Its layout is shown below followed by a description of the associated sub-
elements.

<xs:complexType name="ResultsType">
<xs:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>
<xs:element name="Operation" type="xs:string"/>
<xs:element name="OperationOptions" type="epm:ValidOption" nillable="true"
minOccurs="0" maxOccurs="unbounded" />
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="UniqueSequenceId" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"
nillable="true"/>
<xs:element name="ContentIdentifier" type="xs:string" nillable="true"/>
<xs:element name="PostMarkedReceipt" type="epm:PostMarkedReceiptType"
nillable="true"/>
<xs:element name="Data" type="epm:QualifiedDataType" nillable="true"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="ContentMetadata" type="epm:ContentMetadataType"
nillable="true" minOccurs="0" maxOccurs="unbounded" />
<xs:element name="TimeStampAudit" type="epm:QualifiedDataType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="SignatureInfo" type="epm:SignatureInfoType"
nillable="true"/>
<xs:element name="X509Info" type="epm:X509InfoType" nillable="true"/>
</Xs:sequence>
</xs:complexType>

50 © UPU 2005 - All rights reserved

$43-3 Draft E

TransactionStatus — The TransactionStatus of the original operation being retrieved.

TransactionStatusDetail — The TransactionStatusDetail of the original operation being retrieved. see
TransactionStatus and TransactionStatusDetailType in subclause 5.4.1

Operation — The name of operation being retrieved (i.e. Verify, PostMark, CheckIntegrity, etc ...)

OperationOptions — Will contain an occurrence for each option that was set to true in the original
operation being retrieved.

OrganizationlD — The value of the OrganizationID passed in on the original transaction being retrieved.

UniqueSequencelD — Used in conjunction with RetrieveSummary to specify where in the results list we
last retrieved result content. The RetrieveSummary operation can start where it last left off using several
selector fields as part of the criteria. (refer to the RetrieveSummary in subclause 5.6.6 for details)

ClientApplication — See ClientApplication subclause 5.4.17

Contentldentifier — See Contentldentifier subclause 5.4.18

PostMarkedReceipt — This is the PostMarkedReceipt, if any, associated with the target operation being
retrieved. Please refer to subclause 5.4.6 entitled PostMarkedReceipt for further details.

Data — This is the contents of the primary element returned for the target operation. It is usually a crypto
structure or raw data content. For example, when the previous operation being referred to in the
RetrieveResults is a Verify with IssuePostMarkedReceipt turned on, then Data response element
will be initialized with a signature and the MimeType will bear the type of signature being returned. This
might be a PKCS7 or XMLDSIG signature based on the nature of the previous operation. Similarly for a
Sign operation, this Data response element would contain the signature created by that operation. In the
case of an Encrypt, it would contain the encrypted content from that operation. Data could also be
initialized with text or binary content.

The table below summarizes what the RetrieveResults Data response element of the ReceiptType will
contain for each target operation type. The element names in the 2™ column are from the response
structure for the targeted operation.

Original Operation Contents of Data Description
Checkintegrity Nill
Decrypt Data The Data element will contain the content which

was returned on the original Decrypt operation now
being retrieved.

Encrypt SignatureData This element will contain the generated PKCS7 or
the XMLDSIG-based EnvelopedData structure.

Locate PublicEncryptionCert The contents of the original encryption certificate
returned on the Locate operation.

LogEvent Data Will contain the content from the Data element of
the original LogEvent transaction which was passed
up to be logged. In this case the retrieved content is
actually request data from the target operation.

RetrieveResults Nill Retrieving the results of a previous RetrieveResults.
Nothing will be returned in Data.

RetrievePostalAttributes |Nill This operation is already a retrieval and extraction

© UPU 2005 - All rights reserved 51

$43-3 Draft E

operation. Nothing is returned in Data.

RetrieveSummary Nill Same as above.

Sign SignatureData This element will contain the originally generated
PKCS7 or XMLDSIG based signature returned to the
caller. NOTE The SignedContent element from
the original Sign request is also available in the
SignatureInfo element of the ResultsType.

StartLifeCycle Nill

PostMark Data Will contain the content from the Data element of
the original PostMark request. In this case the
retrieved content is actually request data from the
target operation.

Verify SignatureData If the original Verify request asked for an embedded

PostMark, then the Data element will contain that
verified and PostMarked signature. If the original
Verify did not ask for an embedded PostMark, then
the Data element will contain the originally verified
signature. NOTE The SignedContent element
from the original Verify request is also available in
the SignatureInfo element.

NOTE |Ifthe EncryptResponse option was set true on any of the original requests being targeted by
this RetrieveResults, the appropriate elements will contain an EnvelopedData object encrypted for the
caller. The MimeType and the context will allow the caller to discern which type it is. Please refer to the
individual verbs for exactly which elements the EncryptResponse applies to.

ContentMetadata — See ContentMetadata

TimeStampAudit — An binary element containing a signed TimeStamp audit log captured from the TSA.
Support for the TimeStampAudit element is optional. Provision of this info is at the discretion of each EPM
implementation.

SignaturelnfoType — An element whose type is a complex element defined by SignaturelnfoType.
Please refer to subclause 5.4.4 entitled SignaturelnfoType for details.

X509InfoType — An element whose type is a complex element defined by X509InfoType. Please refer to
subclause 5.4.5 entitled X509InfoType for details.

5.5.4 Checkintegrity

5.5.41 Checkintegrity Edit Rules Summary

The Checkintegrity operation allows clients to pass in content from a previous operation (Verify,
PostMark, and Sign are valid as previous operations) and have that content byte by byte compared
against the original version stored in the EPM's non-repudiation log under the requested TransactionKey.
By passing in the TransactionKey of the original operation along with the content to be checked, the EPM
will validate whether that content is authentic. A common use case would be as a Proof-of-Delivery,
Proof-of-Possession tool whereby a sender can be reassured that the recipient has received the signed
document. This is ensured since the recipient not only signs the Checklntegrity request but also passes in
the document received from the sender. In this fashion denial of receipt by the intended recipient cannot
be made. It should be noted that this reassurance can really only be obtained when the recipient signs
the request using the RequestersSignature construct of ClaimedIdentity. The MimeType attribute

52 © UPU 2005 - All rights reserved

$43-3 Draft E

of the OriginalContentType which specifies the valid values for the type of the eContent being
compared is outlined below. See also the description of OriginalContentType above.

Valid values for the MimeType attribute of OriginalContentType are as follows:

text/plain, application/octet-stream — these attribute values are all valid for comparisons against a
previous Sign, Verify, or PostMark operation.

When the Checkintegrity refers to a previous Sign or Verify operation, the client is expected to pass in the
original eContent over which the original signature was either signed or verified. This eContent is then
compared against what was previously stored in the EPM’s non-repudiation database.

When the Checklintegrity refers to a previous PostMark operation, the client is expected to pass in the
Data that was passed in on the original Postmark call and thus is valid only for previous PostMarks of
Type 1, Type 2, or Type 3. Types 4 and 5 are signature-based and are not valid and should be rejected
with error if this MimeType is being used.

Please refer to the MimeType attribute description in subclause 5.5.2.3 entitled Postmark Request
Elements for a description of the PostMark Types. MimeType text/plain is assumed to be an ASCI|
representation.

application/vnd.upu-digest-value - the actual hash value over the originally signed eContent is passed
in and compared. This MimeType is only valid for a ChecklIntegrity operation which refers to a previous
Sign or Verify operation.

application/timestamp-token - the client is expected to pass in the detached binary RFC 3161
timestamptoken. For example, this would be inside the TimeStampToken element of the
PostMarkedReceipt returned on the referenced Sign, Verify, or PostMark operation.

application/pkcs7-signature - the entire PKCS7 signature shall be passed in and will be compared in its
entirety to the original signature from the previous Sign or Verify operation. If the Checkintegrity refers to
a previous PostMark operation, that PostMark operation shall be of Type 4 (i.e. application/pkcs7-
signature).

text/xml - the contents of the <dsig:SignatureVvalue within the <dsig:Signature> structure,
without the bounding tags, shall be passed in and will be compared against the equivalent element from
the previous Sign, Verify, or PostMark operation. If the ChecklIntegrity refers to a previous PostMark
operation, that PostMark operation shall be of Type 5 (i.e. text/xml).

If senders require Proof of Delivery, implementers should use the CheckIntegrity operation not the Verify
operation, as that is the only way to ensure that the specific document (or its hash) was actually received
by the recipient. If the recipient is passing in the document on the Checklntegrity request, as well as
signing over that content (See also

Claimedldentity in subclause 5.4.10), then the sender can enjoy Proof-of-Delivery, Proof-of-Possession,
and Non-Repudiation of receipt. Please also refer to the first use-case scenario for an example of how a
Checklntegrity is used by a recipient to provide Proof-of-Delivery and Proof-of-Possession. Please also
refer to subclause 5.4.12 entitled EncryptResponse Option for further details. OriginalContent can be
either: content previously signed and verified, a hash value, a timestamptoken, or a digital signature. At
verification or challenge time, the user (usually the recipient) can submit multiple pieces of non-
repudiation data to be checked for authenticity. It is up to the EPM implementer to check each item and to
provide the authenticity results by comparing each item to the content stored in the EPM non-repudiation
log. This operation does not perform a cryptographic verification but rather simply compares the
OriginalContent passed in to that which already exists within the non-repudiation database under the
requested TransactionKey.

The Checkintegrity operation requires a valid transaction key (refer to TransactionKeyType in subclause
5.4.2) plus an exact copy of the original content to be checked returned from the original Sign or Verify
operation. ChecklIntegrity only works on a previous Sign, Verify, or PostMark operation. By referencing
the incoming transaction key, the EPM Service will extract the required MimeType from the database and

© UPU 2005 - All rights reserved 53

$43-3 Draft E

its contents will be compared to what was passed in on the request’'s OriginalContent element. For
confidentiality purposes, one can encrypt the OriginalContent and specify the
DecryptIncomingEnvelope option to have the EPM Service decrypt the contents before comparing it.

5.5.4.2 ChecklintegrityOptions Request Flags

The following option flags can be set in the ChecklintegrityOptionsType complex element. These elements
are of type boolean and should be set to ‘“True’ or ‘False’, the default value being ‘False’. This object will
be added as an element reference to the CheckIntegrityRequestType complex element referenced
in the next subclause.

<xs:complexType name="CheckIntegrityOptionsType">
<xs:sequence>
<xs:element name="DecryptIncomingEnvelope" type="xs:boolean"/>
<xs:element name="StoreNonRepudiationEvidence" type="xs:boolean"/>
<xs:element name="IssuePostMarkedReceipt"
type="epm: IssuePostMarkedReceiptType" nillable="true"/>
</xs:sequence>
</xs:complexType>

DecryptincomingEnvelope — Set to ‘True’ to request decryption of the incoming OriginalContent
element before having it compared to the original data. The enveloped data object shall be encrypted with
the public key portion of the EPM Service’s private decryption key. Used if this caller wishes to preserve
confidentiality when using the Checklntegrity function. The service will first decrypt the incoming content
and compare this decrypted content to the original. The client caller should place the encrypted envelope
in the OriginalContent field. The service will treat the content according to the
OriginalContentType specified. If the original Verify did not specify DecryptincomingEnvelope, the
caller (usually the recipient) is probably also not concerned with confidentiality and therefore need not
turn on the DecryptincomingEnvelope flag. The caller should specify the OriginalContent's MimeType
attribute, that is the data that was originally signed, as simply Data in the OriginalContent’'s MimeType.
The public encryption key used shall be the Postal Administrations public key.

StoreNonRepudiationEvidence — On a Checklntegrity logging of information in the non-repudiation
database may be required by a customer to attest to the fact that the intended recipient has both received
the original signed document and has requested confirmation as to its authenticity. This captured
evidence can be used to support non-repudiation of delivery, receipt, and knowledge. It is also assumed
that the sender delivers the TransactionKey only to the intended recipients. If this is deemed insufficiently
secure, customers should use the ParticipatingParty facility described above in order to restrict access
only to the intended recipients.

IssuePostMarkedReceipt — Set to True in order to cause the EPM to return a receipt attesting to the
validity and non-repudiability of the operation. This option will only be honored if the
RequesterSignature has been provided on the request. See also

Claimedldentity in subclause 5.4.10. This returned receipt is PostMarked using an EPM-generated
timestamptoken. Please refer to subclause 5.4.6 entitled PostMarkedReceipt for details. This token and
other receipt information is returned in the PostMarkedReceipt element which is itself bound by a
signature of authenticity. The EPM will create the PostMarkedReceipt signature over the
OriginalContent occurrences within the request. The embedded option of the
IssuePostMarkedReceipt is not supported for Checkintegrity.

NOTE Since a Checklintegrity is inherently associated with the target TransactionKey against which it is
operating, EPM implementations shall automatically create, or extend, the Lifecycle associating this
operation with the target transaction key in a Lifecycle. For example, if the target operation has
transaction key 1234 with sequence 1, then this Checkintegrity should be assigned transaction key 1234
with sequence 2. If the target operation is already participating in a Lifecycle, then the EPM
implementation shall retain the transaction key and increment the sequence number by 1 for this
operation. The same rules apply for RetrieveResults requests. If the Lifecycle has been explicitly closed,

54 © UPU 2005 - All rights reserved

$43-3 Draft E

an error should be returned. Applications wishing to continue supporting RetrieveResults and
Checkintegrity against Lifecycles should leave the Lifecycle opened
5.5.4.3 Checkintegrity Request Elements

Set the following parameters or elements of the ChecklintegrityRequestType complex element before
invoking the EPM Service as appropriate:

<xs:element name="CheckIntegrityRequest">
<xs:complexType>
<XS:sequence>
<xs:element name="CheckIntegrityOptions"
type="epm:CheckIntegrityOptionsType"/>
<xs:element name="SignatureType" type="xs:string" nillable="true"/>
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>
<xs:element name="ClaimedIdentity" type="epm:ClaimedIdentityType"
nillable="true"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"/>
<xs:element name="ContentIdentifier" type="xs:string" nillable="true"/>
<xs:element name="OriginalContent" type="epm:0OriginalContentType"
minOccurs="1" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

ChecklintegrityOptions — An element whose type is a complex element defined by
ChecklintegrityOptionsType from the previous subclause.

TransactionKey— An element whose type is a complex element defined by TransactionKeyType. Locator
should contain the corresponding application instance reference. Key should contain the transaction
ID/key from the previous sign or verify you wish to compare. Sequence should contain the respective
sequence number of the previous Sign or Verify. Please refer to TransactionKeyType in subclause 5.4.2.

OriginalContent — This is the content to be checked against the target operation. The
OriginalContent element shall always be initialized. For instance, when a previous Verify is the target
TransactionKey of this Checklintegrity request, one could pass the signed content of that previous
Verify operation in to be checked against the copy of that signed content stored within the EPM's non-
repudiation database under that TransactionKey. If the values compare equally, the CheckIntegrity will
return success. In this fashion, for example, recipients of signed documents could check whether
document signatures were in fact legitimate and whether the document they have in their possession is in
fact the exact same as the original document that was signed by the sender. Please also refer to
subclause 5.4.8 entitled OriginalContentType for more details.

ClaimedIldentity — The RequesterSignature element of Claimedldentity shall be initialized when either
Proof-of-Delivery or Proof-of-Possession is desired by the transacting parties, or when this operation is
part ofa StartLifecycle whose AccessLevel is Signed as previously discussed. In the Proof-of-
Delivery or Proof-of-Possession case, the RequesterSignature shall be a signature over the hash of
the OriginalContent element whose integrity is being checked. In this fashion the requester of the
operation cannot deny having both received and been in possession of that content. The data over which
this signature is created should be inclusive of all XML element tags as well.

Example eContent to the PKCS7 signature creation is shown below:
EXAMPLE 1

<OriginalContent MimeType="application/pkcs7-signature">MIIDAYhvcNAQcC
...</OriginalContent>

If there is more than one OriginalContent occurrence, since it is an "unbounded" element, the above
structure would be repeated for each OriginalContent element to be checked, and all needs to be

© UPU 2005 — All rights reserved 55

$43-3 Draft E

input to the signature creation. Please also refer to the Serialization Conventions in subclause 5.4.10. The
MimeType attribute should be left in to differentiate the OriginalContent elements of which there can
be more than one.

EXAMPLE 2

<OriginalContent MimeType="application/pkcs7-signature">MIThvcANcC
...</OriginalContent>

<OriginalContent MimeType="application/timestamp-token">MIIDAYhcvNA
...</OriginalContent>

When Proof-of-Delivery or Proof-of-Possession is required, and the SignatureType is XMLDSIG, the
RequesterSignature should be initialized. This is shown in Example 5 — RequesterSignature over
OriginalContent when used in a ChecklIntegrity operation. Please note that in order to avoid duplicating
the OriginalContent payload in both the OriginalContent element as well as within the enveloping
RequesterSignature structure, callers need to hash the OriginalContent value(s) and perform the
sign operation over the resultant hash value of the OriginalContent occurrences. Proof-of-Possession
can be verified by the EPM implementation by re-deriving the hash over the request's
OriginalContent element, comparing this re-derived hash value against the element contents of the
signed content (2nd line in Example 5 — RequesterSignature over OriginalContent when used in a
Checklintegrity operation and finally cryptographically verifying the RequesterSignature as presented in
the request.

If this Checkintegrity is within a Lifecycle whose AccesslLevel is set to Signed, and Proof-of-Delivery is
required, then this RequesterSignature over the hash of the OriginalContent is used instead of
over the TransactionKey as the signature granting access to this Lifecycle. This removes the need for
callers to sign 2 separate pieces of information. EPM implementations would still use the identity
information in the public verification key in the signature to compare against the ParticipatingParty
list specified in the Lifecycle to ascertain access privilege. For more details, please also refer to
subclause 5.6.5 entitled StartLifeCycle.

SignatureType — Specifies the signature type to be used by the EPM when creating the returned
PostMarkedReceipt structure. Valid values are PKCS7 and XMLDSIG.

OrganizationlD — A string element representing the identifier of the organization requesting the service.
This value must match against a list of valid Organization Identifiers that are registered with the EPM
Service.

ClientApplication — See ClientApplication subclause 5.4.17

5.5.4.4 Checkintegrity Response Object

A CheckintegrityResponseType complex element is populated and returned by the EPM Service. Here
are the elements it contains:

<xs:element name="CheckIntegrityResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType" />
<xs:element name="PostMarkedReceipt" type="epm:PostMarkedReceiptType"
nillable="true"/>
</xs:sequence>
</xs:complexType>
</xs:element>

TransactionStatus — A string element representing the result of the overall transaction. ‘0’ denotes
success. ‘1’ denotes that a warning was generated. Transaction failure is denoted by a specific numerical

56 © UPU 2005 - All rights reserved

$43-3 Draft E

value..

TransactionStatusDetail — An element whose type is a complex element defined by
TransactionStatusDetail Type. (see TransactionStatus and TransactionStatusDetailType in subclause
5.4.1)

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key, and Sequence elements will be populated and returned by the EPM Service. Please refer to
TransactionKeyType in subclause 5.4.2.

PostMarkedReceipt — This structure is returned to the caller if they requested the
IssuePostMarkedReceipt option on the request. The TimeStampToken within the PostMarkedReceipt will
be over the OriginalContent passed in on the request.

The table below summarizes what is required as input to the Checkintegrity and describes the valid
MimeType for each target operation being checked.

Target Operation OriginalContent’s Processing Rules for OriginalContent
being checked MimeType
Verify text/plain Caller shall initialize the OriginalContent

element with the SignedContent over which the
original signature was created and subsequently
verified. This plain text string was optionally
returned on the target Verify call in the
SignedContent elementof SignatureInfo. It
is the eContent of the signature and will be
compared against that which was stored in the non-
repudiation log as a result of the Verify operation.

application/octet-stream Same as above except that the SignedContent to
be compared is binary.

application/vnd.upu-digest- Caller shall initialize the OriginalContent

value element with the ContentHash produced as a
result of signature creation. This hash value was
optionally returned on the Verify call in the
ContentHash element of SignatureInfo. This
hash value will be compared against that which was
stored in the non-repudiation log as a result of the
Verify operation. NOTE Do not base64 encode the
ContentHash twice when initializing
OriginalContent.

application/timestamp-token Caller shall initialize the OriginalContent
element with the detached binary RFC 3161
TimeStampToken returned on the Verify call. This
token would be inside the TimeStampToken
element of the PostMarkedReceipt originally
returned on the target Verify operation. The original
Verify operation needs to have specified the
IssuePostMarkedReceipt option in order for
this Checklntegrity to return success.

application/pkcs7-signature Caller shall initialize the OriginalContent

© UPU 2005 — All rights reserved 57

$43-3 Draft E

element with the contents of the SignatureData
element containing the PKCS7 signature that was
originally verified. This signature will be compared
byte by byte against that which was stored in the
non-repudiation log for the original Verify operation.

text/xml

Caller shall initialize the OriginalContent
element with the contents of the
<dsig:SignatureValue> within the
<dsig:Signature> structure originally Verified,
without the bounding tags. This value will be
compared against the equivalent element from the
target Verify operation. NOTE Do not base64
encode the SignatureValue twice when
initializing OriginalContent.

Sign

text/plain

Caller shall initialize the OriginalContent
element with the SignedContent over which the
original signature was created. This plain text string
was passed in to be signed by the original Sign
operation. It is the eContent of the signature and
will be compared against that which was stored in
the non-repudiation log as a result of the Sign
operation.

application/octet-stream

Same as above except that the SignedContent to
be compared is binary.

application/vnd.upu-digest-
value

Caller shall initialize the OriginalContent
element with the ContentHash produced as a
result of the original signature creation. This hash
value was optionally returned on the Sign call in the
ContentHash element of SignatureInfo. This
hash value will be compared against that which was
stored in the non-repudiation log as a result of the
Sign operation. NOTE Do not base64 encode the
ContentHash twice when initializing
OriginalContent.

application/timestamp-token

Caller shall initialize the OriginalContent
element with the detached binary RFC 3161
TimeStampToken returned on the Sign call. This
token would be inside the TimeStampToken
element of the PostMarkedReceipt originally
returned on the target Sign operation. The original
Sign operation needs to have specified the
IssuePostMarkedReceipt option in order for
this Checkintegrity to return success.

58

© UPU 2005 - All rights reserved

$43-3 Draft E

application/pkcs7-signature

Caller shall initialize the OriginalContent
element with the contents of the SignatureData
element containing the PKCS7 signature that was
originally created by the Sign operation. This
signature will be compared byte by byte against
that which was stored in the non-repudiation log for
the original Sign operation.

text/xml

Caller shall initialize the OriginalContent
element with the contents of the
<dsig:SignatureValue> within the
<dsig:Signature> structure originally Signed,
without the bounding tags. This value will be
compared against the equivalent element from the
target Sign operation. NOTE Do not base64
encode the SignatureValue twice when
initializing OriginalContent.

PostMark

text/plain

Caller shall initialize the OriginalContent
element with the contents of the Data element
passed in on the target PostMark operation being
checked. This plain text string was passed in to be
timestamped by the original PostMark operation.
This content will be compared against that which
was stored in the non-repudiation log as a result of
the PostMark operation. The original PostMark
operation needs to be a Type 1 PostMark to use
this MimeType.

application/octet-stream

Caller shall initialize the OriginalContent
element with the contents of the Data element
passed in on the target PostMark operation being
checked. This binary content was passed in to be
timestamped by the original PostMark operation.
This content will be compared against that which
was stored in the non-repudiation log as a result of
the PostMark operation. The original PostMark
operation needs to be a Type 2 PostMark to use
this MimeType.

application/vnd.upu-digest-
value

Not a valid MimeType for a CheckIntegrity against a
previous PostMark. Use the
application/timestamp-token MimeType
below for token-related comparisons.

application/timestamp-token

Caller shall initialize the OriginalContent
element with the detached binary RFC 3161
TimeStampToken returned on the PostMark call.
This token would be inside the TimeStampToken
element of the PostMarkedReceipt originally
returned on the target PostMark operation.

© UPU 2005 - All rights reserved

59

$43-3 Draft E

application/pkcs7-signature Not a valid MimeType for a Checkintegrity against a
previous PostMark. Use the
application/timestamp-token for signature
comparisons.

text/xml Caller shall initialize the OriginalContent
element with the contents of the
<dsig:SignatureValue> within the
<dsig:Signature> structure of the original
PostMark, without the bounding tags. This value will
be compared against the equivalent element from
the target PostMark operation. NOTE Do not
base64 encode the SignatureValue twice when
initializing OriginalContent.

5.5.5 Sign

5.5.5.1 Sign Edit Rules Summary

It should be mentioned that the Sign operation is a server-side Sign and not the Sign performed by the
client endpoint (normally a customer or ISV application). The Sign is useful under 2 main use-cases. The
first special Sign use-case is used when subscribing organizations, wishing to ensure their partners that
they are in fact receiving content that originated from them, sign outgoing content with a “Corporate Seal”.
The second use-case is a “Server-Side Delegated Signing” operation where the key-pair and certificate
resides either with the EPM Service or is delegated to the enterprise or an Identity Service Provider
working in conjunction with the customer and the Postal Administration. This alleviates the Postal
Administration of the administrative burden of distributing PKI certificate credentials to user end-points.

The more conventional Sign usage scenario is when a desktop application signs content with any
CMS/PKCS7 or XMLDSIG compliant crypto library and then subsequently passes the signature object to
the EPM for verification and PostMarking using the EPM’s Verify operation.

The Sign operation requires content to be signed and returns it in a PKCS7 or XMLDSIG signature object.
‘Signing’ is the conventional and well understood process whereby a hash representation of the content is
encrypted with the private signing key of the signer and converted into a Signature object of the
appropriate type.

NOTE EPM implementations are free to choose the signature algorithm used when performing
delegated signing using this operation. However the shalwithRSAEncryption algorithm SHALL at a
minimum be supported by EPM implementations when creating and verifying signatures of all types
including those created by Sign requests as in this subclause. For XMLDSIG-templates which might
specify a signing algorithm in the SignatureMethod element, EPM implementations should honor or reject
requests based on their capability.

5.5.5.2 SignOptions Request Flags

The following option flags can be set in the SignOptionsType complex element. These elements are of
type boolean and should be set to ‘True’ or ‘False’, the default value being ‘False’. This object will be
added as an element reference to the SignRequestType complex element which is referenced in the
next subclause.

<xs:complexType name="SignOptionsType">

60 © UPU 2005 — All rights reserved

$43-3 Draft E

<Xs:sequence>
<xs:element name="EndLifecycle" type="xs:boolean"/>
<xs:element name="ExtendLifecycle" type="xs:boolean"/>
<xs:element name="VerifyCertificate" type="xs:boolean"/>
<xs:element name="StoreNonRepudiationEvidence" type="xs:boolean"/>
<xs:element name="IssuePostMarkedReceipt"

type="epm: IssuePostMarkedReceiptType" nillable="true"/>

<xs:element name="DecryptIncomingEnvelope" type="xs:boolean"/>
<xs:element name="EncryptResponse" type="xs:boolean"/>
<xs:element name="ReturnSignatureInfo" type="xs:boolean"/>
<xs:element name="ReturnX509Info" type="xs:boolean"/>

</xs:sequence>

</xs:complexType>

EndLifecycle — Set to ‘True’ to end the transaction lifecycle. (See Lifecycle Management in subclause
5.3.3 for more information.)

ExtendLifecycle — Set to ‘True’ to extend the transaction lifecycle. (See Lifecycle Management in
subclause 5.3.3 for more information.)

VerifyCertificate — This option is most useful in a server-side signing scenario where keying material is
held by the post or a party working with the post, and allows the calling application to have the revocation
status of the certificate about to be used for this signing operation to be checked via either OCSP or CRL
checking.

StoreNonRepudiationEvidence — Set to ‘“True’ to turn on database logging of non-repudiation evidence.
If set to ‘False’, non-repudiation information is not logged to the database. If set to ‘False’ a
TransactionKey is still generated but only skeleton information relating to the transaction status is logged
to the database. This skeleton information is logged solely in order to support subsequent retrieval
operations and to allow this event to participate in Lifecycles.

IssuePostMarkedReceipt — Set to ‘“True’ in order to cause the EPM to return a receipt attesting to the
validity and non-repudiability of the operation. This returned receipt is PostMarked using an EPM-
generated timestamptoken. Please refer to subclause 5.4.6 entitled PostMarkedReceipt for details. This
token and other receipt information is returned in the PostMarkedReceipt element which is itself bound
by a signature of authenticity. It should be noted that the TimeStampToken contained in the returned
PostMarkedReceipt is a signature timestamp calculated over the Signaturevalue (in the case of
XMLDSIG), or the PKCS1 (in the case of PKCS7) signatures.

DecryptincomingEnvelope — Set to ‘True’ to instruct the EPM Service to decrypt the Data element.
Before performing the Sign operation. This element shall be included as an EnvelopedData object and
shall be encrypted with the public key portion of the EPM Service’s private decryption key. This option is
used to ensure confidential delivery of the transaction content to the EPM Service. See also
“EncryptResponse” below.

EncryptResponse — This option requires that the caller sign the request by initializing the
ClaimedIdentity request element. This option instructs the EPM to encrypt the SignatureData
element before returning it using the public key present in the incoming RequesterSignature.
Additionally if the caller has requested that the SignatureInfo be returned, then the SignedContent
sub-element should also be encrypted. Please also refer to subclause 5.4.12 entitled EncryptResponse
Option which covers the use of this option with examples of usage as they apply to the Verify, Decrypt,
and RetrieveResults operations.

ReturnSignaturelnfo — Set to ‘“True’ to return a detailed breakdown of the signature object, including the
original content. Please refer to subclause 5.4.4 entitled SignaturelnfoType for details.

ReturnX509Info — Set to ‘True’ to return a detailed breakdown of the certificate used to perform the
operation. Please refer to subclause 5.4.5 entitled X509InfoType for details.

5.5.5.3 Sign Request Elements

© UPU 2005 — All rights reserved 61

$43-3 Draft E

Set the following parameters or elements of the SignRequestType complex element before invoking the
EPM Service as appropriate:

<xs:element name="SignRequest'>
<xs:complexType>
<XSs:sequence>
<xs:element name="SignOptions" type="epm:SignOptionsType"/>
<xs:element name="TransactionKey" type="epm:TransactionKeyType"
nillable="true"/>
<xs:element name="ClaimedIdentity" type="epm:ClaimedIdentityType"
nillable="true"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"/>
<xs:element name="ContentIdentifier" type="xs:string" nillable="true"/>
<xs:element name="Data" type="epm:QualifiedDataType"/>
<xs:element name="SignatureType" type="xs:string"/>
<xs:element name="KeyName" type="xs:string" nillable="true"/>
<xs:element name="SignaturePolicyID" type="xs:anyURI" nillable="true"/>
<xs:element name="ContentMetadata" type="epm:ContentMetadataType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

SignOptions — An element whose type is a complex element defined by SignOptionsType from the
previous subclause.

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key and Sequence elements should be initialized as null for Sign requests unless one is
extending a lifecycle. Please refer to TransactionKeyType in subclause 5.4.2.

Claimedldentity — The RequesterSignature element of ClaimedIdentity shall be initialized when
this operation is part of a StartLifecycle whose AccessLevel is Signed. See also

Claimedldentity in subclause 5.4.10

OrganizationID — A string element representing the identifier of the organization requesting the service.
This value must match against a list of valid Organization Identifiers that are registered with the EPM
Service.

ClientApplication — See ClientApplication subclause 5.4.17

Contentldentifier — See Contentldentifier subclause 5.4.18

Data — The Data element needs to always be base64Binary even if it is text. The MimeType attribute is
simply used to tell the EPM that after base64 decoding, this Data element contains a specific MimeType
and instructs the EPM how to format the input Data in the resulting signature. Valid values of MimeType
are text/xml, text/plain, or application/octet-stream.

MimeType — This is an attribute of the Data element above. Valid values are text/xml, text/plain,
or application/octet-stream. The MimeType specified also controls the formatting of the “data to
be signed” as it will exist within the signature. MimeType values of either text/xml or text/plain
result in signatures with text representations within their respective signature structures whether they be
XMLDSIG or PKCS7. A MimeType value of application/octet-streamn results in binary SignedData
content if SignatureType is PKCS7 or an xmldsig#base64 transform if SignatureType is
XMLDSIG.

SignatureType — A string element containing the desired format of the signature to be returned. This is
the desired format of the signature to be created and returned. Valid values are PKCS7, PKCS7-
detached, XMLDSIG, XMLDSIG-enveloping, XMLDSIG-detached, and XMLDSIG-template. If XMLDSIG
is specified, a simple enveloped XML Digital Signature will be returned, which is the default for XMLDSIG

62 © UPU 2005 — All rights reserved

$43-3 Draft E

signatures. Users who wish to have the signature formatted as an enveloping signature should specify
XMLDSIG-enveloping. Similarly users who wish to have the signature formatted as a detached signature
should specify XMLDSIG-detached. Specifying a value of XMLDSIG-template instructs the EPM to treat
the incoming Data element as a signing template which will be used to construct the resulting XMLDSIG
signature as dictated by the template. Please refer to Annex B (Informative) Examples for specific
examples of signing templates.

KeyName — This optional element is used in server-side signing scenarios where an EPM is responsible
for the maintenance of client key material including both public and private keys. This element, which is
synonymous with the XMLDSIG X509SubjectName or Distinguished Name, is used to specify the key to
use for this sign operation. Example:

C=CA, S=Ontario, L=Ottawa, O=Acme Corporation, OU=Customer Services, CN=Ed Smith,
E=ed.smith@yahoo.ca

This string, or some derivative of it, is used by the EPM implementation to access the private key for this
sign operation. EPM implementations are free to decide how authentication and the password is utilized
in server-side signing scenarios. The suggested approach is to have the password specified by the user
for "Authorization: Basic" in the HTTP header as the password for opening the private key. Anonymous
UserlDs should not be permitted in this scenario. Optionally, the EPM implementation may use the
AlternateIdentity element of the SupportingInfoType for more specialized requirements.

SignaturePolicylD —This optional element can be used in server-side signing scenarios and allows the
requester to specify the inclusion of a signature policy identifier in the signature‘s scope. The
SignaturePolicyID is an abstract type and allows individual Posts to institute whatever their local
jurisdiction’s mandate or legislate. There is an example of a Signature Policy structure in subclause
5.4.20 entitled SignaturePolicyldentifier.

ContentMetaData — A string element containing custom details of the signed data that can be specified
by the client. Example usage could be the original file name, file date, file size or file owner information.
5.5.5.4 Sign Response Object

A SignResponseType complex element is populated and returned by the EPM Service. Here are the
elements it contains:

<xs:element name="SignResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" nillable="true" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>
<xs:element name="PostMarkedReceipt" type="epm:PostMarkedReceiptType"
nillable="true"/>
<xs:element name="SignatureData" type="epm:QualifiedDataType"
nillable="true"/>
<xs:element name="SignatureInfo" type="epm:SignatureInfoType"
nillable="true"/>
<xs:element name="X509Info" type="epm:X509InfoType" nillable="true"/>
</xs:sequence>
</xs:complexType>
</xs:element>

TransactionStatus — A string element representing the result of the overall transaction. ‘0’ denotes
success. ‘1’ denotes that a warning was generated. Transaction failure is denoted by a specific numerical
value..

TransactionStatusDetail — An element whose type is a complex element defined by

© UPU 2005 — All rights reserved 63

$43-3 Draft E

TransactionStatusDetail Type. (see TransactionStatus and TransactionStatusDetailType in subclause
5.4.1)

TransactionKey — An element whose type is a complex element defined by TransactionKeyType. Locator,
Key, and Sequence elements will be populated and returned by the EPM Service. Please refer to
TransactionKeyType in subclause 5.4.2.

PostMarkedReceipt — An optional PostMarkedReceipt structure is returned when the
IssuePostMarkedReceipt option is specified on the request. For PKCS7-based signatures, this
element is always returned when the IssuePostMarkedReceipt option is turned on.

For XMLDSIG-based signatures, the PostMarkedReceipt will be embedded in the signed document
generated as part of this operation. The PostMarkedReceipt will be returned in the SignatureData
element described below. Please refer to subclause 5.4.6 entitled PostMarkedReceipt for details.

SignatureData —This element will contain the generated PKCS7 or XMLDSIG based signature.

NOTE |Ifthe Location sub-element of the IssuePostMarkedReceipt option specifies embedded,
then this element will contain either the signed and now Postmarked XML document (XMLDSIG), or the
PKCS?7 signature with an embedded timestamp included as an unsigned attribute. See subclause 5.4.6
PostMarkedReceipt for more details.

SignaturelnfoType — An element whose type is a complex element defined by SignaturelnfoType Please
refer to subclause 5.4.4 entitled SignaturelnfoType for details.

X509InfoType — An element whose type is a complex element defined by X509InfoType. Please refer to
subclause 5.4.5 entitled X509InfoType for details.

5.6 EPM INTERFACE SPECIFICATION — “EXTENDED” OPERATIONS IN DETAIL

The following operations: Encrypt, Decrypt, Locate, StartLifecycle, LogEvent, RetrieveSummary, and
RetrievePostalAttributes have been identified as extended UPU supported services. The following is a
description of each of these operations and how to process them in conjunction with an EPM Web-based
service.

5.6.1 Encrypt

5.6.1.1 Encrypt Edit Rules Summary

The Encrypt operation encrypts and returns an enveloped data object of the desired format. Encrypting is
the process whereby a random symmetric key is chosen (e.g. 3DES) to encrypt the original data. This
symmetric key is subsequently encrypted (RSA key transport) using the recipient’s public key, then
formatted as either a PKCS7 enveloped data object or an XML Encryption compliant XML
EncryptedData node. he Encrypt operation will encrypt any incoming data with a certificate specified by
the client, and return the encrypted envelope.

The Encrypt operation provides the native EPMs confidentiality support. The EPM Service additionally
supports the ability to retrieve the public encryption certificate to be used for the encrypt operation by
means of the CertificatelD parameter described below. This service is normally used by organizational
subscribers wishing to encrypt content for parties they are dealing with. This operation could be
appropriate for organizations wishing to encrypt content for their partners or customers in an eBusiness
scenario.

There is a special case optional usage of the EPMs confidentiality capability that works in conjunction
with a local encrypt operation issued by an individual client customer using the EPM’s public encryption
key. It is termed “Delegated Confidentiality” within the EPM context. This capability frees individuals from
having to manage the public keys of intended recipients. When a subscriber wishes to encrypt content for
confidentiality reasons, they simply encrypt that content locally with a public key provided to them by the
Postal Administration. This single public key belongs to the post and is the only public key the customer

64 © UPU 2005 — All rights reserved

$43-3 Draft E

needs to maintain on their desktop or within their application. This local encryption using the post-specific
public key can be used with any EPM operation supporting the DecryptIncomingEnvelope option.
After having encrypted the content with this post-specific public key, the content is now secured for
transport. This envelope can be sent to the recipient.

At the recipients end, the recipient does not have the private key required to decrypt this envelope they
just received. Consequently they needs to ask the post's EPM Service to Decrypt it for them. It would not
make sense for the EPM to simply Decrypt the content and pass it back to the caller in the clear. To
prevent this exposure, the EPM can “encrypt the response”. This is activated when the
EncryptResponse option is turned on in the recipient's Decrypt (or Verify) request. The EPM however
requires the callers public key in order to be able to actually encrypt the response prior to returning it (to
the recipient in this scenario). In order to provide the EPM with the callers public key, the caller signs the
Decrypt (or Verify) request. Since a signature contains the public verification key, this key can then be
used to “encrypt the response” for the caller.

Similar scenarios can be exercised where the recipient 1) utilizes a Checklintegrity operation instead of a
Verify, or 2) utilizes a signed RetrieveResults to pick up a document signed by an originator which was
left with the EPM. This usage is termed “Sign for Pickup” which may also optionally employ the
EncryptResponse option, and avoids the need for the sender to transport the document over the public
Internet.

Please also refer to subclause 5.4.12 entitled EncryptResponse Option for a detailed explanation which
covers the use of this option with examples of usage as they apply to the Verify, Decrypt, and
RetrieveResults operations.

5.6.1.2 EncryptOptions Request Flags

The following option flags can be set in the EncryptOptionsType complex element. These elements are of
type boolean and should be set to ‘True’ or ‘False’, the default value being ‘False’. This object will be
added as an element to the EncryptRequestType complex element which is referenced in the next
subclause.

<xs:complexType name="EncryptOptionsType">
<xs:sequence>
<xs:element name="EndLifecycle" type="xs:boolean"/>
<xs:element name="ExtendLifecycle" type="xs:boolean"/>
<xs:element name="VerifyCertificate" type="xs:boolean"/>
<xs:element name="StoreNonRepudiationEvidence" type="xs:boolean"/>
<xs:element name="IssuePostMarkedReceipt"
type="epm: IssuePostMarkedReceiptType" nillable="true"/>
<xs:element name="DecryptIncomingEnvelope" type="xs:boolean"/>
<xs:element name="ReturnSignatureInfo" type="xs:boolean"/>
<xs:element name="ReturnX509Info" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>

EndLifecycle — Set to ‘True’ to end the transaction lifecycle. (See Lifecycle Management in subclause
5.3.3 for more information.)

ExtendLifecycle — Set to ‘True’ to extend the transaction lifecycle. (See Lifecycle Management in
subclause 5.3.3 for more information.)

VerifyCertificate — Set to ‘True’ to enable certificate status checking. If set to ‘False’, the certificate status
checking will be bypassed, but the standard certificate validation will still occur. All certificate validation
results will be returned in the X509InfoType complex element Please refer to subclause 5.4.5 entitled
X509InfoType for details..

StoreNonRepudiationEvidence — Set to ‘“True’ to turn on database logging of non-repudiation evidence.
If set to ‘False’, non-repudiation information is not logged to the database. If set to ‘False’ a
TransactionKey is still generated but only skeleton information relating to the transaction status is logged

© UPU 2005 - All rights reserved 65

$43-3 Draft E

to the database. This skeleton information is logged solely in order to support subsequent retrieval
operations and to allow this event to participate in Lifecycles.

IssuePostMarkedReceipt — Set to ‘“True’ in order to cause the EPM to return a receipt attesting to the
validity and non-repudiability of the operation. The input to the timestamp operation included in this
receipt will be the contents of the Data element passed in on the request. This returned receipt is
PostMarked and includes an EPM-generated timestamptoken. Please refer to subclause 5.4.6 entitled
PostMarkedReceipt for details. This token and other receipt information is returned in the
PostMarkedReceipt element which is itself bound by a signature of authenticity.

DecryptincomingEnvelope — Set to ‘True’ to instruct the EPM Service to decrypt the Data element
before performing the Encrypt operation. This element needs to be included as an EnvelopedData object
and needs to be encrypted with the public key portion of the EPM Service’s private decryption key. This
option is used to ensure confidential delivery of the transaction content to the EPM Service prior to being
actually encrypted for the final intended recipient. See also CertificateID below. Once the Data has
been received by the EPM and decrypted it can then be encrypted for its final intended recipient(s).
When used in this fashion, the EPM is essentially performing a “Re-Encrypt”.

ReturnSignaturelnfo — Set to ‘True’ to return a detailed breakdown of the signature object, including the
original content. Please refer to subclause 5.4.4 entitled SignaturelnfoType for details.

ReturnX509Info — a Set to ‘“True’ to return a detailed breakdown of the certificate used to perform the
operation. Please refer to subclause 5.4.5 entitled X509InfoType for details.
5.6.1.3 Encrypt Request Elements

Set the following parameters or elements of the EncryptRequestType complex element before invoking
the EPM Service as appropriate:

<xs:element name="EncryptRequest">
<xs:complexType>
<xs:sequence>
<xs:element name="EncryptOptions" type="epm:EncryptOptionsType"/>
<xs:element name="TransactionKey" type="epm:TransactionKeyType"
nillable="true"/>
<xs:element name="ClaimedIdentity" type="epm:ClaimedIdentityType"
nillable="true"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"/>
<xs:element name="ContentIdentifier" type="xs:string" nillable="true"/>
<xs:element name="Data" type="epm:QualifiedDataType"/>
<xs:element name="SignatureType" type="xs:string"/>
<xs:element name="NodeName" type="xs:string" nillable="true"/>
<xs:element name="SessionKeyAlgo" type="xs:string" nillable="true"/>
<xs:element name="CertificateSearchType" type="xs:string"/>
<xs:element name="CertificateID" type="xs:string" minOccurs="1"
maxOccurs="unbounded" />
<xs:element name="ContentMetadata" type="epm:ContentMetadataType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

EncryptOptions — An element whose type is a complex element defined by EncryptOptionsType
from the previous subclause.

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key and Sequence elements should be initialized as ‘null’ for Encrypt requests unless one is
extending a lifecycle. Please refer to TransactionKeyType in subclause 5.4.2.

Claimedldentity — The RequesterSignature element of ClaimedIldentity shall be initialized when either

66 © UPU 2005 — All rights reserved

$43-3 Draft E

Proof-of-Delivery or Proof-of-Possession is desired by the transacting parties, or when this operation is
partof a StartLifecycle whose AccessLevel is Signed. See also

Claimedldentity in subclause 5.4.10.

OrganizationlD — A string element representing the identifier of the organization requesting the service.
This value must match against a list of valid Organization Identifiers that are registered with the EPM
Service.

ClientApplication — See ClientApplication subclause 5.4.17

Data — The Data element shall always be base64Binary even if itis text/xml. The MimeType attribute
is simply used to tell the EPM that after decoding, this Data element contains a specific MimeType and
instructs the EPM how to handle the input Data. Valid values of MimeType are text/xml,
text/plain, Oor application/octet-stream.

MimeType — This is an attribute of the Data element above. Valid values of MimeType are text/xml,
text/plain, Oor application/octet-stream.

SignatureType — A string element containing the desired format of the envelope to be returned. This is
the desired format of the envelope to be returned. Valid values are PKCS7, XMLDSIG, and XMLDSIG-
template. If XMLDSIG is specified, a simple XML document supporting the XML Encryption standard will
be returned. If XMLDSIG-template is specified, the EPM will construct the XML Encryption compliant
document based on the template passed in.

NodeName — Used with XMLDSIG types, this element specifies which node in the XML document to
encrypt. This element’s contents will be replaced by an EnvelopedData XML Encryption compliant
node. Expressed as a string, a namespace URI qualifier may precede the actual node name, e.g.
"pay:Salary". If omitted, the root node of the document passed in Data will be encrypted.

SessionKeyAlgo — EPM implementations SHALL, at a minimum, support the wrapping of session
content encryption keys with RSA asymmetric encryption for purposes of Key Transport as per PKCS#7
1.5. That is to say that the Key Encryption Algorithm Identifier is rsaEncryption. This ensures maximum
compatibility with legacy PKCS?7 libraries and allows certificate-based public key identification of
recipients. This element indicates the encryption class and size to be used to compute the session key. It
will be used for signatures of both types i.e. PKCS7 and XMLDSIG. Valid values are formatted as a
class-size string, e.g. aes128-cbc, aes192-cbc, aes256-cbc, tripledes-cbc, etc ...The default
is tripledes-cbc if not specified. Values are from the XML Encryption standard found at

XML Encryption Syntax and Processing (http://www.w3.0rg/TR/2002/REC-xmlenc-core-20021210)

If an XMLDSIG template is used, the SessionKeyAlgo element need not be specified.

CertificateSearchType — Indicates identifier type to be used to retrieve the public encryption certificate
from the configured LDAP Directory. Valid types are File, DistinguishedName, DN, and URL.

CertificatelD — A unbounded string element containing the actual value of the File, DN, URL or
DistinguishedName of the requested encryption certificate. This parameter will be used to retrieve the
public encryption certificate through an LDAP or directory lookup.

5.6.1.4 Encrypt Response Object

A EncryptResponseType complex element is populated and returned by the EPM Service. Here are the
elements it contains:

<xs:element name="EncryptResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" nillable="true" minOccurs="0"

© UPU 2005 - All rights reserved 67

$43-3 Draft E

maxOccurs="unbounded" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>
<xs:element name="PostMarkedReceipt" type="epm:PostMarkedReceiptType"
nillable="true"/>
<xs:element name="SignatureData" type="epm:QualifiedDataType"/>
<xs:element name="SignatureInfo" type="epm:SignatureInfoType"
nillable="true"/>
<xs:element name="X509Info" type="epm:X509InfoType" nillable="true"/>
</xs:sequence>
</xs:complexType>
</xs:element>

TransactionStatus — A string element representing the result of the overall transaction. ‘0’ denotes
success. ‘1’ denotes that a warning was generated. Transaction failure is denoted by a specific numerical
value..

TransactionStatusDetail — An element whose type is a complex element defined by
TransactionStatusDetailType. (see TransactionStatus and TransactionStatusDetailType in subclause
5.4.1)

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key, and Sequence elements will be populated and returned by the EPM Service. Please refer to
TransactionKeyType in subclause 5.4.2.

PostMarkedReceipt — A binary element containing the TSA-generated timestamptoken acting as the
receipt. This receipt is attestation that the PostMark has been created. Please refer to subclause 5.4.6
entitied PostMarkedReceipt for details.

SignatureData —This element will contain the generated PKCS7 or XMLDSIG based EnvelopedData
structure.

SignaturelnfoType — An element whose type is a complex element defined by SignaturelnfoType.
Please refer to subclause 5.4.4 entitled SignaturelnfoType for details.

X509InfoType — An element whose type is a complex element defined by X509InfoType. Please refer to
subclause 5.4.5 entitled X509InfoType for details.

5.6.2 Decrypt

5.6.2.1 Decrypt Edit Rules Summary

The Decrypt operation requires a valid EnvelopedData structure as an input parameter. It may be either
a PKCS7 EnvelopedData ASN.1 binary object or an XML Encryption compliant XML EnvelopedData
node. This enveloped data object will be decrypted and returned in its original content format. Decrypting
is the process whereby the enveloped data’s fixed symmetric key is decrypted, and subsequently used to
decrypt the original message content. The Decrypt operation will decrypt any incoming EnvelopedData
format. The EnvelopedData object shall be encrypted with the public key portion of the EPM Service’s
private decryption key and belongs to the Postal Administration. It is most often used in Delegated
Confidentiality scenarios as described in subclause 5.2.9.2 entitled Delegated Confidentiality Service.
Please also refer to subclause 5.4.12 entitled EncryptResponse Option which covers the use of this
option with examples of usage as they apply to the Verify, Decrypt, and RetrieveResults operations.

NOTE In situations where the EPM is deployed centrally as a shared service, EPM implementations
SHALL ensure that the authenticated requests which involve decryption of sensitive content honor and
respect restricted ParticipatingParty lists within that Lifecycle.

5.6.2.2 DecryptOptions Request Flags

The following option flags can be set in the DecryptOptionsType complex element. These elements are of
type boolean and should be set to ‘True’ or ‘False’, the default value being ‘False’. This object will be
added as an element reference to the DecryptRequestType complex element which is referenced in

68 © UPU 2005 — All rights reserved

$43-3 Draft E

the next subclause.

<xs:complexType name="DecryptOptionsType">
<xs:sequence>
<xs:element name="EndLifecycle" type="xs:boolean"/>
<xs:element name="ExtendLifecycle" type="xs:boolean"/>
<xs:element name="EncryptResponse" type="xs:boolean"/>
<xs:element name="StoreNonRepudiationEvidence" type="xs:boolean"/>
<xs:element name="ReturnSignatureInfo" type="xs:boolean"/>
<xs:element name="ReturnX509Info" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>

EndLifecycle — Set to ‘True’ to end the transaction lifecycle. (See Lifecycle Management in subclause
5.3.3 for more information.)

ExtendLifecycle — Set to ‘True’ to extend the transaction lifecycle. (See Lifecycle Management in
subclause 5.3.3 for more information.)

EncryptResponse — This option requires that the caller sign the request by initializing the
ClaimedIdentity request element. This option instructs the EPM to encrypt the Data element before
returning it using the public key present in the incoming RequesterSignature. Please also refer to
subclause 5.4.12 entitled EncryptResponse Option_which covers the use of this option with examples of
usage as they apply to the Verify, Decrypt, and RetrieveResults operations.

StoreNonRepudiationEvidence — Set to ‘True’ to turn on database logging of non-repudiation evidence.
If set to ‘False’, non-repudiation information is not logged to the database. If set to ‘False’ a
TransactionKey is still generated but only skeleton information relating to the transaction status is logged
to the database. This skeleton information is logged solely in order to support subsequent retrieval
operations and to allow this event to participate in Lifecycles.

ReturnSignaturelnfo — Set to ‘True’ to return a detailed breakdown of the signature object, including the
original content. Please refer to subclause 5.4.4 entitled SignaturelnfoType for details.

ReturnX509Info — a Set to ‘True’ to return a detailed breakdown of the certificate used to perform the
operation. Please refer to subclause 5.4.5 entitled X509InfoType for details.
5.6.2.3 Decrypt Request Elements

Set the following parameters or elements of the DecryptRequestType complex element before invoking
the EPM Service as appropriate:

<xs:element name="DecryptRequest">
<xs:complexType>
<xs:sequence>
<xs:element name="DecryptOptions" type="epm:DecryptOptionsType" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType"
nillable="true"/>
<xs:element name="ClaimedIdentity" type="epm:ClaimedIdentityType"
nillable="true"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"/>
<xs:element name="ContentIdentifier" type="xs:string" nillable="true"/>
<xs:element name="EnvelopedData" type="epm:QualifiedDataType"/>
<xs:element name="ContentMetadata" type="epm:ContentMetadataType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

DecryptOptions — An element whose type is a complex element defined by DecryptOptionsType

© UPU 2005 — All rights reserved 69

$43-3 Draft E

from the previous subclause.

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key and Sequence elements should be initialized as null for Decrypt requests unless one is
extending a lifecycle. Please refer to TransactionKeyType in subclause 5.4.2.

Claimedldentity — The RequesterSignature element of ClaimedIldentity shall be initialized when either
Proof-of-Delivery or Proof-of-Possession is desired by the transacting parties, or when this operation is
part ofa StartLifecycle whose AccessLevel is Signed. See also

Claimedldentity in subclause 5.4.10.

OrganizationlD — A string element representing the identifier of the organization requesting the service.
This value must match against a list of valid Organization Identifiers that are registered with the EPM
Service.

ClientApplication — See ClientApplication subclause 5.4.17

Contentldentifier — See Contentldentifier subclause 5.4.18

EnvelopedData — The enveloped data to be decrypted in either encapsulated ASN.1 binary
CMS/PKCS7v1.5 or the XML Encryption standard. In either case, the application shall present the
envelope to be decrypted as an octet-stream to the SOAP layer which will base64 encode it for transport.
The EPM will determine the envelope format from the MimeType attribute. Valid values are either
text/xml, in which case the EPM will assume that the caller is passing in an XMLENC-formatted
envelope, or "application/pkcs7-signature”, in which case the EPM will assume the caller is passing in
ASN.1 binary CMS/PKCS?7..

ContentMetaData — A string element containing custom details of the encrypted data that can be
specified by the client. Example usage could be the original file name, file date, file size or file owner
information.

5.6.2.4 Decrypt Response Object

A DecryptResponseType complex element is populated and returned by the EPM Service. Here are the
elements it contains:

<xs:element name="DecryptResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" nillable="true" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>
<xs:element name="Data" type="epm:QualifiedDataType"/>
<xs:element name="SignatureInfo" type="epm:SignatureInfoType"
nillable="true"/>
<xs:element name="X509Info" type="epm:X509InfoType" nillable="true"/>
</xs:sequence>
</xs:complexType>
</xs:element>

TransactionStatus — A string element representing the result of the overall transaction. ‘0’ denotes
success. ‘1’ denotes that a warning was generated. Transaction failure is denoted by a specific numerical
value..

TransactionStatusDetail — An element whose type is a complex element defined by
TransactionStatusDetailType. See TransactionStatus and TransactionStatusDetailType in subclause
5.4.1

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.

70 © UPU 2005 - All rights reserved

$43-3 Draft E

Locator, Key, and Sequence elements will be populated and returned by the EPM Service. Please refer to
TransactionKeyType in subclause 5.4.2.

Data — A binary element containing the decrypted content. If the EncryptResponse option was set
true, this element will contain an EnvelopedData object encrypted for the caller. The MimeType will and
the context will allow the caller to discern which type it is.

SignaturelnfoType — An element whose type is a complex element defined by SignaturelnfoType.
Please refer to subclause 5.4.4 entitled SignaturelnfoType for details.

X509InfoType — An element whose type is a complex element defined by X509InfoType. Please refer to
subclause 5.4.5 entitled X509InfoType for details.

5.6.3 Locate

5.6.3.1 Locate Edit Rules Summary

The Locate operation requires a valid ‘CertificateSearchType’ and a ‘CertificatelD’ as input parameters.
This operation will retrieve an encryption certificate based on the criteria one specifies in the
LocateRequestType complex element. Locate is required to support public certificate access and
information retrieval.

5.6.3.2 LocateOptions Request Flags

The following option flags can be set in the LocateOptionsType complex element. These elements are of
type boolean and should be set to ‘“True’ or ‘False’, the default value being ‘False’. This object will be
added as an element reference to the LocateRequestType complex element which is referenced in the
next subclause.

<xs:complexType 4yLocateOptionsType">
<xs:sequence>
<xs:element name="EndLifecycle" type="xs:boolean"/>
<xs:element name="ExtendLifecycle" type="xs:boolean"/>
<xs:element name="VerifyCertificate" type="xs:boolean"/>
<xs:element name="ReturnX509Info" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>

EndLifecycle — Set to ‘True’ to end the transaction lifecycle. (See Lifecycle Management in subclause
5.3.3 for more information.)

ExtendLifecycle — Set to ‘True’ to extend the transaction lifecycle. (See Lifecycle Management in
subclause 5.3.3 for more information.)

VerifyCertificate — Set to ‘True’ to enable certificate revocation checking. If set to ‘False’, the certificate
revocation checking will be bypassed, but the standard certificate validation will still occur. All certificate
validation results will be returned in the X509InfoType element. Please refer to subclause 5.4.5 entitled
X509InfoType for details..

ReturnX509Info — Set to ‘True’ to return a detailed breakdown of the certificate used to perform the
operation. Please refer to subclause 5.4.5 entitled X509InfoType for details.
5.6.3.3 Locate Request Elements

Set the following parameters or elements of the LocateRequestType complex element before invoking the
EPM Service as appropriate:

<xs:element name="LocateRequest">

© UPU 2005 - All rights reserved 71

$43-3 Draft E

<xs:complexType>
<XS:sequence>
<xs:element name="LocateOptions" type="epm:LocateOptionsType"/>
<xs:element name="TransactionKey" type="epm:TransactionKeyType"
nillable="true"/>
<xs:element name="ClaimedIdentity" type="epm:ClaimedIdentityType"
nillable="true"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"/>
<xs:element name="CertificateSearchType" type="xs:string"/>
<xs:element name="CertificateID" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

LocateOptions — An element whose type is a complex element defined by LocateOptionsType from
the previous subclause.

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key and Sequence elements should be initialized as null for Locate requests unless one is
extending a lifecycle. Please refer to TransactionKeyType in subclause 5.4.2.

Claimedldentity — The RequesterSignature element of ClaimedIdentity shall be initialized when
either Proof-of-Delivery or Proof-of-Possession is desired by the transacting parties, or when this
operation is part of a StartLifecycle whose AccessLevel is Signed. See also

Claimedldentity in subclause 5.4.10.

OrganizationlID — A string element representing the identifier of the organization requesting the service.
This value must match against a list of valid Organization Identifiers that are registered with the EPM
Service.

ClientApplication — See ClientApplication subclause 5.4.17

CertificateSearchType — Indicates identifier type to be used to retrieve the public encryption certificate
from the configured LDAP Directory. Valid types are File, DistinguishedName, DN, and URL.

CertificatelD — A string element containing the actual value of the File, DN, URL or
DistinguishedName of the requested encryption certificate. This parameter will be used to retrieve the
public encryption certificate through the LDAP lookup.

5.6.3.4 Locate Response Object

A LocateResponseType complex element is populated and returned by the EPM Service. Here are the
elements it contains:

<xs:element name="LocateResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" nillable="true" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>
<xs:element name="PublicEncryptionCert" type="xs:string"/>
<xs:element name="X509Info" type="epm:X509InfoType" nillable="true"/>
</xs:sequence>
</xs:complexType>
</xs:element>

TransactionStatus — A string element representing the result of the overall transaction. ‘0’ denotes

72 © UPU 2005 — All rights reserved

$43-3 Draft E

success. ‘1’ denotes that a warning was generated. Transaction failure is denoted by a specific numerical
value..

TransactionStatusDetail — An element whose type is a complex element defined by
TransactionStatusDetail Type. (See TransactionStatus and TransactionStatusDetailType in subclause
5.4.1)

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key, and Sequence elements will be populated and returned by the EPM Service. Please refer to
TransactionKeyType in subclause 5.4.2.

PublicEncryptionCert — A binary element containing the actual returned encryption certificate.

X509InfoType — An element whose type is a complex element defined by X509InfoType. Please refer to
subclause 5.4.5 entitled X509InfoType for details.

5.6.4 LogEvent

5.6.41 LogEvent Edit Rules Summary

The LogEvent is available to allow customers to log and system timestamp any content they believe is of
significance to the business workflow or life cycle. This facility is also useful when the EPM is participating
with other system components which are supporting other events within the lifecycle which shall be
logged. An example might be a Single-Sign-On service working in conjunction with the EPM that has
been delegated under the Signature Policy to be responsible and accountable for client authentication
prior to EPM Service consumption. Another example of its use might be for purposes of non-repudiation
of transport which is provided by another system component outside the EPM. The transport service
would send a LogEvent attesting to successful delivery of a document. Working in conjunction with this
transport service the EPM would be able to provide the complete non-repudiation story from origin,
though submission and delivery and concluding with receipt. Yet another scenario arises when customers
have extremely large payloads which would be inefficient to cryptographically process. In this scenario
the client can hash to content and sign the hash. This signature Verify event can be sent up to the EPM
as the first event in a Lifecycle. The second event in this Lifecycle can be the content itself sent up on a
LogEvent operation.

NOTE Clients wishing to have stronger non-repudiability and authenticity involving cryptographic
timestamping and PostMarking should use the PostMark operation. Alternatively the participating system
could sign the required content and send the EPM a Verify and Postmark request to close the loop in a
binding way.

5.6.4.2 LogEventOptions Request Flags

The following option flags can be set in the LogEventOptionsType complex element. These elements are
of type boolean and should be set to ‘“True’ or ‘False’, the default value being ‘False’. This object will be
added as an element reference to the LogEventRequestType complex element which is referenced in
the next subclause.

<xs:complexType name="LogEventOptionsType">
<xs:sequence>
<xs:element name="EndLifecycle" type="xs:boolean"/>
<xs:element name="ExtendLifecycle" type="xs:boolean"/>
<xs:element name="DecryptIncomingEnvelope" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>

EndLifecycle — Set to ‘True’ to end the transaction lifecycle. (See Lifecycle Management in subclause
5.3.3 for more information.)

© UPU 2005 - All rights reserved 73

$43-3 Draft E

ExtendLifecycle — Set to ‘True’ to extend the transaction lifecycle. (See Lifecycle Management in
subclause 5.3.3 for more information.)

DecryptincomingEnvelope — Set to ‘True’ to instruct the EPM Service to decrypt the Data element
before performing the LogEvent operation. This element needs to be included as an EnvelopedData
object and must be encrypted with the public key portion of the EPM Service’s private decryption key.
This option is used to ensure confidential delivery of the transaction content to the EPM Service. Please
also refer to subclause 5.4.12 entitled EncryptResponse Option for more details.

5.6.4.3 LogEvent Request Elements

Set the following parameters or elements of the LogEventRequestType complex element before invoking
the EPM Service as appropriate:

<xs:element name="LogEventRequest">
<xs:complexType>
<xs:sequence>
<xs:element name="LogEventOptions" type="epm:LogEventOptionsType"/>
<xs:element name="TransactionKey" type="epm:TransactionKeyType"
nillable="true"/>
<xs:element name="ClaimedIdentity" type="epm:ClaimedIdentityType"
nillable="true"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"/>
<xs:element name="ContentIdentifier" type="xs:string" nillable="true"/>
<xs:element name="Data" type="epm:QualifiedDataType"/>
<xs:element name="ContentMetadata" type="epm:ContentMetadataType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

LogEventOptions — An element whose type is a complex element defined by LogEventOptionsType
from the previous subclause.

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key and Sequence elements should be initialized as null for LogEvent requests unless one is
extending a lifecycle. Please refer to TransactionKeyType in subclause 5.4.2.

Claimedldentity — The RequesterSignature element of ClaimedIdentity shall be initialized when
either Proof-of-Delivery or Proof-of-Possession is desired by the transacting parties, or when this
operation is part of a StartLifecycle whose AccessLevel is Signed. See also

Claimedldentity in subclause 5.4.10.

OrganizationlD — A string element representing the identifier of the organization requesting the service.
This value must match against a list of valid Organization Identifiers that are registered with the EPM
Service.

ClientApplication — See ClientApplication subclause 5.4.17

Contentldentifier — See Contentldentifier subclause 5.4.18

Data — A binary element initialized by the caller as a language-specific octet stream representing the data
to be stored in the EPM Database.

ContentMetadata — See ContentMetadata

5.6.4.4 LogEvent Response Object

A LogEventResponseType complex element is populated and returned by the EPM Service. Here are
the elements it contains:

74 © UPU 2005 — All rights reserved

$43-3 Draft E

<xs:element name="LogEventResponse'>
<xs:complexType>
<XS:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" nillable="true" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>
</xs:sequence>
</xs:complexType>
</xs:element>

TransactionStatus — A string element representing the result of the overall transaction. ‘0’ denotes
success. ‘1’ denotes that a warning was generated. Transaction failure is denoted by a specific numerical
value..

TransactionStatusDetail — An element whose type is a complex element defined by
TransactionStatusDetail Type. (see TransactionStatus and TransactionStatusDetailType in subclause
5.4.1)

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key, and Sequence elements will be populated and returned by the EPM Service. Please refer to
TransactionKeyType in subclause 5.4.2.

5.6.5 StartLifeCycle

5.6.5.1 StartLifecycle Edit Rules Summary

The StartLifeCycle operation is used to start an extended business transaction lifecycle for a given series
of operations (See Lifecycle Management in subclause 5.3.3 for more information.). The operation
requires either a valid participating party group (refer to ParticipatingPartyType in subclause 5.4.9 for
details) unless the AccessScope element is set to Global (Please refer to subclause 5.4.11 entitled
AccessScope and Scopes for further details). This will restrict who can access, participate in, and
contribute to this lifecycle.

The StartLifecycle operation is an optional operation. It needs to be specified if the subscriber wishes to
specify a ParticipatingParty list. If the subscriber does not wish to specify ParticipatingParty
entries and is willing to allow a value of Global for the AccessScope element, and a value of default
for the AccessLevel element, then an explicit StartLifecycle operation is not required and
Lifecycles may still be created by simply initializing the TransactionKey to a valid key value. This is
termed implicit Lifecycle support. All transactions return a TransactionKey. Any operation can initialize
the TransactionKey to a value of some known previous transaction event, turn on the
ExtendLifecycle option, and thus extend the Lifecycle.

5.6.5.2 StartLifecycleOptions Request Flags

None — A StartLifeCycleOptionsType element does not exist.

5.6.5.3 StartLifecycle Request Elements

Set the following parameters or elements of the StartLifeCycleRequestType complex element before
invoking the EPM Service as appropriate:

<xs:element name="StartLifecycleRequest">
<xs:complexType>
<xXs:sequence>

© UPU 2005 — All rights reserved 75

$43-3 Draft E

<xs:element name="ClaimedIdentity" type="epm:ClaimedIdentityType"
nillable="true"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"/>
<xs:element name="ParticipatingParty" type="epm:ParticipatingPartyType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="AccessScope" type="epm:Scopes"/>
</xs:sequence>
</xs:complexType>
</xs:element>

Claimedldentity — The RequesterSignature element of ClaimedIdentity shall be initialized when
either Proof-of-Delivery or Proof-of-Possession is desired by the transacting parties, or when this
operation is part of a StartLifecycle whose AccessLevel is Signed. See also

Claimedldentity in subclause 5.4.10.

OrganizationID — A string element representing the identifier of the organization requesting the service.
This value must match against a list of valid Organization Identifiers that are registered with the EPM
Service.

ClientApplication — See ClientApplication subclause 5.4.17

ParticipatingParty — An element whose type is a complex element defined by ParticipatingPartyType.
(refer to ParticipatingPartyType in subclause 5.4.9 for details)

AccessScope — An element containing a simple object defined as Scopes. Valid values are Global,
Organizational, Individual, and Mixed
5.6.5.4 StartLifecycle Response Object

A StartLifeCycleResponseType complex element is populated and returned by the EPM Service. Here
are the elements it contains:

<xs:element name="StartLifecycleResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" nillable="true" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType" />
</xs:sequence>
</xs:complexType>
</xs:element>

TransactionStatus — A string element representing the result of the overall transaction. ‘0’ denotes
success. ‘1’ denotes that a warning was generated. Transaction failure is denoted by a specific numerical
value..

TransactionStatusDetail — An element whose type is a complex element defined by
TransactionStatusDetailType. (see TransactionStatus and TransactionStatusDetailType in subclause
5.4.1)

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key, and Sequence elements will be populated and returned by the EPM Service. Please refer to
TransactionKeyType in subclause 5.4.2.

5.6.6 RetrieveSummary

76 © UPU 2005 - All rights reserved

$43-3 Draft E

5.6.6.1 RetrieveSummary Edit Rules Summary

The RetrieveSummary operation can be used for 2 main purposes. First, to access a summary list of all
the events that have taken place in a given Lifecycle designated by a given TransactionKey. Second, to
access all the Transaction Keys for a given OrganizationlD based on selection criteria. Once the desired
event has been located with this operation since it returns a list of TransactionKey’s that met the
criteria, the client can then access the specific details of the retrieved events using the RetrieveResults
operation outlined above. The RequesterSignature element of ClaimedIdentity shall be supplied.

RetrieveSummary can only be executed by individuals from the organization which created the events
being retrieved. In other words only organizations can access their own data.

5.6.6.2 RetrieveSummaryOptions Request Flags

The following parameter or element is to be set in the RetrieveSummaryOptionsType complex element.
These elements are of type boolean and should be set to ‘True’ or ‘False’, the default value being ‘False’.
This object will be added as an element reference to the RetrieveSummaryRequestType complex
element which is referenced in the next subclause.

<xs:complexType name="RetrieveSummaryOptionsType">
<XSs:sequence>
<xs:element name="EndLifecycle" type="xs:boolean"/>
<xs:element name="ExtendLifecycle" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>

EndLifecycle — Set to ‘True’ to end the transaction lifecycle. (See Lifecycle Management in subclause
5.3.3 for more information.)

ExtendLifecycle — Set to ‘True’ to extend the transaction lifecycle. (See Lifecycle Management in
subclause 5.3.3 for more information.)
5.6.6.3 RetrieveSummary Request Elements

Set the following parameters or elements of the RetrieveSummaryRequestType complex element before
invoking the EPM Service as appropriate.

<xs:element name="RetrieveSummaryRequest">
<xs:complexType>
<xs:sequence>
<xs:element name="RetrieveSummaryOptions"
type="epm:RetrieveSummaryOptionsType" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType"
nillable="true"/>
<xs:element name="ClaimedIdentity" type="epm:ClaimedIdentityType"
nillable="true"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"/>
<xs:element name="ContentIdentifier" type="xs:string" nillable="true"/>
<xs:element name="LastUniqueSequenceld" type="xs:string"
nillable="true"/>
<xs:element name="HashValue" type="xs:string" nillable="true"/>
<xs:element name="StartDateTime" type="xs:string" nillable="true"/>
<xs:element name="EndDateTime" type="xs:string" nillable="true"/>
<xs:element name="ContentMetadata" type="epm:ContentMetadataType"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="RetrieveCount" type="xs:string" nillable="true"/>
</xs:sequence>
</xs:complexType>
<xs:element>

© UPU 2005 — All rights reserved 77

$43-3 Draft E

RetrieveSummaryOptions — An element whose type is a complex element defined by
RetrieveSummaryOptionsType from the previous subclause.

TransactionKey — An element whose type is a complex element defined by TransactionKeyType.
Locator, Key and Sequence elements should be initialized as ‘null’ for Verify requests unless one is
extending a lifecycle. Please refer to TransactionKeyType in subclause 5.4.2.

Claimedldentity — The RequesterSignature element of Claimedldentity shall be initialized when either
Proof-of-Delivery or Proof-of-Possession is desired by the transacting parties, or when this operation is
partof a StartLifecycle whose AccessLevel is Signed. See also

Claimedldentity in subclause 5.4.10.

OrganizationlD — A string element representing the identifier of the organization requesting the service.
This value must match against a list of valid Organization Identifiers that are registered with the EPM
Service.

ClientApplication — See ClientApplication subclause 5.4.17

Contentldentifier — See Contentldentifier subclause 5.4.18

LastUniqueSequenceld — This element allows an application to retrieve transactions which satisfy the
selection criteria after a particular sequence number within the EPM’s database. This is useful in
situations where nightly processing takes place and the application wishes to resume where it left off.

HashValue — Allows the caller to retrieve Sign or Verify transactions with a particular hash value.
StartDateTime — Allows the caller to specify and date and time range for the transactions to be selected.
EndDateTime — Allows the caller to specify and date and time range for the transactions to be selected.

ContentMetadata — Allows the caller to match transactions on the ContentMetadata passed in on the
original transaction.

RetrieveCount — Limits the number of transactions retrieved in the response to a particular count. Can be
used in conjunction with the LastUniqueSequenceId above.
5.6.6.4 RetrieveSummary Response Object

A RetrieveSummaryResponseType complex element is populated and returned by the EPM Service.
Here are the elements it contains:

<xs:element name="RetrieveSummaryResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TransactionStatusDetail"
type="epm:TransactionStatusDetailType" nillable="true" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="TransactionKey" type="epm:TransactionKeyType" />
<xs:element name="RetrieveSummaryInfo" type="epm:RetrieveSummaryInfoType"
minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

RetrieveSummarylnfo — An element whose type is a complex element defined by
RetrieveSummarylnfoType. An occurrence of this element will exist for each transaction that matches the
criteria specified in the request. The elements returned are from the selected transaction and allow the
application to decide if they wish to obtain further detail by issuing a RetrieveResults operation on the
retrieved key.

<xs:complexType name="RetrieveSummaryInfoType">

78 © UPU 2005 - All rights reserved

$43-3 Draft E

<Xs:sequence>
<xs:element name="TransactionKey" type="epm:TransactionKeyType"/>
<xs:element name="UniqueSequencelId" type="xs:string" nillable="true"/>
<xs:element name="Operation" type="xs:string"/>
<xs:element name="OrganizationID" type="xs:string" nillable="true"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"

nillable="true"/>

<xs:element name="ContentIdentifier" type="xs:string" nillable="true"/>
<xs:element name="TransactionStatus" type="xs:string"/>
<xs:element name="TimeStampValue" type="xs:string" nillable="true"/>
<xs:element name="ContentHash" type="xs:string" nillable="true"/>
<xs:element name="SigningTime" type="xs:string" nillable="true"/>
<xs:element name="X509Subject" type="xs:string" nillable="true"/>
<xs:element name="X509Issuer" type="xs:string" nillable="true"/>
<xs:element name="X509Serial" type="xs:string" nillable="true"/>

</xs:sequence>

</xs:complexType>

5.6.7 RetrievePostalAttributes

5.6.7.1 RetrievePostalAttributes Edit Rules Summary

The RetrievePostalAttributes operation is used to access a list of localization attributes that are specific to
a country or region's EPM service provider. This operation is used to retrieve a list of country-specific
attributes by category, where each attribute is maintained as a Name/Value pair keyed by Locator and
maintained in a “Yellow Pages” like directory. These attributes are used to customize the visibility of a
country-issued PostMarkedReceipt when that receipt is viewed outside the country of receipt origin.
Since the PostMarkedReceipt contains a Locator element, this element can be used to access
receipt rendering detail specific to the country of receipt origin.

Examples of attributes which can be specified by a post for PostMarkedReceipt tailoring include:
- Country-specific logos

- Language-specific receipt text

- Labels and captions on User Interface (Ul) controls

- Customized dialog actions by country

The attributes can be retrieved once and stored locally by any EPM-compliant desktop application. These
attributes are organized by category by ResourcelD. Each ResourcelD can represent a series of
Templates expressed in XML which are used for post-specific tailoring of any visibility aspect of the
EPM’s desktop appearance. Please consult the EPM Common System Development Kit for more details
on the integration and use of the EPM’s User Interface Toolkit and SDK.

<xs:element name="RetrievePostalAttributesRequest">
<xs:complexType>
<xs:sequence>
<xs:element name="Locator" type="epm:LocatorType"/>
<xs:element name="LanguageCode" type="xs:string"/>
<xs:element name="ClientApplication" type="epm:ClientApplicationType"
nillable="true"/>
<xs:element name="AttributeCategory" type="xs:string" nillable="true"/>
</xs:sequence>
</xs:complexType>
</xs:element>

This element is used to define localization attributes that are specific to a country or region's EPM service
provider.

© UPU 2005 - All rights reserved 79

$43-3 Draft E

80 © UPU 2005 — All rights reserved

$43-3 Draft E

ANNEX A (INFORMATIVE) EUROPEAN AND INTERNATIONAL STANDARDS INTER-RELATIONSHIPS
AND EVOLUTION

This Annex discusses the role and influence of existing signature standards which exist in the same
domain and scope as the EPM. Their influence and role in shaping the EPM and its evolution is also
covered.

The European Directive on a community framework for electronic signatures defines an electronic
signature as: “data in electronic form which is attached to or logically associated with other electronic data
and which serves as a method of authentication”. An electronic signature as defined in TS 101 733
“Electronic Signature Formats” is a form of advanced electronic signature as defined in the European
Directive.

ETSI TS 101 733 defines formats for electronic signatures that are compliant with the European Directive.
Currently, the ETSI standard uses Abstract Syntax Notation 1 to define the structure of the electronic
signature. The structure of the electronic signature defined in TS 101 733 is based on the structure
defined in RFC 2630: “Cryptographic Message Syntax”. TS 101 733 satisfies the requirements made by
the European Directive by defining new ASN.1 structures that can be added as parts of the fields
“signedAttrs” and “unsignedAttrs”.

As a consequence of the growing importance of the use of XML on Internet, a standard for XML based
digital signatures is currently being produced within W3C and IETF Working Group “XML-Signature Core
Syntax and Processing”. ETSI is in the process of producing a technical specification ETSI TS 101 903:
“XML Advanced Electronic Signatures (XAdES)” that defines a XML format for electronic signatures that
are compliant with the European Directive, as TS 101 733 does for ASN.1 syntax. An electronic signature
produced in accordance with that document provides evidence that can be processed to get confidence
that some commitment has been explicitly endorsed under a Signature policy, at a given time, by a
signatory under an identifier, e.g., a name or a pseudonym, and optionally a role.

TS 101 733 also deals with the signature policy issue. Although the present document does not mandate
any form of signature policy specification, it specifies an ASN.1 based syntax that may be used to define
a structured signature policy in a way that machines can read and process. The present report deals with
the specification of new XML elements able to contain the signature policy information specified in TS 101
733.

There exists a very close evolution of both RFC 3126 and TS 101 733; as well as RFC 3275 and TS 101
933, the latter two covering XML Digital Signature Syntax and Processing. It is the EPM Standardisation
Team'’s hope that by staying abreast of these developments as they mature, the standard EPM itself will
remain consistent with the industry direction in this area. It should also be noted that the EPM WSDL
interface specification is a layer above the standards described in this subclause. Just as the EPM makes
uses of time stamping standards covered by RFC 3161, it also makes use of other digital signature
formatting standards such as CMS and XMLDSIG. It aims to bring these standards together into a more
non-repudiation centric standard, which the other standards on their own do not accomplish.

© UPU 2005 — All rights reserved 81

pansesai siybl 1 — G00Z NdN @ Z8

<BwWeNASY:DbTIsp/> ™ =d ‘2In3eubTS WIH=ND ‘©0TAISS WAHA=N0 ‘DdD=0 ‘¥O=D<2weNAasy:DbTsp>
<OJUIASM:bTSP>
<eNnTeASIN1eubIS:DTISP/>=T99AXZ+IHTIMD ° ' 9LIUud,bad/qTIamvedrAXTOOF0bSOopAgUb<anTRASINIRUDTS I DTSP>

<0JuIpaubIS:HTISP/>
<odoUusIoIoy:bTSpP/>
<ONTeAISSDTIQ:DTSP/>=7dM6HEHMIUQLOAQZPOgGNTTIFAAHON<SNTRALISSDTq: HTSP>
</uTeus#bTISPTWX/60/0002/b30" M mmm/ /:d33y,=wYITIOBTY POYISWISSHTq:bTSP>
<u2IN3RUDTSPSNIBNISOJ#, =T8N S0USIsJoY:DISP>
<oousI9Jayg:bTISP/>
<ONTBAISSDIQ:DTSP/>=0X+TLOXTZWOZNTSESI8 /UTPIML6<SNTRALISSDTq: bTSP>
</uTRUSHDOTSPTWX/60/000Z/DI0" ¢m mum//:d313y,=wy3TI00TY POYILSHISSHTA:HTSP>
<wZ8TLVLTLZEOT0IATSOS#, =T S0USISISY:HTSP>
<90ouUsI9Iay:bISP/>
<enTeAlSebIq:bTsSp/>=8T+AMTAEcOTIXRIIAadaodAnN MI<enTeALSSbTq: bTSP>
</uTBUS#BTSPTWX/60/000¢/b10" ¢m mmm//:d33y,=wy3TI0OTY POYISHWISSHTQ:BTSP>
<WZ8TLVLTLZEOZ0OFUIFSIH=THA oousI939d:bTSP>
</ulBUS-BSI#DOTSPTUX/60/0002/DI0 ¢m mmm/ /:d32Y,=wYITIOOTY pPoyleWeInileubIs:HLISP>
</uSTE0T00Z-UFTO-TWK-DHAY/T00Z/¥L/Da0 " cMm*mmm/ /:d33Y,=WYITIOBTY POYISWUOTIRZTTROTUOUR): BTSP>
<OJUIPSULIS:DISP>
<u#PTSPTWX/60/000Z/630 gm mmm/ /:d3a3y,=bTsp:sutux , 100 3dTo00YPeIBWISOd, =PI 2In3eULTS:HTSP>
<éu8-ALN,=DPUTPOOUS ,,0°T,=UOTSIDA TUXE>

‘Alejo pue A)aaiq Joy pajeounly Ajielaqiiep Uusaaq aAeY SjUBIUOD JUBWS|S PaldsIeas
paxyJeNISOd Puiaq ainjeubis jobie) ay) Jo Juswale <snTeasInieubTsS> ay} -
ewayos [INd3] aup woly Juswale <3dredogpeIeNisod iwdes> ue -
[e100SS(] 4od se <oJuIllsL:ssp> plepuejse -

:Buimoljos ayj Jo yoes 0} Buiuiod sjuswS|e <9IUBIBIOY>

() @24y3 suieuo9 3 ‘payselNiIsod Bulaq (s)ainjeubis 1obie) sy} Jo s,<enTeasInl'ULTS> 8y} JOA0 ainjeubis Buidojaaus BISATNX [EUCIUSAUOD B
Ajlenuassa si | ‘||lom se uonesado ubig e uo pajsanbal JI papewloy AlJejiwis aq pinom 3| 3sanbai Ajus A oy uo uoido 1dTeospeyIeNISOdaNnssT
8y} JO Juswa|a-gNs UOT1BOOT 9y} Ul SUOTRPURIS JO aNnjeA e paloads sey Jasn ay} asnesaq auojepue)s Se pajjeulio) sl 1dTeospeyIeN1sod
ay] "uonelado Ajlio) [NySS900NS B Is)e pauln}al 8q pPiNOM Yolym Juswaje 1dTesosypeyIelIsod auojepuels e Jo ajdwexs ue si siy]

FHNLVYNOIS AIIHI™EIA V JIAO LdIFDTYAINAVIAILSOd ANOTVANVLS — | T1dAVXT
“Juswinoop paubis
8y} Ojul pappaquia si jey} auo s| ajdwexs puodas ay) pue ‘1dTs0aYPS IBNISOJ SUO|epUE)s B s mojaq ajdwexa }siiy 8y ‘jooojold AJuap 8y} se

[19m se |020}oid ubiS 8y} yjoq Joj anJi S| siy | “Juswndop paubis Buiwooul sy} ul pappaquis aq ued s,3dTe0SdpayIBWIS0d JaAemoy sanbai uodn
‘BISTINX 10 2SDM/SIND 2dAy Jo aue Aayy Jayiaym ‘sainjonuis X duojepuels se uoneoijdde ayy 0} pausnjal Ajjewsou aJe sjdiadal payiej1sod

"90BLIB)UI 8] UIYIIM Pasn S)onsuod snolea ay) Bunensn|) sejdwexs oij1oads suigjuoo pue 1xe] ay) 1noybnoly) 0] paliajal sl asnejogns siy |

SI1dNVXT (IAILVINHOAN]) g XINNY

3 jjeaq €-€vs

€8 pansesai siybl 1 — G00Z NdN @

<309(qo:bTsp/>
<3dToooygpayIeRisod :uds />
<3dteosy/>
<ejepeisn/>
<ONTeA/>Z8TLYVLTLZEOVO<SNTRA>
<oureN/>onTeAdwe]SaWT I <WeN>
<elepelISn>
<elepeisn/>
<enTeA/> ‘2InjeubIs WIdH=ND ‘SOTAISS WAE=N0 ‘DdD=0 ‘¥D=D<SnTep>
<SweN/>2ueN3oa[qnse0sXYSL<OuURN>
<elepelsi>
<UsyOoLdwelSaWT L /><,2In3eubTs~/soyd/uotieot1dde,,=adA oWt usxorduelssuT >
<ISTITTENOSNILISUOTIRO0ADY/>PO3O0YD THYI<KISTITIBNOSNILISUOTIRO0AD>
<uotiexado/>AFTI9A<UOTIRISdO>
<I93senbay/>wod sasborpoTIgnd -s0l=49 ‘yD=D ‘93BOTITIIS) T SSBID UDISTISA=0 ‘OTTdnd =20L0=NDI<I=1ssnbsy>
<AKsyuotioesuei]/>
<sdousnbsg/>T<sdousnbag>
<KoM/>068L9GVETT<ADM>
<I03edDOT/>
</u®NI3,=TTU:TSX QUSWUOITAUT>
<ISPTAOIJSOOTAISS />U0T3eI10dI0) 3SOJO<ISPTAOIFSOOTAISS>
<UOTSIDA/>FTI<KUOTSISA>
<®pP0DAIIUNOD />YD<KSPOIAIIUNOD>
<I03E'D0T>
<A9yuoT3doeSURIL>
<3dreday>
<wZ8TLVLILZEOV0IATI®OSY,, =PI ,O0TAISSNAH/IUT ‘ndn-mmm//:d33y,,=ude:suTux JdTo0ydpaxIeNlsod: :uds>
<u#BTSPTWX/60/0002/b70" gm mmm/ /:d313y,=bTsp:sutux 309(q0:HTSP>
<309(qo:bTsp/>
<OJUIlsSL:Ssp/>
<YSL/> ™ =3 ‘SInjeubIs WIdH=ND ‘SOTAISS WAH=N0 ‘DdD=0 ‘VD=D<V¥SI>
</PeI8PIO>
</punogIorId>
</koTT0d>
<BWTLUOTI®SID/>0GL 8T LY LTLLZ-€0-700C<BWTIUOTILDID>
<ISQUNNTRTISS/>6LZGI9ELYGT<ISQUNNTRTISS>
<wZ8TLPLILZEOV0OFUIIST.W=PI
WPSX* 0E-PM-PWOYDS-2I00-([-SSP-STS®O/9(0/¥00Z/Ssp/DI0 - usdo-sTseo soop mmm//:d33y,=SSP:SUTWX OJUIIST:SSP>
< #DTSPTWX/60/000Z/0I0 ¢m mmm//:d31y,=bTsp:sutux 109Lqo:bTSP>
<OJuIlhsy:bTsp/>
<e1eg60SX:bTSP/>
<TBTISSISNSSIE0GX/>
<ISQUNNTRTISSE0GX/>GZ<ISqUWNNTRTISSE0GX>
<OWENISNSSIEOGX/> “=H ‘¥D YIBWISOd OTUOIFOSTH=ND ‘OO0TAISS WIF=N0 ‘DdD=0 ‘V¥I=D<SWENISNSSIEOGX>
<u#bTSPTWX/60/0002/bI0 g¢Mm MMM/ /:d3QY,=SUTWX TETISSISNSSIEOGX>
<dweN310e[qnggQsx/> "= ‘9IN3eUbTS WdA=ND ‘S0TAISS WAH=N0 ‘0dD=0 ‘¥I=D <, #DTsprux ~ //:d33y,=SUTWX SwWeN31Oa[qnsgQsx>
<931eDTITIISD606X/>==Pd0ZMET ™ DANIIIN< #OTSPTWX/60/000Z/DT0" gMm MMM/ /:da3Y, =SUTWX SJBOTITITSD60GX>
<B31eg60GX:HTSP>

3 yeia €-evs

pansesai siybl 1 — G00Z NdN @)

<uZ8TLYLTILZEOVOOFUIISLu=PT
WPSX* 0€-PM-PWSYOS-8I00-() ' [-SSP-STSLO/9(0/¥00Z/SSP/DI10 usdo-sTseo soop MMM/ /:d13,=SSP:SUTWUX OJUIISL:SSP>
<u#bTSPTUX/60/000C/DI0" ¢m MMM/ /:d13Y,=bTsp:suTux 309Lq0:bTSP>
<OJulhey:bTsp/>
<e3ed60SX:bTSP/>
AH@ﬂH@WM@SWWHmOmX\V
<ISQUNNTRTISSEOGX/>GZ<IDqUNNTRTISS60GX>
<QWENISNSSIEOGX/> “=F ‘¥ YIBWISOd OTUOIIDSTHA=ND ‘®0TAISS WAT=N0 ‘DdD=0 ‘¥D=D<SWEeNISNSSIEOGX>
< #bTSPTWX/60/0002/bx0 ¢Mm MMM/ /:d3]Y,=SUTWX [RTISSISNSSTIHEOGX>
<PWeN31o9[qnseQex/> = ‘SIn3eubTS WA@=ND ‘SO0TAISS WAA=NO ‘0dDO=0 ‘¥O=D <, #DTsprwx ™ //:d33Y,=SuTwx SweN3Ooo[qnseQsx>
<®3eDTITIIASDE0GXK/>==Pg0OZMT " DANTIIN< . #DTSPTWX/60/0002/b30 " ¢M* MMM/ /:d33Y,=SUTWK 93BOTFITIASIE0GX>
<e3ed60GX:bTSP>

<SweNASy:bTsp/> ™ =3 ‘9aIn3eubIS WIHA=ND ‘SOTAISS WAT=N0 ‘Dd0=0 ‘¥D=D<SweNAay:bTIsp>
<OJUIASM:DTISP>
<ONTeASINIeUDTS:DTSP/>=T99AXZ+YHTTIMD *°° 9LIUd,LbAH/STAMVEHRAXTOOFObSOrAgUD<ONTRASINIRUDTS I DTSP>

<0JuIpaubIS:HTISP/>
<90oUusIoIoy:bTSP/>
<ONTeAISSDTIQ:DbTSP/>=7dM6HEHMIUQLOAQZPOGNT TIFdAHON<SONTRALISSDTq: HTSP>
</uTeus#bTSpTWX/60/0002/b10" M- mmm/ /:d33y, =Wy TIOBTY POYISWISSHTQ:HTSP>
<,23US31UO0DRIRIPSYIPNISOJ#,=Id0 S0USIaJoyg:DbISP>
<90ousI19Iayg:bISP/>
<SNTeA3SSDTIA: BTSSP/ >=0X+TLOXTZUOZNTS6SI8/UIPMML6<SNTRAISSDTq: bTSP>
</uTeUS#DTSPTWX/60/0002/b30" ¢M MMM/ /:d33Y,=WYITIOLTY POYISWISSHTQ:bTSP>
<wZBILVLTLZEOF0IATOOST#, =10 S0USISIY:HTSP>
<o0UsioIoy:bTSP/>
<ONTeAISSDIQ:bTSP/>=8T+AMTAEcOTIXRIIAadagdAnN MI<onTeAlSobTq: OTSP>
</uTeus#bTSPTWX/60/0002/b10" M mmm/ /:d33y,=wYITIOBTY POYISWISSHTQ:HTSP>
<NETUEE0R00SUTaSHI=TEA couoao3ou:56T5p>
</ulBUS-BSI#OTSPTUX/60/0002/DI0 ¢m mmm/ /:d31Y,,=wYITIOOTY pPoOYlsWesInileubIs:HLISP>
</uwSGTE0T00Z-Up TO-TWX-DHAY/T00C/HL/BI0 " ¢m - mmm//:d33y,=wyITIONTY POYISWUOTIEZTTROTUOURD :BTSP>
<OJUIPSULIS:DTISP>
<u#PTSPTWX/60/000Z/6T0 gm mmm/ /:d3a3y,=pTsp:sutux , 100 3dTo0°YPeNIBWNISOd, =PI 2In3RULTS:HTISP>
<éu8-dLN,=HBUTPOdOUS ,(°T,=UOTSISA TUIXKi>

‘payioads Buipoous y9eseq UM PSNIBNISOd 84 0} BIEp 8U) J0 Yysey sy Buluiejuod <102 [qo> ue 0} 8q [IM <SousIaIau> ¢ 8y} usy) ‘uojessdo
SIBNISOd B Ul pasn uaym se ‘ejep sianod Adwis adoos ainjeubis s,<31dTo0odpasIBHISOd> SUOTRPURIS 8y} UBYM ‘BAoqe | ajdwex] o) Jejiuis

NOILVYIdO MAVINLSOd ONISN NIFHM V1v(Qg ¥3A0 <1dIFOTYAINUVINLSOd> INOTVANVLS — Z IT1dNVXT

<2Inj3eubrs:bISP/>
<309Lqo:btTsp/>
<ONTeASINIRUDTSPOYIBNISOd :wde />=NSULIOWSHEZ ° ' ° AUEMISADAUAXE6YONASOADOATZUS®LAZITA<,2INIRUDTSPONIRNISOd, =PI
WOOTAISSWAA/AUT ‘ndn-mmm/ /:d33y,=ude: SUTWX SNTRASINIRUDTSPSNIRKISOJ :wda>
< #DTSPTWX/60/0002/b10 cMm MMM/ /:d33Y,=DTsp:suTux 302(qo:bTsp>

3 jjeiq €-evs

G8 pansesai spybl iy — G002 NdN ©

oy} uaym uoljesado AJus\ |nyssaoons e Jale paulnijal <3dTo0YpPeIRWISOd> pappaqua ue jJo sjdwexa ue si siy|

FANLVNOIS AIIHIRTA V AIAO <1dIFOITYAINAUVINLSOd> A3Ada3giNg - € 31dINvX

<2Injeubrs:bISP/>

<309[qo:bTsp/>
<B3eQPa}IBWISOJ />=VIN9 I INONIWOIDAD * * *00b8oPPaSX0ADd<,F99SRq#DTSPTWX/60/0002 /D710 ¢Mm MMM/ /1 dF3Yy,=DuTpoduy
1 3IUS3UODRIROPSYIBNISOd, =PI PIRJPOYIBKISOI>
<u#bTSPTUX/60/0002/bI0 ¢m MMM/ /:d]13Y,=bTsp:suTux 309Lq0:bTSP>
<309[qo:bTSp/>
<31dTsooydpayIrRlsod :uds />
<3dreoay/>
<elepelsn/>
<OOTRA/>ZBTLYLTLZEOVO<ENTRA>
<aweN/>snTeAdwurlSauT [<SWeN>
<e1epels|H>
<ejepelisn/>
<enfeA/> ‘eaInjeubTs WIdHA=ND ‘S0TAISS WAE=N0 ‘DdD=0 ‘¥D=D<SnTep>
<SweN/>2ueN3109[gqnse0SXYSL<OWRN>
<elepeisn>
<U9yOoLdwelSoWT L /><,2In3eubTs~/soxd/uotreot1dde, =adA oWt usxorduelsauT >
<ISTITTENDSNIPISUOTILD0ADY/>DTeOTTddyY JON<KISTITTENDOSNILISUOTIRD0AD>
<uoTiexadQ /> IBNISOd<uoTIeI=dO>
<I93senbey/>wodsasborpoTIgnd -s0l=90 ‘yO=D ‘93BOTITIIS) [SSBID UDISTISA=0 ‘OTTdnd =0L0=ND<I=lsonbey>
<KsyuotioesueIil/>
<sdousnbag/>T<sdusnbag>
<Ao¥/>068L9GhECT<Aa>
<I03BeD0T/>
</ueNI],=TTU:TSX JUSWUOITAUN>
<ISPTAOIJOOTAISS/>U0T3eI10dI0) 3SOJO<ISPTAOIJSOTAISS>
<UOTSISA/>HTI<KUOTSIDA>
<®poDAI3uno)n/>yo<epodAhijunod>
<I03BDOT>
<AsyuoT3ioesurIL>
<3dreoang>
<wZBILVLTLZEOF0IATSOS =PI SO TAISSWIH/IUT ndn-mmm//:d33y,=uds: suTwx 3dTo0YPO}ILNISO] :udsa>
<u#bTSPTUX/60/000C/bI0" ¢m MMM/ /:d13Y,=bTsp:suTux 309Lq0:bTSP>
<309[qo:bTSp/>
<OJUIASL:SsSp/>
<YSL/> ™ =4 ‘9In3eubTs WAH=ND ‘S0TAISS WAH=N0 ‘DdD=0 ‘¥IO=D<VYSI>
</PSI3pPIO>
</punogIoaxyg>
</AkoTT0a>
<OWTLUOTI®SID/>0GL 8T Ly :LTILLZ-E0-F00C<OWTLUOTILSID>
<ISqQUNNTRTISS/>6,C2G9ELY8T<ISQUNNTRTISS>

3 yeiq €-evs

pansesai siybl 1 — G00Z NdN @ 98

<enTeAlsSeSbIQ:BbTSP/>=MAIdGEHTANNSAIdYgbYIDWO XYY TI<SNTeALISSDTq: bTSP>
</uTeUS#DTISPTWX/60/0002/b10 €M mmm//:d33Y,=UYITIONTY POUISNISSbTIQ:bTSP>
<swIojsueIrl:bTsSp/>
<WIOJSURIL:DTISP/>
<31ooUsoTAls:SX/>
<ojeTdwsl: Tsx/>
<AKdoo:Tsx/>
</uwonTeAsInieubIs:bTSp/[T=i () uoTadTsod]ainjeubTs:H6Tsp//,=300T9S JO-Adoo:TSX>
<Adoo:Tsx>
<u/uw=yoleu o3eTduel: TSX>
<u0 Tu=UOTSISA #DTSPTWX/60/0002/DI0 c¢m mmm//:d33y,=DTsp:sutwux
WWIOJSUBRIL/TISX/666T/D10 cm mmm//:daqYy,=TSX:SUTWX 399YsaTA3sS:Tsx>
<u9TTT666T-3TSX-DAI/666T/dL/DI0 ¢Mm MMM/ /:dI3Y,=UYITIOOTY WIOISURIL:DPTSP>
<SWIOFSURIL:DTSP>
<uu=I¥N S0usI2I°oY:DTSP>
<odusIsIoy:bTIsp/>
<ONTeALSoPTQ:DTSP/>=8TAdILIZATAGIAIGIGRODALZOEY<ONTRAISSDTQ : BTSP>
</uTeUSH#DTSPTWX/60/0002/D10 ¢Mm MMM/ /:dI3Y,=UYITIOOTY POYISWISSHPTA:DTSP>
<wZ8TLVLTLZEOF0IATOOS#, =T S0USISISY:HTSP>
<odousIsIayY:bTIsp/>
<enTeaAlssbIq:bTsp/>=puuIdebbgrNAzXebpTLd19 /A TE<SNTRALISSDTq: bTSP>
</uTeUS#DTISPTWX/60/0002/b10" eMm mmm//:d32Y,=UYITIODTY POUISNISSbTIQ:bTSP>
<WZBTLVLTLZEOZ0OTUIISIHA=THA oousI93I9Y:bTSP>
</uwIBUS-BSI#DTSPTWX/60/0002/DI0 ¢Mm MMM/ /:dI3Y,=wYITIODTY POYISWSINIRUDIS:DOTSP>
</uSTE0T00Z-UF TO-TWK-DAY/T00Z/UL/DT0 M mmm/ /:da3Y, =wyITIOHTY POYISWUOTIRZTTROTUOUR): DTSP>
<OJUIPSUDLIS:DTISP>
< #bTSPTWX/60/0002/DI0 cMm mmm/ /:d3]3Y,=DTSp:sSUTWX 2IN3RUDTIS:DOTSP>
<—— 2aIn3eubTs JdTo0oYpPSdIPWISOd JO buTtuutbeg —-|>
<juswnoog>
<[
<QAITAWI# dI PI 309(00 ISITLILIVi>
] 3uswndoog FJXIODOA|>
<iu8-4IN,=HbuTpodus , (0’ T,=UOTSISA TWX>

‘Rejd pue Aliaaiq Jo) pajeouny) Ajajelagiiap uaaqg aABY SJUSIUOD JUSWSIS Pa]0s|as

‘sainjeubis a|di}jnw SUlBlUOD JUBWNJOP 8y} UBYM jJuswnoop paubis sy} Ul S,<SNTRASINIRUDTS> ||B JaA0D Ajjeljusjod ued jdiaoaypayien)sod
ay) ‘1sanbal ay) Jo <1dTo0SsYpPeIRWISOISNS ST > AU} UIYIM paljoads Jusws|d sweNspoN |euondo ayj Jo anjea ay} uo Buipuadap jey) sjoN

paxJe1sod Buiaq (s)ainjeubis jabie) ay) JO Juswge <enTeasIn1eubTS> oy} <«
ewsayos [Nd3] 8y} wouy juswsle <3dTedoagpayIenisod :wde> ue <«
[ei00SS(@] 10d se <o0FJuIASL:SSpP> plepuels e <«

:Buimojjoy sy} Jo yoes o} bunuiod
SjUBWgIe <souUSIsISY> (€) 984y} SUIBIUOD }| paxIBNISOd Bulaq (s)ainjeubis 19bie) ay) Jo <enTeasanieubTs> ay) JOAO ainjeubis Buidojaaus
BISTX [BUOIIUBAUOD B S| }| JUBWSJa-gNS UOTIBO0T 8y} JO aNnjeA 8y} Se peppadque saloads Juswa|d uondo <1dTeoogpeyIeN1sodenssI>

3 jjeaq €-€vs

18 pansesai spybl iy — G002 NdN ©

<oureN/>anTeAdwelSouT I <SWeN>
<elepelsi>
<e3epeisp/>
<entep/> ~ ‘eanjeubrs WIH=ND ‘S0TAISS WAA=N0 ‘DdD=0 ‘V¥D=D<SnTeA>
<dweN/>sweN309 [aqnse0GXYSL<OWeN>
<ejepeisp>
<usyordwelSowI]/><,0INn3eubTts—,/soyd/uoTieoT1dde,=odAoWTN USYOLdWRISoWT >
<ISTITTENOSNILISUOTIROOADY />POO9YD THYI<KISTITTRNHSNILISUOTIRO0ADT>
<uotieaado/>AJTasa<ucTiRI=dO>
<I93senbay/>wo0s18borpoTTagnd sol=g ‘¥O=D ‘©3LD0TITIIS) [SSBTD UDTSTISA=0 ‘OTTAnd =0L=ND<I=o3sonboy>
<AsyuoTioesueal/>
<sdusnbsg/>T<sousnbag>
<KoY />068L9GHECT<AaM>
<I03edO0T/>
</uoNI3,=TTU:TSX JUSWUOITAUH>
<ISPTAOIJOOTAISDS />U0TIRI0dIO) 3SOJO<IOPTAOIJOOTAIDS>
<UOTSISA/>FTT<UOTSISA>
<opoDAI3uno)/>yYo<epodAaiunod>
<I03E'D0T>
<AayuoTioesueIl>
<3dreoay>
<wZ8TLVLILZEOV0AIATSOSY, =PI ,S0TAISSWAHE/AUT ‘ndn mmm//:d3qy,=ude:suTux 3dTo09YpPaxIrNISOJ :wds>
<u#bTSPTWX/60/000Z/b670" ¢Mm Mmmm//:d37Y,=DTsp:suTux 103(q0:HTSP>
<309lqo:btsp/>
<OJUIASL:SSpP/>
<3WeN102[qnSeOGXYSL/> ‘2In3eubTs WAdH=ND ‘SOTAISS WAH=N0 ‘DdD=0 ‘¥D=D2<3WweN3102[qnsgQsxXvSL>
</P3I°PI0>
</punogiaorxy>
</ADTTOd>
<OWTLUOTIEDID/>0GL 8T LY LTLLZ-E0-F00Z<OWILUOTIBDID>
<ISqQUNNTBTISS/>6LCG9ELY8T<ISQUNNTRTISS>
<wZ8TLYLTLZEOV0OFUIISIW=PT
WPSX " GZ-PM-BPWOYDS—-9I00-() " [-SSP-STS®O/90/y00Z/SSsp/bao uado-sTseo*soop mmm//:d31y,=SSP:SUTWX OJUIIST:SSP>
<u#PTSPTWX/60/0002/bI0" gm mmm//:d33y,=DTSp:suTux 309(q0:HTSP>
<OJulhsy:bTSp/>
<e3eg60GX:bTSP/>
<TeTISSISNSSIGOSX/ >
<TIOQUINNTERTISSEOGK/>GZ<ISqUNNTRTISSE0GX>
<BWEeNISNSSIEOGX/> “=F ‘¥D YIeWISOd OTUOIIOSTH=ND ‘90TAISS WIH=N0 ‘IJdD=0 ‘¥D=D<3WEeNISNSSIEQGX>
< #DTSPTWX/60/000Z/0I0 ¢Mm mmm//:d33Yy,=SUTUX TETISSISNSSIEOGX>
<eweN2109[qnsEOGex/> "= ‘eIni1eubTs WAF=ND ‘©0TAISS WAF=N0 ‘0dD=0 ‘¥O=D <.#DTspTwx " //:d313y,=suiwx sweN102[qnse0osx>
<®3BOTITIADDE0GX/>==DPFOZMNT ™ DANATIIW<.#DOTSPTWX/60/000Z/D710 ¢m MMM/ /:da3Y,=SUTUK SILOTITIASDE0GX>
<e3eqe0GX:brsp>

<sweNASM:HTsSp/> ™ =d ‘2In3eubTS WIH=ND ‘SOTAISS WAH=N0 ‘DdD=0 ‘¥O=D<sweNAsy:bTsp>
<OJuIhAay:bISpP>
<eNTeASIN1eUDTIS:DTISP/>=T99AXZ+MHTIMD °*° 9ILIud,bdd/cIamyeHaexiTo0y0bsopagub<anTeasInleUbTS BTSP>

<O0JuIpsubIS:HTSP/>
<9ousI9Iayg:bTSP/>

3 yeia €-evs

paniesal spybl 1Y — G002 NdN @ 88

:1senbau g0AosyuelS
3y} Jo uswale Aedbunedidiled ay) Ul poUBTS Sl <TOASTSS200Y> UM 9|SOTINX <2dALean1eubIs> Joj a|dwexs ainjeubigisisanbay

370AD3417 @3.1L0310¥d NI NOILVHIdO ANV HOd4 ATYNOILIVSNVY] HIAO FUNLYNOISHILSINOIY - ¥ ITdNVXT

<3usumooq/>
<-- poMIeW3ISOog buTreg juswnoop pPaUubIS JO pud —-i>
<2In3eubrs:bISP/>
<oJurhsy:bTSp/>
<e3eqeQGxX:btsp/>
<TBTISSISNSSIEOGX/>
<ISQUNNTBTISSEOGK/>GC<ISAUWNNTRTISSE0SX>

A®EMZH®5W@H®OMX\V =9 :&U I2Uulaed=ND \\AHGO 9S 1S9L I0A=0 :&U Isulaied=0 :QUHUA&E@ZMQSWWHQOMNV
<TeTIDSIDNSSIEOGK>
<sweN3108[anseQ6xX/> ~ =d ‘OTTqnd 20L=ND ‘dI0D SuDY=0 ‘¥O=0 <SWeN3IOa(qnseosx>

<®1BOTITAISD0GX/>==bg0ozZME = HIIN<. $OTSPTWX/60/000Z/DI0" gM MMM/ /:dQY, =SUTWK S]BOTITITISDE0GX>
<e3eg60GX:HDTSP>

<oWeNASYM:BbTsp/> ™ =4 ‘OTTdnd 200=ND ‘dio) suoy=0 ‘yd=D<sweNAsy:DbTsp>
<OJuThay:bTISpP>
<oNTeASIN31eubTS:BTSP/>=SNZAAATLAOXMSLTA *°° MILHAMAM<ONTRASIN3RUBTS:: HTSP>

<OJuIpeubTs:HTSP/>
<odousIsIayY:bTsp/>
<ONTeA}SSHTA:BTSP/>=1590enTz [ONZYNIdPY gUXIMALOJ<ONTRAFSSH T HTSP>
</uTRUS#DTISPTWX/60/0002/b10 €M mmm//:dI3Y,=UYITIODTY POUISNISSHTQ:bTSP>
<,Poubrsburogelegpayoriad#,=I¥0 S0UsIaIoy:DTISP>
</uwIBUS—-BSI#DTSPTWX/60/0002/DI0 ¢m MMM/ /:d37Y,=wYITIODTY POYISWSINIRULIS:DOTSP>
</uSTE0T00Z-UF TO-TWK-DAY/T00Z/UL/DT0 em mmm/ /:d13Y, =wYITIOHTY POYISWUOTIRZTTEOTUOUR): BTSP>
<OJUIPoUDHIS:HTISP>
<,9IN1eubTtgisbiel, =PI ,#DISPTWX/60/0002/DI0 c¢Mm MMM/ /:d]13(,=DTSp:sUTWX 2IN1RUDLTS:HTSP>
<309lqo/>
<eleqreuosIsadg/>
<NIS/>68L9GFEZI<ISqUNNSOURINSUITRTOOS>
<2PODTeISOd/>E£L9DTM<PPODTRISOd>
<A3TD/>9ITUNMOTTOA<AITO>
<SS9IPPYIS9I11S/>2UrT PITADUTNOON pEZI<SSOIPPYISDIIS>
<SWEN/>Y3ITuS PH<SWeN>
<ejegreuUOSIag>
<upaubtshutrsgelegpayoeiaq,=p1r I0sLqo>
<—— POYIBWISOd DHuTaq Juswnoop paubTls Jo butuutbeg —-j>
<—— 2anjeubTs 1dToDoyYpoxIBWISOd JO pud —-—i>
<2InjeubIg:bISP/>
<309Lqo:bTsp/>
<31dTeooygpeyIrKlsod wds />
<3dTe09y/>
<elepelisp/>
<ONTBA/>Z8TLYLTLZEOFO<SNTRA>

3 jjeaq €-€vs

68 pansesai siybl 1 — G00Z NdN @

WO0UB1SUT-PWSYDSTWX/T00Z/DI0 " ¢Mm Mmmm//:d13Y,=TSX:SUTWX JUSIUOCDTRUTOTIOIOYSEH>
<a2anjeubrsasisanbay>

:ute1d/3x97 Jo einque SdATLSUTRH YJIM <IUSFJUODTRUTHTIO> JOA0 O|SATINX
<odAL2an3eubTS> J0) SMO||O) SE PazZ|[eliul S| Juswaje <oainjeubrsaeisenbay> ay] "0UBUSIS AJoAl|9Q-J0-Joold & Jo ajdwexa ue si siy|

NOILVYIdO ALIMOILNIMOIHD V NI @3SN NIHM LNILNODTVNIORQO ¥IAO FUNLYNDISHILSINDIY — G IT1dNVXT

<oInjeubrsaslssonbay/>
<2In3eubIs:bISP/>
<OoJurhsy:bTSp/>
<e3ege0GX:bTSP/>
<TBTISSISNSSIE0GX/>
<ISQUNNTBTISSE0GX/>GZ<ISqUNNTRTISSE0SX>

<PUWEeNISNSSIEOGX/>" """ ‘0do=0 ‘emel1310=T ‘OTIRIUO=S ‘YI=D<OWENISNSSIEOGX>
<u#bTSPTWX/60/000Z/D30 ¢m MMM/ /:d33Y,=SUTWK TBTISSISNSSIEOGX>
<ouwreN310eLqnse0ex/>" " """ =3 ‘" =ND ‘Ddd=0 ‘¥D=D <sweN31oa[anseosex>
<93BOTITIASDE0GX/>==DgOZMT" " " " * NATTN<®IBDTITIIASD60GX>
<e3eqe0sxX:brsp>
<BWEeNASY:HBTSP/>" """ =g ‘e =ND ‘DdD=0 ‘YDO=D<oWeNAs}:bTsp>
<OJUuThay:bTISP>
<eniepsInileubrS:pISP/>=Ugz " " dolgLIN<onTeA®INIPULTS: OTSP>

<ojuIlpeubTs:HTSP/>
<90ouUsI9Iay:bISP/>
<ONTeAISObTQ:DTSP/>=0TUX8d+N6 FXIEGMXOQIIFIoUS00<aNTRALSSDTq: bTSP>
</uTeUS#bTSPTWX/60/0002/b10" M mmm/ /:d33,=wYITIODTY POYISWISSHTQ:HTSP>
<swIoFsueir:bTsp/>
</uweInjeubrs-padoToAUus¢bISPTWX/60/0002/bI0 c¢Mm MMM/ /:d13Y,=WYITIODTY WIOISURIL:DTSP>
<SWIOJFSURIL:DTSP>
<un=I¥N S0USIDISY:DTSP>
</uwTBUS-BSI#DTSPTWX/60/0002/DI0 ¢m MMM/ /:d3qY,=UYITIODTY POYISWSINIRULIS:DOTSP>
</uSTE0T00Z-UF TO-TWK-DAY/T00Z/UL/DI0 M mmm/ /:d33Y, =wyITIOHTY POYISWUOTILZTTROTUOUR): DTSP>
<OJUIPSUDLIS:DTISP>
< #bTSPTWX/60/0002/DI0 cMm mmm/ /:d3]Y,=DTSp:SUTWX 2IN3RUDTIS:DOTSP>
<gruoT3ezTuebiQ/>uocTierodio) SWOY<JIUOT3IRZTURDIO>
<Asyuotioesuear/>
<edousnbag/>T<e0usnbag>
<Koy />G16T¥865-0€CEET-6TOTYO<ASM>
<I03e20T/>
</uoNIY,=TTU:TSX JUSWUOITAUH>
<ISPTAOIFSOTAISS/>U0TIRI0dIO) 3FSOJO<ISPTAOIISOTAISS>
<UOTSISBA/>PTI<UOTSISA>
<opodAI3uno)/>yYo<spodAzzunod>
<I03B'D0T>
<,90URJSUT-RWOYDISTNX/T00Z/DI0 " ¢m mmm//:d33Y,=TSX:SUTWK ASYUOTIOBSURIL>
<a2anjeubrsasisanbay>

3 yeiq €-evs

pansesai siybl 1 — G00Z NdN @ 06

<sanjeubrgasissnbay/>
<2InjeubIg:bISP/>
<ogurkey:brsp/>
<e3eqe0sxX:brsp/>
<TeTISSISNSSIEOGX/>
<ISQUNNTRTISSE0GX/>GZ<ISqUONTRTISS60GX>

<OWEeNISNSSTEOGX/>" """ " ‘Dd0=0 ‘eme330=T ‘OTIRIUQO=S ‘YO=D<SWENISNSSIEOGX>
< #DTSPTWX/60/000Z/b30" g¢Mm mmm/ /:d33Y,=SUTWX TRTISDSIASNSSIEOGX>
<PWeN1Oe[qnseOeX /> " """ ‘DdD=0 ‘¥O=D<.#DPTSPTUX/60/000¢/ba0 ¢m mmm//:d33y,=SUTUX SweN3IO2LANs60ex>
<®3BOTJITIIDD60GX/>==bgozmg- - - NATIN< #OTSPTWX/60/0002 /D30 ¢m MMM/ /:d33Y,,=SUTWX SIBDTFTIADE0GX>
<e3eQ60GX:bTSP>
<PWeNAsy:bTSp/>" e =g ‘e =ND ‘DdD=0 ‘emMe330=T ‘OTIRIUQ=S ‘YD=D<>WeNAsy:DbIisp>
<OoJurhay:bTSp>
<eontepsInieubrs:bISp/>=ugz dolgLIN<oNTeASINIRPULTS: ODTSP>

<OoJuIlpsubTrs:bHTSP/>
<oousI9Jayg:bISP/>
<ONTBAISSDTIQ:LTSP/>=0TUX8d+N6 P XILEGMXOODIEIDUSQO<KSNTRALISSOTQ: HTSP>
</uTeUS#DbTSPTWX/60/0002/b10 M mmm/ /:dIqY,=WYITIODTY POYISWISSHTQ:OTSP>
<swiojsueIrl:bTsp/>
</uwoInjeubTs-padoToAus4bISPTWX/60/0002/bI0 ¢Mm mmm/ /:d12,=WYITIODTY WIOISULRIL:DISP>
<SwWIOJsueIl:bHTSP>
<uu=IdN odusISISY:HTSP>
</uTBeUS-BSI#DOTSPTWX/60/000Z/bI0 ¢m mmm//:d31Y,=uyaTIODTY POYISWSINIRUDLTS:DTSP>
</uGTE0T00Z-Up IO-TWX-DH/T00Z/dL/DI0" g¢m mmm/ /:d33y,=wY3TIOOTY POYISNUOTILZTTROTUOURD (DISP>
<OJUIpPoubIS:HISP>
< #DbTSPTWX/60/000Z/bI0 ¢Mm mmm/ /:d31Y,=DTSp:sSUTWX 2INJRULTS:DTSP>
<3U23U0)TeUThTIOIOUSeH/>=0dLTITLOATI/ED" """ T+NATIONEPLAGO< ,uTeTd /35973, =2dALaWT

3 jjeiq €-evs

16 pansesai siybl 1 — G00Z NdN @

<,oNI3,=30e13sqge ,,2dALA3TIUSPISIRUISITY,=oWweu odALXSTdWoD>
<odArxeTdwod />
<oousnbes/>
</uonI3,=98TqelITu ,odAgA1TiuspIeleuisl [y :wds,=adA] ,A31T1USPIS]1LUIS]ITY,=WRU JUSUWSTS>
</uwenId,=2TqelTTu ,adArelegpestriTtrend:uds,=odA] ,sInjeubTsisissnbey,=sweu juswsTa>
</uP0I},=STqeTTTu ,odAryinyorseqg:wds,=odA3 ,yinydorseq,=>Sweu JuswaTo>
<oousnbas>
<w9dArozurburiazoddng, =sweu odAxoTdwoo>
<odAgxeTdwod />
<oousnbss />
</uw2dArogurburizoddng:uds,=adA] ,ojurburizoddng,=sweu jJuswsTo>
</wodALIoTITUspPIsweN : wds,=odA] ,SWeN,=Sweu jJususTo>
<oousnbas>
<uwodArA3TaUuepIpawWTeT), =2weu odAxsTdwoo>
<adAgxoTdwod />
<oousnbss/>
</woNI3,=9TgeITTu ,butiis:sx,=odA] ,1USWUOITAUH,=SWEU JUSWSTS>
</u®NI3,=9TgeTITu ,butiis:sx,=o2dA] ,,I9PTAOIJSOTAISS,=SWEU JUSWSTO>
</uwbuTI1s:sx,=2dAk] ,,UOTSISA,=SWeU JUSUSTS>
</uwbutiys:sx,=odhk]1 ,,9p0DAIIUNOD,=0WeEU JUSWSTS>
<2ousnbos>
<w9dAra03e007,=0weu odAxsTdwoo>
<odAgxeTdwod />
<sousnbss/>
</uweNId,=9TgerITTIU ,IsbsjursaTiTtsod:sx,=2dA] ,90usnbsg,=sweu jususTe>
</uwbuTtils:sx,=o0dhk]1 A9} ,=SwWeU JUSWSTS>
</uw2dAL103e00T:uds,,=2dA] ,I03BLDOT,=2WeU JUsSWSTa>
<oouanbes>
<wodA1AeyuoTioesuea], =sweu odAxaTdwod>
<odArxeTdwod />
<oousnbes/>
</uonI3,=9TqeTITu ,buTtiis:sx,=odA] ,9DESSSORIOIIH,=SWEU JUSWSTO>
</uwbuTtals:sx,=adA] ,IsqUNNIOIIH,=SWrU JUSWUSTS>

<20usanbas>
<,9odATTRP3IS®gSn3e3SUOTIOESURT], =2weu odALxaTdwod>
<—-
G00Z ‘GT 3Isnbny peiepdn 3IseT GT'T UOTSISA PSX'GT°TA NdA 9OTAISSWIH --i>

</.PSX PWaYDS-9I0D

-DTSPTWX/2I100-DTSPTWX /YL /DI0 ¢Mm MMM/ /:d3]1Y,=UOTILOOTRWSYDS ,#DTSPTWX/60/0002/DI0 M mmm//:daqy,=s0edsaweu JI10dUT>
<u#bTSpTUWx/60/0002/B10" gm mmm//:dA3y,=SP: SUTUX

WBWSUDSTWX/T00Z/bI0 ¢m mmm/ /:da1y,=SUTWX ,PWOUDSTWNX/T00Z/DI0 g¢m mmMmm//:d32Y,=SX:SUTWX
WSBUSUOS /90 TATISSNAH/IUT ‘ndn - mmm/ /:d3qy,=ude: SUTWX ,,SPWSYDS/S0TAISSKNAHE/IUT "ndn*mmm//:d3a3y,=e0edsaweNisbie] puayos>

"8I} PSX’ X BWAYDS 8oelslu| NdT 8y JO Jusjuoo papuedxs [N} 8y} SUIBJUoD 8snejoqgns siy |

G1'LA 3114 VWIHOS TNX INdT (IAILVINHOAN]) 9 XINNY

3 yeiq €-evs

pansesai siybl 1 — G00Z NdN @ Z6

</uwbutils:sx,=adk] ,qIissn,=SWeu JuswSTS>
<oousnbos>
<wodAryanygotrsed,=sweu odAxsTdwod>
<odArxeTdwod />
<3US3U0DX2TdWod />
<UOTSUD3IXd/>
<oousnbeas/>
</wodArezeqgpatytrend:ude,=odA3 ,e3eqUOTIEBPTTRAG0SGX,=SWeU JuswsTa>
<oousnbas>
<,2dALe1eqUOTIEPTITRADTISUSY (WwdD, =SB UOTSUSIXD>
<3us3uodxaTdwoD>
<,odA1P1EQUOTIEPTITRBAGQGX =2WeUu odALxoTdwod>
<odArxeoTdwod />
<oousnbas/>
</w2dALAue:sx,=2dA] ,212QUOTIRPTIIRADTISUSH,=SWRU JUSWSTS>
<oousnbos>
<,oNI3,=30eI13sge ,2dALe3BqUOTIPPTITRADTISUSY, =oweu odALXSTdWOoD>
<odArxeTdwod />
<3US3U0DX9TdWod />
<UOTSUD3IXd/>
<oousnbes/>
</woNI3,=9TqeITTu ,butiis:sx,=odA] ,90T1O0NISSNADTTOJDTS,=oWeu JuswaTa>
</uwbuTils:sx,=adhk]1 ,,SenTeAUSPHADTTOJDLTS,=oWeu JususTa>
</uwI¥dnkue:sx,=odA3 ,,0BTYYSPHADTTOIDTS, =dwWeu JuswaTe>
</uwbuTtais:sx,=adAk] ,,TINADTTOgDTS,,=Sweu JUsSWSTS>
</uwI¥dnAue:sx,=adAk1 ,,dIADTTO4DLTIS,=swWeU JUSWSTS>
<20uanbas>
<u9dALa9TITIUSpPIADTITOgan3eub TS :wde,=9Seq UOTSUS3IXD>
<3us3uo)xaTdWoD >
<,9odALI9TITaUspPIADTITOdoINn3RUDTSoWOS ,,=sweu odAxeTdwoo>
<odAgxoTdwod />
<sousnbss/>

</uw2dATAue:sx,=0dA] ,ISTITIUSPIADTTOd2IN]1RUDTIS, =SWeU JUsSuUSTo>
<2ousnbos>

<uoNIl,=30eI13sge ,,odALISTITIUSPIADTITOgDIN3RUDTS, =oweu odAxaTdwod>
<odArxoTdwod />
<3usjuopxaTduod />
<UOTSU93IXD/>
<sousnbss/>
</uwhkaeUTgp9eseq: sx,=odA] ,,JUSWSTIPUODSS,=SWeU JUSWSTo>
</uwbuTils:sx,=odAk] ,JusWSTEISITI,=SWRU JUSWSTO>
<sousnbos>
<,odAA3TiUSpIolRUIS]TY :WdS, =95 UOTSUDIXD>
<3us3uopxaTdwoo>
<uw2dALUSOLAITIUSPIDITIOARIINO ,,=oweu odALXsTdWoD>
<odArxeTdwod />
<oousnbes/>
</uwodATAue:sx,,=odA] ,,USOTAQTIUSPI,=SWEU JUSWSTO>
<odusnbas>

3 jjeiq €-evs

€6 pansesai siybl 1 — G00Z NdN @

</uwbuTIls:sx,=o2dAk] ,WOIAPTTRAGQGX,,=SWeU JUSWST>
</uwbuTI3s:sx,=odhk] ,,20IN0SSNILISEOGX,=OWRU JUSWSTS>
</ueNI3,=9TgeITTuU ,buTiis:sx,=0dAk] ,TeTISSE(QGX,=SWeU JUsSuUSTo>
</uwoNI3,=9TgeITTu ,butiis:sx,=odA] ,ISNSSIEQGX,=SWeRU JUsuUSTo>
</wbuTtals:sx,=odA] ,,309[qnSEQGX,=SWrU JUSWUSTo>
<2ousnbos>
<uw2dA10JUIg0GX=2Wwru odALxoTdwWoO>
<odAgxoTdwod />
<sousnbss/>
</wona3,=2TqeTTTu ,odArejegpatyTreny:wuds,=2dAky ,, TSDMJ,=SWeu JusweaTo>
</woNI3,=9TgeITTIu ,butais:sx,==dA] ,SUTLDOUTUDTS,=SwWeU JUSWSTS>
</uweNI3,=9TqeITIU ,buTais:sx,=2dA] ,,00Ty31dAIOUZIUS]IUOD,=SWRU JUSWSTS>
</woNI3,=9TqeITTu ,butiis:sx,=odA] ,0DTYUSEHIUSIUOD,=SWrU JUsusSTo>
</uoNI3,=9TqeTITu ,butiis:sx,=2dA] ,UsSeHlus31uU0),=2uru JUsSWSTo>
</weNI3,=9TgeITTu ,odArelegpetiTrend:uds,=2dA] ,,1US3UO0DPSULTS,=SWeU JUSWSTo>
<2ousnbos>
<u,odArozuIsanjeubts, =sweu o2dAxsTdwoo>
<odAxeTdwod />
<oousnbss/>
</uwbutIls:sx,=adhk] ,SnTep,=SwWeuU JUSWSTS>
</wbuTIa3s:sx,=odhk] ,swepN,=sweu JuswusTe>
<oousnbos>
<uodAle3Eepe3oNilus]l1uo), =swueu odALxsTdwod>
<odAxeTdwod />
<3jusjuopaTdwIs />
<UOTSUDIXD/>
</uwbuTtals:sx,=odhk] ,odALSWTR,=2Weu 93ngrilie>
<,RaieUTp9OSeq:SX,=9SP(UOTSUDIXD>
<3jusjuoDaTduts>
<,9dA13us3juo)dTeuTtbriQ, =oweu odALxsTdwWoO>
<odArxeTdwod />
<3jusjuopeTduts />
<UOTSUD]1IXD/>
</uwTeuoTado,=ssn ,burtils:sx,=sdA] ,odALSWTIK,=2Weu o31ngriliie>
<,AxeUTgp9OSeq:SX, =SB UOTSUSIXD>
<3jus3uoDaTduTs>
<u,odAreazegporiTTEn)d, =sweu o2dAxsTdwoo>
<odArxeTdwod />
<3jusjuopaTdwIs />
<UOTSUDIXD/>
</uwTeUuOT3dOo,=2sn ,Iy¥nAue:sx,=adA] ,3PWIOF,=SWeU 93NgTI31e>
</uwTeuoTado,=9sn ,butiis:sx,=2dA] ,ISTITTENDSWEN,=SWeU S3NgTII1e>
<,bUTIIS:SX,=9SBq UOTSUDIXD>
<3jus3uoDaTduTsS>
< 9dALIsTITiUSpPISWEN, =dweu odAxsTdwod>
<odArxeTdwod />
<oousnbes/>
</u®NI3,=9TgeTITu ,butijis:sx,=odA] ,,pIOMSSEJ,=SWEU JUSWSTO>

3 yeiq €-evs

pansesai spybl il — G002 NdN ©

<,buUTI3S:SX,,=9S®g UOTIDTIASDI>
<,uot3doptreA,=sweu odArsTdurs>

</uwS23INATIIIIYILISOJOADTIISY, =oNTeA

<odArsTduts />
<UOT3D0TIISSI/>

uoT3eISWNUSD>
</uATPUUNIMGOASTI]SY,=9NTEA UOT1IRIDUNUS>
</,93B00T,=9NTeA UOTI]BRIDUNUS>
</uw3dAI09(Q,=oNTEA UOT}RISUNUS>
</uw31dAI0Ud,=9nTPA UOTIRISUNUS>
</uw3UsAgboT,=onTes uoTlRISWNUS>
</u®T0A09ITT1IP]1G,=oNTRA UOTIRISWNUSD>
</wUDbTg,=onTeA UOTlRISUNUS>
</uwS3ATNSoYoASTI}Y,=oNTeA UOTIRISWNUS>
</uwA3TIbO3UIYNOBYD,=oNTRA UOTIRISWNUD>
</uwdIBWISOJ,=SnTea uUOTleISWnus>
</wAITISA,=ONTEA UOTIRIDWNUS>

<,bUTI3S:SX,=9SRq UOTIDTIISSI>
<, uoT3eaadOpPTITBA,,=2weu =dAroTdwuTs>

<odALeTdwuTs />
<UOT30TIISDI/>
</uwPeXTR,=9NTeA UOTIRIBUNUSD>
</uIBNPTIATPUI ,=SNTEA UOTJRISWNUS>
</uwIBUOTIRZTURDIO,=SNTEA UOTIRISWNUS>
</uwIBgOoTH,=2nTeA uoTlBIBUNUS>

<,bUTI3S:SX,=9SRg UOTIDTIISSI>
<,S9do0g, =sweu adALoTduTS>
<odAxeTdwod />
<3usjuopeTdwTs />
<UOTSUDIXD/>

</uwTeuot3do,=asn ,sadoog:ude,=2dA] ,I9TITTENn0od0oOS, =sWeu 923ngrilie>

<,PUTIIS:SX,=9SBq UOTSUDIXS>
<3usjuopaTdwuIs>
<wodA1eweNA3aed,=2weu adAIxaTdwoo>
<odArxeTdwoo />
<oousnbes/>

</uwPNI},=STqeTTTu ,butais:sx,=5dA3 ,,qI30B3IUOD,=SWeu JuswsTo>

</wPopunoqun,=sIndoQxeuw ,(0,=SINOOQUTW ,SNI3,=STqeTITu ,uoTiexsdopTTeA:uds,=odAk] ,,S3usAFAITION,=SWEU JUSWSTS>

</uTonr9TSso00ypPTTRA:WdS,,=2dA] |, TOASTSSS00Y,, =SWRU JUSWSTo>
</wodAoueNAyaed :wds, =odA] ,SWeNA3Ied,=SWeu jususTo>

<9ousnbos>

<uwodArA3aegbutiedroriaed,=sueu adAxoTdwoo>

<odArxeTdwoo />
<sousnbss/>

</woni3,=9TqelTTu ,8dA1e3equUoTlePTTRA60GK Wde,=0dA] ,,23BqUOTIEPTTRAG(QGX,=SWRU JuUsuUSTa>
</woNI3,=9TgeITTuU ,buTais:sx,=o2dA] ,SUTJUOTILO0ASYE(GX,=SWRU JUSWSTS>
</uonI3,=9TqelITu ,burtiis:sx,=2dA] ,HPUTIISUOSESYUOTILDOADNE(GX,=SWRU JUSUSTO>
</wonI3,=9TgeITTu ,butiis:sx,=odA] ,UOSEOYUOTIROOADYE()GX,,=SWrU JUsSuSTo>
</u®NI3,=9TgeTITu ,butiis:sx,=2dA] ,,81e0TITIISDE0GX,,=SWEU JUSWSTO>

</uwbutais:sx,=odA] ,0IPTTRAG0GK,=OWEU JUSWSTO>

3 jjeiq €-evs

G6 pansesai spybl iy — G002 NdN ©

<UOT3D0TI3SDI/>
</uwTd0,=9NTeA UOT3IeIa2WNuUa>
</uw®TTd,=oNTeA uoTIeISUNUS>
</uNd,=oNTeA UOT3IEISUNUS>
</uOUWEeN PaysInhuUIISTJ,=oNTLA UOTIRIDUNUSD>

<.,buTI3S:SX,=9SBq UOTIDOTIISSI>
<u2dALUDIP9S93POTITIISDPIIRA,,=2weu adAroTduTs>

<odALeTdwTs />
<UOT3DTIISOI/>

</uo3eTduel-9ISATNX,=SNTeA UOT3RISWNUS>
</ PoUOe19P-9ISATHX,=ONTEA UOTIRIDUNUS>
</ PUTdOTOAUS-DISATHX,=9NTEA UOT1RIDUNUS>
</uwDISATHX,=SNTeA uoTlRISWNUS>
</uPoydel1ep-/SOMd,=°SnTeA uoTjeIBWNuUS>
</ulSO¥d,=°nTeA uoTleIaWnus>

<,buUTI3S:SX,=9SRg UOTIDTIISOI>
<,odA12In1eUubISPITRA,,=2dweu =dAroTduTts>
<odALeTdwuTs />
<UOT3IOTIISDOI/>
</.POUDIS,=onTea UOTIERIDUNUS>
</uw3IneJyeQq,=onTeA UOTIRISWNUS>
<,bUTI3S:SX,=9SRg UOTIDOTIISOI>
<, ToASTSSOOOYPTITRA,,=2dWweu odAroTdwTs>
<odALeTdwuTs />
<UOT3OTIISOI/>
</uoT1qeoT1ddy 2J0N,=°onTeA UOT3IRISWNUSD>
</a.Po309YD 3ION,=SNTeA UOTIRIDUNUS>
</uwPo¥03UD,=SnTes UOTJeISWnus>
<,butI3ls:sx,=9seq UOT3IDOTIISSI>
<uISTITTENDOPTTRA,=2weu odArsTdurs>
<odAresTduts />
<UOT3OTIYSOI/>
</.Doppaquis,=onTeA UOTIRIDUNUS>
</u9UOTEpUR]S,=9NTeA UOT}RISUNUS>
<,butI3s:sx,=9seq UOT3IDOTIISSI>
<,UOT3EeD0TPITRA,=2weu adAraTduTs>

3 yeiq €-evs

<odAresTduts />
<UOT3DTIYSOI/>

</wOFUIEOGXUINISY,=SNTeA UOTIRISWNUS>
</,0JuISIn]leubISuINgay,=onTeA UOTIRISWNUSD>
</wa3TPnydwelSawT [uInley,=onTes UOTleISwnus>
</ u3dTo0ogpPayIPKNISOIONSST,=SNTRA UOTIRISUNUS>
</,o0USpPTAHUOTIRTIPNdOy UONSI0]S,=9NTeA UOT]RISUNUS>
</uwosuodsoygildAIoug,=onTes UOTIRISWNUS>
</uwedoTsaugbutwoourldAios(,=onTrA UOTIRISWUNUS>
</u®31BDTJITIISDAITION,=SNTRA UOTIRISWNUS>
</u®T0A0SITTPUSIXY,=0ONTEA UOTIRIDUNUSD>
</uw®TO0A0SITIPUH,=SNTEA UOTIEISBUNUS>

pansesai siybl 1 — G00Z NdN @ 96

<yodAguorieoT1ddylusT), =sweu =dArxeTdwoo>
<odArxoTdwod />
<sousnbss/>
<3D0TOUOD/>
</w2dAe3egpaTITIend :wds,=2dA] ,,oNnTeAPSpPOOUY,=SWeu JUsSusSTa>
</ubuTIls:sx,=adk] ,onTep,=2WeU JUSWSTSO>
<90 TOUD>
</wbuTIils:sx,=odhk] ,SwepN,=SWeu JuswsSTo>
<oousnbas>
<uodAre3epeispidroosy, =sweu odAxaTdwoo>
<odAgxoTdwod />
<sousnbss/>
</a.Pepunoqun, =sIndoo0xXeu
w0u=SINDOQUTIW ,°NI3,=TqeTTIu ,2dArejepeispyidrooay:wds,=odA] ,©3ePe3IsN3IdIo0oy,=SWrPU JUSWDTO>
</uweNI3,=2TqeITTu ,adArelregpetiTrend:uds,=2dA] ,,8D0PUIYIPKISOJ,=SWRU JUSWSTo>
</woNI3,=9TqeITTu ,Axeurdpg9sseq:sx,=o2dh] ,JuTtiduIsbesssp,=sweu jususTo>
</uwIu=SINDO0Xew ,0,=SINOOQUTW ,9nI3,=STqeTITu ,=odAreiegpatiTTend:wds,=sdA] ,usyoldwelSawWT], =SWeu JUsusTa>
</uwISTITTENDPTIRA:WdS ,,=2dA] ,I9TITTENDSNIPISUOTILDO0OADY,,=SuRU JUSWSTa>
</uwbuTals:sx,=o2dhk] ,enTepdwelSowT], =SWeu jususTo>
</uwbuTtads:sx,=odhk] ,sweN109[qnSEQGXVYSL,,=2WeU JusuaTo>
</wuoTaeradoptTeA:wds, =odA] ,uoTieiadQ,=2Weu JuswusTa>
</uwoNI3,=9TgeITTu ,buTiis:sx,=odA] ,I91sonbsy,=cweu jJuswsTa>
</uw2dALAsyuoTioesueay uds,=adA] ,AsyuoTioeSURI],=SWPU JUSWSTS>
<o0usanbas>
<,2dA13dTo00ay, =2weu odALxsTdwod>
<odArxeTdwod />
<oousnbes/>
</uwodArejegpatITiend :wde,=2dA] ,2In3eubTS1dIo00Y,=SWeu JUSWSTo>
</uw2dAr1dTe0sy :uds,,=adA] ,1dTe08Yy,=sWeuU JUusWSTa>
<o0usanbas>
<u2dA13dTo0opaubTS/ SOMd =2weu adALxaTdwoo>
<juswsTa/>
<odArxeTdwod />
<oousnbas/>
<20TOUD />
</uw2IN3eubIS:sSpP,=J2I JUSWSTS>
</w2dA11dTe00gpaubTs,SOMd twds,,=2dAk] ,,1dTo0SPaUbTS /SO ,,=SWeu JususSTa>
<90TOUD>
<2ousnbos>
<adAxsTdwoo>
<, 3dTo00oYpPaxIPNISOJ,,=SWeU JUSWSTo>
<odAreTduts />
<UOT3DTIISOI/>
</uobIeT,,=9nTRA UOTIRISWNUS>
</ WUNTPSK,=9NTEA UOTIRISDWNUS>
</uTTBWS,=9NTeA UOTIRISWNUS>
<,buUTI3S:s%,=9Seq UOT3IOTIISOI>
<,.9zZTSobeWIPTTeA,=2weu =2dAraTdwTs>
<odAreTduTs />

3 jjeaq €-€vs

16 pansesai spybl iy — G002 NdN ©

</wonI3,=oTqeITTu ,odArA3T3uspIpawre) :uds,=adA] ,A3TIUSPIpPSWIRTD,=2WRU JUsSWSTS>
</uwonI3,=2T1qeTTTu ,odArAsyuoTrioesuei] :wds,=odA] ,AsyuoTioesuri],=SWeu JUususTa>
</uwbuTIls:sx,=adAk]1 ,UOTSISA,=SWEPU JUSWSTO>
</wodArsuotadoAFTaoA :wde,,=2dhk] ,,SUOTIdOATITIOA,=SWEU JUSWSTSO>
<2ousnbos>
<adAxaTdwoo>
<u3sonboygAITIon,=SWeU JUSWSTO>
<odAgxoTdwod />
<sousnbss/>
</woNI3,=9TqeITTuU ,butiis:sx,=2dA] ,I2ITTeND,=SWeU jususle>
</uwoNI3,=9TgeTTTu ,buTiis:sx,=odAk] ,soedgswepN,=2Wweu JuswsTa>
</uwbutils:sx,=adhk] ,yledy,=Sweu JuswSTo>
<o0uanboas>
<uodArI0309T9syledx,, =sweu adArxaTdwoo>
<odArxeTdwod />
<sousnbss/>
<3DTOUOD/>
</w2dALI0309Togyledx wds, =2dhk] ,,10309T9SY1eIX,=SWEU JUSWSTS>
</wPopunoqun,=sindooQxeu ,PbuTtils:sx,=odA] ,SWENSPON,=SWeu JUususTs>
<90 TOUD>
<odusanbas>
<uodA110309T9g2In3eUDTS,,=dweu odAxeTdwoo>
<odArxeTdwod />
<3jusjuopeTduts/>
<UOTSUD]XD />
</uwITRUWS,=3TneJep ,9zTSsbewIpIiieA:uds,=adA] ,92ZTS,=SWeU 33nqIrijie>
</uwddru=3Tneyop ,burtais:sx,=9dA3 ,JewIroq,=SWeU 23ngqrijje>
<,UB9T00J:SX,=9SBJ UOTSUDIXD>
<3jusjuoDaTduts>
< odA1ebeuryaeNiIsod, =oweu odAxaTdwod>
<odArxeTdwod />
<oousnbes/>
</uwOu=sanoooutw ,adArebeuryierlsod:wds,=odA] ,,oDPWINIPNISO,=0WeU JUSWST>
</u0u=SINODO0UTW ,UOTIRD0TPITRA:udS,=5dA] ,UOT3ED0T,=0WeU JUSUWSTO>
<odusanbas>
<,9dA13dTo0oygpasIeN3IsogonssT, =sweu 2dAxsTdwod>
<odArxeTdwod />
<3jusjuopeTduts />
<UOTSUD3XD />
</uTeuoTado,=9sn ,TdnAue:sx,=odA] ,T¥NSWSYDSWIOISURILIUSIUOD,=SWrU S93NJTIIIe>
<,DUTI3FS:SX,=9SBg UOTSUDIXSD>
<3us3juoDeaTduTs>
<uodAIPWeyoSWIOISURILIUS3UOD, =2weu odAxsTdwoo>
<odAgxoTdwod />
<sousnbss/>
</uonI3,=9TgeTITu ,odAlsweyoSuIOoIsurI]iusjuoc) :uds, =odA] ,,SWeUDSWIOISURILIUSIUCD,=URU JUSUSTO>
</uwbuTIls:sx,=0dAk] ,,UOTSISAPUYSWEN,=SWrU JUSWUSTo>
<oousnbas>

3 yeiq €-evs

pansesai siybl 1 — G00Z NdN @ 86

</wodAzuotyeorTddyiusT1d :uds,,=2dA] ,uoT31ed0TTddylusT), =2Weu JususTa>
</uwonI3,=9TgeITTu ,butiis:sx,=odA] ,qIUOCTIRZTURDIQ,=SWEU JUSWSTS>
</woNId,=9TqeITTu ,adArA3TiuspIpswreT) :uds,=2dA] ,A1T1USPIPSWIRTD,=SWeU JUSWSTS>
</uwenIl,=9T7qelTTu ,adArAsyuorioesuer] :wds,=adAk] ,AsyuoTioesSurI],=SWeEU JUSWSTa>
</wodAeanjeubtgpTTeA:Wde,,=adA] ,odA1eIn3eUbIg, =Wru JUsSWSTS>
</uwbuTIds:sx,=odAk]1 ,UOTSISA,=SWEU JUSUWSTO>
</uw2dALsuoTadoyaeNasod :uds, =odA1 ,,suUOTIdOYIBNISOd,=SWrU JUSWSTa>
<2ouonbos>
<odAxsTdwoo>
<ul1sonboyxyIeN3lIsod,=oweu JuswusTo>
<juswsIs />
<adArxeTdwod />
<odousnbas />
</uonI3,=9TqeTITu ,2dA10JuleOGX:wds,=2dA] ,0JUIEFQGX,=SWEU JUSWSTo>
</woNI3,=9TqeITTu ,o2dAroJursinjeubrs:uds,=2dA] ,0Jul=Inleubrs,=sweu JuUsusTo>
</woNI3,=9T0qeITTu ,odArelegpatiTtrend:uds,=odA] ,e3egaInieubrs,=sweu JususIo>
</uw0u=sInoooutw ,3dTo0oypoyaenisod:uds,=Jo1 JUuswusTa>
</wodALAsyuoTioesuea] :wds,=adA] ,AsyuoTi0BSURI],,=SWPU JUSWSTo>
</wPepunoqun,=sindooQxeu ,(,=SINO0QuTu
WONIY,,=9TqeTTTuU ,odALTTe3agsniejgsuorioesuei] wds,=odA3 ,,TTE3ISCSNILISUOTIOLSURI,,=SWERU JUSWDTI>
</ubutias:sx,=odAk] ,SN1e]1SUOTIOESURI],=SWeU JUSWSTo>
<2ouonbos>
<odAxsTdwoo>
<,OSUOdSOgAITIOA, =SWRU JUSWSTO>
<odAgxoTdwod />
<sousnbss/>
</wUBST00g:s%,=2dA] ,0JUIEQGXUINIDY,=SWRU JUSWSTO>
</u,UuesT00q:sx,=2dA] ,,0JUISINIPUDTSUIN]SY,=0WRU JUSUWSTO>
</uwenId,=2TgelTTu ,adAridreosygpayirfisodenssT uds,=2dA] ,1dTe00dpPaIPNISOJaNSST,=SWeu JususTa>
</auesT00q:s¥,=2dA] ,,00USPTAFUOTIRTPNdSYYUONSIO]S,=SWeU JUSWSTo>
</auesto0q:sx,=2dA] ,,osuodsaygldAIOud,=SWeu JUSWSTo>
</wues100q:sx,=adA] ,adoTsAaugbuTwoourl1dAIOS(,=SWrU JUSUSTS>
</uwUeeT100q:sX,=2dA] ,,91e0TITIISDAITION, =SWRU JUSWSTO>
</auestooq:sx,=2dA] ,,0T0ADSITIPUDIXH,=0WEU JUSWSTO>
</uwUea100(q:sx,=2dA] ,970A0SITIPUH,=0WEU JUSWSTS>
<oousnbos>
<wodArsuoT3dpAITaon,,=dweu odAxoTdwoo>
<jusweTe/>
<odArxaTdwod />
<sdusnbss />
</a.Popunoqun, =sInooQxXeu
w0u=SINOOQUTIW ,9NI3,=TqeTTTuU ,o2dArelepeisniuajuo) :wdse,=o2dA] ,B3PPLISdIUDIUOD, =SWeU JUSWSTS>
</uwenI3,=9TgelTTu ,adArI0308Tsgainjeubrs :wds,=adA] ,,I0308TS52IN1RUDTS,,=SWeU JUSWSTS>
</uw0Ou=sInooputw ,3dTe0aypeyienisod:uds,=Jo1 JususTo>
</uwonI3,=9TgeTTTu ,adAreiregpsriTrend:uds,=odA] ,,3US3UOCDPSULTS,,=SWEU JUSWSToS>
</wonIl,=9TgeTTTu ,adAreiregpsriTrend:wuds,=odAk]1 ,eplegaInleubTs,=SwWeu JuswaTs>
</udNI3,=3TqeTTTu ,butais:sx,=odA3 ,ISTITIUSPIFUSIUOD,=SWEU JUSWST>
</wodAgzuotieoTTddylust1d :wds,,=2dA] ,,u0oT1e0TTddylUST),=SWeu JUsSuSTa>
</uweNI3,=9TgeITIuU ,buTiis:sx,=odA] ,qIUOCTIRZTIURDIQ,=2WRU JUSWSTS>

3 jjeiq €-evs

66 pansesai siybl 1 — G00Z NdN @

</uwenId,=2TqelTTu ,odAr3dreooypeyirisodenssT uds,=2dA] ,3dTe00dpPaIeNISOJaNSST,=oWeu JususTa>
</uwUBST000:SsX,=2dA] ,,90USPTAHUOTIRTIPNASYUONSIO]S,=0WeU JUSWSTa>
</awUeaT100q:sx,=2dA] ,adoTsaugbutwoourldiIosq,=SwWeu JuswsSTa>
<o0usanbas>
<u9dAsuoT3doA3Tabajuroay)d, =sweu odALxaTdwod>
<jusueTa/>
<odArxeTdwod />
<odousnbss />
</wPepunoqun,=sindoopxeu ,sdArjiusjuopTeurbrip:wds,=2dA] ,,3Uus3luo)IRUTDLTIO,=SWeu JuswaTa>
</woNI3,=9TqeITTu ,butiis:sx,==2dA] ,ISTITIUSPIIUSIUOD,=2WRU JUSWSTS>
</uwodAzuoTyeorTddyiusT D :wde,=2dA]1 ,uoT31e0TTddylusaT), =SWeu JUswaTo>
</uweNI3,=9TgeITIuU ,buTiis:sx,=odA] ,QIUOCTIRZTURDIQ,=2WrRU JUSWSTS>
</uo0I3,=3TqeTTTu ,odArA3T3UuspIpawte D wde,=odA3 ,A3T3USPIPSWTIRTD, =SWRU JUSWSTd>
</uwodATAeyuoTioesuei] :uds,=adA] ,As8yUuoTioeSURI],=SWERU JUSWSTO>
</uwenIl,=9TgeTTTu ,adArsanieubrspriep:wds,=adA] ,odA1sIn3eUbIg,=2WrU JUSUSTS>
</uwbuTIils:sx,=odAk] ,,UOTSISA,=SWEU JUSWSTS>
</uwedArsuotidoAaTabsiuryosyp: :uds,,=2dA] ,suoTi1doA3TIbo]uIyO8y),=SWeu JuswaTa>
<2dusnbsas>
<odAxoTdwoo>
<,3senbosygA3lTabojulzoayD, =SwWeu JUusSWSTO>
<jusueTa/>
<odAxasTdwod />
<sdusnbss />
</woNI3,=9TqeITTu ,odArejegpeTiTiend:uds,=2dA] ,e3egeInieubrs,=sweu JususIo>
</uw3dTIo0ogpay1eNIsod :wds,=JoI JusSwWSToa>
</wodALAsyuoTioesuea] :wds,=adA] ,AsyUOT10BSURI],=SWRU JUSWSTo>
</a.Popunoqun, =sIndo0Xeu ,0,=SINOOQUTu
WONI3,,=9TqeTTTuU ,odALTTe3agsniejgsuorioesuei] :wuds,=odA3 ,,TTRISCSNILISUOTIORSURIL,,=SWERU JUSWDTO>
</ubuTtias:sx,=odAk] ,SN31e31SUOTIOBSURI],=SWeU JUSWSTo>
<2ousnbos>
<odAxsTdwoo>
<,9suodsoydyILNISOd, =0WrU JUSWST>
<odArxeTdwod />
<sousnbss/>
</auesTo0q:sx,=2dA] ,,00USPTAHUOTIRTPNdSYYUONSIO]S,=SWeU JUSWaSTo>
</wUueSsT100q:sx,=2dA] ,osuodssyldAioug, =oweu JuswsTa>
</awUeaT100q:sx,=2dA] ,adoTsaugbutwoourldiiosq,=SwWeu JuUsSwWSTa>
</wUeeT100q:sx,=2dA] ,9T0AD0SITIPUSIXH,=0WRU JUSWSTO>
</uwUBST00g:s¥%,=0dA] ,9T0ADSITIPUH,=SWEU JUSWSTS>
<9ousnbos>
<uodArsuotidoyaenisod, =sweu odArxsTdwod>
<JusuWLTd/>
<adArxeTdwod />
<odousnbss />
</uPopunoqun, =sINdo0Xeu
w0u=SINOOQUTIW ,9NI3,=TqeTITTuU ,o2dArelepelsniuajuo):wds,=odA] ,B3ePe3ISa3UD1UO0D, =2WeU JUSWDTO>
</uwedAre3egpatITrIend::wds,=2dA] ,e3eQ,="WeuU JUSWSTS>
</uwdNI3,=STgeTTTU ,DUTI3s:sx,=0dA] ,ISTITIUSPIIUSIUOD,=SWEU JUSUSTS>

3 yeiq €-evs

paniesal spybl 1Y — G00Z NdN ® 00l

<9dusnbas>
<odAxaTdwoo>
<,3sonboyeT0ADSITTI3IR]S,=SWRU JUSWSTS>
<jusueTa/>
<odArxeTdwoo />
<oousnbas/>
</wodALAsyuoTioesuer] :wds,=adA] ,AsyuUuoT10BSURI],=SWRU JUSWSTO>
</a.Popunoqun, =sIndo0xXeu ,0,=SINOOQUTU
WONIY,=9TqeTTTIU ,odAlTTe3agsnieisuorioesuei] :uds,=odA] ,,TTR3ISCSNILISUOTIORSURI, =0WRU JUSWSTS>
</ubuTias:sx,=odAk] ,SN31e3SUOTIOBSURI],=SWeU JUSWSTo>
<2ousnbos>
<odAxsTdwoo>
<,9suodsoy¥lusAghOT,,=oWeU JUSWSTo>
<odArxeTdwoo />
<oousnbes/>
</wues100q:sx,=2dA] ,adoTsaugbutwoourldAI0s(,=SWrU JUsSUSTo>
</auesto0q:sx,=2dA] ,,8T0ADSITIPUSIXH,=SWEU JUSWSTO>
</u,Ues100g:sx,=2dA] ,970A0SITIPUH,=WEU JUSWSTS>
<20usanbas>
<,9dAsuoT3doliusagboT, =oweu odALXsTdWoD>
<jusueTa/>
<odArxeTdwod />
<sdusnbss />
</a.Popunoqun, =sInooQxeu
w0u=SINOOQUTIW ,9NI3,=TqeTTTu ,odArelepeisniuajuo)d :wds,=o2dA] ,B3PPLISDNIUDIUOD, =SWeU JUSWSTS>
</uwedAreaegpatTITrend :wds,=2dA]1 ,e3eQ,=2WReU JUSWSTS>
</uoNI3,=3TqeTTTu ,butais:sx,=odA3 ,ISTITIUSPIFUSIUOD,=SWEU JUSWST>
</wodAgzuotieoT1ddylusTt1d :wds,,=2dA] ,uoT1e0TTddylUST),=SWeu JUsSuSTa>
</uweNI3,=9TgeITIuU ,buTiis:sx,=odA] ,QqIUOCTIRZTIURDIQ,=2WrRU JUSUWSTS>
</udNI3,=3TqeTTTu ,2dALA3T3UuspIpawte D wds,=odA] ,A3T3USPIPSWTETD,=SWRU JUSWSTO>
</wonI3,=2T7geTTTu ,odArAsyuotioesuei] :wds,=odA] ,AsyuoTioesuri],=SWeu JUususTa>
</uwbutIals:isx,=odAk] ,,UOTSISA,=2WRU JUSWSTS>
</uwedALsuoTtadolusagboT :ude, =odhk] ,,suotidolusagboT,=sweu JususSTo>
<2ousnbos>
<adAxaTdwoo>
<u3seonbeyiusagboT, =oweu JusSWSTO>
<lusuweS TS />
<odArxeTdwod />
<odousnbss />
</u0u=SInooQuTtu ,3dIo0aypayIeNisod:uds,=JoI JUswaTo>
</wodALAeyuoTioesue] :wds,=adA] ,AeyuoTioeSURI],=SWeU JUSWSTo>
</a.Popunoqun,=sIndoQxXeu ,0,=SINOOQUTU
WONIY,=9TqeTTIU ,odAlTTe38gsnieigsuorioesuer]::uds,=odA] ,,TTR3ISCSNILISUOTIORSURI, =0WRU JUSWSTS>
</ubuTtias:sx,=odk] ,SN31e3SUOTIOBSURI],=SWeU JUSWSTo>
<2ousnbos>
<adAxsTdwoo>
<uosuodsoygAlTIboluIyoay),=SWweu JUuswaTo>
<odArxeTdwoo />
<oousnbes/>

3 jjeiq €-evs

0L

pansesai spybl iy — G002 NdN ©

w0 u=SINODOQUTW

wodALTTRlI9gSNn3e3SUOTIDRSURI (wde, =2dA] ,, TTP3IS0SN3IPISUOTIORSURI], =SWeU JUSWSTa>
</uwbuTals:sx,=odAk] ,,sn3elsuoTioeSURI],=SWeu JUsSuSTo>
<odusnbos>

<adAxaTdwoo>
<,9SUOdSOYSITNSOYSASTIFOY,,=SWRU JUSWSTS>
<odArxeTdwod />
<oousnbes/>
</wUBST00g:s%X,=0dA] ,0JUIEQGXUINIDY,=SWRU JUSWSTS>
</u,uesTooq:sx,=2dA] ,,0JUISINIPUDTSUIN]SY,=0WRU JUSUWS o>
</wUeaT100g:sx,=2dA] ,3TpnydurlSauT[uInysy,=sueu jususTo>
</auesto0q:sx,=2dA] ,,osuodsaygldAIOud,=SWeu JUSWSTo>
Jusus o>

WONIY,=8TqeTTTU

</uwenIl,=2T7gelTTu ,adAr3drsosypayarfisodenssT uds,=adA] ,31dTe0odpPayIrNISOJaNSST, =SWeu
</wUBST00g:s%X,=2dA] ,,90USPTAHUOTIRTIPNAOYUONSIO]S,=0WeU JUswaTa>
<sousnbas>
<u9dAsuoTadposaTnsoygasaTiioy, =sweu odAxaTdwod>
<jusuLTa/>
<adArxeTdwod />
<odousnbas />

</uwodAruoTyeorTddyjusT D :wde,=2dA]1 ,uoT31e0TTddy3lusaT), =SWeu JUswaTo>
</uweNI3,=9TgeITIuU ,buTiis:sx,=odA] ,qIUOCTIRZTURDIQ,=2WeRU JUSUWSTS>
</wonI3,=0TqeITTu ,odArA3T3uspIpawre) :uds,=adA] ,A3T1USPIPSWIRTD,=2WRU JUSWSTS>
</wodALAsyuoTioesue] :wds,=odA] ,AsyuoTioBSURI],=SWEU JUSWSTo>
</wodAleanjeubtgpTTRA:Wde, =adA] ,odA1eIn3eUbTS, =sWeU JUSWUSTS>
</uwbuTtIils:sx,=odAk] ,,UOTSISA,=SWrU JUSWSTS>
</uw2dAsuoTadosaTnssygsnssTilay :uds,=odA] ,,sUOTIdOSITNSOYSASTIISY,=SWeU JUsSWSTa>
<9dusnbeas>
<odAxaTdwoo>
<,1sonbays31TNSSYoASTILOY, =SWrU JUSWUSTO>
<jusueTa/>
<odArxeTdwod />
<sdusnbss />
</wodALAeyuoTioesue] :wds,=adA] ,AeyuoTioBSURI],=2WLU JUSWSTO>
</a.Popunoqun,=sIndo0Xeu ,0,=SINOOQUTU
WONIY,=9TqeTTIU ,odAlTTe3agsniejsuorioesuer] :uds,=odA] ,TTR3ISCSNILISUOTIORSURIL, =0WRU JUSWSTS>
</ubutias:sx,=odAk] ,SN1e3SUOTIOBSURI],=SWeU JUSWSTo>
<2ousnbos>

<adAxsTdwoo>
<,9suodsoygeaT0A09ITT3IR1S,,=2WRU JUSWSTO>
<JusuLaTa/>
<adArxeTdwod />
<odousnbas />
</usSodoog:uds,=2dA] ,2d00SSS900Y,,=SWeU JUSWSTo>
</a.Popunoqun, =sIndoo0xXeu

WonI3,,=oTgeTTTu ,odArA3aegburiedroriaed:wuds,=2dAky ,A3aegburiedIoTiaed,=>oweu JuUsSwWoTS>

</wodAzuotyeorTddyiusT1d :wds,,=2dA] ,uoT1edTTddylusT), =SWeu JususTa>
</uweNI3,=9TgeITIu ,buTiis:sx,=odA] ,qIUOCTIRZTURDIQ,=2WRU JUSUWSTS>
</uP0I3,=3TqeTTTu ,odArA3T3UuspIpawte D wds,=odA3 ,A3T3USPIPSWTIRTD,=SWRU JUSWSTS>
</uwbuTtIls:sx,=adAk] ,UOTSISA,=SWEU JUSWSTS>

3 yeiq €-evs

paniesal spybl 1Y — G00Z NdN ® Z01

<uodAgsuotidoubtg, =oweu adAxsTdwoo>
<jusuLTa/>
<adArxeTdwod />
<sdusnbss />
</a.Popunoqun, =sInoo0xXeu
w0u=SINOOQUTIW ,9NI3,=TqeTTTuU ,o2dAre3lepeisniuajuo) :wds,=odA] ,B3ePPLISdN3IUDIUO0D, =SWeU JUSWSTS>
</woNId,=9TqeITIU ,IdnlAue:sx,=2dA] ,qIADTTOd=2In31RUDTIG,=WrU JUSWSTS>
</uwoNI3,=9TgeITTu ,buTiis:sx,=odA] ,sweNASY,=Sueu JUswsSTo>
</wodAsanjeubtgpTTRA:Wde, =2dA] ,odA1eIn3eUbTg, =sWeu JUsSuSTS>
</uwedAre3egpetITrIend :wds,=2dA] ,e3eQ,=2WRrU JUSWSTS>
</woNI3,=9TgeITTIu ,butais:sx,=odA] ,ISTITIUSPIIUSIUOD,=SWEU JUSWSTS>
</wodAzuotyeorTddyiusT1d :uds,,=2dA] ,uoT31edTTddylusT), =SWeu JususTaS>
</uwoNI3,=9TgeITTu ,buTtiis:sx,=odA] ,qIUOCTIRZTURDIQ,=2WeU JUSWSTS>
</uonI3,=sTqeTITu ,aodArA3TiuspIpauTteT) :wds,=o2dA] ,A1TIUSPIPSUWTIRTD,=SWRU JUSWSTo>
</uwenI3,=2T7qelTTu ,adArAsyuorioesuer]:wds,=adAk] ,AsjuoTioesSuURI],=SWLU JUSUSTS>
</wbuTIils:sx,,=odAk] ,UOTSISA,=SWEU JUSWSTS>
</uwodArsuoTtidoubts :wds,=adA] ,suoT3doubTs,=sweu JususTo>
<oousnbes>
<odAxaTdwoo>
<,3seonboyubTg,=oWePU JUSWSTO>
<odArxeTdwod />
<oousnbss/>
</uwenI]l,=9T7geTTTu ,adAr0JulgQgX:wds,=odA] ,,0JUIEQOGX,=SWRU JUSWSTS>
</wonI3,=0TqeITTu ,odArojursinjeubrs:uds,=odA] ,0JUI=IN1LUDLTS,=SWRU JUSWSTO>
</awPepunoqun,=sIinodoQxeu
w0u=SINOOQUTIW ,9NnI3,=TqeITTu ,o2dArezegpaTitrend:uds,=odA] ,3TpnyduelsSaut],=oweu JususTo>
</a.Pepunoqun, =sInooQxXeu
w0u=SINDOQUTIW ,°NI3,=TqeTTIu ,2dAre3zepeispyiusjuo) :wds,=odA] ,©3PPLRISNIUSIUOD,=0WrPU JUDWDTO>
</uPepunoqun,=sINd00Xew ,(0,=SINOOQUTW ,3NI3,=STqeTITu ,adigejegpaTITTend:uds,=odA] ,e3eQ,=0WPU JUSWSTSO>
</u0u=SIN0ooQuTW ,1dI90oygpayIeisod: :uds,=Jo1 JuswaTo>
</uP0I3,=STqeTTTu ,butais:sx,=5dA3 ,ISTFTIUSPIIUSIUOD,=SWEU JUSWSTS>
</wonId,=oTqeITTu ,a2dAguorieoTTddylusT D :wds,=adA] ,,u0T31e0TTddylUSTIT),=SWrU JUSWSTa>
</ud0I3,=0TqeITTu ,butais:sx,=odA3 ,predousnbegsnbrun,=sweu juswaTo>
</u®NI3,=9TgeTITu ,butiis:sx,=odA] ,qIUOTIRZTURDIQ,=0WEU JUSUWSTSO>
</uPopunoqun,=sINd00Xew ,(0,=SINOOQUTW ,9NI3,=STdeTITu ,uoTridopITea:uds,=adk] ,suotidouoTieradQ,=SWeu JUSWSTo>
</wbuTtils:sx,=odhk] ,uoTieiadQp,=oWeEU JUSWSTS>
</uw2dALAsyuoTioesuea] uds,=2dA] ,AsyuoTioeESURI],=SWPU JUSWSTS>
</a.Popunoqun, =sInooQxeu
w0u=SINOOQUTIW ,9NI3,=STqeTTTu ,o2dALTTe3agsnieizsuorioesuea wds,=2dA3 ,,TTRISCSN3ILISUOTIOLSURI],=SWEU JUSWSTO>
</ubuTti3s:sx,=odAk]1 ,Snle3lsuoTloBSURI],=SURU JUSWSTo>

<20usanbas>
<uwodArsaTnsoy, =sweu odArxsT7dwoo>
<lusus TS />
<odArxeTdwoo />
<odousnbss />
</wodALsaTnsay:uds,=2dA] ,S1TNSaY,,=SWEU JUSWSTa>
</uw0Ou=sInoooutw ,3dTe0syYpaxIenisod:uds,=Jo1 JususTa>

</uwodATAeyuoTioesuei] uds,=adA] ,A8yUoTioESURI],=SWRU JUSWSTO>
</u.Popunoqun, =sIndooQxXeu ,(,=SINOOQUTu

3 jjeaq €-€vs

€0l paniesal spybl (1Y — G00Z NdN ®

<wodA1suotidoadAaouyg,,=sweu odAxeTdwoo>
<jusuLTa/>
<adArxeTdwod />
<odousnbas />
</wPopunoqun,=sindooQxeu
w0u=SINDOQUIW ,3NnI3,=_TqeITTu ,odAreiepeispyiusjuo):wds,=adA] ,©31EePPISKIUSIUOD,=SWeU JUSWSTS>
</wPepunoqun,=sindooQxeu ,1,=SIN00QUTW ,buTtils:sx,=adAk] ,,dIS3eO0TITII9)D,=SWEU JUSWSTo>
</uw2dALUyoIeaS23e0TITIISDPTTRA i wds,,=odA] ,,odALydoIeaS293eDTITIIS9), =SWeU JUsSWSTa>
</uweNI3,=9TgeITTu ,buTiis:sx,=odAk] ,,0DTYASyUOTSSSG,=2WeU JUSWSTS>
</woNI3,=9TgeITTu ,buTiis:sx,=odA] ,,SWENSPON,=SWeu JususTo>
</uwodAreanyeubTspTieA:Wde,,=2dA] ,,adAre2In]1euUubTg, =swWeu JUsSwaTo>
</uwedAreaegpPeTITTIend :wds,=2dA]1 ,elEQ,=2WPU JUSWSTS>
</uoNI3,=3TqeTTTu ,buTtais:sx,=odA3 ,ISTITIUSPIFUSIUOD,=SWEU JUSWST>
</uwedAruoTieoTTddylusTID :wds, =odA] ,,u0T31edTTddylUST), =SWeU JUSWSTo>
</uwenI3,=9TgeITIu ,buTiis:sx,=odA] ,qIUOCTIRZTIURDIQ,=2WrRU JUSWSTS>
</ud0I3,=3TqeTTTu ,odALA3T3uspIpawre D wde,=odA3 ,A3T3USPIPSWTIRTD, =SWeU JUSWSTd>
</uwenIl,=9T7qelTTu ,adArAsyuorioesuer] :wds,=adAk] ,AsyuoTrTioesSurI],=SWeU JUSWSTS>
</uwbutIils:sx,=odAk] ,,UOTSISA,=2WRU JUSWSTS>
</uwodArsuotidordAaoug:wds,,=odA] ,suoT3d0lrdAIouyg,=SWeu JUSWSTS>
<oousnbes>
<adAxaTdwoo>
<u3senbeyidAzoud,,=oWeU JUSWSTS>
<juswsTa/>
<odArxeTdwod />
<oousnbas/>
</uweNI3,=9TqeITTu ,2dAL0JulgQGX:uds,=2dA] ,0JUIEQGX,=SWRU JUSUSTo>
</woNI3,=9T0qeITTu ,odAroJursinieubrs:uds,=odA] ,0JuI=inieubrs,=sweu JususIo>
</uwenI],=9TgeTTTu ,sdArelegpsriTrend:wuds,=odAk] ,elegaInleubTs,=SWeu JuswsTs>
</u0u=SInooQutu ,3dIo0aypayIeNisod:uds,=JoI JUswWaTo>
</wodALAsyuoTioesue] :wds,=odA] ,AsyuoTioeSURI],=SWeU JUsSWSTo>
</u.Popunoqun,=sIndooQxXeu ,0,=SIN00QUTU
WONIY, =9TgeITTu ,o2dALTTe3agsnieisuorioesue] :uds,=odA3 ,,TTRIS0SNILISUOTIOPSURI],,=SWERU JUSWSTO>
</uwbuTals:sx,=odAk] ,,sn3elsuoTrioesuri],=SWeu JUusSuS o>
<odusnbeas>
<adAxaTdwoo>
<,9suodsoygubTS, =oWeU JUSWSTO>
<odArxeTdwod />
<oousnbes/>
</auesto0q:sx,=2dA] ,,0JUIEQGXUIN]SY,=SWRU JUSUWSTO>
</,uesTooq:sx,=2dA] ,,0JUISINIPUDTSUIN]SY,=0WRU JUSUWSTO>
</wuees100q:sx,=2dA] ,osuodssylrdAioud, =oweu JuswsTo>
</awUesT100q:sx,=2dA] ,adoTsaugbuTtwoourldiIosq,=SwWeU JUusSWSTS>
</auesTo0q:sx,=2dA] ,,00USPTAHUOTIRTPNdSYYUONSIO]S,=SWeU JUSWSTo>
</uwonId,=2TgeTTTu ,odAr3drsoaygpsyaeNisodonssT uds,=odA] ,3dTo00y P ILPNISOJONSST,=oWeU JUSWSTa>
</a,uesaTooq:sx,=adA] ,,930TITII9DAITISA,=0WRU JUSWSTO>
</wUes100q:sx,=2dA] ,9T0ADSITIPUSIXH,=0WeEU JUSWSTS>
</uwUea100g:s%,=0dA] ,970A0SITIPUH,=WEU JUSWSTS>
<oousnbas>

3 yeiq €-evs

paniesal spybl 1Y — G00Z NdN ® vol

</auestooq:sx,=2dA] ,,0JUIEQGXUIN]SY,=0WRU JUSUSTO>
</wUeaT100g:s%,=0dA] ,0JUISIN3eUDTSUINISY,=0WEU JUSWSTS>
</uwUues100q:sx,=2dA] ,osuodssyldAioud, =swWeu JususTa>
</auesTo0oq:sx,=2dA] ,,90USPTAHUOTIETPNdSYUONSIO]S,=SWeU JUSWSTo>
</wUuee100q:sx,=2dA] ,9T0ADSITIPUSIXH,=0WRU JUSWSTS>
</uwUeST00q:s¥%,=0dA] ,9T0ADSITIPUH,=SWEU JUSWSTS>
<oousnbas>
<uwodA1suot3idoidAaosq,=sweu odAxeTdwoo>
<jusueTa/>
<odArxeTdwod />
<odousnbss />
</.Popunoqun, =sINdo0Xeu
w0u=SINOOQUTW ,oNnI3,=STqeTIIU ,2dAre3epeispiusjuo): :wde,=0dA] ,BIPPBRISNIUSIUOD,=SWEU JUSWSTO>
</uwodAreqegpatiTrend :uds,=adAk] ,eleqpedOoTSAUY,=0WRU JUSWSTS>
</uonI3,=9TqelITu ,buTtiis:sx,=odAk3 ,ISTITIUSPIIUS]UOD,=SWEU JUSWSTO>
</wodAzuotieorTddyiust1d :wdse,,=odA] ,uoT31edTTddyilusT D, =SWeu JUususTa>
</woNI3,=9TgeITTu ,butais:sx,=odA] ,JIUOCTIRZTURDIQ,=SWEU JUSWSTS>
</woNI3,=9TqeITTu ,adArA3TiuspIpawreT): :uds,=adA] ,A1T1USPIPSWIRTD,=2WeU JUSWSTS>
</uwonI3,=9T1qelTTu ,odArAsyuoTrioesuer] :wds,=adA] ,AsyuoTioesuri],=SWeu JUsusTa>
</uwbuTIds:sx,=odAk]1 ,UOTSISA,=SWEU JUSUWSTO>
</wodAsuotadoadAaoeq :wds,=adA] ,,suoT1dpildAIdoe(,=2WeU JUSWSTa>
<2ouonbos>
<odAxsTdwoo>
<.3senbeyidAzoeg,=oweu JusWSTS>
<juswsTs />
<adArxeTdwod />
<odousnbas />
</uonI3,=9TqeTITu ,2dA10JuleOGcX:wds,=2dA] ,0JUIEFQGX,=SWEU JUSWSTO>
</woNI3,=9TqeITTu ,odAroJursinjeubrs:uds,=2dA] ,0Jul=Inleubrs,=swWeu JususTo>
</w2dAzeaegpeTiTrend::uds, =2dA] ,e3egeInleubIs,=sWweu JuswaTa>
</uw0u=SInoooutw ,3dTo0oypoyIenisod:uds,=Jo1 JuswusTa>
</wodALAsyuoTioesuea] wds,=adA] ,AsyuoTi0BSURI],=SWEPU JUSWSTo>
</wPepunoqun,=sindooQxeu ,(,=SINooQuTu
WONI3,,=9TqeTTTu ,odALTTe3agsniejgsuorioesuei] :wuds,=odA3 ,,TTE3ISCSNILISUOTIOLSURIL,, =SWERU JUSWSTO>
</ubuTi3s:sx,=odAk] ,SN1e]1SUOTIOESURI],=SWeU JUSWSaTo>
<2ouonbos>
<odAxsTdwoo>
<,9suodsayldAIoud,=oWeU JUsWaTa>
<odAgxoTdwod />
<sousnbss/>
</wUB9T00g:s%,=2dA] ,0JUIEQGXUINIDY,=SWeU JUSWSTo>
</,UuesT00q:sx,=2dA] ,,0JUISINIPUDTSUIN]SY,=0WRU JUSWSTO>
</awUeaT100q:sx,=2dA] ,adoTsaugbutwoourldiIosq,=SwWeuU JuUsSwWSTa>
</uwonIl,=oTqelTTu ,odAr3dreoaypeyarnisodonssT uds,=2dA] ,3dTo00ydpaxIeNISOJoNSST,=oWeu JususTa>
</uuesT00q:sx,=2dA] ,,80USPTAHUOTIRTPNdSYUONSIO]S,=SWeU JUSWSTo>
</a,uesaTooq:sx,=adA] ,,930TITII9DAITISA,=SWRU JUSWSTO>
</uwUee100q:sx,=2dA] ,9T0AD9ITIPUSIXH,=0WEU JUSWSTO>
</uwUBST00(q:s¥%,=0dA] ,9T0ADSITIPUH,=SWEU JUSWSTS>
<oousnbas>

3 jjeaq €-€vs

S0l paniesal spybl (1Y — G00Z NdN ®

<odArxeTdwod />
<odousnbss />
</uweNI3,=9TqeITTu ,2dAL0JulgQGX:uds,=2dA] ,0JUIGQGX,=SWEU JUSUSTo>
</wbutils:sx,=odhk]1 ,,37190uU0T1dAIOUFDO TN, =SWEU JUSWSTS>
</uwodALAsyuoTioesuea] :uds,=odA] ,ASUOTIDBSURI],=SWEU JUSWSTS>
</u.Popunoqun,=sIndooQxXeu ,(,=SINOOQUTu
WONIY, =9TgeITTu ,odALTTe3agsnieisuorioesuei] :uds,=odA3 ,,TTE3IS0SNILISUOTIOPSURI],,=SWEU JUSWSTO>
</uwbuTals:sx,=odAk] ,,sn3el1suoOTIOBSURI],=SWeu JUsSusSTa>
<9dusnbos>
<adAxaTdwoo>
<,9su0dsoy¥a3ed0T,,=dWeU JUSWSTO>
<odAxeTdwod />
<oousnbes/>
</wuestooq:sx,=2dA] ,,0JUIEFQGXUIN]DY,=0WRU JUSUSTO>
</auea100q:sx,=9dA] ,,93€0TITIISDAITION,=SWEU JUSWSTO>
</ UBST00q:sX,=2dA] ,9T0ADSITIPUSIXH,=0WEU JUSWSTS>
</uwUes100(q:sx,=2dA] ,970A0SITIPUH,=SWeU JUSWSTS>
<20usanbas>
<wodAsuoT3idpejzedoT,,=sweu odALx2TdWOD>
<juswsTa/>
<odArxeTdwod />
<odousnbss />
</wbutals:sx,=odhk]1 ,,dIS3EOTITIIS)D,=SWEU JUSWSTS>
</uw2dALUyoIeaSe1edTITIISDPTTRA:WdS,=2dAk] ,,2dALUyoIeeSe]1e0TITII8), =2UrU JUsSUSTa>
</uwodAruoTyeorTddyiusT D :wde,=2dA]1 ,uoT31e0TTddyilusaT), =SWeu JUuswaTo>
</uweNI3,=9TgeITIu ,buTiis:sx,=odA] ,qIUOCTIRZTIURDIQ,=2WrRU JUSUWSTS>
</ NI}, =3TqeTTTu ,odArA3T3UuspIpawte D wde,=odA3 ,A3T3USPIPSWTIRTD,=SWRU JUSWSTO>
</uonI3,=9TqeTITu ,adArhksjyuorioesuei]:uds,=adAh]1 ,AsyuoTioesurI],=SWeU JUSWSTo>
</uwbutIals:sx,=odAk] ,,UOTSISA,=2WrU JUSWSTS>
</uwodAsuotadpsjeooT :uds, =odAk] ,,suoTl1dpe31eO0T,,=SWeu JUSWSToa>
<9dusnbos>
<adAxaTdwoo>
<u3seonbeoyejedooT,=sweu JuswWSTo>
<jusueTa/>
<odArxeTdwoo />
<odousnbss />
</uweNI3,=9TqeITTu ,2dAL0JulgQGX:uds,=2dA] ,0JUIEQGX,=SWEU JUSUSTo>
</woNI3,=9TqeITTu ,odAroJursinjeubrs:uds,=2dA] ,0Julsinieubrs,=sweu JususIo>
</uwodAreaegpatITTend :wds,=dA] ,e3eQ,=SWeU JUSWSTS>
</wodALAsyuoTioesuea] :wds,=adA] ,AsyUOT10BSURI],=SWRU JUSWSTa>
</wPepunoqun,=sindoooxeu ,(,=SINO0QUuTu
WONIY,,=STqeITTu ,odALTTe3agsniejguorioesuei] :wds,=o0dA3 ,,TTE3ISJSN3IPISUOTIOLSURIL,=SWeU JUSWSTa>
</ubutias:sx,=odAk] ,SN1e1SUOTIOBSURI],=SWeU JUSWSTo>
<2ouonbos>
<adAxsTdwoo>
<,9suodsayldAioeg,,=oWeuU JUsSWSTo>
<adArxeoTdwod />
<sousnbss/>

3 yeiq €-evs

paniesal spybl 1Y — G00Z NdN ® 901

WONI3,=3TqeTTIuU ,adArTTe39gsniejsuorioesuei]:uds,=odk] ,,TTP3ISCSNIPISUOTIORSURIT,=SWEU JUSWSTS>
</wbuTals:sx,=odAk] ,,sn3elsuoTioesuri],=SWeu JUususSTo>
<odusnbes>
<adAxaTdwoo>
<, 9SUOdSoYAIRPWUNSOASTI]OY, =SWRU JUSWSTO>
<odArxeTdwoo />
<oousnbes/>
</ud0I},=0TqeTTTu ,butais:sx,=5dA3 ,TeTISSE0GX,=SWeU JUsSWSTS>
</wdNI3,=STgeTTTU ,buTiis:sx,=9dA] ,ISNSSIEOGX,=SWEU JUSWSTS>
</woni3,=9TqeTTTu ,buTtiys:sx,=odA] ,,309[qNSEQGX,=2WeU JusweaTa>
</woNI3,=9TgeITTu ,butais:sx,==dA] ,SUTLDUTUDTS,=SwWeU JUSWSTS>
</uonI3,=9TqeTITu ,butiis:sx,=2dA3 ,,Usegilusiluo),==sueu JususTo>
</wonI3,=9TqeITTu ,butiis:sx,=o2dA] ,onTepdwuelSeswT],=oWeu JUswaTa>
</uwbuTIds:sx,=odA] ,SN1PISUOTIOLSURI],=SWEU JUSWSTO>
</uoNI3,=9TgeTITu ,butiis:sx,=odA] ,I9TITIUSPIIUS]UOD,=SWEU JUSWSTO>
</uo0I3,=3TqeTTTu ,odAtuoriedotrddyiust(D:wde,=odAk3 ,uoT3edTTddy3usT D, =SWeu juswsTa>
</woNI3,=9TgeITTu ,butais:sx,=odA] ,qIUOTILZIURDIQ,=SWEU JUSWSTS>
</uwbutIls:sx,=odhk]1 ,uoTieasdQ,=oweu JUSWSTS>
</ud0I3,=0TqeITTu ,butais:sx,=odA3 ,preousnbagenbrun,=sweu juswaTo>
</uwodATAeyuoTyoesuei] :uds, =o0dA] ,,A8)yUOT]OBSURIL,=SWRU JUSWSTo>
<oousanbas>
<,wodAL0JUTATPWUNSSASTI}OY, =2weu odAxaTdwod>
<odArxeTdwod />
<oousnbes/>
</auesto0q:sx,=2dA] ,,8T0ADSITIPUSIXH,=SWEU JUSWSTO>
</uwUea100q:sx,=2dA] ,970A0SITIPUH,=WEU JUSWSTS>
<oousnbas>
<,9dAsuoT3doATRWUNSSADTIISY,,=dweu odAxaTdwod>
<jusueTa/>
<odArxeTdwod />
<odousnbss />
</uoNI3,=9TgeTITu ,butiis:sx,=2dA] ,,3UN0DSASTIIDY,=SWEU JUSWSTO>
</a.Popunoqun, =sIndoo0xXeu
w0u=SINOOQUTIW ,9NI3,=TqeTTTuU ,o2dArelepeisniuajuo)d :wds,=odA] ,B3PPLISBNIUDIUOD, =SWeU JUSWSTS>
</woNI3,=9TqeITIU ,DbUuTiis:sx,=2dA] ,suUTlS1edPUH,=SWrU JUSWSTo>
</uPNI3,=0TqeTTTu ,butais:sx,=5dA3 ,SWTLS3BQ3ALIS,=SWeU JUSWSTo>
</uwdNI3,=STqeTTTuU ,butiis:sx,=odA3 ,SnTEAYSEH,=SWEU JUsSWwsSTa>
</uwonI3,=9TgeITTu ,butiis:sx,=odA] ,pIesdousnbsgenbruniseT,=sweu JususIo>
</woNI3,=9TgeITTIu ,butais:sx,=odA] ,ISTITIUSPIIUSIUOD,=SWEU JUSWSTS>
</wodAzuotyeorTddyiusT1d :uds,,=2dA] ,u0T1edTTddyilusT), =SWeu JUususTaS>
</uwonI3,=9TgeITTu ,butiis:sx,=odA] ,qIUOCTIRZTURDIQ,=2WEU JUSWSTS>
</uonI3,=9TqeTITu ,odArA3TiuspIpauTe) :wds,=o2dA] ,A1TIUSPIPSUWTIRTD,=SWRU JUSWSTo>
</uwenIl,=9T7qeTTTu ,adArAksyuorioesuer] :wds,=adAk] ,AsyuoTrTioesSuUrRI],=SWeEU JUSWSTS>
</wbuTtIils:sx,,=odAk] ,,UOTSISA,=2UrU JUSWSTS>
</uwodArsuoTadoAzrUIngoAsTIYoY twde,,=odA] ,,SUOTIdOATIPUWNSSASTI]SY, =SWeU JUsSWuSTa>
<oousnbes>
<odAxaTdwoo>
<u3sonboygAIPWUNSSADTIIDY, =SWeU JUSWSTO>
<jusueTa/>

3 jjeaq €-€vs

101 paniesal spybl (1Y — G00Z NdN ®

<euwsyds />
<juswsTa/>
<odArxeTdwod />
<oousnbas/>
</a.Pepunoqun, =sIndooQxXeu

W0u=SINOOQUTW ,dNI3,=STqeTTTU ,2dAL93NqTI33y1e3s0d :wde,=odA] ,93nqTI33Y[RISOd,=SWeU JUSWSTS>
</uwedALAsyuoTioesuea] :uds,=2dA] ,ASyuoTilopSURI],=SWEU JUSWSTS>
</a.Popunoqun, =sInooQxXeu ,0,=SIN00QuUTu

WONIY,,=9TgeTTTu ,odALTTe3agsnieisuorioesuei] :wuds,=odA3 ,,TTE3ISCSNILISUOTIOPSURI],,=SWEU JUSWSTO>
</uwbuTils:sx,=o2dAk]1 ,,sn31e1SUOTIOBSURI],=SWRU JUSWSTa>
<9dusnbas>

<odAxaTdwoo>
<,2SuU0dSo¥So3INQTIIIYIRISOJOADTIFOY, =0WRU JUDWSTO>
<odAxeTdwod />
<oousnbss/>
JUDWS o>

</woNI3,=9TqeITTIuU ,Axeurdpg9sseq:sx,=adhk] ,snTeplkieurdsingrilly,==oweu
JuswWa o>

</woNI3,=9TgeITTu ,butiis:sx,=o2dA] ,SNTRAIXSL2INITIIIIY,=SWeU
</ubuTIls:sx,=aodAk] ,oUTI23edPSTITPONISET,=0WRU JUSWSTo>
</uwbuTals:sx,=adAk] ,swWeNSINQTIIIV,=SWeU JUsWST>
<oousnbos>
<uwodAI23NgTI33¢¥TRISOd, =2wueu odALxoTdwoo>
<jusuLTe/>
<odArxeTdwod />
<sdusnbss />

</wo0I3,=9TqeTTIuU ,butais:sx,=odAk3 ,AI10bH53€D93NQTI33V,=SWEU JUSWST>
</uP0I3,=0TqeTTTu ,odAzuotrjeotrddyiusT(d:uds,=2dA3 ,uoT3e0TTddy3usT D, =SWeu JusweTa>
</uwbutils:sx,=o2dk1 ,spopsbenbueT,=sweu JuUsSWUSTo>

</wodArI03e00T :wdS ,,=2dA] ,I03BD0T,,=SWeU JUSWaTa>
<2ousnbos>

<adAxaTdwoo>
<u,3seonboy¥seinqIrillyIRISOJOADTIIOY, =OWRU JUSWSTO>
<JusuWLTd/>
<adArxeTdwod />
<odousnbss />
</uPopunoqun, =sINdo0Xeu
wOu=sIndooutuw ,odAroJurlArewwnSsasTiloy :wuds,=2dA] ,,0JUIAIRPUWUNSSADTIZDY, =SWEU JUSWSTO>

</wodALAsyuoTioesue] :wds,=adA] ,AsyuoTioeSURI],=SWeU JUsSWSTa>
</ PepUNOquUN,=SINDD0OXBW ,,0,=SINOOQUTU

3 yeiq €-evs

paniesal spybl 1Y — G00Z NdN ® 801

<obessow: Tpsm/>
</uw3senbsyAITasp:uds,=3uswsTs ,boygAITisp,=sweu jaed:Tpsm>
<.,obessopisonboyAITIoNn, =SWPU SDESSOW: TPSM>

<-- UOT3TUTIFSQg obessa osuodsay 3sonbsy --i>

<obessow: Tpsm/>
</uosuodssygs1oAosITTaIelS :wds, =1UuswaTs ,dsoy¥sTo0A0eITT1IR]S,,=sweu 1I1ed: TpsSM>
<.obessoposuodsoygsT0ADSITTIILYS,=OWeU Sbessau: TPSM>

<obessou: Tpsm/>
</uw3lsenbeys1oAoaITIrie]S i wde,,=quswaTe ,boysTohkosITTiaRlS,,=sweu JIed: TPSM>
<,obessopisonboysT0AD9ITTIIL]S, =SWeRU 9DHPSSaW: TPSM>

<-- UOT3TUuTISq obessal osuodsay 3seonbsy --i>

<sodAky:Tpsm/>

<PURYDS:SX/>
A||
*UOT3BDOTRWSYDS UT 2weu oTTJI pue yied AI0302ITpP
TPUOTIUSAUOCD B s30adxe OTpNlS [ensIA 3eyl 930U OsSTy 'paiTtnbex se xejudAks //:d33y
03 poburyd SC URD SPNTOUT SA0QE 29Ul PUR ISAIDS oM B uo pedeTd o9 Aew STTIF BWLYDS
‘poxtnbsx se spssu TeOOT 309TJS2I 031 poabueyd oS0 AW UOTIBDOTEWSYDS ——|>
</uwPSX GT TA-NdN-SO0TAISSWdH/STASM-NdN-WdH/:D//*3TTF,=UOTILOOTRPWSYDS SPNTOUT:SX>
<, SPWSYDS /90 TAISSNdA/AuT *ndn mmm/ /:d13y//:d33y,=wds: sutwx
WBUSUDSTX/T00Z/bI0" ¢Mm MMM/ / :dIA3Y,=SUTUX
WSBWSYOS /80 TAISSNAHA/AUT *ndn mmm/ /:dlay,=20edsaweNisbie]
PUOYDS : SX>

<sodA3:Tpsm>

<u/TPsm/bro deosTux*sewsyos//:d13y,=TPSM: SUTWX
w/butpoous/deos/ba0 deosTux * sewsyos//:d33y,=0usdeos: suTwx
w/deos/Tpsm/brodeosTux " sewsyos//:d3ly,=deos::sutwux
WHDTSPTWX/60/000C/b10 ¢mmmm/ /:da3y,=Sp:SUTWX
WBWRUODSTWX/T00Z/DI0 ¢Mm mmm//:d33y,=SX:SUTWX
WSPWSYDS /90 TAISSKNAHE/IUT *ndn MMM/ / :dI 3, =wds : SUTWX
wSUOTQTUTJIOP/90TAISSNdA/UT "ndn-mmm//:d33y,=SUl : SUTWX
w/TPSmMm/Dbx0deosTux * sewsyos//:d33y,=Suwux
WwSUOTATUTISP/S0TAISSNdH/IUT *ndn MMM/ /:d13y,=s0edssueNisbie]
WOOTAISSWNAH,=2WeU SUOTITUTISOP: TPSM>

<¢u8-dlNu=buTpodus ,(°T,=UOTSISA TWX{>

3114 (TASM) IOVNONV NOILINOSI SIDIANIS 93 (IALLVINHOAN]) @ XINNY

3 jjeaq €-€vs

601 paniesal spybl (1Y — G00Z NdN ®

<.obesseplsonbogAIPUUINSOASTIIOY, =oWeU Sbessau: TPSM>
<—— UOT3TUTIIog obesssl asuodssoy 3sonboyg —-j>

<obessou: Tpsm/>
</unosuodsoysiTnsoygessTiiay :ude, =1uswaTs ,dssysiTnsoygonrsTiiay,=sweu J1ed: Tpsm>
<,obessopNosuodsoyYs]1TNSoYOASTILDY,=SWelU Sbessau: TPSM>

<sbessou: Tpsm/>
</uwlsenbaysiTnseysasTijiay::wde,=3uswsTe ,bsysiTnssygsnssTiiey,=swueu jied: Tpsm>
<,obessopl1sonboys3TNSoYoADTIIDY, =dWeu sbessau: TPSM>

<-- UOT3TUTIISQg obessal osuodsay 3seonbsy --i>

<obessou: Tpsm/>
</uwosuodsoyghiTabsiuryosy)::wds, =3uswsTs ,dssygAlTibajulyosy),=sweu 1ied: Tpsm>
<.,obessopesuodsogAiTaibo3uINOoyD, =SWeU SDBesSsaw: TPSM>

<obessou: Tpsm/>
</uw3senbeyAiTabsiuryosyp:uds,=3uswsTs ,boylkiTaibsiuryosyp,=sweu 1ied: TpsMm>
<.obessepisenbeoygAlTabojurosy), =oweu obessaw: TPSM>

<—— UOT3TIUTIIog obesssl osuodssay 3sonboyg —-j>

<obessou: Tpsm/>
</uwosuodseygidAzosq:wds,=3usweTs ,dsayidAiosq,=sweu 1i1ed: TpsMm>
<,obessspesuodseyidAioad, =oweu obessaw: TPSM>

<obessouw: Tpsm/>
</uw3senboyidAiosqg:uds,=3uswaTs ,boyidAiiosg,=sweu 3xed:Tpsm>
<.,obessopiseonboyidAiosg, =sweu obessow: TPSM>

<-- UOT3TUTIISQg obesso osuodsay 3senbsy --i>
<obessou: TpsM/>
</uwosuodsoygidAzoug:wds,=3uswsTs ,dssyirdAioug,=sweu 3ied:Tpsm>
<,obessopesuodsoyidAIouy, =sweu Sbessou: TPSM>
<obessou: Tpsm/>
</uw3senbseyidArouy:uds,=3uswaTs ,bsyidAiiouy,=sweu JIed:TpPsSm>
<.,obessspiseonbeyidAioud, =sweu aHLeSSoW: TPSM>
<-- UOT3TUuTIaq obessal osuodseay 3senbsy --i>
<sbessou: Tpsm/>

</uwosuodseghytasp:uds,=quswaTs ,dssgAJTIon,=sweu JIed:TpPSMm>
<.obessoposuodsogAITION, =SWeU Sbessau: TPSM>

3 yeiq €-evs

pansesai spybl il — G002 NdN ©

oLl

<-- UOT3TUTIISQg obessal osuodsay 3seonbsy --i>

<obessou: Tpsm/>
</uwosuodsayiusagboT :uds ,=3ususTe ,dsoygiusagboT, =sweu j3ied: Tpsm>
<.obesssposuodsaoygiusAagbOT, =sWeu SHLLSSoW: TPSM>

<obessow: Tpsm/>
</uwlisesnbayiusagboT:wds,=3uswsTs ,bsyjusagboT,=sweu 1aed: TpsSM>
<,obessspiseonbeyiusagboT, =sweu 2DLeSSoW: TPSM>

<—— UOTI3TIUTIIog obesssl asuodssay 3sonboy —-j>

<obessou: Tpsm/>
</uwosuodseygubrs:uds, =3uswaTe ,dssqubTs,=sweu jxed:Tpsm>
<,obessopesuodsoyyubTg, =oweu obessaw: TPSM>

<obessou: Tpsm/>
</uw3senbeyubTs:wds,=3usweTs ,boyubrg,=sweu jJaed:Tpsm>
<,obessaplsonboyyubTg, =dweu o2bessaw: TPSM>

<-- UOT3TUTIISQg obessal osuodsay 3seonbsy --i>

<obessow: Tpsm/>
</uwosuodsayyaenisod:uds,=3uswaTs ,dSoUqIBNISOd,=sweu JIied: Tpsm>
<,obessonosuodsoyiIeNISOd, =2WeU SDbessau: TPSM>

<obessou: Tpsm/>
</u3senbayyienisod :udse, =3uswaTs ,boyyieNisod,=sweu 3ied: TpsSMm>
<,obessopisonbayiIeN3ISOd, =2Weu 2Dbessau: TPSM>

<—— UOTI3TIUTIIog obesssl asuodssay 3sonbayg —-j>
<obessou: Tpsm/>

</uwosuodseygsleooT:uds, =3uswaTs ,dssys3ied0T,=sweu JIed:TPSMm>
<,obessopesuodsoya3ed0T, =oWrU 2DLeSSoW: TPSM>

<obessow: Tpsm/>
</u3senbsysjeooT :uds,=3uswsTs ,boysieooT, =sweu jaed:Tpsm>
<.obepssopisonboysled0T, =sWrU SDHEeSSoUW: TPSM>

<-- UOT3TUTIFSQg obessa osuodsay 3sonbsy --i>
<obessow: Tpsm/>
</uwosuodsayghzeuumsanssTiiay :uds,=juswsTs ,dssgAIrumnSsAsTIlay, =sweu 11ed: TpsSm>

<,obessoposuodsogAIRPUUNSSOASTI]SY,=SWrU S0BeSSau: TPSM>

<obessou: Tpsm/>
</uw3isenbayAreumngsasTilsy :wds,=3uswsTe ,bsyAreumngsasTilsy,=swueu 1i1ed: TpsSM>

3 jjeiq €-evs

Ll pansasai siybli |l — G00Z NdN ®

<uoTiersdo: TpPsSM/>
</uobesssssuodseoydAIPWUNSSASTIISY : SUT,,=abesssu Indiano>
</uobesseplsenbaygArrumingaasTIlay i sul, =obessau 3ndut>
<y ATPUUNSSADTIISY, =SwWeu uoTjlerado: TPSM>

<uoTierado: TpPsSM/>
</uwobessoesuocdsaysiTnsoyYoAsTIIoy: : SUl, =obessau Indino>
</uobessspissnbaysiTnssysasTilsy:sul, =sbessaw Indut>

<.S3Tnso¥eonaTalay, =2weu uotierado: TPSM>

<uoTiexado: TPSM/>
</uobessepesuodsayghlTaibaiurosy): sul, =asbessau 3ndino>
</u,obessspisenbaygAiTabejuryosy):sul,=ebessau Indut>

<uwA3TIbsjuIrzosyd,,=2weu uoTjleiado: TPSM>

<uotiexado: TPSM/>
</uobessepesuodseyidAiiosq:sul,=abessau Indino>
</uobessspisenbayidAiosqg:sul,=sbessaw Indut>
<w3dAz09(Q,=0oweu uoTieIado:TPSM>

<uoT3ersdo: TpPsSM/>
</uobessspessuodseyidAaouyg: sul,=sbesssu 3ndino>
</uobessspisenbayidAioug:sul,=sbessaw Indut>
<u3dAaouyg,=oweu uoTjerado:TpPSM>

<uotierado: TpPsSM/>
</,obessopesuodsaygAITIan: suUl,=obessaw Indino>
</uwobessspisenbasyAITasp:sul,,=sbessau Indut>
<uwARITIoN,=0weu uoT3leIado: TPSM>

<uoTierado: TPSM/>
</uobessopesuocdsayasToA0aIT I3RS SU],,=obessau 3ndino>
</uobessspissnbays1oAosITI1IRISSU],,==shbessaw InduT>

<uoT0AD8ITT3IP]S,,=owrU UuoTjleIado: TPSM>

<uwodA13110g90TAIOSNdd,,=dweu odA13x0d: TpSm>
<-- sjusweTe burtddew sbesssp 03 uorjzeasadp pue odAL3IIO0J PWOYDS TASM —-|>
<sbesssu: Tpsm/>
</uwosuodsayseingrillyreisodgasstiiay :uds, =3uswaTse ,dsoy¥sainqrillyIelsodaaaTiloy, =sueu 3ied: TpsMm>
<,obessopesuodsoysaingIIl3IyYIRISOIOADTILOT, =SWLRU SDesSsauw: TpsSM>
<obessou: Tpsm/>

</uw3dsenbayseingriliyreisodgassTilay:uds, =juswaTs ,boy¥ssinqrillyreisodaasTilay, =sweu JIed: TPsSm>
<,obessoN1sonbaysaingTI}IYIRISOJOADTIISY, =oWRU ohessau: TPSM>

3 yeiq €-evs

pansesai spybl il — G002 NdN ©

425

<3nd3no: Tpsm>
<anduT:TpsM/>
</uwlBI21TT,=2sn Apoqg:deos>
<andut: Tpsm>
</uwkITa9A,,=u0T10YdROS UOT3eIadOo:deOS>
<uwAhJITIop,=0weu uoTlerado: TPSM>

<uoTiersdo: TpPsSM/>
<3ndano: TpsmMm/>
</uwlBISATT,=9sn Apog:deos>
<andano: Tpsm>
<andut:Tpsm/>
</uwIBI®ATT,=9sn Apog:deos>
<3nduT: TPSM>
</u®T0Ak083ITT31P1S,,=Uu0T310ydeOos uotleaado:deos>
<uoT0AD9ITT3IP]S,,=dwWrU uoT3eIado: TPSM>

</uwd33y/deos/bao deosTux seuwsyos//:dl13y,=110dsueal
w3uswnoop,=oTA3s burtputq:deos>
<u®dAL3T0gSOTAISSHAH : SUF,=0dA] ,PUTPUTESOTATSSNAH,=SWeU DUTPUT]: TPSM>

<-- sjusweTe suoTieiadp pue HUTPUTG PWSYDS TASM --j>
<adAryaod: Tpsm/>

<uoTiexado: TPSM/>
</uobessepesuodsayselnqriliy[e1sodoaaaTIlay sul, =abessau 3ndino>
</.obessopisenbayse1ngTIl13y[e1S0doAaTI19Y : sSul, =sbessaw Indut>

<,S23INQTIIIIY[LISOJOADTIYSY, =dweu uotierado: TPSM>

<uoT3exsdo: TpsM/>
</uobessspssuodseyiusagboT:sul,=sbesssw 3ndino>
</uobessspisenbayiusagboT:sul, =sbessau Indut>
<,3usamgboT,=sweu uorieirsdo:TPSM>

<uoTiexsdo: TpPsSM/>
</uobessspesuodsaygubrs:sul, =sbessauw 3ndino>
</uwobessepisenbayubTs:sul, =abessaw Indut>
<,UbTg,=2weu uotieaado:TpPSM>

<uoTierado: TpPsSM/>
</.obessopesuodsaydIBNISOd: sul, =obessau 3ndino>
</uobessspissnbayyIeNISOd:sul,=sbesssu Indut>
<u{IBW3ISOd,=oweu uorjerado:TpsSmMm>

<uoTiexado: TPSM/>
</uobessspesuodsayeled0oT:sul, =obessau 3ndino>
</u.obessspisenbaysjeooT:sul, =sbesssw Indut>
<,93e00T,,=2weu uoTjlerado: TpsSMm>

3 jjeiq €-evs

€l

pansesai spybl iy — G002 NdN ©

</uwl®I®1TT,=9sn Apog:deos>
<3anduT:TpsSM>
</uwAIPULINSSASTIISY,=U0T30ydeos uoTieasdo:deos>
<uATPUMINSSASTI}OY,=SwWeu uoTjlerado: TPSM>

<uoTierado: TPSM/>
<3andano: Tpsm/>
</uwIBISATT,=9sn Apog:deos>
<andano: Tpsm>
<anduT:TpsM/>
</uTeI®1TT,=9sn Apoq:deos>
<andut:Tpsm>
</uS3ATnsoy¥easTilay,=uorioydeos uotjeaado:deos>
<uSITNSOYSADTIZFDY, =oWeuU uoTjleIado: TpSM>

<uoTiexsdo: TpsM/>
<3andano: Tpsm/>
</uwlBISATT,=9sn Apog:deos>
<andano: Tpsm>
<anduT:TpsM/>
</uwlBISATT,=9sn Apog:deos>
<3nduT:TpsSM>
</uwk3TIb33UIYO8YD,=u0T10ydeos uotleasdo:deos>
<uwA3TabsjuIlzosyd,=2weu uoTjleiado: TPSM>

<uoTierado: TPSM/>
<3ndano: Tpsm/>
</uTeI®1TT,=9sn Apoq:deos>
<3nd3no: Tpsm>
<anduT:TpsM/>
</uwlBIS1TT,=9sn Apoq:deos>
<andutT:Tpsm>
</uw3dAx08(Q,=uoT3oydeos uotjlerado:deos>
<uw3dAz085(Q,=oweu uotieiado:TPSM>

<uoTiexsdo: TpPsSM/>
<3andano: TpsmMm/>
</uwlBI®ATT,=9sn Apog:deos>
<andano: Tpsm>
<anduT:TpsM/>
</uwIBI®ATT,=9sn Apog:deos>
<andut:Tpsm>
</uw3dAx0Ud,=uo0T30ydeos uotjlerado:deos>

<u3dAzouyg,=oweu uorilerado: TpPSM>

<uoTiexado: TPSM/>
<3ndano: Tpsm/>
</uwlBIS1TT,=2sn Apoqg:deos>

3 yeiq €-evs

pansesai spybl il — G002 NdN ©

1411
<andutT:Tpsm>
</uS92INQTIIFIY[RISOJoADTIIDY, =uo0T30ydeos uotizeiado:deos>
<,S23INQTIIIY[RISOJOASTIYSY, =owreu uotierado: TpsSMm>

<uoTierado: TpPsSM/>
<andano: Tpsm/>
</uwlBI®1TIT,=9sn Apog:deos>
<3nd3no: Tpsm>
<andutT:Tpsm/>
</uwlBISATT,=9sn Apog:deos>
<3anduT:TpsSM>
</uw3lusagboT,=uoT30oydeos uoTieasdo:deos>
<,lusAgboT,=oweu uorilerado: TpPSM>

<uoTierado: TPsSM/>
<3andano: Tpsm/>
</uwIBISATT,=9sn Apog:deos>
<andano: Tpsm>
<anduT:TpsmM/>
</uTeI®1TT,=9sn Apoq:deos>
<3andut:Tpsm>
</wubTs,,=uotioydeos uorieisado:deos>

<, UbTg,=0weu uotieisado:TpPsSMm>

<uoT3ersdo: TpPsSM/>
<3ndano: Tpsm/>
</uwlBI®ATT,=9sn Apog:deos>
<andano: Tpsm>
<anduT:TpsM/>
</uwlBISATT,=9sn Apog:deos>
<3nduT:TpsSM>
</udIeKAs0d,=uoT30oydeos uoTieasdo:deos>
<u{IBW3ISOod,=oweu uorilerado:TpsSmMm>

<uoTiexado: TPsSM/>
<3ndano: Tpsm/>
</uwlBIS1TT,=2sn Apoq:deos>
<3nd3no: Tpsm>
<andutT:Tpsm/>
</uwl®I21TT,=9sn Apoqg:deos>
<3andutT:TpsSm>
</uw®3e007,=uot1oydeos uorieisdo:deos>

<,93800T,=sweu uoTierado: TPSM>

<uoT3exsdo: TpPsSM/>
<3andano: Tpsm/>
</uwIBI®ATT,=9sn Apog:deos>

<andano: Tpsm>
<anduT:TpsM/>

3 jjeiq €-evs

12

pansesai spybl iy — G002 NdN ©

<SUOTATUTJIOP: [PSM/>

<9OTAISS:TPSM/>
<3x0d:Tpsm/>
</wOOTAISSWAHE/Q008 :WOD " UTWPyYTeIsodhur mmm/ /:d33y,=uoT1ed0T Ssaippe:deos>

<,DBUTPUTEEOTAISSKHIH: SUL,=DPUTPUT] ,3TI0JODTAISSHH, =dwWeu 3I0d: TPSM>

< OOTAISSHJH,=0WRU SDOTAISS:TPSM>

<--— S]USWST® UOT3EDOT PUB SDTAISS PWLYDS TASM —--i>

<butputqg:Tpsm/>

<uoTiexado: TpPsSM/>
<3ndano: Tpsm/>
</uwl®IS1TT,=9sn Apoq:deos>
<3nd3no: Tpsm>

<anduT:TpsmM/>
</uwlBIS1TT,=2sn Apoqg:deos>
3 yeiq €-evs

$43-3 Draft E

BIBLIOGRAPHY

This bibliography provides full reference and sourcing information for all standards and other reference sources which are
quoted in the above text. For references which mention specific version numbers or dates, subsequent amendments to, or
revisions of, any of these publications might not be relevant. However, users of this document are encouraged to
investigate the existence and applicability of more recent editions. For references without date or version number, the
latest edition of the document referred to applies. It is stressed that only referenced documents are listed here.

Internet Engineering Task Force Public Key Infrastructure X.509 working group (IETF PKIX) documents.
NOTE 1 Available at www.ietf.org

IETF Lightweight Directory Access Protocol (LDAP). This standard is adopted for data dissemination.

Certificate Profile is the IETF certificate profile as described by the IETF PKIX working group, ref RFC 2459 — Internet
X.509 Public Key Infrastructure Certificate and CRL Profile (January 1999)

Certificate Revocation List profile is the IETF CRL profile as described by the IETF PKIX working group, ref. RFC 2459 —
Internet X.509 Public Key Infrastructure Certificate and CRL Profile (January 1999)

[11 RFC 2459 — Internet X.509 Public Key Infrastructure: Certificate and CRL Profile (January 1999), R. Housley,
W. Ford, W. Polk, D. Solo

[2] RFC 2510 — Internet X.509 Public Key Infrastructure: Certificate Management Protocols (March 1999), C. Adams,
S. Farrel

[3] RFC 2511 — Internet X.509: Certificate Request Message Format (March 1999), M. Myers, C. Adams, D. Solo, D.
Kemp

[4] RFC 2527 — Internet X.509 Public Key Infrastructure: Certificate Policy and Certification Practices Framework
(March 1999), S. Chockani, W. Ford

[5] RFC 2528 — Internet X.509 Public Key Infrastructure: Representation of Key Exchange Algorithm (KEA) Keys in
Internet X.509 Public Key Infrastructure Certificates (March 1999), R. Housley, W. Polk

[6] RFC 2630 — Cryptographic Message Syntax (June 1999), R. Housley
NOTE 2 Defines the ASN.1 layout for all relevant PKCS objects utilised by the EPM.

[71 RFC 3126 — Electronic Signature Formats for long term electronic signatures (September 2001), D. Pinkas, J.
Ross, N. Pope

NOTE 3 This RFC is considered by most authorities to be the essential definition of what constitutes a legitimate non-
repudiation service. It describes the technical criteria and pre-requisites for minimum compliance as a non-repudiation service
capability. The EPM interface specification honours all mandatory requirements, i.e. qualified as “required” or “shall” in the text.

[8] RFC 3275 — XML-Signature Syntax and Processing (March 2002), D. Eastlake, J. Reagle, D. Solo

NOTE 4 This RFC, commonly referred to as XMLDSIG, is the W3C’s landmark standard to which nearly all XML-based
attempts to capture ASN.1 PKCS7 syntax in XML refer. The current WSDL interface allows for both PKCS7 binary ASN.1
formatting of signature objects as well as the more recent XMLDSIG signature formatting.

European Telecommunications Standards Institute (ETSI) Standards

NOTE 5 ETSI standards are available at www.etsi.org.

[9] ETSI TS 101 733 — Electronic Signatures and Infrastructures (ESI) — Electronic Signature Formats (8 December
2000)

116 © UPU 2005 — All rights reserved

$43-3 Draft E

NOTE 6 This is the European equivalent of RFC 3126 and is also honoured by the EPM interface specification.
[10] ETSITS 101 903 — XML Advanced Electronic Signatures (XAdES) (12 February 2002)

NOTE 7 This is the XML equivalent of TS 101 733 above, and although not currently implemented in the EPM reference
implementation, is a clearly desirable target which will eventually be implemented in addition to the current ASN.1 based
implementation. It is the intention of the EPM Interface to support the predominate XML Digital Signature standards which
prevail in the market place. At the time of this writing the only clear consensus on digital signature representation in XML is RFC
3275, i.e. XMLDSIG.

© UPU 2005 — All rights reserved 117

