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Preface

When it comes to understanding the why’s and wherefores of climate, there is an infinite amount
one needs to know, but life affords only a finite time in which to learn it; the time available before
one’s fellowship runs out and a PhD thesis must be produced affords still less. Inevitably, the
student who wishes to get launched on significant interdisciplinary problems must begin with a
somewhat hazy sketch of the relevant physics, and fill in the gaps as time goes on. It is a lifelong
process. This book is an attempt to provide the student with a sturdy scaffolding upon which a
deeper understanding may be hung later.

The climate system is made up of building blocks which in themselves are based on el-
ementary physical principles, but which have surprising and profound collective behavior when
allowed to interact on the planetary scale. In this sense, the ”climate game” is rather like the game
of Go, where interesting structure emerges from the interaction of simple rules on a big playing
field, rather than complexity in the rules themselves. This book is intended to provide a rapid
entrée into this fascinating universe of problems for the student who is already somewhat literate
in physics and mathematics, but who has not had any previous experience with climate problems.
The subject matter of each individual chapter could easily fill a textbook many times over, but
even the abbreviated treatment given here provides enough core material for the student to begin
treating original questions in the physics of climate.

This is a somewhat Earth-centric book, in that the Earth provides our best-observed example
of a planetary climate. Nonetheless, the central organizing principle is the manner in which the
interplay of the same basic set of physical building-blocks gives rise to the diverse climates of
present, past and future Earth, of the other planets in the Solar system, and of hypothetical
planets yet to be discovered.

In this book I have chosen to deal only with aspects of climate that can be treated without
consideration of the fluid dynamics of the Atmosphere or Ocean. Many successful scientists have
spent their entire careers productively in this sphere. A sequel will treat the additional phenomena
that emerge when fluid dynamics is introduced, culminating in a do-it-yourself General Circulation
Model.

The short exercises embedded in the text are meant to be done "on the spot,” as an im-
mediate check of comprehension. More involved and thought-provoking problems may be found
in the accompanying Workbook section at the end of each chapter. The Workbook provides an
integral part of the course. Using the techniques and tools developed in the Workbook sections, the
student will be able to reproduce every single computational and data analysis result included in
the text. The Workbook also offers considerable opportunities for independent inquiry launching
off from the results shown in the text. After having completed the course, the diligent student will
be in possession of a tool kit that will be immediately useful in original research. In a modest way,
the Workbook is intended to do for climate modelling what Numerical Recipes did for numerical
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analysis.
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Chapter 1

The Big Questions

This chapter will provide a qualitative overview of some of the major problems of Earth and plan-
etary climate. Some have been solved to one extent or another, but most are largely unresolved.
All involve physics that will be developed during the course

1.1 Faint Young Sun and habitability of the Earth

General introduction to the role of stellar evolution in climate, which provides necessary background
also for the Early Mars problem. Co-evolution of atmosphere and solar forcing. Question of how
Earth maintains its habitability as the Sun changes.

Additional basic facts about Early Earth history. The early appearance of prokaryotic life.
The timing of the first glaciations, which appear surprisingly late in the game.

1.2 Earth,Mars and Venus:The Goldilocks problem

Summary of present climates and atmospheres of Venus and Mars vs. Earth

What happened to Venus? How did it keep its CO2 (compare to carbonate rocks on Earth)?
Where did its water go? Did Venus go through a transient habitable phase when the Sun was
fainter?

Evidence for warm, wet Early Mars What happened to Mars? Where did its atmosphere
go?

How much would Earth’s conditions have to change (size of planet, position of orbit) before
it fell into the fate of Venus or Mars?

1.3 Extrasolar planets

Large Earths. Roasters.
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1.4 The Proterozoic climate:Snowball Earth

What is the Proterozoic. Paleoproterozoic and Neoproterozoic. History of oxygenation. Oxygen
and the methane catastrophe. Evolution of eukaryotes. Evolution of metazoans.

Paleoproterozoic Snowball Earth.

Neoproterozoic Snowball Earth

1.5 Hothouse climates

Characteristics of hothouse climates, like Eocene and Cretaceous. Lack of permanent polar ice.
Low meridional gradients. What accounts for such climates?

Note occurrence of other climate periods with permanent polar ice, similar to the present
one. How to account for transition between these and hothouse climates

1.6 Pleistocene ice ages

Onset of the Pleistocene ice ages. Variation of dominant frequency over time. Mystery of the onset
of the 100Kyr cycle. The origin of the glacial-interglacial CO2 cycle. Apparent relation to orbital
forcing.

1.7 Holocene climate variation and abrupt climate change

Abrupt change. Younger Dryas. Dansgaard-Oeschger events. Why did such things cease at the
onset of the Holocene?

The ”Climatic Optimum,” and Sahara wet/dry cycles. The time of initiation of tropical
mountain glaciers (based on Lonnie Thompson’s work).

The Little Ice Age

1.8 The Fate of the Earth

Global warming in the context of past climate change, and CO2 history. How much CO2 would it
take to cancel the next glaciation?

Lifetime of the biosphere, as the Sun continues to warm. Will Earth turn into Venus? Will
Mars bloom? What will happen to Titan as the solar system warms?



Chapter 2

Thermodynamics in a Nutshell

The atmospheres which are our principal objects of study are made of compressible gases. The
compressibility has a profound effect on the vertical profile of temperature in these atmospheres.
As things progress it will become clear that the vertical temperature variation in turn strongly
influences the planet’s climate. To deal with these effects it will be necessary to know some
thermodynamics though just a little. This chapter does not purport to be a complete course in
thermodynamics. It can only provide a summary of the key thermodynamic concepts and formulae
needed to treat the basic problems of planetary climate. It is assumed that the student has obtained
(or will obtain) a more fundamental understanding of the general subject of thermodynamics
elsewhere.

2.1 A few observations

The temperature profile in Figure 2.1, measured in the Earth’s tropics introduces most of the
features that are of interest in the study of general planetary atmospheres. It was obtained by
releasing an instrumented balloon (radiosonde) which floats upwards from the ground, and sends
back data on temperature and pressure as it rises. Pressure goes down monotonically with height,
so the lower pressures represent greater altitudes.

Pressure is a very natural vertical coordinate to use. Many devices for measuring atmo-
spheric profiles directly report pressure rather than altitude, since the former is generally easier
to measure. More importantly, most problems in the physics of climate require knowledge only of
the variation of temperature and other quantities with pressure; there are relatively few cases for
which it is necessary to know the actual height corresponding to a given pressure. Pressure is also
important because it is one of the fundamental thermodynamic variables determining the state
of the gas making up the atmosphere. Atmospheres in essence present us with a thermodynamic
diagram conveniently unfolded in height. Throughout, we will use pressure (or its logarithm) as
our fundamental vertical coordinate.

However, for various reasons one might nevertheless want to know at what altitude a given
pressure level lies. By altitude tracking of the balloon, or using the methods to be described in
Section 2.2, the height of the measurement can be obtained in terms of the pressure. The right
panel of Figure 2.1 shows the relation between altitude and pressure for the sounding shown in
Figure 2.1. One can see that the height is very nearly linearly related to the log of the pressure.
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This is the reason it is often convenient to plot quantities vs. pressure on a log plot. If p, is
representative of the largest pressure of interest, then —In(p/p,) is a nice height-like coordinate,
since it is positive and increases with height.

We can now return to our discussion of the critical aspects of the temperature profile. The
most striking feature of the temperature sounding is that the temperature goes down with altitude.
This is a phenomenon familiar to those who have experienced weather in high mountains, but the
sounding shows that the temperature drop continues to altitudes much higher than sampled at
any mountain peak. This sounding was taken over the Pacific Ocean, so it also shows that the
temperature drop has nothing to do with the presence of a mountain surface. The temperature
drop continues until a critical height, known as the tropopause, and above that height (100mb, or
16 km in this sounding) begins to increase with height. The portion of the atmosphere below the
tropopause is known as the troposphere, whereas the portion immediately above is the stratosphere.
”Tropo” comes from the Greek root for “turning” (as in ”"turning over”), while ”Strato..” refers
to stratification. The reasons for this terminology will become clear shortly. The stratosphere was
discovered in 1900 by Leon Phillipe Teisserenc de Bort, the French pioneer of instrumented balloon
flights.

The sounding we have shown is typical. In fact, a similar pattern is encountered in the
atmospheres of many other planets, as indicated in Figure 2.2 for Venus, Mars, Jupiter and Titan.
In common with the Earth case, the lower portions of these atmospheres exhibits a sharp decrease
of temperature with height, which gives way to a region of more gently decreasing, or even in-
creasing, temperature at higher altitudes. The temperature decrease with height in the Earth’s
atmosphere has long been known from experience of mountain weather. It became a target of
quantitative investigation not long after the invention of the thermometer, and was early recog-
nized as a challenge to those seeking an understanding of the atmosphere. It was one of the central
pre-occupations of the mountaineer and scientist Horace Bénédict de Saussure (1740-1799). In the
quest for an explanation, many false steps were taken, even by greats such as Fourier, before the
correct answer was unveiled. As will be shown in the remainder of this chapter, some simple ideas
based on thermodynamics and vertical mixing provide at least the core of an explanation for the
temperature decrease with height. In Chapter 7 we will present a theory of tropopause height that
similarly captures the essence of the problem. Nonetheless, some serious gaps remain in the state
of understanding of the rate of decrease of temperature with height, and of the geographical dis-
tribution of tropopause height. In Chapters 3 and 4 we will see that the energy budget of a planet
is crucially affected by the vertical structure of temperature; therefore, a thorough understanding
of this feature is central to any theory of planetary climate.

2.2 Dry thermodynamics of an ideal gas

2.2.1 The equation of state for an ideal gas

The three thermodynamic variables with which we will mainly be concerned are: temperature
(denoted by T'), pressure ( denoted by p) and density (denoted by p). Temperature is a measure
of the amount of kinetic energy per molecule in the molecules making up the gas. We will always
measure temperature in degrees Kelvin, which are the same as degrees Celsius (or Centigrade),
except offset so that absolute zero — the temperature at which molecular motion ceases — occurs at
zero Kelvin. In Celsius degrees, absolute zero occurs at about -273.15C, which is then zero degrees
Kelvin by definition. Pressure is a measure of the flux of momentum per unit time carried by the
molecules of the gas passing through an imaginary surface of unit area; equivalently, it is a measure
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of the force per unit area exerted on a surface in contact with the gas, in the direction perpendicular
to the surface. In the mks units we employ throughout this book , pressure is measured in Pascals
(Pa); 1 Pascal is 1 Newton of force per square meter of area, or equivalently 1 kg/(ms?). For
historical reasons, atmospheric pressures are often measured in ”bars” or ”millibars.” One bar,
or equivalently 1000 millibars (mb) is approximately the mean sea-level pressure of the Earth’s
current atmosphere. We will often lapse into using mb as units of pressure, because the unit sounds
comfortable to atmospheric scientists. For calculations, though, it is important to convert millibars
to Pascals. This is easy, because 1 mb = 100 Pa. Hence, we should all learn to say ”Hectopascal”
in place of ”millibar.” It may take some time. When pressures are quoted in millibars or bars,
one must make sure to convert them to Pascals before using the values in any thermodynamic
calculations.

Density is simply the mass of the gas contained in a unit of volume. In mks units, it is
measured in kg/m?3.

For a perfect gas, the three thermodynamic variables are related by the perfect gas equation
of state, which can be written
p=knT (2.1)
where p is the pressure, n is the number of molecules per unit volume (which is proportional to
density) and T is the temperature. k is the Boltzmann Thermodynamic Constant, a universal
constant having dimensions of energy per unit temperature. Its value depends only on the units
in which the thermodynamic quantities are measured. To relate n to density, we divide it by the
mass of a single molecule of the gas. Almost all of this mass comes from the protons and neutrons
in the molecule, since electrons weigh next to nothing in comparison. Moreover, the mass of a
neutron differs very little from the mass of a proton, so for our purposes the mass of the molecule
can be taken to be M - u where p is the mass of a proton and M is the molecular weight — an
integer giving the count of neutrons and protons in the molecule. (The equivalent count for an
individual atom of an element is the atomic weight). The density is thus p = n- M - ). If we define
the Universal Gas Constant as R* = k/u the perfect gas equation of state can be rewritten

*

M

In mks units, R* = 8314.5Pa - m?/kg- K We can also define a gas constant R = R*/M particular
to the gas in question. For example, dry Earth air has a mean molecular weight of 28.97, so Raryair
= 287 m?/(s?K), in mks units.

p=—pT (22)

If p is measured in kilograms, then 1/u is the number of protons needed to make up a
kilogram. This large number is known as a Mole, and is commonly used as a unit of measurement
of numbers of molecules, just as one commonly counts eggs by the dozen. For any substance,
a quantity of that substance whose mass in kilograms is equal to the molecular weight of the
substance will contain one Mole of molecules. For example, 2 kg of Hy is a Mole of Hydrogen
molecules, while 32 kg of the most common form of O3 is a Mole of molecular Oxygen. If n were
measured in Moles/m? instead of molecules per m3, then density would be p = n - M. One can
also define the gram-mole (or mole for short), which is the number of protons needed to make a
gram; this number is known as Avogadro’s number, and is approximately 6.022 - 1023,

Generally speaking, a gas obeys the perfect gas law when it is tenuous enough that the
energy stored in forces between the molecules making up the gas is negligible. Deviations from the
perfect gas law can be very important for the dense atmosphere of Venus, but for the purposes of
the current atmosphere of Earth or Mars, or the upper part of the Jovian or Venusian atmosphere,
the perfect gas law can be regarded as an accurate model of the thermodynamics— in fact, " perfect,”
one might say.
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An extension of the concept of a perfect gas is the law of partial pressures. This states that,
in a mixture of gases in a given volume, each component gas behaves just as it would if it occupied
the volume alone. The pressure due to one component gas is called the partial pressure of that
gas. Consider a gas which is a mixture of substance A (with molecular weight M ,4) and substance
B (with molecular weight Mp). The partial pressures of the two gases are

pa =knaT,pp = kngT (2.3)

or equivalently,
pa = RapaT,pp = RpppT (2.4)

where Ry = R*/M 4 and Rp = R*/Mp. The same temperature appears in both equations, since
thermodynamic equilibrium dictates that all components of the system have the same temperature.
The ratio of partial pressures of any two components of a gas is a convenient way to describe the
composition of the gas. From Eq. 2.3, pa/ps = na/np, so the ratio of partial pressure of A to
that of B is also the ratio of number of molecules of A to the number of molecules of B. This ratio
is called the molar mizing ratio. When we refer to a mixing ratio without qualification, we will
generally mean the molar mixing ratio. Alternately, one can describe the composition in terms of
the ratio of partial pressure of one component to total presssure of the gas (pa/(pa + pp) in the
two-component example). Summing the two partial pressure equations in Eq. 2.3, we see that
this is also the ratio of number of molecules of A to total number of molecules; hence we will use
the term molar concentration for this ratio '. If 54 is the molar mixing ratio of A to B, then the
molar concentration is 74 /(1+mn4), from which we see that for the molar concentration and molar
mixing ratio are nearly the same for substances which are very dilute (i.e. n4 < 1).

Exercise 2.2.1 Show that a mixture of gases with molar concentrations na = na/(na + ng) and
ne = np/(na + ng) behaves like a perfect gas with mean molecular weight M = naMa + ngMp.
(i.e. derive the expression relating total pressure pa + pp to total density pa + pp and identify
the effective gas constant). Compute the mean molecular weight of dry Earth air. (Dry Earth air
consists primarily of 78.084% N2, 20.947% O2, and .934% Ar, by count of molecules.)

The mass mizring ratio is the ratio of the mass of substance A to that of substance B in a
given parcel of gas, i.e. pa/pp. From Eq. 2.4 it is related to the molar mixing ratio by

pa _ Mapa

= 2.5
pB Mpps (25)

Throughout this book,we will use the symbol r to denote mass mixing ratios and »n for molar mixing
ratios, with subscripts added as necessary to distinguish the species involved. Yet another measure
of composition is specific concentration, defined as the ratio of the mass of a given substance to
the total mass of the parcel (e.g. pa/(pa + pp) in the two-component case). We'll use the symbol
q, with subscripts as necessary, to denote the specific concentration of a substance. Using the law

1The term wolumetric mixing ratio or concentration is often used interchangeably with the term molar, as in
?ppmv” for ”parts per million by volume.” The reason for this nomenclature is that the volume occupied by a given
quantity of gas at a fixed temperature and pressure is proportional to the number of molecules of the gas contained
in that quantity. To see this, write n = N/V, where N is the number of molecules and V' is the volume they occupy.
Then, the ideal gas law can be written in the alternate form V = (kT/p)N. Hence the ratio of standardized volumes
is equal to the molar mixing ratio, and so forth. Abbreviations like ”ppmv” for molar mixing ratios are common
and convenient, because the ”v” can unambiguously remind us that we are talking about a volumetric (i.e. molar)
mixing ratio or concentration, whereas in an abbreviation like ”ppmm” one is left wondering whether the second
”m” means ”mass” or ”"molar.”
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of partial pressures, the specific concentration of substance A in a mixture is related to the molar
concentration by

pa _ Ma pa (2.6)
Ptot M piot .

where M is the mean molecular weight of the mixture, with the mean being computed using
weighting according to molar concentrations of the species, as in Exercise 2.2.1.

All of the ratios we have just defined are convenient to use because, unlike densities, they
remain unchanged as a parcel of air expands or contracts, provided the constituents under consid-
eration do not undergo condensation, chemical reaction or other forms of internal sources or sinks.
Hence, for a compressible gas, two components A and B are well-mixed relative to each other if
the mixing ratio between them is independant of position.

Constituents will tend to become well mixed over a great depth of the atmosphere if they are
created or destroyed slowly, if at all, relative to the characteristic time required for mixing. In the
Earth’s atmosphere, the mixing ratio of oxygen to nitrogen is virtually constant up to about 80km
above the surface. The mixing ratio of carbon dioxide in air can vary considerably in the vicinity
of sources at the surface, such as urban areas where much fuel is burned, or under forest canopies
when photosynthesis is active. Away from the surface, however, the carbon dioxide mixing ratio
varies little. Variations of a few parts per million can be detected in the relatively slowly mixed
stratosphere, associated with the industrial-era upward trend in fossil fuel carbon dioxide emissions.
Small seasonal and interhemispheric fluctuations in the tropospheric mixing ratio, associated with
variations in the surface sources, can also be detected. For most purposes, though, carbon dioxide
can be regarded as well mixed throughout the atmosphere. In contrast, water vapor has a strong
internal sink in Earth’s atmosphere, because it is condensible there; hence its mixing ratio shows
considerable vertical and horizontal variations. Carbon dioxide, methane and ammonia are not
condensible on Earth at present, but their condensation can become significant in colder planetary
atmospheres.

Exercise 2.2.2 (a) In the year 2000, the concentration of COs in the atmosphere was about 370
parts per million molar. What is the ratio pco,/piot? Estimate pco, in mb. Does the molar
concentration differ significantly from the molar mixing ratio? What is the mass mixing ratio of
CO; in air? What is the mass mixing ratio of carbon (in the form of CO.) in air — i.e. how many
kilograms of carbon would have to be burned into CO- in order to produce the CO; in 1 kg of air?
Note: The mean molecular weight of air is about 29. (b) The molar concentration of O, in Earth
air is about 20%. How many grams of Oz does a 1 liter breath of air contain at sea level (1000mb)?
At the top of Qomolangma (a.k.a. "Mt. Everest,” about 300mb)? Does the temperature of the
air (within reasonable limits) affect your answer much?

2.2.2 Specific heat and conservation of energy

Conservation of energy is one of the three great pillars upon which the edifice of thermodynamics
rests. When expressed in terms of changes in the state of matter, it is known as the First Law
of Thermodynamics. When a gas expands or contracts, it does work by pushing against the
environment as its boundaries move. Since pressure is force per unit area, and work is force times
distance, the work done in the course of an expansion of volume dV is pdV. This is the amount
of energy that must be added to the parcel of gas to allow the increase in volume to take place.
For atmospheric purposes, it is more convenient to do write all thermodynamic relations on a per
unit mass basis. Dividing V by the mass contained in the volume yields p~!, whence the work per
unit mass is pdp~!. This is not the end of energy accounting. Changing the temperature of a unit



12 CHAPTER 2. THERMODYNAMICS IN A NUTSHELL

mass of the substance while holding volume fixed changes the energy stored in the various motions
of the molecules by an amount c¢,dT’, where ¢, is a proportionality factor known as the specific
heat at constant volume. For example it takes about 720 Joules of energy to raise the temperature
of 1kg of air by 1K while holding the volume fixed. For ideal gases, the specific heat can depend
on temperature, though the dependence is typically weak. For non-ideal gases, specific heat can
depend on pressure as well.

Exercise 2.2.3 There are 20 students and one professor in a well-insulated classroom measuring
20 meters by 20 meters by 3 meters. Each person in the classroom puts out energy at a rate of
100 Watts (1 Watt = 1 Joule/second). The classroom is dark, except for a computer and LCD
projector which together consume power at a rate of 200 Watts. The classroom is filled with air
at a pressure of 1000mb (no extra charge). How much does the temperature of the classroom rise
during the course of a 1 hour lecture?

Combining the two contributions to energy change we find the expression for the amount
of energy that must be added per unit mass in order to accomplish a change of both temperature
and volume:

8Q = c,dT + pdp™* (2.7)

Using the perfect gas law, the heat balance can be re-written in the form
6Q = c,dT +d(pp™") — p~tdp = (¢, + R)dT — p~dp (2.8)

From this relation, we can identify the specific heat at constant pressure, ¢, = ¢, + R, which is the
amount of energy needed to warm a unit mass by 1K while allowing it to expand enough to keep
pressure constant.

The units in which we measure temperature are an artifact of the marks one researcher or
other once decided to put on some device that responded to heat and cold. Since temperature is
proportional to the energy per molecule of a substance, it would make sense to set the propor-
tionality constant to unity and simply use energy as the measure of temperature. This not being
common practice, one has occasion to make use of the Boltzmann thermodynamic constant, k,
which expresses the proportionality between temperature and energy. More precisely, each degree
of freedom in a system with temperature T has a mean energy %kT. For example, a gas made of
rigid spherical atoms has three degrees of freedom per atom (one for each direction it can move),
and therefore each atom has energy %kT on average; a molecule which could store energy in the
form of rotation or vibration would have more degrees of freedom, and therefore each molecule
would have more energy at any given temperature. The energy-temperature relation is made pos-
sible by an important thermodynamic principle, the equipartion principle, which states that in
equilibrium, each degree of freedom accessible to a system gets an equal share of the total energy
of the system. In constrast to physical constants like the speed of light, the Boltzmann constant
should not be considered a fundamental constant of the Universe. It is just a unit conversion
factor.

2.2.3 Entropy, reversibility and Potential temperature; The Second Law

One cannot use Eqn 2.8 to define a "heat content” @ of a state (p,T') relative to a reference state
(po, T,), because the amount of heat needed to go from one state to another depends on the path
in pressure-temperature space taken to get there; the right hand side of Eqn 2.8 is not an exact
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differential. However, it can be made into an exact differential by dividing the equation by 7" and
using the perfect gas law as follows:

5Q dT dp - c
=7 ~op Iy = edn@r ) (2:9)

ds
assuming c, to be constant. This equation defines the entropy, s = c,In (Tp_R/ ¢r). (Entropy can
still be defined if ¢, is not constant, but the expression is somewhat more complicated and need
not concern us for the moment.) Entropy is a nice quantity to work with because it is a state
variable — its change between two states is independent of the path taken to get from one to the
other. A process affecting a parcel of matter is said to be adiabatic if it occurs without addition
or loss of heat from the parcel. By definition, 6@ = 0 for adiabatic processes. In consequence,
adiabatic processes leave entropy unchanged. They are reversible. Entropy can also be defined for
gases whose specific heat depends on temperature and pressure, and for non-ideal gases, but the
expression is more complicated.

The Second Law of Thermodynamics states that entropy never decreases for energetically
closed systems — systems to which energy is neither added nor subtracted in the course of their evo-
lution. The formal derivation of the law from the microscopic properties of molecular interactions
is in many ways an unfinished work of science, but the tendency towards an increase in entropy — an
increase in disorder — seems to be a nearly universal property of systems consisting of a great many
interacting components. The Second Law is perhaps more intuitive when restated in the following
way: In an energetically closed system, heat flows from a hotter part of the system to a colder part
of the system, causing the system to evolve toward a state of uniform temperature. To see that this
statement is equivalent to the entropy-increase principle, consider a thermally insulated box of gas
having uniform pressure, but within which the left half of the mass is at temperature 77 and the
right half of the mass is at temperature T < T7. Now suppose that we transfer an amount of heat
0@ from the left half of the box to the right half. This transfer leaves the net energy unchanged,
but it changes the entropy. Specifically, according to Eq. 2.9, the entropy change summed over
the two halves of the gas is ds = (Ti2 - %)5@. Since Ty < Tj, this change is positive only if
0@ > 0, representing a transfer from the hotter to the colder portion of the gas. Entropy can be
increased by further heat transfers until 17 = 75, at which point the maximum entropy state has
been attained.

The Second Law endows the Universe with an arrow of time. If one watches a movie of a
closed system and sees that the system starts with large fluctuations of temperature (low entropy)
and proceeds to a state of uniform temperature (high entropy), one knows that time is running
forward. If one sees a thermally homogeneous object spontaneously generate large temperature
inhomogeneities, then one knows that the movie is being run backwards. Note that the Second
Law applies only to closed systems. The entropy of a subcomponent can decrease, if it exchanges
energy with the outside world and increases the entropy of the rest of the Universe. This is how a
refrigerator works.

Entropy can also be used to determine how the temperature of an air parcel changes when
it is compressed or expanded adiabatically. This is important because it tells us what happens to
temperature is a bit of the atmosphere is lifted from low altitudes (where the pressure is high) to
higher altitudes (where the pressure is lower), provided the lifting occurs so fast that the air parcel
has little time to exchange heat with its surroundings. If the initial temperature and pressure
are (T,p), then conservation of entropy tells us that the temperature T, found upon adiabatically
compressing or expanding to pressure p, is given by Tp~ /% = T, p, R/ This leads us to define
the potential temperature

0= T(pﬂ)*R/Cp (2.10)



14 CHAPTER 2. THERMODYNAMICS IN A NUTSHELL

March 15 1993, 127
2.00 S 169.02 W

10

| - i
§ / _
= B / Stratasphere ]
E ook S |

% ~Tropopause
g | i
m | i
- [ Troposphere _
1000 :

300 400 500 600 700 800
Potential Temperature (Kelvin)

Figure 2.3: The dry potential temperature profile for the sounding in Figure 2.1

which is simply the temperature an air parcel would have if reduced adiabatically to a reference
pressure p,. Like entropy, potential temperature is conserved for adiabatic processes.

To understand why the presence of cold air above warm air in the sounding of Figure
2.1 does not succumb immediately to instability, we need only look at the corresponding profile of
potential temperature, shown in Figure 2.3. This figure shows that potential temperature increases
monotonically with height. This profile tells us that the air aloft is cold, but that if it were pushed
down to lower altitudes, compression would warm it to the point that it is warmer than the
surrounding air, and thus being positively buoyant, will tend to float back up to its original level
rather than continuing its descent. We see also where the stratosphere gets its name: potential
temperature increases very strongly with height there, so air parcels are very resistant to vertical
displacement. This part of the atmosphere is therefore strongly stratified.

The troposphere is stable, but has much weaker gradients of 8. In a compressible atmosphere,
a well-stirred layer would have constant 6 rather than constant T', since it is the former that is
conserved for adiabatic processes such as would be caused by rapid vertical displacements. This
is the essence of the explanation for why temperature decreases with height: turbulent stirring
relaxes the troposphere towards constant 6, yielding the dry adiabat

T(p)=0- (p%)R/c” (2.11)

In this formula, 6 has the constant value T'(p,). If we introduce the new vertical coordinate
¢ = —In(p/p,), then Equation 2.11 can be re-written T'(p) = T'(po)exp(—(R/cp)(), from which we
see that a dry adiabat shows up as a straight line on a plot of the logarithm of temperature vs.
the logarithm of pressure.
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It is evident from Figure 2.3 that something prevents 6 from becoming completely well
mixed. An equivalent way of seeing this is to compare the observed temperature profile with the
dry adiabat. For example, if the air at 1000mb in Figure 2.3, having temperature 298K, were lifted
dry-adiabatically to the tropopause, where the pressure is 100mb, then the temperature would be
298.(%)2/7, i.e. 154.3K (using the value R/c, = 2/7 for Earth air). This is much colder than
the observed temperature, which is 188K. We will see shortly that in the Earth’s atmosphere,
condensation of water vapor is one of the factors in play, though it is not the only one affecting the
tropospheric temperature profile. The question of what determines the tropospheric 6 gradient is
at present still largely unsettled, particularly outside the Tropics.

It is no accident that the value of R/c, for air lies close to the ratio of two small integers.
It is a consequence of the equipartition principle. Using methods of statistical thermodynamics, it
can be shown that a gas made up of molecules with n degrees of freedom has R/c, = 2/(n + 2).
Using the expression for the gas constant in terms of the specific heats, the adiabatic coefficient
can also be written as R/c, =1 — 1/, where v = ¢,/c,; for exact equipartion, v =1+ 2/n. The
measured values of v for a few common atmospheric gases are shown in Table 2.1. Helium comes
close to the theoretical value for a molecule with no internal degrees of freedom, underscoring that
excitation of electron motions plays little role in heat storage for typical planetary temperatures.
The diatomic molecules have values closest to the theoretical value for n = 5, one short of what one
would expect from adding two rotational and one vibrational internal degrees of freedom. Among
the triatomic molecules, water acts roughly as if it had n = 6 while carbon dioxide is closer ton = 7.
The two most complex molecules, methane and ammonia, are also characterized by n = 7. The
failure of thermodynamics to access all the degrees of freedom classically available to a molecule
is a consequence of quantum theory. Since the energy stored in states of motion of a molecule in
fact comes in discrete-sized chunks, or ”quanta,” one can have a situation where a molecule hardly
ever gets enough energy from a collision to excite even a single vibrational degree of freedom, for
example, leading to the phenomenon of partial excitation or even non-excitation of certain classical
degrees of freedom. This is one of many ways that the quantum theory, operating on exceedingly
tiny spatial scales, exerts a crucial control over macroscopic properties of matter that can effect
the very habitability of the Universe. Generally speaking, the higher the temperature gets, the
more easy it is to excite internal degrees of freedom, leading to a decrease in . This quantum
effect is the chief reason that specific heats vary somewhat with temperature.

Exercise 2.2.4 (a) A commercial jet airliner cruises at an altitude of 300mb. The air outside has
a temperature of 240K. To enable the passengers to breathe, the ambient air is compressed to
a cabin pressure of 1000mb. What would the cabin temperature be if the air were compressed
adiabatically? How do you think airlines deal with this problem? (b) Discuss whether the lower
portion of the Venus temperature profile shown in Figure 2.2 is on the dry CO» adiabat. (c¢) Assume
that the Jupiter sounding is on a dry adiabat, and estimate the value of R/c, for the atmosphere.
Based on your result, what is the dominant constituent of the Jovian atmosphere likely to be?
What other gas might be mixed with the dominant one?

2.3 Static stability of inhomogeneous mixtures

An atmosphere is statically unstable if an air parcel displaced from its original position tends to
continue rising or sinking instead of returning to its original position. Such a state will tend to
mix itself until it becomes stable. For a well-mixed atmosphere, the potential temperature profile
tells the whole story about static stability, since, according to the ideal gas law, the density of an
air parcel with potential temperature 8y will be pg = p1 /(R - (p1/po)™/ ») upon being elevated
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HQO CH4 C02 Ng 02 Hg He NH3
Crit. point T 647.1 190.44 304.2 126.2 154.54 33.2 5.1 405.5
Crit. point p 221.e5  45.96ed5 73.825e5  34.0ed  50.43e5 12.98e5  2.28ed 112.8
Triple point T~ 273.15 90.67 216.54 63.14 54.3 13.95 2.17 195.4

Triple point p 611. .117eb 5.185eb  .1253e5 .0015e5 .072e5  .0507e5  .061eb
L vap(b.p.) 22.55e5  5.1ed - 1.98e5  2.13edb  4.54ed  .203e5  13.71led
L vap(t.p.) 24.93e5  5.36eb 3.97e5 2.18e5  2.42e5 77 77 16.58e5
L fusion 3.34e5  .5868ed5  1.96e5  .2573eb  .139eb  .582eH 77 3.314e5
L sublimation  28.4e5  5.95e5 5.93e5  2.437¢5  2.56eb 77 77 19.89¢5
p lig(b.p.) 958.4 450.2 1032. 808.6 1141. 70.97 124.96 682.
p liq(t.p.) 999.87 ?? 1110. 77 1307. 77 ?7? 734.2
p solid 917. 509.3 1562. 1026. 1351. 88. 200. 822.6
¢p(0C/1bar) 1847. 2195. 820. 1037. 916. 14230. 5196. 2060.
v(ep/cw) 1.331 1.305 1.294 1.403 1.393 1.384 1.664 1.309

Table 2.1: Thermodynamic properties of selected gases. Latent heats of vaporization are given
at both the boiling point (the point where saturation vapor pressure reaches 1bar) and the triple
point. Liquid densities are given at the boiling point and the triple point. For CO5 the ’boiling
point’ is undefined, so the liquid density is given at 253K /20bar instead. Note that the maximum
density of liquid water is 1000.00kg/m? and occurs at —4C. Densities of solids are given at or near
the triple point. All units are mks, so pressures are quoted as Pa with the appropriate exponent.
Thus, 1bar is written as 1eb in the table.

to an altitude with pressure p; < po. The ambient density there is p; = py /(R - (p1/po)™/ ).
The displaced parcel will be negatively buoyant and return toward its original position if py > p1,
which is true if and only if 8y < 64, i.e. if the potential temperature increases with height. For
an inhomogeneous atmosphere, this is no longer the case, since the gas constant R depends on the
mean molecular weight of the mixture, which varies from place to place. As an example, we may
consider an atmosphere which has uniform 6, but which consists of pure Ny for p > py and pure
COs for p < pg. In this case, the difference in density between a lifted Na parcel and that of the
surrounding C'Os is

1 1 1
po =P = 7( - c - - c
0" Ry, (p1/po) (R/co)n Reco,(p1/po) (R/ep)co,

The value of R/c, differs somewhat between Ny and CO2 but the main effect in this equation
comes from the differing values of the gas constant. Since N3 has lower molecular weight (28)
than COs (44), the gas constant for Ny is considerably greater than the gas constant for C'Os.
In consequence, py < p1, the lifted nitrogen parcel is positively buoyant, and the nitrogen layer
will tend to spontaneously mix itself with the C'Os layer despite the fact that both have the same
potential temperature.

) (2.12)

The phenomenon is very familiar: it is why helium balloons rise in air, even when they are at
the same temperature as their surroundings. The low molecular weight of helium makes it lighter
(i.e. lower density) than air having the same temperature and pressure.

Exercise 2.3.1 Make sense of the following statement: ”For the Earth’s atmosphere, moist air is
lighter than dry air.” Would this still be true for a planet whose atmosphere is mainly H»?

There are a number of ways to deal with the effect of composition on static stability. For
the case of moisture on the Earth, it is common to define a wvirtual temperature, which is the
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temperature at which the gas law for dry air would yield the same density as the true gas law
taking into account the lightening effect of water vapor. This approach has its virtues, but we find
it less confusing to deal instead with potential density, which is the density an air parcel would
have if reduced adiabatically to a standard reference pressure. Using the gas law, and the fact that
mixing ratios are conserved (whence R/c, is conserved on adiabatic compression of the parcel),
the potential density is

_ Po _ Po (P Ry, 2.13
Pr = Tg RT(pO) (2.13)

From this equation it is evident that for a well-mixed system, R is independent of p, so that
the system is stable precisely when 6 increases with height. For an inhomogeneous mixture, the
variations in R associated with varying composition can stabilize or destabilize the system. The
variations in ¢, can have a similar, though generally less pronounced, effect.

2.4 The hydrostatic relation

The hydrostatic relation relates pressure to altitude and the mass distribution of the atmosphere,
and provides the chief reason that pressure is the most natural vertical coordinate to use in most
atmospheric problems. Consider a column of any substance at rest, and suppose that the density
of the substance as a function of height z is given by p(z). Suppose further that the range of
altitudes being considered is small enough that the acceleration of gravity is essentially constant;
The magnitude of this acceleration will be called g, and the force of gravity is taken to point along
the direction of decreasing z. Now, consider a slice of the column with vertical thickness dz, having
cross sectional area A in the horizontal direction. Since pressure is simply force per unit area, then
the change in pressure from the base of this slice to the top of this slice is just the force exerted
by the mass. By Newton’s law, then, we have

Adp = —Agdm = —Agpdz (2.14)

where dm is the increment of mass in the column per unit area. An immediate consequence of this
relation is that

dm = _dp (2.15)

g

which states that the amount of mass in a slab of atmosphere is proportional to the thickness of
that slab, measured in pressure coordinates. A further consequence, upon dividing by dz is the
relation

dp

dz
This differential equation expresses the hydrostatic relation. It is exact if the substance is at rest
(hence the "static”), but if the material of the column is in motion, the relation is still approximately
satisfied provided the acceleration is sufficiently small, compared to the acceleration of gravity. In
practice, the hydrostatic relation is very accurate for most problems involving large scale motions in
planetary atmospheres. It would not be a good approximation within small scale intense updrafts
or downdrafts where the acceleration of the fluid may be large. Derivation of the precise conditions
under which the hydrostatic approximation holds requires consideration of the equations of fluid
motion, which will be taken up in a sequel to the present book.

—pyg (2.16)

An important consequence of the hydrostatic relation is that it enables us to determine
the total mass of an atmosphere through measurements of pressure taken at the surface alone.
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Integrating Eqn 2.15 from the ground (p = ps) to space (p = 0) yields the relation
_Ds
g

where m is the total mass of the atmosphere located over a unit area of the planet’s surface.
Note that this relation presumes that the depth of the layer containing almost all the mass of the
atmosphere is sufficiently shallow that gravity can be considered constant throughout the layer.
Given that gravity decays inversely with the square of distance from the planet’s center, this is
equivalent to saying that the atmosphere must be shallow compared to the radius of the planet. For
a well mixed substance A with mass-specific concentration k4 relative to the whole atmosphere,
the mass of substance A per square meter of the planet’s surface is just mk 4

m (2.17)

Using the perfect gas law to eliminate p from Eqn 2.16 yields
dp g

=——= 2.18
dz ~ Rrr? (2.18)
where R is the gas constant for the mixture making up the atmosphere. This has the solution
g I O
— peexp(—22).T(z) = (= | T 'd 2.19
) = peesp(— ). T = [ T7ae) (219)

Here, T(z) is the harmonic mean of temperature in the layer between the ground and altitude z.
If temperature is constant, then pressure decays exponentially with scale height RT/g. Because
temperature is measured relative to absolute zero, the mean temperature 7(z) can be relatively
constant despite fairly large variations of temperature within the layer. In consequence, pressure
typically decays roughly exponentially with height even when temperature is altitude-dependent.

Exercise 2.4.1 Compute the mass of the Earth’s atmosphere, assuming a mean surface pressure of
1000mb. (The Earth’s radius is 6378km, and the acceleration of its gravity is 9.8m/s?). Compute
the mass of the Martian atmosphere, assuming a mean surface pressure of 6mb. (Mars’ radius is
3390km, and the acceleration of its gravity is 3.7m/s?.)

Note that the hydrostatic relation applies only to the total pressure of all constituents; it
does not apply to partial pressures individually. However, in the special case in which the gases are
well mixed, the total mass of each well-mixed component can still be determined from surface data
alone. One simply multiplies the total mass obtained from surface pressure, by the appropriate
(constant) mass-specific concentration.

In the study of atmospheric dynamics, the hydrostatic equation is used to compute the
pressure gradients which drive the great atmospheric circulations. Qutside of dynamics, there are
rather few problems in physics of climate that require one to know the altitude corresponding to
a given pressure level. Our main use of the hydrostatic relation in this book will be in the form of
Eqn 2.15, which tells us the mass between two pressure surfaces.

The hydrostatic relation also allows us to derive a useful alternate form of the heat budget,
by re-writing the heat balance equation as follows:

d
6Q = cp,dT — p~tdp = c,dT — pfld—pdz =d(cpyT + gz) (2.20)
z

assuming c, to be constant. The quantity ¢, + gz is known as the dry static energy. Dry static
energy provides a more convenient basis for atmospheric energy budgets than entropy, since changes
in dry static energy following an air parcel are equal to the net energy added to or removed from
the parcel by heat sources such as solar radiation.
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2.5 Thermodynamics of phase change

When a substance changes from one form to another (e.g. water vapor condensing into liquid
water or gaseous carbon dioxide condensing into dry ice) energy is released or absorbed even if
the temperature of the mass is unchanged after the transformation has taken place. This happens
because the amount of energy stored in the form of intermolecular interactions is generally different
from one form, or phase to another. The amount of energy released when a unit of mass of a
substance changes from one phase to another, holding temperature constant, is known as the
latent heat associated with that phase change. By convention, latent heats are stated as positive
numbers, with the phase change going in the direction that releases energy. Phase changes are
reversible. If one kilogram of matter releases L joules of energy in going from phase A to phase B,
it will take the same L joules of energy to turn the mass back into phase A. The units of latent
heat are energy per unit mass (Joules per kilogram in mks units).

Condensible substances play a central role in the atmospheres of many planets and satellites.
On Earth, it is water that condenses, both into liquid water and ice. On Mars, CO2 condenses
into dry ice in clouds and in the form of frost at the surface. On Jupiter and Saturn, not only
water but ammonia (/N Hs) and a number of other substances condense. The thick clouds of Venus
are composed of condensed sulfuric acid. On Titan it is methane, and on Neptune’s moon Triton
nitrogen itself condenses. Table 2.1 lists the latent heats for the liquid-vapor (evaporation), liquid-
solid (fusion) and solid-vapor (sublimation) phase transitions are given for a number of common
constituents of planetary atmospheres. Water has an unusually large latent heat; the condensation
of 1 kg of water vapor into ice releases nearly five times as much energy as the condensation of 1kg
of carbon dioxide gas into dry ice. This is why the relatively small amount of water vapor in Earth’s
present atmosphere can nonetheless have a great effect on atmospheric structure and dynamics.
Ammonia also has an unusually large latent heat, though not so much so as water. In both cases,
the anomalous latent heat arises from the considerable energy needed to break hydrogen bonds in
the condensed phase.

Like most thermodynamic properties, latent heat varies somewhat with temperature. For
example, the latent heat of vaporization of water is 2.5 - 105.J/kg at 0C, but only 2.26 - 10°.J/kg
at 100C. For precise calculations, the variation of latent heat must be taken into account, but
nonetheless for many purposes it will be sufficient to assume latent heat to be constant over fairly
broad temperature ranges.

The three main phases of interest are solid, liquid and gas (also called vapor), though other
phases can be important in exotic circumstances. There is generally a triple point in temperature-
pressure space where all three phases can co-exist. Above the triple point temperature, the
substance undergoes a vapor-liquid phase transition as temperature is decreased or pressure is
increased; below the triple point temperature vapor condenses directly into solid, once thermo-
dynamic equilibrium has been attained. For water, the triple point occurs at a temperature of
273.15K and pressure of 6.11mb (see Table 2.1 for other gases). Generally, the triple point temper-
ature can also be taken as an approximation to the ”freezing point” — the temperature at which
a liquid becomes solid — because the freezing temperature varies only weakly with pressure until
very large pressures are reached. Though we will generally take the freezing point to be identical
to the triple point in our discussions, the effect of pressure on freezing of liquid can nonetheless be
of great importance at the base of glaciers and in the interior of icy planets or moons, and perhaps
also in very dense,cold atmospheres.

Typically, the solid phase is more dense than the liquid phase, but water again is exceptional.
Water ice floats on liquid water, whereas carbon dioxide ice would sink in an ocean of liquid carbon
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dioxide, and methane ice would sink in a methane lake on Titan. This has profound consequences
for the climates of planets with a water ocean such as Earth has, since ice formed in winter remains
near the surface where it can be more readily melted when summer arrives.

Exercise 2.5.1 Per square meter, how many Joules of energy would be required to evaporate a
puddle of Methane on Titan, having a depth of 20m?

Atmospheres can transport energy from one place to another by heating an air parcel by an
amount 07", moving the parcel vertically or horizontally, and then cooling it down to its original
temperature. This process moves an amount of heat c¢,67" per unit mass of the parcel. Latent heat
provides an alternate way to transport energy, since energy can be used to evaporate liquid into an
air parcel until its mixing ratio increases by ér, moving it and then condensing the substance until
the mixing ratio returns to its original value. This process transports an amount of heat Lir per
unit mass of the planet’s uncondensible air, and can be much more effective at transporting heat
than inducing temperature fluctuations, especially when the latent heat is large. ”Ordinary” heat
— the kind that feels hot when you touch it, and which is stored in the form of the temperature
increase of a substance — is known in atmospheric circles as ”sensible” heat.

All gases are condensible at low enough temperatures or high enough pressures. On Earth
(in the present climate) COs is not a condensible substance, but on Mars it is. The ability of
a gas to condense is characterized by the saturation vapor pressure, psq: of that gas, which may
be a function of any number of thermodynamic variables. When the partial pressure ps of gas
A is below psqr,4, more of the gas can be added, raising the partial pressure, without causing
condensation. However, once the partial pressure reaches pgqt 4, any further addition of A will
condense out. The state p4 = psqt, 4 is referred to as "saturated” with regard to substance A. Each
condensed state (e.g. liquid or solid) will have its own distinct saturation vapor pressure. Rather
remarkably, for a mixture of perfect gases, the saturation vapor pressure of each component is
independent of the presence of the other gases. Water vapor mixed with 1000 mb worth of dry air
at a temperature of 300K will condense when it reaches a partial pressure of 38mb; a box of pure
water vapor at 300K condenses at precisely the same 38mb. If a substance ” A” has partial pressure
pa that is below the saturation vapor pressure, it is said to be ”subsaturated,” or "unsaturated.”
The degree of subsaturation is measured by the saturation ratio pe/psat,a, which is often stated as
a percent. Applied to water vapor, this ratio is called the relative humidity, and one often speaks of
the relative humidity of other substances, e.g. "methane relative humidity” instead of saturation
ratios. Note that the relative humidity is also equal to the mizing ratio of the substance A in
a given mixture to the mizing ratio the air would have if the substance were saturated. This is
different from the ratio of specific humidity to saturation specific humidity, or the ratio of molar
concentration to saturation molar concentration except when the mixing ratio is small.

It is intuitively plausible that the saturation vapor pressure should increase with increasing
temperature, as molecules move faster at higher temperatures, making it harder for them to stick
together to form condensate. The temperature dependence of saturation vapor pressure is expressed
by a remarkable thermodynamic relation known as the Clausius-Clapeyron equation. It is derived
from very general thermodynamic principles, via a detailed accounting of the work done in an
reversible expansion-contraction cycle crossing the condensation threshold, and requires neither
approximation nor detailed knowledge of the nature of the substance condensing. The relation

reads
dpsat _ 1 L

dI Tp;'=pc!
where p,, is the density of the less condensed phase, p. is the density of the more condensed phase,
and L is the latent heat associated with the transformation to the more condensed phase. For vapor

(2.21)
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to liquid or solid transitions, p. > p,, enabling one to ignore the second term in the denominator
of Eqn 2.21. Further, upon substituting for density from the perfect gas law, one obtains the
simplified form
dpsat _ L
dT - RAT2 Psat

where R 4 is the gas constant for the substance which is condensing. If we make the approximation
that L is constant, then Eqn 2.21 can be integrated analytically, resulting in

(2.22)

psat(T) = psat(To)e_ﬁ 1) (223)

where T, is some reference temperature. This equation shows that saturation water vapor content
is very sensitive to temperature, decaying rapidly to zero as temperature is reduced and increasing
rapidly as temperature is increased. The rate at which the change occurs is determined by the
characteristic temperature R—LA appearing in the exponential. For the transition of water vapor to
liquid, it has the value 5420K at temperatures near 300K. For CO; gas to dry ice, it is 3138K,
and for methane gas to liquid methane it is 1031K. Equation 2.22 seems to imply that the psq:
asymptotes to a constant value when 7' > L/R4. This is a spurious limit, though, since the
assumption of constant L invariably breaks down over such large temperature ranges. In fact,
L typically approaches zero at some critical temperature, where the distinction between the two
phases disappears. For water vapor, this critical point occurs at a temperature and pressure of
647.1K and 221bars. For carbon dioxide, the critical point occurs for the vapor-liquid transition,
at 304.2K and 73.825 bars. Critical points for other atmospheric gases are shown in Table 2.1. At
high pressures, the solid/liquid phase boundary does not typically terminate in a critical point,
but instead gives way to a bewildering variety of distinct solid phases distinguished primarily by
crystal structure.

Figure 2.4 summarizes the features of a typical phase diagram. Over ranges of a few bars
of pressure, the solid-liquid boundary can be considered nearly vertical. In fact the exact form of
the Clausius-Clapeyron relation (Eq. 2.21) tells us why the boundary is nearly vertical and how
it deviates from verticality. Because the difference in density between solid and liquid is typically
quite small while the latent heat of fusion is comparatively large, Eq. 2.21 implies that the slope
dp/dT is very large (i.e. nearly vertical. The equation also tells us that in the normal” case where
ice is denser than liquid, the phase boundary tilts to the right, and so the freezing temperature
increases with pressure; at fixed pressure, one can cause a cold liquid to freeze by squeezing it. The
unusual lightness of water ice relative to the liquid phase implies that instead the phase boundary
tilts to the left; one can melt solid ice by squeezing it. Substituting the difference in density
between water ice and liquid water, and the latent heat of fusion, into Eq. 2.21, we estimate that
100bars of pressure decreases the freezing point temperature by about .74K. This is roughly the
pressure caused by about a kilometer of ice on Earth. The effect is small, but can nonetheless be
significant at the base of thick glaciers.

Below the triple point temperature, the favored transition is gas/solid,and so the appropriate
latent heat to use in the Clausius-Clapeyron relation is the latent heat of sublimation. Above
the triple point, the favored transition is gas/liquid, whence one should use the latent heat of
vaporization. The triple point (7', p) provides a convenient base for use with the simplified Clausius-
Clapeyron solution in Eqn. 2.23, or indeed for a numerical integration of the relation with variable
L. Results for water vapor are shown in Figure 2.5. These results were computed using the constant
L approximation for sublimation and vaporization, but in fact a plot of the empirical results on a
logarithmic plot of this type would not be distinguishable from the curves shown. The more exact
result does differ from the constant L idealization by a few percent, which can be important in
some applications. Be that as it may, the figure reveals the extreme sensitivity of vapor pressure
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Figure 2.4: The general form of a phase diagram showing the regions of temperature-pressure
space where a substance exists in solid, liquid or gaseous forms. The triple point is marked with a
black circle while the critical point is marked with a grey circle. The solid-liquid phase boundary
for a "normal” substance (whose solid phase is denser than its liquid phase) is shown as a solid
curve, whereas the phase boundary for water (ice less dense than liquid) is shown as a dashed
curve. The critical point pressure is typically several orders of magnitude above the triple point
pressure, while the critical point temperature is generally only a factor of two or three above the
triple point temperature. Therefore, the pressure axis on this diagram should be thought of as
logarithmic, while the temperature axis should be thought of as linear. This choice of axes also
reflects the fact that the pressure must typically be changed by an order of magnitude or more to
cause a significant change in the temperature of the solid/liquid phase transition.
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Saturation Vapor Pressure for Water

——Vapor pressure over liquid
--s=-\/apor pressure over ice

Vapor pressure (Pa)

Figure 2.5: Saturation vapor pressure for water, based on the constant-L form of the Clausius-
Clapeyron relation. Curves are shown for vapor pressure based on the latent heat of vaporization,
and (below freezing) for latent heat of sublimation. The latter is the appropriate curve for sub-
freezing temperatures.

to temperature. The vapor pressure ranges from about .1 Pascals at 200K (the tropical tropause
temperature) to 35mb at a typical tropical surface temperature of 300K, rising further to 100mb
at 320K. Over this span of temperatures, water ranges from a trace gas to a major constituent; at
temperatures much above 320K, it rapidly becomes the dominant constituent of the atmosphere.
Note also that the distinction between the ice and liquid phase transitions has a marked effect
on the vapor pressure. Because the latent heat of sublimation is larger than the latent heat of
vaporization, the vapor pressure over ice is lower than the vapor pressure over liquid would be, at
subfreezing temperatures. At 200K, the ratio is nearly a factor of three.

Exercise 2.5.2 Let’s consider once more the case of the airliner cruising at an altitude of 300mb,
discussed in an earlier Exercise. Suppose that the ambient air at flight level has 100% relative
humidity. What is the relative humidity once the air has been brought into the cabin, compressed
to 1000mb, and chilled to a room temperature of 290K?

Once the saturation vapor pressure is known, one can compute the molar or mass mixing
ratios with respect to the background non-condensible gas, if any, just as for any other pair of gases.
The saturation vapor pressure is used in this calculation just like any other partial pressure. For
example, the molar mixing ratio is just psat/pa, if p, is the partial pressure of the noncondensible
background. Note that, while the saturation vapor pressure is independent of the pressure of the
gas with which the condensible substance is mixed, the saturation mixing ratio is not.

Exercise 2.5.3 What is the saturation molar mixing ratio of water vapor in air at the ground in
tropical conditions (1000mb and 300K)? What is the mass mixing ratio? What is the mass-specific
humidity? What is the molar mixing ratio (in ppm) of water vapor in air at the tropical tropopause
(100mb and 200K)?
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2.6 The moist adiabat

When air is lifted, it cools by adiabatic expansion, and if it gets cold enough that one of the
components of the atmosphere begins to condense, latent heat is released. This makes the lifted
air parcel warmer than the dry adiabat would predict. The resulting temperature profile will be
referred to as the moist adiabat, regardless of whether the condensing substance is water vapor (as
on Earth) or something else (CO3 on Mars or methane on Titan). We now proceed to make this
quantitative.

The simplest case to consider is that of a single component atmosphere, which can attain
cold enough temperatures to reach saturation and condense. This case is relevant to present Mars,
which has an almost pure C'O5 atmosphere that can condense in the cold Winter hemisphere and
at upper levels at any time of year. A pure COy atmosphere with a surface pressure on the
order of two or three bars is a commonly used model of the atmosphere of Early Mars, though
the true atmospheric composition in that instance is largely a matter of speculation. Another
important application of a single component condensible atmosphere is the pure steam (water
vapor) atmosphere, which occurs when a planet with an ocean gets warm enough that the mass of
water which evaporates into the atmosphere dominates the other gases that may be present. This
case figures prominenently in the runaway greenhouse effect that will be studied in Chapter 4.

For a single component atmosphere, the partial pressure of the condensible substance is
in fact the total atmospheric pressure. Therefore, at saturation, the pressure is related to the
temperature by the Clausius-Clapeyron relation. To find the saturated moist adiabat, we simply
solve for T in terms of psy¢ in the Clausius-Clapeyron relation, and recall that p = ps,: because we
are assuming the atmosphere to be saturated — that is, any reduction in temperature or increase
in pressure leads to condensation. Using the simplified form of Clausius-Clapeyron given in Eqn
2.23, the saturated moist adiabat would be

T,

_ RT, P
1 =72 In o=y

T(p) = (2.24)

where R is the gas constant for the substance making up the atmosphere. Without loss of generality,
we may suppose that T, is taken to be the surface temperature, so that ps.:+(T,) is the surface
pressure p,. Since the logarithm is negative, the temperature decreases with altitude (recalling that
lower pressure corresponds to higher altitude). Further, the factor multiplying the logarithm is the
ratio of the surface temperature to the characteristic temperature L/R. Since the characteristic
temperature is large, the prefactor is small, and as a result the temperature of saturated adiabat
for a one-component atmosphere varies very little over a great range of pressures. For example, in
the case of the CO4 vapor-ice transition, an atmospheric surface pressure of 7mb (similar to that
of present Mars) would be in equilibrium with a surface dry-ice glacier at a temperature of 149K;
at .07mb — one one-hundredth of the surface pressure — the temperature on the saturated adiabat
would only fall to 122K.

Exercise 2.6.1 In the above example, what would the temperature aloft have been if there were
no condensation and the parcel were lifted along the dry adiabat?

Unless there is a reservoir of condensate at the surface to maintain saturation, it would
be rare for an atmosphere to be saturated all the way to the ground. Suppose now that a one-
component atmosphere has warm enough surface temperature that the surface pressure is lower
than the saturation vapor pressure computed at the surface temperature. In this case, when a
parcel is lifted by convection, its temperature will follow the dry or noncondensing adiabat, until the
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Figure 2.6: The adiabatic profile for a pure COs atmosphere with a surface pressure of 700 Pa
(Tmb) and a surface temperature of 220K. The conditions are similar to those encountered on
present-day Mars.

temperature falls so much that the gas becomes saturated. The level at which this occurs is called
the lifted condensation level. Above the lifted condensation level, ascent causes condensation and
the parcel follows the saturated adiabat. Since the temperature curve along the saturated adiabat
falls with altitude so much less steeply than the dry adiabat, it is very easy for the two curves
to intersect provided the surface temperature is not exceedingly large. An example for present
Martian conditions is shown in Figure 2.6. A comparison with the Martian profiles in Figure
2.2 indicates that something interesting is going on in the Martian atmosphere. For the warm
sounding, whose surface temperature is close to 220K, the entire atmosphere aloft is considerably
warmer than the adiabat, and the temperature nowhere comes close to the condensation threshold.
Clearly, something we haven’t taken into account is warming up the atmosphere. A likely candidate
for the missing piece is the absorption of solar energy by dust.

Although results like Figure 2.6 show a region of weak temperature dependence aloft which
bears a superficial resemblance to the stratosphere seen in Earth soundings (and also at the top
of the Venus, Jupiter and Titan soundings), one should not jump to the conclusion that the
stratosphere is caused by condensation. This is not generally the case, and there are other reasons
for the upper atmospheric temperature structure, which will be taken up in the next few chapters.

As a final step up on the ladder of generality, let’s consider a mixture of a condensible
substance with a substance that doesn’t condense under the range of temperatures encountered
in the atmosphere under consideration. This might be a mixture of condensible methane on
Titan with non-condensible nitrogen, or condensible carbon dioxide on Early Mars with non-
condensible nitrogen, or water vapor on Earth with a non-condensible mixture of oxygen and
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nitrogen. Whatever the substance, we distinguish the properties of the condensible substance with
the subscript ”¢,” and those of the non-condensible substance by the subscript ”a” (for ”air”).
We now need to do the energy budget for a parcel of the mixture, assuming that it has been
cooled down enough for the condensible substance to reach saturation, so that any further cooling
results in formation of enough condensate (with concomitant release of latent heat) to keep the
system from becoming supersaturated. We further introduce the assumption that essentially all
of the condensate is immediately removed from the system, so that the heat storage in whatever
mass of condensate is left in suspension may be neglected. This is a reasonable approximation
for water or ice clouds on Earth, but even in that case the slight effect of the mass of retained
condensate on buoyancy can be significant in some circumstances. In other planetary atmospheres
the effect of retained condensate could be of greater importance. The temperature profile obtained
by assuming condensate is removed from the system is called a pseudoadiabat, because the process
is not truly reversible. One cannot return to the original saturated state, because the condensate
is lost. At the opposite extreme, if all condensate is retained, it can be re-evaporated when the
parcel is compressed, allowing for true reversibility.

Let the partial pressure, density, molecular weight, gas constant and specific heat of the
noncondensible substance be p,, po,Ma, Rq, and cp,, and similarly for the condensible substance.
Further, let L be the latent heat of the phase transition between the vapor and condensed phase of
the condensible substance, and let p. sq¢(T") be the saturation vapor pressure of this substance, as
determined by the Clausius-Clapeyron relation. The assumption of saturation amounts to saying
that p. = pesat(T); if the parcel weren’t at saturation, there would be no condensation and we
could simply use the dry adiabat based on a noncondensing mixture of substance ”a” and ”c.”

Now consider a parcel consisting of a mass m, of noncondensible gas with an initial mass
m. of condensible gas. If the temperature is changed by an amount d7" and the partial pressure of
noncondensible gas is changed by an amount dp, then the total heat budget of the parcel is

(Mg +me)dQ = macpedl — %dpa + mecpedT — %dpc + Ldm, (2.25)
a (&
where dm, is the amount of mass lost to condensation. There is no term in this budget corre-
sponding to heat storage in the condensed phase, since it is assumed that all condensate disappears
from the parcel by precipitation. Technically, the temperature profile we will compute as a result
is the pseudoadiabat, rather than the adiabat, since the removal of condensate makes the process
irreversible. The usual way to change dp, would be by lifting, causing expansion and reduction of
pressure. Now, we divide by m.T’, make use of the perfect gas law to substitute for p, and p., and
make use of the fact that m./m, = (M./M,)(p./pa), since m./m, is just the mass mixing ratio,
denoted henceforth by r.. This yields
1+ Tc)% = cpa% — Ra% + cpcrc% — ?"CRC% + %drc (2.26)
The first two terms can be recognized as the contribution of the two substances to the dry entropy of
the mixture, weighted according to relative abundance of each species. If there is no condensation,
the mixing ratio is conserved as the parcel is displaced to a new pressure, dr. = 0, and the
expression reduces to the equivalent of Eqn. 2.9, leading to the dry adiabat for a mixture. At
this point, we introduce the saturation assumption, which actually consists of two parts: First,
we assume that the air parcel is initially saturated, so that before being displaced, p. = pe¢ sat(T)
and r. = rsqr = €Dc,sat(T)/Pa, Where € is the ratio of molecular weights M./M, and pc sq (1) is
determined by the Clausius-Clapeyron relation. Second, we assume that a displacement conserving
r. would cause supersaturation, so that condensation would occur and bring the partial pressure
pe back to the saturation vapor pressure corresponding to the new value of T. Usually, this



2.6. THE MOIST ADIABAT 27

would occur as a result of ascent and cooling, since cooling strongly decreases the saturation vapor
pressure. In rare circumstances, it can be compression that leads to condensation. More typically,
though, the effect of compressional warming on saturation vapor pressure dominates the effect of
increasing partial pressure, so that subsidence of initially saturated air follows the dry adiabat.

Assuming that the displacement causes condensation, we may replace p. by pc sae(T) and
Tc by 754t everywhere in Eqn. 2.26. Next, we use Clausius-Clapeyron to re-write dp, sqt, Observing
that

dpc sat dlnpc sat
> =dl o sat = 2 dT 2.27
Pe,sat HPe,sat ar ( )
and
Arsar = eqPesat — Pe gy Pe Tsat - (AN Pe sar — dInp,) (2.28)
Pa Pa Pa

Upon substituting into Equation 2.26 and collecting terms in dInT and dlnp, we find

1) L L
1+ rsat)—Q = (cpa + (cpe + (ﬁ —1)=)rsar)dInT — (1

T JR.d1Inp, (2.29)

L L
T RaTrsat

To obtain the adiabat, we set §@Q = 0, which leads to the following diferential equation defining

InT as a function of Inp,:

dnT R, 1+ gEp7sar

dnp,  cpa 1+ (g;’: + (ﬁ - 1)%%)7“&“

(2.30)

Note that this expression reduces to the dry adiabat, as it should, when rg,; — 0.

Exercise 2.6.2 What would the dry adiabat be for a noncondensing mixture of the two gases?
Why doesn’t the expression reduce to the dry adiabat for the mixture as L — 07 (Hint: Think
about the way Clausius-Clapeyron has been used in deriving the moist adiabat).

An examination of the typical properties of gases indicates that the c,./cpq is typically of
order unity, whereas L/(R.T) is typically very large, so long as the temperature is not exceedingly
great. If one drops the smaller terms from the denominator of Eqn 2.30, one finds that the
temperature gradient along the moist adiabiabat is weaker than that along the dry adiabat provided
ecpiT > 1, which is typically the case. It is expected that condensation should weaken the gradient,
since it adds heat to the system and warms the air to greater temperatures than it would have had
without condensation. This property can fail when the latent heat is weak or the noncondensible
specific heat is very large, whereon the heat added by condensation has little effect on temperature.
It is in this regime that there is also the possibility that condensation happens on descent rather
than ascent; it is a very uncommon regime.

Everything on the right hand side of Eqn 2.30 is either a thermodynamic constant, or can
be computed in terms of In7T and Inp,. Therefore, the equation defines a first order ordinary
differential equation which can be integrated (usually numerically) to obtain T" as a function of p,.
Usually one wants the temperature as a function of total pressure, rather than partial pressure of
the noncondensible substance. This is no problem. Once T'(p,) is known, the corresponding total
pressure at the same point is obtained by computing p = pg + pe,sat(T(pa)). To make a plot, or a
table, one treats the problem parametrically: computing both 7" and p as functions of p,. When
the condensible substance is dilute, then p. sqt << pq, and p = p,, so Eqn 2.30 gives the desired
result directly.
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Figure 2.7: The moist adiabat for saturated water vapor mixed with Earth air having a partial
pressure of 1 bar at the surface. Results are shown for various values of surface temperature,
ranging from 250K to 350K. The left panel shows the temperature profile, while the right shows
the profile of molar concentration of water vapor. A concentration value of .1 would mean that
one molecule in 10 of the atmosphere is water vapor.

Figure 2.7 shows a family of solutions to Eqn 2.30, for the case of water vapor in Earth
air. When the surface temperature is 250K, there is so little moisture in the atmosphere that the
profile looks like the dry adiabat right to the ground. As temperature is increased, a region of
weak gradients appears near the ground, representing the effect of latent heat on temperature. This
layer gets progressively deeper as temperature increases and the moisture content of the atmosphere
increases. When the surface temperature is 350K, so much moisture has entered the atmosphere
that the surface pressure has actually increased to over 1300mb. Moreover, the moisture-dominated
region extends all the way to 10 Pa (.1mb) , and even at 100 Pa (1mb) the atmosphere is 10%
water by volume. Thus, for moderate surface temperatures, there is little water high up in the
atmosphere. When the surface temperature approaches or exceeds 350K, though, the ”cold trap”
is lost, and a great deal of water is found aloft, where it is exposed to the destructive ultraviolet
light of the sun and the possibility of thermal escape to space. In subsequent chapters, it will be
seen that this phenomenon plays a major role in the life cycle of planets, and probably accounts
for the present hot, dry state of Venus.

2.7 Rayleigh Fractionation

Section under development. 1 am considering providing an introduction to Rayleigh distillation
processes in this section, since it is a natural extension of moist thermodynamics and is crucial to the
understanding of many paleoclimate proxies. This would only cover the most basic equilibrium
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fractionation models, and not the more intricate material associated with kinetic fractionation,
retained condensate, or boundary layer kinetic processes.
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Chapter 3

Elementary models of radiation
balance

3.1 Energy balance and temperature

Our objective is to understand the factors governing the climate of a planet. Certainly, there is
more to climate than temperature, but equally certainly temperature is a major part of what is
meant by ”climate,” and greatly affects most of the other processes which come under that heading.

From the preceding chapter, we know that the temperature of a chunk of matter provides
a measure of its energy content. Suppose that the planet receives energy at a certain rate. If
uncompensated by loss, energy will accumulate and the temperature of some part of the planet
will increase without bound. Now suppose that the planet loses energy at a rate that increases
with temperature. Then, the temperature will increase until the rate of energy loss equals the rate
of gain. It is this principle of energy balance that determines a planet’s temperature. To quantify
the functional dependence of the two rates, one must know the nature of both energy loss and
energy gain.

The most familiar source of energy warming a planet is the absorption of light from the
planet’s star. This is the dominant mechanism for rocky planets like Venus, Earth and Mars. It is
also possible for energy to be supplied to the surface by heat transport from the deep interior, fed
by radioactive decay, tidal dissipation, or high temperature material left over from the formation of
the planet. Heat flux from the interior is a major player in the climates of some gas giant planets,
notably Jupiter and Saturn, because fluid motions can easily transport heat from the deep interior
to the outer envelope of the planet. The sluggish motion of molten rock, and even more sluggish
diffusion of heat through solid rock, prevent internal heating from being a significant part of the
energy balance of rocky planets. Early in the history of a planet, when collisions are more common,
the kinetic energy brought to the planet in the course of impacts with asteroids and planetesimals
can be a significant part of the planet’s energy budget.

There are many ways a planet can gain energy, but essentially only one way a planet can
lose energy. Since a planet sits in the hard vaccuum of outer space,and its atmosphere is rather
tightly bound by gravity, not much energy can be lost through heated matter streaming away from
the planet. The only significant energy loss occurs through emission of electromagnetic radiation,
most typically in the infrared spectrum. The quantification of this rate, and the way it is affected
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by a planet’s atmosphere, leads us to the subject of blackbody radiation.

3.2 Blackbody radiation

It is a matter of familiar experience that a sufficiently hot body emits light — hence terms like "red
hot” or "white hot.” Once it is recognized that light is just one form of electromagnetic radiation,
it becomes a natural inference that a body with any temperature at all should emit some form
of electromagnetic radiation, though not necessarily visible light. Thermodynamics provides the
proper tool for addressing this question.

Imagine a gas consisting of two kinds of molecules, labeled A and B. Suppose that the
two species interact strongly with each other, so that they come into thermodynamic equilibrium
and their statistical properties are characterized by the same temperature 7. Now suppose that
the molecules A are ordinary matter, but that the "molecules” B are particles of electromagnetic
radiation (”photons”) or, equivalently, electromagnetic waves. If they interact strongly with the
A molecules, whose energy distribution is characterized by their temperature T' in accord with
classical thermodynamics, the energy distribution of the electromagnetic radiation should also
be characterized by the same temperature 7. In particular, for any 7' there should be a unique
distribution of energy amongst the various frequencies of the waves. This spectrum can be observed
by examining the electromagnetic radiation leaving a body whose temperature is uniform. The
radiation in question is known as blackbody radiation because of the assumption that radiation
interacts strongly with the matter; any radiation impinging on the body will not travel far before
it is absorbed, and in this sense the body is called ”black” even though, like the Sun, it may be
emitting light. Nineteenth century physicists found it natural to seek a theoretical explanation
of the observed properties of blackbody radiation by applying well-established thermodynamical
principles to electromagnetic radiation as described by Maxwell’s classical equations. The attempt
to solve this seemingly innocuous problem led to the discovery of quantum theory, and a revolution
in the fundamental conception of reality.

Radiation is characterized by direction of propagation and frequency (and also polarization,
which will not concern us). For electromagnetic radiation, the frequency v and wavelength A are
related by the dispersion relation vA = ¢, where ¢ is a constant with the dimensions of veloc-
ity. Because visible light is a familiar form of electromagnetic radiation, ¢ is usually called ”the
speed of light.” The wavenumber, defined by n = A\=! = v/c is often used in preference to fre-
quency or wavelength. Figure 3.1 gives the approximate regions of the electromagnetic spectrum
corresponding to common names such as "Radio Waves” and so forth.

If a field of radiation consists of a mixture of different frequencies and directions, the mixture
is characterized by a spectrum, which is a function describing the proportions of each type of
radiation making up the blend. A spectrum is a density describing the amount of electromagnetic
energy contained in a unit volume of the space (3D position, frequency, direction) needed to
characterize the radiation. Suppose we wish to characterize the energy in the vicinity of a point 7
in three dimensional space, with frequency near v and direction near that given by a unit vector n.
Then if (7, v, 1) is the energy spectrum at this point, the energy contained in a finite but small
sized neighborhood of the point (7, v,n) is XdVdvdS), where dV is a small volume of space, dv is
the width of the frequency band we wish to consider, and df? is a measure of the range of directions
we wish to consider. A collection of directions in three-dimensional space is called a solid angle,
and is measured in steradians. The measure in steriadians of a solid angle made by a collection of
rays emanating from a point P is defined as the area of the patch of the unit sphere centered on P
which the rays intersect. For example, a set of directions tracing out a hemisphere has measure 27
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Figure 3.1: The electromagnetic spectrum. The Median Emission Temperature is the temperature
of a blackbody for which half of the emitted power is below the given frequency (or equivalently,
wavelength or wavenumber). The Peak-v Temperature is the temperature of a blackbody for
which the peak of the Planck density in frequency space is at the stated frequency. The Peak-
A Temperature is the temperature of a blackbody for which the peak of the Planck density in
wavelength space is at the stated wavelength.
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steradians, while a set of directions tracing out the entire sphere (i.e. all possible directions) has
measure 4w. The set of directions contained within a cone with vertex angle 6 measured relative
to the altitude of the cone has measure 27 sin 6 steradians.

Since electromagnetic waves in a vacuum move with constant speed ¢, the energy fluz through
a flat patch perpendicular to 7 with area dA is simply c¢XdAdvdS?, which defines the flux spectrum
¢¥. In mks units, the flux spectrum has units of (Watts/m?)/(Hz - steradian), where the Hertz
(Hz) is the unit of frequency, equal to one cycle per second.

Exercise 3.2.1 The mks unit of energy is the Joule, J, which is 1 Newton - meter/sec. A Watt (W)
is 1J/sec. A typical resting human in not-too-cold weather requires about 2000Calories/day. (A
Calorie is the amount of energy needed to increase the temperature of 1Kg of pure water by 1K.)
Convert this to a power consumption in W, using the fact that 1Calorie = 4184J.

On the average, the flux of Solar energy reaching the Earth’s surface is about 240W/m?.
Assuming that food plants can convert Solar energy to usable food calories with an efficiency of
1%, what is the maximum population the Earth could support? (The radius of the Earth is about
6371km)

The bold assumption introduced by Planck is that electromagnetic energy is exchanged
only in amounts that are multiples of discrete quanta, whose size depends on the frequency of
the radiation, in much the same sense that a penny is the quantum of US currency. Specifically,
the quantum of energy for electromagnetic radiation having frequency v is AE = hv, where h
is now known as Planck’s constant. It is (so far as currently known) a constant of the universe,
which determines the granuarity of reality. h is an exceedingly small number (6.626 - 10~34.Joule —
seconds), so quantization of energy is not directly manifest as discreteness in the energy changes of
everyday objects. A 1 watt blue nightlight (wavelength .48 microns, or frequency 6.24-10'* H z emits
2.4-10'® photons each second, so it is no surprise that the light appears to be a continuous stream. If
a bicycle were hooked to an electrical brake that dissipated energy by driving a blue light, emitting
photons, the bike would indeed slow down in discontinuous increments, but the velocity increment,
assuming the bike and rider to have a mass of 80kg, would be only 1071%n/s; if one divides a
1m/s decrease of speed into 10'° equal parts, the deceleration will appear entirely continuous to
the rider. Nonetheless, the aggregate effect of microscopic graininess of energy transitions exert
a profound influence on the macroscopic properties of everyday objects. Blackbody radiation is a
prime example of this.

Once the quantum assumption was introduced, Planck was able to compute the flux spec-
trum of blackbody radiation with temperature T using standard thermodynamic methods. The

answer is
2hv3 1

B(v,T) = 2 ohu/KT _ 1

(3.1)
where k is the Boltzmann thermodynamic constant defined in Chapter 2. B(v,T) is known as the
Planck function. Note that the Planck function is independent of the direction of the radiation;
this is because blackbody radiation is isotropic, i.e. equally intense in all directions. In a typical
application of the Planck function, we wish to know the flux of energy exiting the surface of a
blackbody through a small nearly flat patch with area dA, over a frequency band of width dv.
Since energy exits through this patch at all angles, we must integrate over all directions. However,
energy exiting in a direction which makes an angle 6 to the normal to the patch contributes a flux
(BdAdvdQY) cos § through the patch, since the component of flux parallel to the patch carries no
energy through it. Further, using the definition of a steradian, d{) = 27 sin 8df for the set of all
rays making angles between 6 and 6 + df with the normal to the patch. Integrating from 6 = 0 to
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0 = 7/2, and using the fact that B is independent of direction, we then find that the flux through
the patch is 7BdAdv. This is also the amount of electromagnetic energy in a frequency band of
width dv that would pass each second through a hoop enclosing area dA (from one chosen side to
the other), placed in the interior of an ideal blackbody; an equal amount passes through the hoop
in the opposite sense.

The way the angular distribution of the radiation is described by the Planck function is
rather confusing, and requires a certain amount of practice to get used to. The following exercise
will test the readers’ comprehension of this matter.

Exercise 3.2.2 A radiation detector flies on an airplane a distance H above an infinite flat plain
with uniform temperature T. The detector is connected to a watt-meter which reports the total
radiant power captured by the detector. The detector is sensitive to rays coming in at angles < §6
relative to the direction in which the detector is pointed. The area of the aperture of the detector
is A. The detector is sensitive to frequencies within a small range dv centered on vyo.

If the detector is pointed straight down, what is the power received by the detector? What
is the size of the ”footprint” on the plain to which the detector is sensitive? How much power is
emitted by this footprint in the detector’s frequency band? Why is this power different from the
power received by the detector?

How do your answers change if the detector is pointed at an angle of 45° relative to the
vertical, rather than straight down?

The Planck function depends on frequency only through the dimensionless variable u =
hv/(kT). Recalling that each degree of freedom has energy %kT in the average, we see that u is
half the ratio of the quantum of energy at frequency v to the typical energy in a degree of freedom
of the matter with which the electromagnetic energy is in equilibrium. When u is large, the typical
energy in a degree of freedom cannot create even a single photon of frequency v, and such photons
can be emitted only by those rare molecules with energy far above the mean. This is the essence
of the way quantization affects the blackbody distribution — through inhibition of emission of
high-frequency photons. On the other hand, when w« is small, the typical energy in a degree of
freedom can make many photons of frequency v, and quantization imposes less of a constraint on
emission. The characteristic frequency kT'/h defines the crossover between the classical world and
the quantum world. Much lower frequencies are little affected by quantization, whereas much higher
frequencies are strongly affected. At 300K, the crossover frequency is 6240GigaH z, corresponding
to a wavenumber of 20814m ™!, or a wavelength of 48microns; this is in the far infrared range.

In terms of u, the Planck function can be rewritten

2637 P

B T) = h2¢? ev —1

(3.2)
In the classical limit, u < 1, and u3/(exp(u)—1) ~ u?. Hence, B ~ 2kTv?/c?, which is independent
of h. In a classical world, where h = 0, this form of the spectrum would be valid for all frequencies,
and the emission would increase quadratically with frequency without bound; a body with any
nonzero temperature would emit infrared at a greater rate than microwaves, visible light at a
greater rate than infrared, ultraviolet at a greater rate than visible, X-rays at a greater rate than
ultraviolet, and so forth. Bodies in equilibrium would cool to absolute zero almost instantaneously
through emission of a burst of gamma rays, cosmic rays and even higher frequency radiation. This
is clearly at odds with observations, not least the existence of the Universe. We are saved from
this catastrophe by the fact that h is nonzero, which limits the range of validity of the classical
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form of B. At frequencies high enough to make u > 1, then u3/(exp(u) — 1) ~ u3exp(—u) and the
spectrum decays somewhat more slowly than exponentially as frequency is increased. The peak of
B occurs at u & 2.821, implying that the frequency of maximum emission is v ~ (2.821k/h)T =~
58.78 - 10°T. The peak of the frequency spectrum increases linearly with temperature. This
behavior, first deduced empirically long before it was explained by quantum theory, is known as
the Wien Displacement Law.

Because the emission decays only quadratically on the low frequency side of the peak, but
decays exponentially on the high frequency side, bodies emit appreciable energy at frequencies
much lower than the peak emission, but very little at frequencies much higher. For example, at
one tenth the peak frequency, a body emits at a rate of 4.8% of the maximum value. However,
at ten times the peak frequency, the body emits at a rate of only 8.9 - 10~ of the peak emission.
The microwave emission from a portion of the Earth’s atmosphere with temperature 250K (having
peak emission in the infrared) is readily detectable by satellites, whereas the emission of visible
light is not.

Since B is a density, one cannot obtain the corresponding distribution in wavenumber or
wavelength space by simply substituting for v in terms of wavenumber or wavelength in the formula
for B. One must also take into account the transformation of dv. For example, to get the flux
density in wavenumber space (call it B,,) we use B(v,T)dv = B(n-¢,T)d(n - ¢) = ¢B(n-¢,T)dn,
whence B, (n,T) = ¢B(n - ¢,T). Thus, transforming to wavenumber space changes the amplitude
but not the shape of the flux spectrum. The Planck density in wavenumber space is shown for
various temperatures in Figure 3.2. Because the transformation of the density from frequency
to wavenumber space only changes the labeling of the vertical axis of the graph, one can obtain
the wavenumber of maximum emission in terms of the frequency of maximum emission using
Nmaz = Vmaz/C. An important property of the Planck function, readily verified by a simple
calculation, is that dB/dT > 0 for all wavenumbers. This means that the Planck function for a
large temperature is strictly above one for a lower temperature, or equivalently, that increasing
temperature increases the emission at each individual wavenumber.

If one transforms to wavelength space, however,

B, T)dv = Ble/\T)d(c/)) = - Ble/nTydr= 220 3 _pudn (3.3)
v UV = = —— = = .

’ ' ¢ a2 hicd ev —1 A

where u = kT/(hv) = kT A/(hc), as before. Transforming to wavelength space changes the shape
of the flux spectrum. B) has its maximum at v ~ 4.965, which is nearly twice as large as the value
for the wavenumber or frequency spectrum.

Since the location of the peak of the flux spectrum depends on the coordinate used to
measure position within the electromagnetic spectrum, this quantity has no intrinsic physical
meaning, apart from being a way to characterize the shape of the curve coming out of some
particular kind of measuring apparatus. A more meaningful quantity can be derived from the
cumulative flux spectrum, value at a given point in the spectrum is the same regardless of whether
we use wavenumber, wavelength, log A or any other coordinate to describe the position within the
spectrum. The cumulative flux spectrum is defined as

v A
Foum(v,T) = / 7BV, T)dv = / 7Bx(N, T)dN (3.4)

0 0o
Note that in defining the cumulative emission we have included the factor = which results from
integrating over all angles of emission in a hemisphere. Fi,,, (v, T) thus gives the power emitted per
square meter for all frequencies less than v, or equivalently, for all wavelengths greater than c¢/v.
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Figure 3.2: The spectrum of blackbody radiation for the various temperatures indicated on the
curves. Upper Panel: The Planck density in wavenumber space. Lower Panel: The cumulative
emission as a function of wavenumber. Note that the density has been tranformed such that the
density times dn is the power per unit solid angle per unit area radiated in a wavenumber interval

of width dn.
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This function is shown for various temperatures in the lower panel of Fig. 3.2, where it is plotted
as a function of wavenumber. The value of v for which F.,., (v, T)reaches half the net emission
Frym (00, T) provides a natural characterization of the spectrum. We will refer to this characteristic
frequency as the median emission frequency. The median emission wavelength and wavenumber is
defined analogously. Whether one uses frequency, wavelength or some other measure, the median
emission is attained at u =~ 3.503. For any given coordinate used to describe the spectrum, the
(angle-integrated) Planck density in that coordinate is the derivative of the cumulative emission
with respect to the coordinate. Hence the peak in the Planck density just gives the point at
which the cumulative emission function has its maximum slope. This depends on the coordinate
used, unlike the point of median emission. Figure 3.1 shows the the portion of the spectrum
in which blackbodies with various temperatures dominantly radiate. For example, a body with a
temperature of around 4K radiates in the microwave region; this is the famous ” Cosmic Microwave
Background Radiation” left over from the Big Bang '. A body with a temperature of 300K radiates
in the infrared, one with a temperature of a few thousand degrees radiates in the visible, and one
with a temperature of some tens of thousands of degrees would radiate in the ultraviolet.

Next, we evaluate Fiy,, (0o, T), to obtain the total power F exiting from each unit area of
the surface of a blackbody:

o o0 kT 2rkt [ B " "
F:/O ﬂB(V,T)dI/:/O WB(U’T)TdUZ[h?’CQ/O u du|T* = oT (3.5)

where 2 0 = 27°k*/(15¢2h3) ~ 5.67 - 1078Wm 2K ~*. The constant o is known as the Stefan-
Boltzmann constant, and the law F = ¢T* is the Stefan-Boltzmann law. This law was originally
deduce from observations, and Boltzmann was able to derive the fourth-power scaling in temper-
ature using classical thermodynamic reasoning. However, classical physics yields an infinite value
for the constant o. The formula for o clearly reveals the importance of quantum effects in deter-
mining this constant, since o diverges like 1/h3 if we try to pass to the classical limit by making
h approach zero.

An important property of an ideal blackbody is that the radiation leaving its surface depends
only on the temperature of the body. If a blackbody is interposed between an observer and some
other object, all properties of the object will be hidden from the observer, who will see only
blackbody radiation corresponding to the temperature of the blackbody. This remark allows us to
make use of blackbody theory to determine the emission from objects whose temperature varies
greatly from place to place, even though blackbody theory applies, strictly speaking, only to
extensive bodies with uniform temperature. For example, the temperature of the core of the Earth
is about 6000K, but we need not know this in order to determine the radiation emitted from the
Earth’s surface; the outermost few millimeters of rock, ice or water at the Earth’s surface contain
enough matter to act like a blackbody to a very good approximation. Hence, the radiation emitted
from the surface depends only on the temperature of this outer skin of the planet. Similarly,
the temperature of the core of the Sun is about 16,000,000K and even at a distance from the
center equal to 90% of the visible radius, the temperature is above 600, 000K . However, the Sun is
encased in a layer a few hundred kilometers thick which is sufficiently dense to act like a blackbody,
and which has a temperature of about 5780K. This layer is known as the photosphere, because
it is the source of most light exiting the Sun. Layers farther out from the center of the Sun can
be considerably hotter than the photosphere, but they have a minimal effect on solar radiation

IWhat is remarkable about this observed cosmic radiation is not so much that it is in the microwave region,
but that it has a blackbody spectrum, which says much about the interaction of radiation with matter in the early
moments of the Universe.

2The definite integral [;°(u3/(e* — 1))du was determined by Euler, as a special case of his study of the behavior
of the Riemann zeta function at even integers. It is equal to 6¢(4) = 7%/15
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because they are so tenuous. In Chapter 4 we will develop more precise methods for dealing with
tenuous objects, such as atmospheres, which peter out gradually without having a sharply defined
boundary.

An ideal blackbody would be opaque at all wavelengths, but it is a common situation that a
material acts as a blackbody only in a limited range of wavelengths. Consider the case of window
glass: It is transparent to visible light, but if you could see it in the infrared it would look as
opaque as stone. Because it interacts strongly with infrared light, window glass emits blackbody
radiation in the infrared range. At temperatures below a few hundred K, there is little blackbody
emission at wavelengths shorter than the infrared, so at such temperatures the net power per unit
area emitted by a pane of glass with temperature T is very nearly ¢T*, even though it doesn’t act
like a blackbody in the visible range. Liquid water, and water ice, behave similarly. Crystalline
table salt, and carbon dioxide ice, are nearly transparent in the infrared as well as in the visible,
and in consequence emit radiation at a much lower rate than expected from the blackbody formula.
(They would make fine windows for creatures having infrared vision). There is, in fact, a deep
and important relation between absorption and emission of radiation, which will be discussed in
Section 3.5.

3.3 Radiation balance of planets

As a first step in our study of the temperature of planets, let’s consider the following idealized
case:

e The only source of energy heating the planet is absorption of light from the planet’s Sun.
e The albedo, or proportion of sunlight reflected, is spatially uniform.

e The planet is spherical, and has a distinct solid or liquid surface which radiates like a perfect
blackbody.

e The planet’s temperature is uniform over its entire surface.

e The planet’s atmosphere is perfectly transparent to the electromagnetic energy emitted by
the surface.

The uniform-temperature assumption presumes that the planet has an atmosphere or ocean which
is so well stirred that it is able to rapidly mix heat from one place to another, smoothing out
the effects of geographical fluctuations in the energy balance. The Earth conforms fairly well
to this approximation. The equatorial annual mean temperature is only 4% above the global
mean temperature of 286 K, while the North polar temperature is only 10% below the mean. The
most extreme deviation occurs on the high Antarctic plateau, where the annual mean South polar
temperature is 21% below the global mean. The surface temperature of Venus is even more uniform
than that of Earth. That of Mars, which in our era, has a thin atmosphere and no ocean, is less
uniform. Airless, rocky bodies like the Moon and Mercury do not conform at all well to the uniform
temperature approximation.

Light leaving the upper layers of the Sun and similar stars takes the form of blackbody
radiation. It is isotropic, and its flux and flux spectrum conform to the blackbody law corresponding
to the temperature of the photosphere, from which the light escapes. Once the light leaves the
surface of the star, however, it expands through space and does not interact significantly with
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matter except where it is intercepted by a planet. Therefore, it is no longer blackbody radiation,
though it retains the blackbody spectrum. In the typical case of interest, the planet orbits its
star at a distance that is much greater than the radius of the star, and itself has a radius that
is considerably smaller than the star and is hence yet smaller than the orbital distance. In this
circumstance, all the rays of light which intersect the planet are very nearly parallel to the line
joining the center of the planet to the center of its star; the sunlight comes in as a nearly parallel
beam, rather than being isotropic, as would be the case for true blackbody radiation. The parallel-
beam approximation is equivalent to saying that, as seen from the planet, the Sun occupies only a
small portion of the sky, and as seen from the Sun the planet also occupies only a small portion of
the sky. Even for Mercury, with a mean orbital distance of 58,000, 000km, the Sun (whose radius
is 695, 000km) occupies an angular width in the sky of only about 2 -695,000/58, 000, 000 radians,
or 1.4°.

The solar flux impinging on the planet is also reduced, as compared to the solar flux
leaving the photosphere of the star. The total energy per unit frequency leaving the star is
4mrd (7B(v,Tw)), where rq is the radius of the star and T is the temperature of its photo-
sphere. At a distance r from the star, the energy has spread uniformly over a sphere whose surface
area is 47r2; hence at this distance, the energy flux per unit frequency is WBT%/’F2, and the total
flux is aTéré /r2. The latter is the flux seen by a planet at orbital distance r, in the form of a beam
of parallel rays. It is known as the solar ”constant” (even though it in fact depends on distance
from the star), and will be denoted by L, or simply L where there is no risk of confusion with
latent heat.

We are now equipped to compute the energy balance of the planet, subject to the preceding
simplifying assumptions. Let a be the planet’s radius. Since the cross-section area of the planet
is ma? and the solar radiation arrives in the form of a nearly parallel beam with flux L), the
energy per unit time impinging on the planet’s surface is ma?Lc,; the rate of energy absorption is
(1 —a)ma®Le, where « is the albedo. The planet loses energy by radiating from its entire surface,
which has area 4ma?. Hence the rate of energy loss is 4ma?0T?, where T is the temperature of the
planet’s surface. In equilibrium the rate of energy loss and gain must be equal. After cancelling a

few terms, this yields
1
0T4:1O—aﬂ@ (3.6)
Note that this is independent of the radius of the planet. The factor % comes from the ratio of
the planet’s cross-sectional area to its surface area, and reflects the fact that the planet intercepts
only a disk of the incident solar beam, but radiates over its entire spherical surface. This equation

can be readily solved for T'. If we substitute for Ly in terms of the photospheric temperature, the

result is
1 T
T=—(1-a)* /2T 3.7
- e, (37)

Formula 3.7 shows that the blackbody temperature of a planet is much less than that of the
photosphere, so long as the orbital distance is large compared to the stellar radius. From the
displacement law, it follows that the planet loses energy through emission at a distinctly lower
wavenumber than that at which it receives energy from its star. This situation is illustrated in
Figure 3.3. For example, the energy received from our Sun has a median wavenumber of about
15000 cm ™!, equivalent to a wavelength of about .7 microns. An isothermal planet at Mercury’s
orbit would radiate to space with a median emission wavenumber of 1100 em ™!, corresponding to
a wavelength of 9 microns. An isothermal planet at the orbit of Mars would radiate with a median
wavenumber of 550 em ™!, corresponding to a wavelength of 18 microns.

Exercise 3.3.1 A planet with zero albedo is in orbit around an exotic hot star having a photo-
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Figure 3.3: The Planck density of radiation emitted by the Sun and selected planets in radiative
equilibrium with absorbed solar radiation (based on the observed shortwave albedo of the planets).
The Planck densities are transformed to a logarithmic spectral coordinate, and all are normalized
to unit total emission.

spheric temperature of 100,000K. The ratio of the planet’s orbit to the radius of the star is the
same as for Earth (about 215). What is the median emission wavnumber of the star? In what part
of the electromagnetic spectrum does this lie? What is the temperature of the planet? In what
part of the electromagnetic spectrum does the planet radiate? Do the same if the planet is instead
in orbit around a brown dwarf star with a photospheric temperature of 600K.

The separation between absorption and emission wavenumber will prove very important
when we bring a radiatively active atmosphere into the picture, since it allows the atmosphere to
have a different effect on incoming vs. outgoing radiation. Since the outgoing radiation has longer
wavelength than the incoming radiation, the flux of emitted outgoing radiation is often referred
to as outgoing longwave radiation, and denoted by OLR. For a non-isothermal planet, the OLR
is a function of position (e.g. latitude and longitude on an imaginary sphere tightly enclosing the
planet and its atmosphere). We will also use the term to refer to the outgoing flux averaged over
the surface of the sphere, even when the planet is not isothermal. As for the other major term in
the planet’s energy budget, we will refer to the electromagnetic energy received from the planet’s
star as the shortwave or solar energy. Our own Sun has its primary output in the visible part of
the spectrum, but it also emits significant amounts of energy in the ultraviolet and near-infrared,
both of which are shorter in wavelength than the OLR by which planets lose energy to space.

Formula 3.7 is plotted in Figure 3.4 for a hypothetical isothermal planet with zero albedo.
Because of the square-root dependence on orbital distance, the temperature varies only weakly
with distance, except very near the star. Neglecting albedo and atmospheric effects, Earth would
have a mean surface temperature of about 280K . Venus would be only 50K warmer than the Earth
and Mars only 53K colder. At the distant orbit of Jupiter, the blackbody equilibrium temperature
falls to 122K, but even at the vastly more distant orbit of Neptune the temperature is still as
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Figure 3.4: The equilibrium blackbody temperature of an isothermal spherical zero-albedo planet,
as a function of distance from a Sun having a photospheric temperarature of 5800K. The orbital
distance is normalized by the radius of the Sun. Dots show the equilibrium blackbody temperature
of the Solar System planets, based on their actual observed albedos.

high as 50K. The emission from all of these planets lies in the infrared range, though the colder
planets radiate in the deeper (lower wavenumber) infrared. An exception to the strong separation
between stellar and planetary temperature is provided by the ”roasters” — a recently discovered
class of extrasolar giant planets with = as low as 5. Such planets can have equilibrium blackbody
temperatures as much as a third that of the photosphere of the parent star. For these planets, the
distinction between the behavior of incoming and outgoing radiation is less sharp.

It is instructive to compare the ideal blackbody temperature with observed surface temper-
ature for the three Solar System bodies which have both a distinct surface and a thick enough
atmosphere to enforce a roughly uniform surface temperature: Venus, Earth and Saturn’s moon
Titan. For this comparison, we calculate the blackbody temperature using the observed planetary
albedos, instead of assuming a hypothetical zero albedo planet as in Fig. 3.4. Venus is covered by
thick, highly reflective clouds, which raise its albedo to .75. The corresponding isothermal black-
body temperature is only 232K (as compared to 330K in the zero albedo case). This is far less than
the observed surface temperature of 740K. Clearly, the atmosphere of Venus exerts a profound
warming effect on the surface. The warming arises from the influence of the atmosphere on the
infrared emission of the planet, which we have not yet taken into account. Earth’s albedo is on the
order of .3, leading to a blackbody temperature of 255K . The observed mean surface temperature
is about 285K. Earth’s atmosphere has a considerably weaker warming effect than that of Venus,
but it is nonetheless a very important warming, since it brings the planet from subfreezing temper-
atures where the oceans would almost certainly become ice-covered, to temperatures where liquid
water can exist over most of the planet. The albedo of Titan is .21, and using the solar constant
at Saturn’s orbit we find a black body temperature of 85K. The observed surface temperature is
about 95K, whence we conclude that the infrared effects of Titan’s atmosphere moderately warm
the surface.
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The way energy balance determines surface temperature is illustrated graphically in Figure
3.5. One first determines the way in which the mean infrared emission per unit area depends on
the mean surface temperature Ty; for the isothermal blackbody calculation, this curve is simply
oT%. The equilibrium temperature is determined by the point at which the OLR curve intersects
the curve giving the absorbed solar radiation (a horizontal line in the present calculation). In
some sense, the whole subject of climate comes down to an ever-more sophisticated heirarchy of
calculations of the curve OLR(Ty); our attention will soon turn to the task of determining how the
OLR curve is affected by an atmosphere. With increasing sophistication, we will also allow the
solar absorption to vary with T, owing to changing clouds, ice cover, vegetation cover, and other
characteristics.

We will now consider an idealized thought experiment which illustrates the essence of the way
an atmosphere affects OLR. Suppose that the atmosphere has a temperature profile T'(p) which
decreases with altitude,according to the dry or moist adiabat. Let ps be the surface pressure,
and suppose that the ground is strongly thermally coupled to the atmosphere by turbulent heat
exchanges, so that the ground temperature cannot deviate much from that of the immediately
overlying air. Thus, Ts = T'(ps). If the atmosphere were transparent to infrared, as is very nearly
the case for nitrogen or oxygen, the OLR would be oT%. Now, let’s stir an additional gas into the
portion of the atmosphere between the ground and a pressure p,.q < ps, and suppose that the gas
is transparent to solar radiation, but interacts so strongly with infrared that it turns each portion
of the atmosphere it is mixed with into a perfect blackbody. A gas which is fairly transparent to
the incoming shortwave stellar radiation but which interacts strongly with the outgoing (generally
infrared) emitted radiation is called a greenhouse gas. Carbon dioxide, water vapor and methane
are some examples of greenhouse gases, and the molecular properties that make a substance a good
greenhouse gas will be discussed in Chapter 4. If one imagines slicing the atmosphere into a number
layers so thin that they are essentially isothermal, then each layer with pressure greater than or
equal to p,q.q radiates like an ideal blackbody at its own temperature, but it is only the topmost
of these layers that determines the radiation loss to space, since radiation from all the others is
absorbed before it reaches the topmost layer. Since the topmost layer has temperature T(prqq)
and higher altitude layers are assumed transparent to infrared, the OLR is 0T (prqq)*, which is
less than oT: f to the extent that p,.qq < ps. As shown in Figure 3.5, a greenhouse gas acts like
an insulating blanket, reducing the rate of energy loss to space at any given surface temperature.
The equilibrium surface temperature of a planet with a greenhouse gas in its atmosphere must
be greater than that of a planet without a greenhouse gas, in order to radiate away energy at a
sufficient rate to balance the absorbed solar radiation.

In the real universe, greenhouse gases are continuously distributed in the atmosphere, rather
than being confined to a single layer. Further, they increase the interaction of the atmosphere with
infrared, but rarely so much so as to turn some upper portion of the atmosphere into an ideal
blackbody. In reality,the infrared escaping to space is a blend of radiation emitted from a range
of atmospheric levels, with some admixture of radiation from the planet’s surface as well. The
concept of an effective radiating level nonetheless has merit for real greenhouse gases. It does not
represent a distinct physical layer of the atmosphere, but rather characterizes the mean depth
from which infrared photons escape to space. As more greenhouse gas is added to an atmosphere,
more of the lower parts of the atmosphere become opaque to infrared, preventing the escape of
infrared radiation from those regions. This increases the altitude of the effective radiating level (i.e.
decreases prqq). From an observation of the actual OLR emitted by a planet, one can determine
an equivalent blackbody radiating temperature 7,4 from the expression anad = OLR. This
temperature is the infrared equivalent of the Sun’s photospheric temperature; it is a kind of mean
temperature of the regions from which infrared photons escape, and p,.4 represents a mean pressure
of these layers. For planets for which absorbed solar radiation is the only significant energy source,
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Figure 3.5: Determination of a planet’s temperature by balancing absorbed solar energy against
emitted longwave radiation. The horizontal line gives the absorbed solar energy per unit surface
area, based on an albedo of .3 and a Solar constant of 1370W/m?2. The OLR is given as a
function of surface temperature. The upper curve assumes the atmosphere has no greenhouse
effect (prad = ps), while the lower OLR curve assumes p..q/ps = .6, a value appropriate to the

present Earth.
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Figure 3.6: Sketch illustrating how the greenhouse effect increases the surface temperature. In
equilibrium, the outgoing radiation must remain equal to the absorbed solar radiation, so T}.qq
stays constant. However, as more greenhouse gas is added to the atmosphere, p..q is reduced, so
one must extrapolate temperature further along the adiabat to reach the surface.

T:aq is equal to the ideal blackbody temperature given by Eq. 3.7. The arduous task of relating
the effective radiating level to specified concentrations of real greenhouse gases will be taken up in
Chapter 4.

Figure 3.7 illustrates the reduction of infrared emission caused by the Earth’s atmosphere.
At every latitude, the observed OLR is much less than it would be if the planet radiated to space at
its observed surface temperature. At the Equator the observed OLR is 238W/m?, corresponding
to a radiating temperature of 255W/m?2. This is much less than the observed surface temperature
of 298K, which would radiate at a rate of 446WW/m? if the atmosphere didn’t intervene. It is
interesting that the gap between observed OLR and the computed surface emission is less in the
cold polar regions, and especially small at the Winter pole. This happens partly because, at
low temperatures, there is simply less infrared emission for the atmosphere to trap. However,
differences in the water content of the atmosphere, and differences in the temperature profile, can
also play a role. These effects will be explored in Chapter 4.

Gases are not the only atmospheric constituents which affect OLR. Clouds consist of parti-
cles of condensed substance small enough to stay suspended for a long time. They can profoundly
influence OLR. Gram for gram, condensed water interacts much more strongly with infrared than
does water vapor. In fact, a mere 20 grams of water in the form of liquid droplets of a typical
size is sufficient to turn a column of air 500m thick by one meter square into a very nearly ideal
blackbody. To a much greater extent than for greenhouse gases, a water cloud layer in an other-
wise infrared-transparent atmosphere really can be thought of as a discrete radiating layer. The
prevalance of clouds in the high, cold regions of the tropical atmosphere accounts for the dip in
OLR near the equator, seen in Figure 3.7. Clouds are unlike greenhouse gases, though, since they
also strongly reflect the incoming solar radiation. It’s the tendency of these two large effects to
partly cancel that makes the problem of the influence of clouds on climate so challenging. Not all
condensed substances absorb infrared as well as water does. Liquid methane (imporant on Titan)
and CO2 ice (important on present and early Mars) are comparatively poor infrared absorbers.
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Figure 3.7: The Earth’s observed zonal-mean OLR for January, 1986. The observations were taken
by satellite instruments during the Earth Radiation Budget Experiment (ERBE), and are averaged
along latitude circles. The figure also shows the radiation that would be emitted to space by the
surface (oT2) if the atmosphere were transparent to infrared radiation.
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They affect OLR in a fundamentally different way, through reflection instead of absorption and
emission. This will be discussed in Chapter 5.

In a nutshell, then, here is how the greenhouse effect works: From the requirement of energy
balance, the absorbed solar radiation determines the effective blackbody radiating temperature
Traq- This is not the surface temperature; it is instead the temperature encountered at some
pressure level in the atmosphere p,..q, which characterizes the infrared opacity of the atmosphere,
specifically the typical altitude from which infrared photons escape to space. The pressure p,qq is
determined by the greenhouse gas concentration of the atmosphere. The surface temperature is
determined by starting at the fixed temperature T,.,4 and extrapolating from p,.q to the surface
pressure ps using the atmosphere’s lapse rate, which is approximately governed by the appropriate
adiabat. Since temperature decreases with altitude over much of the depth of a typical atmosphere,
the surface temperature so obtained is typically greater than T.,..q, as illustrated in Figure 3.6.
Increasing the concentration of a greenhouse gas decreases p,.q4, and therefore increases the surface
temperature because temperature is extrapolated from T,.,; over a greater pressure range. It
is very important to recognize that greenhouse warming relies on the decrease of atmospheric
temperature with height, which is generally due to the adiabatic profile established by convection.
The greenhouse effect works by allowing a planet to radiate at a temperature colder than the
surface, but for this to be possible, there must be some cold air aloft for the greenhouse gas to
work with.

For an atmosphere whose temperature profile is given by the dry adiabat, the surface tem-
perature is

T, = (ps/prad)R/CpTTad- (38)

With this formula, the Earth’s present surface temperature can be explained by taking p,qq/ps =
.67, whence p,qq = 670mb. Earth’s actual radiating pressure is somewhat lower than this estimate,
because the atmosperic temperature decays less strongly with height than the dry adiabat. The
high surface temperature of Venus can be accounted for by taking pr.q/ps = .0095, assuming
that the temperature profile is given by the noncondensing adiabat for a pure CO, atmosphere.
Given Venus’ 93bar surface pressure, the radiating level is 880mb which, interestingly, is only
slightly less than Earth’s surface pressure. Earth radiates to space from regions quite close to its
surface, whereas Venus radiates only from a thin shell near the top of the atmosphere. Note that
from the observed Venusian temperature profile in Fig. 2.2, the radiating temperature (253K) is
encountered at p = 250mb rather than the higher pressure we estimated. As for the Earth, our
estimate of the precise value p,,q for Venus is off because the ideal-gas noncondensing adiabat is
not a precise model of the actual temperature profile. In the case of Venus, the problem most
likely comes from the ideal-gas assumption, rather than condensation.

The concept of radiating level and radiating temperature also enables us to make sense
of the way energy balance constrains the climates of gas giants like Jupiter and Saturn, which
have no distinct surface. The essence of the calculation we have already done for rocky planets
is to use the top of atmosphere energy budget to determine the parameters of the adiabat, and
then extrapolate temperature to the surface along the adiabat. For a non-condensing adiabat, the
atmospheric profile compatible with energy balance is T'(p) = Traq(p/Praa)™ . This remains the
appropriate temperature profile for a (noncondensing) convecting outer layer of a gas giant, and
the only difference with the previous case is that, for a gas giant, there is no surface to act as
a natural lower boundary for the adiabatic region. At some depth, convection will give out and
the adiabat must be matched to some other temperature model in order to determine the base
of the convecting region, and to determine the temperature of deeper regions. There is no longer
any distinct surface to be warmed by the greenhouse effect, but the greenhouse gas concentration
of the atmosphere nonetheless affects T'(p) through p,.q. For example, adding some additional
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Observed OLR (W/m?)  Absorbed Solar Flux (W/m?) Tyqq (actual) Tr.q (Solar only)

Jupiter 14.3 12.7 126K 110K
Saturn 4.6 3.8 95K 81K
Uranus .52 .93 55K 58K
Neptune .61 .38 57K 47K

Table 3.1: The energy balance of the gas giant planets, with inferred radiating temperature. The
solar-only value of T).,4 is the radiating temperature that would balance the observed absorbed
solar energy, in the absence of any internal heat source.

greenhouse gas to the convecting outer region of Jupiter’s atmosphere would decrease p,qq, and
therefore increase the temperature encountered at, say, the 1 bar pressure level.

The energy balance suffices to uniquely determine the temperature profile because the non-
condensing adiabat is a one-parameter family of temperature profiles. The saturated adiabat for a
mixture of condensing and noncondensing gases is also a one parameter family, defined by Eq. 2.30,
and can therefore be treated similarly. If the appropriate adiabat for the planet had more than
one free parameter, additional information beyond the energy budget would be needed to close the
problem. On the other hand, a single component condensing atmosphere such as described by Eq.
2.24 yields a temperature profile with no free parameters that can be adjusted so as to satisfy the
energy budget. The consequences of this quandary will be taken up as part of our discussion of
the runaway greenhouse phenonenon, in Chapter 4.

Using infrared telescopes on Earth and in space, one can directly measure the OLR of the
planets in our Solar System. In the case of the gas giants, the radiated energy is substantially
in excess of the absorbed solar radiation. Table 3.1 compares the observed OLR to the absorbed
solar flux for the gas giants. With the exception of Uranus, the gas giants appear to have a
substantial internal energy source, which raises the radiating temperature to values considerably
in excess of it would be if the planet were heated by solar absorption alone. Uranus is anomalous,
in that it actually appears to be emitting less energy than it receives from the sun. Uncertainties
in the observed OLR for Uranus would actually allow the emission to be in balance with solar
absorption, but would still appear to preclude any significant internal energy source. This may
indicate a profound difference in the internal dynamics of Uranus. On the other hand, the unusually
large tilt of Uranus’ rotation axis means that Uranus has an unusually strong seasonal variation
of solar heating, and it may be that the hemisphere that has been observed so far has not yet had
time to come into equilibrium, which would throw off the energy balance estimate.

Because it is the home planet, Earth’s radiation budget has been very closely monitored
by satellites. Very precise measurements show that the top of atmosphere radiation budget is
currently out of balance, the Earth receiving about 1W/m? more from Solar absorption than it
emits to space as infrared. This is opposite from the imbalance that would be caused by an internal
heating. It is a direct consequence of the rapid rise of CO5 and other greenhouse gases, caused by
the bustling activities of Earth’s human inhabitants. The rapid greenhouse gas increase has cut
down the OLR, but because of the time required to warm up the oceans and melt ice, the Earth’s
temperature has not yet risen enough to restore the energy balance.

Exercise 3.3.2 A typical well-fed human in a resting state consumes energy in the form of food at
a rate of 100W, essentially all of which is put back into the surroundings in the form of heat. An
astronaut is in a spherical escape pod of radius r, far beyond the orbit of Pluto, so that it receives
essentially no energy from sunlight. The air in the escape pod is isothermal. The skin of the escape
pod is a good conductor of heat, so that the surface temperature of the sphere is identical to the
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interior temperature. The surface radiates like an ideal blackbody.

Find an expression for the temperature in terms of », and evaluate it for a few reasonable
values. Is it better to have a bigger pod or a smaller pod? In designing such an escape pod, should
you include an additional source of heat if you want to keep the astronaut comfortable?

How would your answer change if the pod were cylindrical instead of spherical? If the pod
were cubical?

Bodies such as Mercury or the Moon represent the opposite extreme from the uniform-
temperature limit. Having no atmosphere or ocean to transport heat, and a rocky surface through
which heat is conducted exceedingly slowly, each bit of the planet is, to a good approximation,
thermally isolated from the rest. Moreover, the rocky surface takes very little time to reach its
equilibrium temperature, so the surface temperature at each point is very nearly in equilibrium
with the instantaneous absorbed solar radiation, with very little day-night or seasonal averaging.
In this case, averaging the energy budget over the planet’s surface gives a poor estimate of the
temperature, and it would be more accurate to compute the instantaneous equilibrium temperature
for each patch of the planet’s surface in isolation. For example, consider a point on the planet
where the Sun is directly overhead at some particular instant of time. At that time, the rays of
sunlight come in perpendicularly to a small patch of the ground, and the absorbed solar radiation
per unit area is simply (1 — a)Lg; the energy balance determing the ground temperature is then
oT* = (1 — a)Lg, without the factor of i we had when the energy budget was averaged over the
entire surface of an isothermal planet. For Mercury, this yields a temperature of 622K, based on the
mean orbital distance and an albedo of .1. This is similar to the observed maximum temperature on
Mercury, which is about 700K (somewhat larger than the theoretical calculation because Mercury’s
highly elliptical orbit brings it considerably closer to the Sun than the mean orbital position). The
Moon, which is essentially in the same orbit as Earth and shares its Solar constant, has a predicted
maximum temperature of 384K, which is very close to the observed maximum. In contrast, the
maximum surface temperature on Earth stays well short of 384K, even at the hottest time of day
in the hottest places. The atmosphere of Mars in the present epoch is thin enough that this planet
behaves more like the no-atmosphere limit than the uniform-temperature limit. Based on a mean
albedo of .25,the local maximum temperature should be 297K, which is quite close to the observed
maximum temperature.

More generally speaking, when doing energy balance calculations the temperature we have in
mind is the temperature averaged over an appropriate portion of the planet and over an appropriate
time interval, where what is ”appropriate” depends on the response time and the efficiency of the
heat transporting mechanisms of the planet under considerations. Correspondingly, the appropriate
incident solar flux to use is the incident solar flux per unit of radiating surface, averaged consistently
with temperature. We will denote this mean solar flux by the symbol S. For an isothermal planet
S = iL@ while at the opposite extreme S = Lg for the instantaneous response at the subsolar
point. In other circumstances it might be appropriate to average along a latitude circle, or over
a hemisphere. A more complete treatment of geographical, seasonal and diurnal temperature
variations will be given in Chapter 8.

Exercise 3.3.3 Consider a planet which is tide-locked to its Sun, so that it always shows the same
face to the Sun as it proceeds in its orbit (just as the Moon always shows the same face to the
Earth). Estimate the mean temperature of the day side of the planet, assuming the illuminated
face to be isothermal, but assuming that no heat leaks to the night side.
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Surface type Albedo
Clean new H>0O snow .85
Bare Sea ice .5
Clean H5O glacier ice .6
Deep Water 1
Sahara Desert sand .35
Martian sand .15
Basalt (any planet) .07
Granite .3
Limestone .36
Grassland .2
Deciduous forest .14
Conifer forest .09
Tundra .2

Table 3.2: Typical values of albedo for various surface types. These are only representative values.
Albedo can vary considerably as a function of detailed conditions. For example, the ocean albedo
depends on the angle of the solar radiation striking the surface (the value given in the table is for
near-normal incidence), and the albedo of bare sea ice depends on the density of air bubbles.

3.4 Ice-albedo feedback

Albedo is not a static quantity determined once and for all time when a planet forms. In large
measure, albedo is determined by processes in the atmosphere and at the surface which are highly
sensitive to the state of the climate. Clouds consist of suspended tiny particles of the liquid or
solid phase of some atmospheric constituent; such particles are very effective reflectors of visible
and ultraviolet light, almost regardless of what they are made of. Clouds almost entirely control
the albedos of Venus, Titan and all the gas giant planets, and also play a major role in Earth’s
albedo. In addition, the nature of a planet’s surface can evolve over time, and many of the
surface characteristics are strongly affected by the climate. Table 3.2 gives the albedo of some
common surface types encountered on Earth. The proportions of the Earth covered by sea-ice,
snow, glaciers, desert sands or vegetation of various types are determined by temperature and
precipitation patterns. As climate changes, the surface characteristics change too, and the resulting
albedo changes feed back on the state of the climate. It is not a ”chicken and egg” question of
whether climate causes albedo or albedo causes climate; rather it is a matter of finding a consistent
state compatible with the physics of the way climate affects albedo and the way albedo affects
climate. In this sense, albedo changes lead to a form of climate feedback. We will encounter many
other kinds of feedback loops in the climate system.

Among all the albedo feedbacks, that associated with the cover of the surface by highly
reflective snow or ice plays a distinguished role in thinking about the evolution of the Earth’s
climate. Let’s consider how albedo might vary with temperature for a planet entirely covered by
a water ocean — a reasonable approximation to Earth, which is % ocean. We will characterize the
climate by the global mean surface temperature T, but suppose that, like Earth, the temperature
is somewhat colder than T at the poles and somewhat warmer than T at the Equator. When T
is very large, say greater than some threshold temperature T, the temperature is above freezing
everywhere and there is no ice. In this temperature range, the planetary albedo reduces to the
relatively low value (call it «,) characteristic of sea water. At the other extreme, when T is very,
very low, the whole planet is below freezing, the ocean will become ice-covered everywhere, and the
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albedo reduces to that of sea ice, which we shall call a;. We suppose that this occurs for Ty < T},
where T; is the threshold temperature for a globally frozen ocean. In general T; must be rather
lower than the freezing temperature of the ocean, since when the mean temperature Ty = Tfreeze
the equatorial portions of the planet will still be above freezing. Between T; and T, it is reasonable
to interpolate the albedo by assuming the ice cover to decrease smoothly and monotonically from
100% to zero. The phenomena we will emphasize are not particularly sensitive to the detailed form
of the interpolation, but the quadratic interpolation

Q; for T <T;,
a(T) =< ap + (a; — ao)% for T, < T < T, (3.9)
Q, for T > 1T,

qualitatively reproduces the shape of the albedo curve which is found in detailed calculations. In
particular, the slope of albedo vs temperature is large when the temperature is low and the planet is
nearly ice-covered, because there is more area near the Equator, where ice melts first. Conversely,
the slope reduces to zero as the temperature threshold for an ice-free planet is approached, because
there is little area near the poles where the last ice survives; moreover, the poles receive relatively
little sunlight in the course of the year, so the albedo there contributes less to the global mean
than does the albedo at lower latitudes. Note that this description assumes an Earthlike planet,
which on average is warmest near the Equator. As will be discussed in Chapter 8, other orbital
configurations could lead to the poles being warmer, and this would call for a different shape of
albedo curve.

Ice albedo feedback of a similar sort could arise on a planet with land, through snow accu-
mulation and glacier formation on the continents. The albedo could have a similar temperature
dependence, in that glaciers are unlikely to survive where temperatures are very much above freez-
ing, but can accumulate readily near places that are below freezing — provided there is enough
precipitation. It is the latter requirement that makes land-based snow/ice albedo feedback much
more complicated than the oceanic case. Precipitation is determined by complex atmospheric
circulation patterns that are not solely determined by local temperature. A region with no precip-
itation will not form glaciers no matter how cold it is made. The present state of Mars provides a
good example: its small polar glaciers do not advance to the Equator, even though the daily aver-
age equatorial temperature is well below freezing. Still, for a planet like Earth with a widespread
ocean to act as a source for precipitation, it may be reasonable to assume that most continental
areas will eventually become ice covered if they are located at sufficiently cold latitudes. In fair-
ness, we should point out that even the formation of sea ice is considerably more complex than we
have made it out to be, particularly since it is affected by the mixing of deep unfrozen water with
surface waters which are trying to freeze.

Earth is the only known planet that has an evident ice/snow albedo feedback, but it is
reasonable to inquire as to whether a planet without Earth’s water-dominated climate could behave
analogously. Snow is always ”white” more or less regardless of the substance it is made of, since
its reflectivity is due to the refractive index discontinuity between snow crystals and the ambient
gas or vacuum. Therefore, a snow-albedo feedback could operate with substances other than water
(e.g. nitrogen or methane). Titan presents an exotic possibility, in that its surface is bathed in
a rain of tarry hydrocarbon sludge, raising the speculative possibility of "dark glacier” albedo
feedbacks. Sea ice forming on Earth’s ocean gets its high albedo from trapped air bubbles, which
act like snowflakes in reverse. The same could happen for ices of other substances, but sea-ice
albedo feedback is likely to require a water ocean. The reason is that water, alone among likely
planetary materials, floats when it freezes. Ice forming on, say, a carbon dioxide or methane ocean
would sink as soon as it formed, preventing it from having much effect on surface albedo.
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Returning attention to an Earthlike waterworld, we write down the energy budget
Lo
(1- a(TS))T = OLR(Ts) (3.10)

This determines T, as before, with the important difference that the Solar absorption on the left
hand side is now a function of Ty instead of being a constant. Analogously to Fig. 3.5, the
equilibrium surface temperature can be found by plotting the absorbed Solar radiation and the
OLR vs. Ts on the same graph. This is done in Fig. 3.8, for four different choices of Lg. In this
plot, we have taken OLR = ¢T*, which assumes no greenhouse effect 3. In contrast with the fixed-
albedo case, the ice-albedo feedback allows the climate system to have multiple equilibria: there
can be more than one climate compatible with a given Solar constant, and additional information
is required to determine which state the planet actually settles into. The nature of the equilibria
depends on L. When L, is sufficiently small (as in the case Lo = 1516W/m? in Fig. 3.8) there
is only one solution, which is a very cold globally ice-covered Snowball state, marked Sn; on the
graph. Note that the Solar constant that produces a unique Snowball state exceeds the present
Solar constant at Earth’s orbit. Thus, were it not for the greenhouse effect, Earth would be in such
a state, and would have been for its entire history. When L_odot is sufficiently large (as in the case
Le = 2865W/m? in Fig. 3.8) there is again a unique solution, which is a very hot globally ice-free
state, marked H on the graph. However, for a wide range of intermediate Lg, there are three
solutions: a Snowball state (Snga), a partially ice covered state with a relatively large ice sheet (e.g.
A), and a warmer state (e.g. B) which may have a small ice sheet or be ice free, depending on the
precise value of Lg. In the intermediate range of Solar constant, the warmest state is suggestive of
the present or Pleistocene climate when there is a small ice-cap, and suggestive of Cretaceous-type
hothouse climates when it is ice-free. In either case, the frigid Snowball state is available as an
alternate possibility.

As the parameter Lg is increased smoothly from low values, the temperature of the the
Snowball state increases smoothly but at some point an additional solution discontinuously comes
into being at a temperature far from the previous equilibrium, and splits into a pair as Lg is
further increased. As Lg is increased further, at some point, the intermediate temperature state
merges with the snowball state, and disappears. This sort of behavior, in which the behavior of
a system changes discontinuously as some control parameter is continuously varied, is an example
of a bifurcation.

Finding the equilibria tells only part of the story. A system placed exactly at an equilbrium
point will stay there forever, but what if it is made a little warmer than the equilibrium? Will it
heat up yet more, perhaps aided by melting of ice, and ultimately wander far from the equilibrium?
Or will it cool down and move back toward the equilibrium? Similar questions apply if the state
is made initially slightly cooler than an equilibrium. This leads us to the question of stability. In
order to address stability, we must first write down an equation describing the time evolution of the
system. To this end, we suppose that the mean energy storage per unit area of the planet’s surface
can be written as a function of the mean temperature; let’s call this function E(T). Changes in
the energy storage could represent the energy required to heat up or cool down a layer of water of
some characteristic depth, and could also include the energy needed to melt ice, or released by the
freezing of sea water. For our purposes, all we need to know is that F is a monotonically increasing
function of Ts. The energy balance for a time-varying system can then be written

dE(T,)  dE dT,
= a — G (3.11)

30f course, this is an unrealistic assumption, since a waterworld would inevitably have at least water vapor — a
good greenhouse gas — in its atmosphere
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Figure 3.8: Graphical determination of the possible equilibrium states of a planet whose albedo
depends on temperature in accordance with Eq. 3.9. The OLR is computed assuming the atmo-
sphere has no greenhouse effect, and the albedo parameters are o, = .1,; = .6,T; = 260K and
T, = 290K. The Solar constant for the various solar absorption curves is indicated in the legend.
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where G = 1(1—a(T,)) Lo —OLR(T,). We can define the generalized heat capacity u(T') = dE/dT,
which is positive by assumption. Thus,
dTs,  G(Ts)

&= Ty (3.12)

By definition, G = 0 at an equilibrium point T¢,. Suppose that the slope of G is well-defined
near T, — in formal mathematical language, we say that G is continuously differentiable at T¢,,
meaning that the derivative of G exists and is a continous function for T in some neighborhood
of Teq. Then, if dG/dTs < 0 at Ty, it will also be negative for some finite distance to the right
and left of Ts. This is the case for points a and ¢ in the net flux curve sketched in Fig. 3.9. If
the temperature is made a little warmer than T,, in this case, G(T;) and hence dths will become
negative and the solution will move back toward the equilibrium. If the temperature is made a
little colder than T,,, G(Ts) and hence dg} will become positive, and the solution will again move
back toward the equilibrium. In contrast, if dG/dTs > 0 near the equilibrium, as for point ¢ in
the sketch, a temperature placed near the equilibrium moves away from it, rather than towards it.
Such equilibria are unstable. If the slope happens to be exactly zero at an equilibrium, one must
look to higher derivatives to determine stability. These are "rare” cases, which will be encountered
only for very special settings of the parameters. If the d2G/dT? is non zero at the equilibrium, the
curve takes the form of a parabola tangent to the axis at the equilibrium. If the parabola opens
upwards, then the equilibrium is stable to displacements to the left of the equilibrium, but unstable
to displacements to the right. If the parabola opens downwards, the equilibrium is unstable to
displacements to the left but stable to displacements to the right. Similar reasoning applies to
the case in which the first non-vanishing derivative is higher order, but such cases are hardly ever
encountered.

Exercise 3.4.1 Draw a sketch illustrating the behavior near marginal equilibria with d>G/dT? > 0
and d?G/dT? < 0. Do the same for equilibria with d*G/dT? = 0, having d*G/dT® > 0 and d*G/dT? <
0

It is rare that one can completely characterize the behavior of a nonlinear system, but one
dimensional problems of the sort we are dealing with are exceptional. In the situation depicted
in Fig. 3.9, G is positive and dT'/dt is positive throughout the interval between b and ¢. Hence,
a temperature placed anywhere in this interval will eventually approach the solution ¢ arbitrarily
closely — it will be attracted to that stable solution. Similarly, if 7" is initially between a and b,
the solution will be attracted to the stable equilibrium a. The unstable equilibrium b forms the
boundary between the basins of attraction of a and c. No matter where we start the system within
the interval between a and ¢ (and somewhat beyond, depending on the shape of the curve further
out), it will wind up approaching one of the two stable equilibrium states. In mathematical terms,
we are able to characterize the global behavior of this system, as opposed to just the local behavior
near equilibria.

At an equilibrium point, the curve of solar absorption crosses the OLR curve, and the
stability criterion is equivalent to stating that the equilibrium is stable if the slope of the solar
curve is less than that of the OLR curve where the two curves intersect. Using this criterion, we see
that the intermediate-temperature large ice-sheet states, labeled A and A’ in Fig. 3.8, are unstable.
If the temperature is made a little bit warmer then the equilibrium the climate will continue to
warm until it settles into the warm state (B or B’) which has a small or nonexistent ice sheet. If
the temperature is made a little bit colder than the equilibrium, the system will collapse into the
snowball state (Sng or Snz). The unstable state thus defines the boundary separating the basin
of attraction of the warm state from that of the snowball state.
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Figure 3.9: Sketch illustrating stable vs. unstable equilibrium temperatures.

Moreover, if the net flux G(T') is continous and has a continuous derivative (i.e. if the curve
has no "kinks” in it), then the sequence of consecutive equilibria always alternates between stable
and unstable states. For the purpose of this theorem, the rare marginal states with dG/dT = 0
should be considered ”wildcards” that can substitute for either a stable or unstable state. The
basic geometrical idea leading to this property is more or less evident from Figure 3.9, but a more
formalized argument runs as follows: Let T, and T} be equilibria, so that G(T,) = G(T) = 0.
Suppose that the first of these is stable, so dG/dT < 0 at T,, and also that the two solutions
are consecutive, so that G(T') does not vanish for any T" between T, and Tp. Now if dG/dT < 0
at Tp, then it follows that G > 0 just to the left of T,. The slope near T, similarly implies that
G < 0 just to the right of T,. Since G is continuous, it would follow that G(T) = 0 somewhere
between T, and T;. This would contradict our assumption that the two solutions are consecutive.
In consequence, dG/dT > 0 at Ty,. Thus, the state T}, is either stable or marginally stable, which
proves our result. The proof goes through similarly if T, is unstable. Note that we didn’t actually
need to make use of the condition that dG/dT be continuous everywhere: it’s enough that it be
continuous near the equilibria, so we can actually tolerate a few kinks in the curve.

A consequence of this result is that, if the shape of G(T') is controlled continously by some
parameter like L, then new solutions are born in the form of a single marginal state which, upon
further change of L splits into a stable/unstable or unstable/stable pair. The first member of the
pair will be unstable if there is a pre-existing stable solution immediately on the cold side of the
new one, as is the case for the Snowball states Sn in Fig. 3.8. The first member will be stable if
there is a pre-existing unstable state on cold side, or a pre-existing stable state on the warm side
(e.g. the state H in Fig. 3.8). What we have just encountered is a very small taste of the very
large and powerful subject of bifurcation theory.

3.4.1 Faint Young Sun, Snowball Earth and Hysteresis

We we now have enough basic theoretical equipment to take a first quantitative look at the Faint
Young Sun problem. To allow for the greenhouse effect of the Earth’s atmosphere, we take p,.oq =
670mb, which gives the correct surface temperature with the observed current albedo a = .3.
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How much colder does the Earth get if we ratchet the Solar constant down to 960W/m?, as it
was 4.7 billion years ago when the Earth was new? As a first estimate, we can compute the
new temperature from Eq. 3.8 holding p,.q and the albedo fixed at their present values. This
yields 261 K. This is substantially colder than the present Earth. The fixed albedo assumption
is unrealistic,however, since the albedo would increase for a colder and more ice-covered Earth,
leading to a substantially colder temperature than we have estimated. In addition, the strength of
the atmospheric greenhouse effect could have been different for the Early Earth, owing to changes
in the composition of the atmosphere.

An attempt at incorporating the ice-albedo feedback can be made by using the energy
balance Eq. 3.10 with the albedo parameterization given by Eq. 3.9. For this calculation, we
choose constants in the albedo formula that give a somewhat more realistic Earthlike climate than
those used in Figure 3.8. Specifically, we set «, = .28 to allow for the albedo of clouds and land, and
T, = 295 to allow a slightly bigger polar ice sheet. The position of the equilibria can be determined
by drawing a graph like Fig. 3.8, or by applying a root-finding algorithm like Newton’s method to
Eq. 3.10. The resulting equilibria are shown as a function of L in Figure 3.10, with p;..q held fixed
at 670mb. Some techniques for generating diagrams of this type are developed in Problem ??. For
the modern Solar constant, and p,.q = 670mb, the system has a stable equilibrium at Ts; = 286K,
close to the observed modern surface temperature, and is partially ice covered. However, the system
has a second stable equilibrium, which is a globally ice-covered Snowball state having Ts = 249K.
Even today, the Earth would stay in a Snowball state if it were somehow put there. The two stable
equilibria are separated by an unstable equilibrium at Ty, = 270K, which defines the boundary
between the set of initial conditions that go to the "modern” type state, and the set that go to a
Snowball state. The attractor boundary for the modern open-ocean state is comfortably far from
the present temperature, so it would not be easy to succumb to a Snowball.

Now we turn down the Solar constant, and re-do the calculation. For Lg = 960W/m?, there
is only a single equilibrium point if we keep pr.oq = 670mb. This is a stable Snowball state with
Ty = 228K. Thus, if the Early Earth had the same atmospheric composition as today,leading to
a greenhouse effect no stronger than the present one, the Earth would have inevitably been in a
Snowball state. The open ocean state only comes into being when L, is increased to 1330W/m?,
which was not attained until the relatively recent past. This contradicts the abundant geological
evidence for prevalent open water throughout several billion years of Earth’s history. Even worse,
if the Earth were initially in a stable snowball state four billion years ago, it would stay in that
state until L, increases to 1640W/m?2, at which point the stable snowball state would disappear
and the Earth would deglaciate. Since this far exceeds the present Solar constant, the Earth would
be globally glaciated today. This even more obviously contradicts the data.

The currently favored resolution to the paradox of the Faint Young Sun is the supposition
that the atmospheric composition of the early Earth must have resulted in a stronger greenhouse
effect than the modern atmosphere produces. The prime candidate gases for mediating this change
are CO9 and C'Hy. The radiative basis of the idea will be elaborated further in Chapter 4, and
some ideas about why the atmosphere might have adjusted over time so as to maintain an equable
climate despite the brightening Sun are introduced in Chapter 9. Fig. 3.11 shows how the equilibria
depend on p,.q, with Lg fixed at 960W/m?2. Whichever greenhouse gas is the Earth’s savior, if
it is present in sufficient quantities to reduce p,oq to 500mb or less, then a warm state with an
open ocean exists (the upper branch in Fig. 3.11). However, for 420mb < prad < 500mb a stable
snowball state also exists, meaning that the climate that is actually selected depends on earlier
history. If the planet had already fallen into a Snowball state for some reason, the early Earth
would stay in a Snowball unless the greenhouse gases build up sufficiently to reduce p;..q below
420mb at some point.
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Figure 3.10: Hysteresis diagram obtained by varying Le with prqq/ps fixed at .67. Arrows indicate
path followed by the system as L, is first increased, then decreased. The unstable solution branch
is indicated by a dashed curve.
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Figure 3.11: As in Fig. 3.10, but varying p,qq with Lo = 960W /m?2.
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Figures 3.10 and 3.11 illustrate an important phenomenon known as hysteresis: the state
in which a system finds itself depends not just on the value of some parameter of the system, but
the history of variation of that parameter. This is possible only for systems that have multiple
stable states. For example, in 3.10 suppose we start with Lo = 1000W/m?, where the system
is inevitably in a Snowball state with T = 230K. Let’s now gradually increase Ls. When Lg
reaches 1500/ /m? the system is still in a Snowball state, having T' = 254K, since we have been
following a stable solution branch the whole way. However, when Lg reaches 1640WW/m?, the
Snowball solution disappears, and the system makes a sudden transition from a Snowball state
with T = 260K to the only available stable solution, which is an ice-free state having T' = 301K.
As L increases further to 2000WW/m?, we follow the warm, ice-free state and the temperature rises
to 316 K. Now suppose we begin to gradually dim the Sun, perhaps by making the Solar system
pass through a galactic dust cloud. Now, we follow the upper, stable branch as Lg decreases,
so that when we find ourselves once more at Lo = 1500W/m? the temperature is 294K and the
system is in a warm, ice-free state rather than in the Snowball state we enjoyed the last time we
were there. As L is decreased further, the warm branch disappears at Lo = 1330W/m? and the
system drops suddenly from a temperature of 277K into a Snowball state with a temperature of
246K, whereafter the Snowball branch is again followed as L is reduced further. The trajectory
of the system as L is increased then decreased back to its original value takes the form of an open
loop, depicted in Fig. 3.10.

The thought experiment of varying Lg in a hysteresis loop is rather fanciful, but many
atmospheric processes could act to eit