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Figure 1: Reconstruction (c) of model temperature 
anomalies (a) at 204m by optimal interpolation of ‘ pseudo 
observations’  (b) sampled at typical real world 
observation density.

(1) Subsurface ocean analysis

• The ability to predict climate variability on  annual to decadal timescales would be important 
both to pre-empt criticism of greenhouse gas emissions policy in the event of a run of cold 
years, and to enable vulnerable sectors of industry and commerce to take account of climate 
change in future planning.

• There is mounting evidence that low frequency climate variability is, at least partially, forced 
by the ocean. Accurate initialisation of the state of the ocean is therefore likely to be a key 
ingredient of a decadal climate prediction system using coupled climate models. To this end 
a new three-dimensional optimally-interpolated dataset of monthly mean ocean temperature 
and salinity anomalies has been developed.

• Optimal interpolation creates an analysis at any required location by combining the 
available observations with weights which depend on their spatial (and temporal) anomaly 
covariances. This is illustrated in figure 1 (c) which shows the analysed temperature anomaly 
obtained by optimal interpolation of ‘ pseudo observations’  (b) which were generated by 
sampling a monthly mean subsurface temperature field (a) from the control run of the Hadley 
Centre coupled global climate model (HadCM3) at locations typical of real ocean 
observations. In this case the anomaly covariances are well known (from HadCM3) and, 
although the observations are sparse, the analysis is a good representation of the truth.

• In reality, subsurface ocean observations are too sparse to provide reliable covariances. 
Instead, we base our optimal interpolation on covariances from HadCM3. Recognising that 
these will contain errors, especially at large distances, we restrict their use to objectively 
defined local regions.

• Example analyses are presented in figures 2 and 3. As a test of the analysis procedure, 
figure 2 demonstrates that analysed sea surface temperature (SST) anomalies (c) created by 
optimal interpolation of buoy data (b) are in reasonably good agreement with analyses which 
include satellite data (a). Figure 3 demonstrates that the analyses are able to capture 
important oceanic dynamical signals, such as the eastward propagation of subsurface 
temperature anomalies in the equatorial Pacific which contribute to the generation of El Niños 
and La Niñas.

• Since observations of salinity are particularly sparse, we employ multivariate optimal 
interpolation of temperature and salinity observations to generate the temperature and 
salinity analyses. This takes advantage of any correlation between temperature and salinity 
anomalies to generate salinity analyses from temperature observations, resulting in much 
better salinity analyses than would be obtained from optimal interpolation of salinity 
observations alone.

Figure 2: Reconstruction (c) of SST by optimal 
interpolation of surface buoy data from the Levitus 1998 
dataset (b). HadISST (a) is an analysis of all SST 
observations, including satellite data, and may be 
regarded as close to the truth.

Figure 3: Time series of 
analysed temperature 
anomalies on a longitude-
depth cross section of the 
equatorial Pacific. The 
eastward propagation of 
subsurface anomalies leading 
to the El Niño of 1986-87 and 
the following La Niña can 
clearly be seen.

(2) Model initialisation

• Before making forecasts, the ocean component of HadCM3 is initialised by 
relaxing (with a 6 hour timescale) the temperature and salinity fields to the optimally 
interpolated dataset described in panel (1). 

• In addition, the atmosphere component of HadCM3 is initialised by relaxing (with a 
3 hour timescale) the horizontal winds, potential temperature and surface pressure 
to the ECMWF 15 year reanalysis of atmospheric observations 
(www.ecmwf.int/research/era/ERA-15).

• Models are not able to simulate the observed climate perfectly. This is liable to 
introduce a bias in the forecasts as the model drifts away from the observed state 
towards its preferred climate. In seasonal prediction it is standard practice to pre-
calculate this bias over a large number of test cases and remove it from forecasts 
as an a posteriori empirical correction. We believe this strategy to be undesirable for 
decadal prediction, since generation of a set of test cases required to specify the 
time, space (and possibly flow) dependent bias accurately relative to the magnitude 
of the predictable signal being sought would require substantial computational 
resources. We therefore adopt an alternative approach in which the model is 
initialised with observed anomalies added to the model climate, rather than with 
observed values.

(3) Verification of seasonal forecasts

• In order to assess the skill of the decadal prediction system (DePreSys), a set of 60 
hindcasts has been performed. Initial conditions were created as described in panel 
(2) for the period 1979 to 1993, from which 10-year forecasts were initiated from the 
1st March, June, September and December in each year.

• During the forecasts anthropogenic forcing from greenhouse gases and sulphate 
aerosols was increased in line with observations. Aerosol from major volcanic 
eruptions occurring prior to initialisation was assumed to reduce exponentially with a 
timescale of one year, and solar variability was accounted for by repeating the 
previous 11-year solar cycle.

• Ensemble forecasts of 4 members were generated in order to sample the range of 
predictions consistent with observational uncertainty. Each ensemble member was 
initialised from consecutive days immediately preceding the forecast period.

• A system capable of predicting climate variability on inter-annual to decadal 
timescales would also be expected to perform reasonably well on seasonal 
timescales. This was verified by comparing forecasts of El Niño with state-of-the-art 
seasonal prediction systems from the European DEMETER project (table 1). 
DePreSys performs at least as well as most of the other systems, subject to the 
caveat that a totally clean comparison is not possible, since the DePreSys forecasts 
started on 1st March (cf 1st February for the DEMETER forecasts), and the forecast 
years are not the same (even for the different DEMETER models).

(4) Multi-annual forecasts

• Figure 4(a) shows the anomaly correlation coefficient (ACC) between forecast and 
observed annual mean near surface (1.5m) air temperature over sea as a function of 
forecast lead time averaged over all 60 hindcasts. The green curve (labelled intra-
ensemble) is the average ACC between individual ensemble members. The difference 
between the actual skill of single member forecasts (light blue curve) and the intra-
ensemble skill gives some indication of the potential for improving skill by increasing 
the density of observations and eliminating modelling errors. The single member 
forecasts are significantly more skillful than forecasts obtained by persisting the initial 
anomalies (dark blue curve). The potential for improvement by ensemble forecasting 
can be seen by comparing the 4 member ensemble mean (orange curve) with the 
single member. In order to assess the possible impact of additional ensemble 
members we create a ‘ super ensemble’  (red curve) by averaging 4 seasonally-
lagged 4 member ensemble forecasts. For example, the super ensemble forecast for 
the annual mean from March 1980 would be an average of the ensemble forecasts 
from March 1980 (seasons1-4), December 1979 (seasons 2-5), September 1979 
(seasons 3-6) and June 1979 (seasons 4-7). The 4x4 member super ensemble is 
significantly more skillful than either the single member or the 4 member ensemble 
forecasts at medium lead periods (e.g. 5-8 seasons), indicating a need for larger 
ensemble sizes. Figure 4(b) shows the time series of observations and super 
ensemble forecasts at a lead time of one year. The sign of the anomalies are forecast 
reasonably well, except for the cooling following the eruption of Mount Pinatubo in 
1991 which would only be predictable if the eruption could be forecast.

• Surprisingly the global air temperature appears to be more predictable over land 
(figure 5) than over sea (figure 4). Further investigation is required to uncover the 
reason for this.

• In order to identify the sources of the predictability exhibited in figures 4 & 5, figure 6 
shows a map of the ACC of annual mean near surface air temperature at a lead time 
of one year for 15x15 degree boxes (regridded to 5x5 degrees). As expected, the 
tropical Pacific appears to be an important source of predictability, and it is 
encouraging that the correct sign of annual mean Niño3 anomalies is usually 
predictable a year in advance (figure 7). On these timescales, regions of the Indian 
ocean, the central North Atlantic and the Kuroshio current also appear to be 
predictable, and could therefore be sources of oceanically forced climate variability. 

• Many sectors of industry and commerce affected by climate variability require 
regional forecasts of the next few years. To identify potentially predictable regions, 
figure 8 shows a map of the ACC of 4-year mean near surface air temperature at zero 
lead time for 15x15 degree boxes (regridded to 5x5 degrees). On these timescales 
there are encouraging signs of predictability over many regions, including east Asia, 
north-east Africa, western USA and parts of western Europe (figure 9). (5) Future work

• Further analysis is required in order to assess the predictability of other climate 
variables, including precipitation and extreme events, and to present results in a 
probabilistic framework.

• The gap between the actual skill and the theoretical skill diagnosed from the intra-
ensemble correlation (figure 4(a)) suggests that improving the model and its 
initialisation would give more accurate forecasts. Efforts to improve the model are 
ongoing and methods for improving initialisation, by achieving more balanced initial 
conditions and including additional observations (such as altimeter data), will be 
explored. 

•  The ensemble technique used so far accounts for the influence of uncertainties in 
the initial conditions but not for modelling uncertainties. The possibility of generating 
ensembles which account for modelling uncertainties, through perturbations to the 
model physics, will be investigated.

Table 1:  Anomaly correlation of Niño3 (Niño4) 
SST for the Decadal Prediction System 
(DePreSys) developed in this study (March 
forecasts, 1979-1993) compared with 
seasonal forecasting models from the 
European DEMETER project 
(www.ecmwf.int/research/demeter).

Figure 4: (a) Anomaly correlation coefficient 
(ACC) between forecast and observed annual 
mean global near surface air temperature over 
sea as a function of forecast lead time. See text 
for details of the different lines.       (b) Time 
series of observations and forecasts at a 
forecast lead time of one year.

Figure 6: Anomaly correlation of annual mean near 
surface air temperature at a forecast lead time of one 
year (seasons 5-8) for 15x15 degree boxes 
(regridded to 5x5 degrees).

Figure 8: As Figure 6, but for 4-year mean near 
surface air temperature at zero forecast lead time 
(seasons 1-16).

Figure 5: As figure 4 but for annual mean 
global near surface air temperature over 
land.

Figure 7: As figure 4 but for annual mean 
Niño3 SST.

Figure 9: Time series of observed and forecast 4-year 
mean near surface air temperature over land at zero 
lead time (seasons 1-16) for selected regions.

Summary

• A decadal climate prediction system (DePreSys) 
based on the Hadley Centre coupled global climate 
model, HadCM3, has been developed.

•  In order to initialise the ocean component a new 
dataset of monthly mean optimally interpolated 
ocean temperature and salinity anomalies has been 
created (panel (1)).

•  Climate drift during forecasts is avoided by 
assimilating observed anomalies added to the model 
climate, rather than observed values (panel (2)).

• The skill of the system has been assessed in a set 
of 60 hindcasts initialised from 1979 to 1993.

• Compared with state-of-the-art seasonal 
forecasting models, DePreSys performs well on 
seasonal timescales (panel (3)).

• There are encouraging signs of predictability on 
multi-annual timescales (panel (4)). The correlation 
between observed and predicted annual mean 
global near surface air temperature over land is 
almost 0.6 at a lead time of one year (figure 5). 
Furthermore, there are a number of regions for 
which the temperature over the next few years could 
be sufficiently predictable to be of use to industry 
and commerce (figures 8 & 9).


