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Gentzen’s result
Gerhard Gentzen showed that transfinite induction up to the

ordinal

ε0 = sup{ω, ωω, ωωω

, . . .} = least α. ωα = α

suffices to prove the consistency of Peano Arithmetic, PA.



How natural ordinal representation systems arise
Natural ordinal representation systems are frequently derived from
structures of the form

A = 〈α, f1, . . . , fn, <α〉 (1)

where α is an ordinal, <α is the ordering of ordinals restricted to
elements of α and the fi are functions

fi : α× · · · × α︸ ︷︷ ︸
ki times

−→ α

for some natural number ki .



A = 〈A, g1, . . . , gn,≺〉 (2)

is a recursive representation of A if the following conditions hold:

1. A ⊆ N
2. A is a recursive set.

3. ≺ is a recursive total ordering on A.

4. The functions gi are recursive.

5. A ∼= A, i.e. the two structures are isomorphic.



Gentzen’s ordinal representation system for ε0 is based on the
Cantor normal form, i.e. for any ordinal 0 < α < ε0 there exist
uniquely determined ordinals α1, . . . , αn < α such that

• α1 ≥ · · · ≥ αn

• α = ωα1 + · · ·ωαn .

To indicate the Cantor normal form we write

α =
CNF

ωα1 + · · ·ωαn .



Now define a function

d . e : ε0 −→ N

by

dδe =

{
0 if δ = 0
〈dδ1e, . . . , dδne〉 if δ =

CNF
ωδ1 + · · ·ωδn

where 〈k1, · · · , kn〉 := 2k1+1 · . . . · pkn+1
n with pi being the ith

prime number (or any other coding of tuples). Further define

A0 := ran(d . e)
dδe ≺ dβe :⇔ δ < β

dδe +̂ dβe := dδ + βe
dδe ·̂ dβe := dδ · βe

ω̂dδe := dωδe.



Then

〈ε0, +, ·, δ 7→ ωδ, <〉 ∼= 〈A0, +̂, ·̂, x 7→ ω̂x ,≺〉.

A0, +̂, ·̂, x 7→ ω̂x ,≺ are recursive, in point of fact, they are all
elementary recursive.



The axioms of KP are:

Extensionality: a = b → [F (a) ↔ F (b)] for all formulas F .

Foundation: ∃xG (x) → ∃x [G (x) ∧ (∀y ∈x)¬G (y)]

Pair: ∃x (x = {a, b}).
Union: ∃x (x =

⋃
a).

Infinity: ∃x [
x 6= ∅ ∧ (∀y ∈x)(∃z∈x)(y ∈z)

]
.

∆0 Separation: ∃x (
x = {y ∈a : F (y)}) for all ∆0–formulas F

in which x does not occur free.

∆0 Collection: (∀x ∈a)∃yG (x , y) → ∃z(∀x ∈a)(∃y ∈z)G (x , y)
for all ∆0–formulas G .

By a ∆0 formula we mean a formula of set theory in which all the
quantifiers appear restricted, that is have one of the forms (∀x ∈b)
or (∃x ∈b).



An ordinal representation system for the Bachmann-Howard
ordinal
The Veblen-function ϕ figures prominently in elementary proof
theory.
It is defined by transfinite recursion on α by letting ϕ0(ξ) := ωξ

and, for α > 0, ϕα be the function that enumerates the class of
ordinals

{γ : ∀ξ < α [ϕξ(γ) = γ]}.
We shall write ϕαβ instead of ϕα(β).

Let Γα be the αth ordinal ρ > 0 such that for all β, γ < ρ,
ϕβγ < ρ.

Corollary

1. ϕ0β = ωβ.

2. ξ, η < ϕαβ =⇒ ξ + η < ϕαβ.

3. ξ < ζ =⇒ ϕαξ < ϕαζ.

4. α < β =⇒ ϕα(ϕβξ) = ϕβξ.



The least ordinal (> 0) closed under the function ϕ is known as

Γ0

The proof-theoretic ordinal of KP, however, is bigger than Γ0 and
we need another function to obtain a sufficiently large ordinal
representation system.



Let Ω be a “big” ordinal. By recursion on α we define sets
CΩ(α, β) and the ordinal ψΩ(α) as follows:

CΩ(α, β) =





closure of β ∪ {0,Ω}
under:

+, (ξ 7→ ωξ)
(ξ 7−→ ψΩ(ξ))ξ<α

(3)

ψΩ(α) ' min{ρ < Ω : CΩ(α, ρ) ∩ Ω = ρ }. (4)



Note that if ψΩ(α) is defined, then

ψΩ(α) < Ω

and
[ψΩ(α), Ω) ∩ CΩ(α, ψΩ(α)) = ∅

thus the order-type of the ordinals below Ω which belong to the
Skolem hull CΩ(α,ψΩ(α)) is ψΩ(α).

In more pictorial terms, ψΩ(α) is the αth collapse of Ω.



Lemma ψΩ(α) is always defined; in particular ψΩ(α) < Ω.



Proof: The claim is actually not a definitive statement as I haven’t
yet said what largeness properties Ω has to satisfy. In the proof
below, we assume Ω := ℵ1, i.e. Ω is the first uncountable cardinal.

Observe first that for a limit ordinal λ,

CΩ(α, λ) =
⋃

ξ<λ

CΩ(α, ξ)

since the right hand side is easily shown to be closed under the
clauses that define CΩ(α, λ).



Now define

η0 = supCΩ(α, 0) ∩ Ω (5)

ηn+1 = supCΩ(α, ηn) ∩ Ω

η∗ = sup
n<ω

ηn.

Since for η < Ω the cardinality of CΩ(α, η) is the same as that of
max(η, ω) and therefore less than Ω, the regularity of Ω implies
that η0 < Ω. By repetition of this argument one obtains ηn < Ω,
and consequently η∗ < Ω. The definition of η∗ then ensures

CΩ(α, η∗) ∩ Ω =
⋃
n

CΩ(α, ηn) ∩ Ω = η∗ < Ω.

Therefore, ψΩ(α) < Ω. ut



Let
εΩ+1

be the least ordinal α > Ω such that ωα = α.

The next definition singles out a subset

T (Ω)

of
CΩ(εΩ+1, 0)

which gives rise to an ordinal representation system, i.e., there is
an elementary ordinal representation system

〈OR,¢, <̂, ψ̂, . . .〉
so that

〈T (Ω), <,<, ψ, . . .〉 ∼= 〈OR, ¢, <̂, ψ̂, . . .〉. (6)

“. . .” is supposed to indicate that more structure carries over to
the ordinal representation system.



Definition T (Ω) is defined inductively as follows:

1. 0, Ω ∈ T (Ω).

2. If α1, . . . , αn ∈ T (Ω) and ωα1 + · · ·+ ωαn > α1 ≥ . . . ≥ αn,
then ωα1 + · · ·+ ωαn ∈ T (Ω).

3. If α ∈ T (Ω) and α ∈ CΩ(α, ψΩ(α)), then ψΩ(α) ∈ T (Ω).



The side condition in the second clause is easily explained by the
desire to have unique representations in T (Ω).

The requirement
α ∈ CΩ(α,ψΩ(α))

in the third clause also serves the purpose of unique
representations (and more) but is probably a bit harder to explain.
The idea here is that from ψΩ(α) one should be able to retrieve
the stage (namely α) where it was generated. This is reflected by

α ∈ CΩ(α, ψΩ(α)).



It can be shown that the foregoing definition of T (Ω) is
deterministic, that is to say every ordinal in T (Ω) is generated by
the inductive clauses in exactly one way. As a result, every

γ ∈ T (Ω)

has a unique representation in terms of symbols for

0, Ω

and function symbols for

+, α 7→ ωα, α 7→ ψΩ(α).

The unique representation of will be referred to as the normal
form.



Thus, by taking some primitive recursive (injective) coding
function d· · · e on finite sequences of natural numbers, we can code
T (Ω) as a set of natural numbers as follows:

`(α) =





d0, 0e if α = 0
d1, 0e if α = Ω
d2, `(α1), · · · , `(αn)e if α = ωα1 + · · ·+ ωαn

d3, `(β), `(Ω)e if α = ψΩ(β),

where the distinction by cases refers to the unique representation
of ordinals in T (Ω). With the aid of `, the ordinal representation
system (6) can be defined by letting OR be the image of ` and
setting

¢ := {(`(γ), `(δ)) : γ < δ ∧ δ, γ ∈ T (Ω)}
etc. However, a proof that this definition of

〈OR,¢, <̂, ψ̂, . . .〉
in point of fact furnishes an elementary ordinal representation
system is a bit lengthy.



We have seen that in the case of PA the addition of an infinitary
rule enables us to regain cut elimination.

ω–rule:
Γ, A(n̄) for all n

Γ, ∀x A(x)
.

An ordinal analysis for PA is then attained as follows:

• Each PA–proof can be “unfolded” into a PAω–proof of the
same sequent.

• Each such PAω–proof can be transformed into a cut–free
PAω–proof of the same sequent of length < ε0.



In order to obtain a similar result for set theories like KP, we have
to work a bit harder. Guided by the ordinal analysis of PA, we
would like to invent an infinitary rule which, when added to KP,
enables us to eliminate cuts.



As opposed to the natural numbers, it is not clear how to bestow a
canonical name to each element of the set–theoretic universe.
Here we will use Gödel’s constructible universe L. The constructible
universe is “made” from the ordinals. It is pretty obvious how to
“name” sets in L once we have names for ordinals at our disposal.



Recall that Lα, the αth level of Gödel’s constructible hierarchy
L, is defined by

L0 = ∅,
Lλ =

⋃
{Lβ : β < λ} λ limit

Lβ+1 =
{
X : X ⊆ Lβ; X definable over 〈Lβ,∈〉}.

So any element of L of level α is definable from elements of L
with levels < α and the parameter Lα0 if α = α0 + 1.



The problem of “naming” sets will be solved by erecting a formal
constructible hierarchy using the ordinals from T (Ω).

Henceforth, we shall restrict ourselves to ordinals from T (Ω).



Definition We adopt a language of set theory, L, which has only
the predicate symbol ∈.
The atomic formulae of L are those of either form (a∈b) or
¬(a∈b).
The L–formulae are obtained from atomic ones by closing off
under ∧,∨, (∃x∈a), (∀x∈a), ∃x , and ∀x .



Definition The RSΩ–terms and their levels are generated as
follows.

1. For each α < Ω,
Lα

is an RSΩ–term of level α.

2. The formal expression

[x∈Lα : F (x ,~s)Lα ]

is an RSΩ–term of level α if F (a,~b) is an L–formula (whose
free variables are among the indicated) and ~s ≡ s1, · · · , sn are
RSΩ–terms with levels < α.

F (x ,~s)Lα results from F (x ,~s) by restricting all unbounded
quantifiers to Lα.



We shall denote the level of an RSΩ–term t by | t |;

t ∈ T (α) stands for | t | < α and t ∈ T for t ∈ T (Ω).

The RSΩ–formulae are the expressions of the form

F (~s)

where F (~a) is an L–formula and ~s ≡ s1, . . . , sn ∈ T .



For technical convenience, we let ¬A be the formula which arises
from A by

(i) putting ¬ in front of each atomic formula,

(ii) replacing ∧,∨, (∀x ∈a), (∃x ∈a) by ∨,∧, (∃x ∈a), (∀x ∈a),
respectively, and

(iii) dropping double negations.



We use the relation ≡ to mean syntactical identity. For terms s, t
with | s | < | t | we set

s
◦∈t ≡

{
B(s) if t ≡ [x ∈Lβ : B(x)]
Trues if t ≡ Lβ

where Trues is a true formula, say s /∈L0.

Observe that s∈t and s
◦∈t have the same truth value under the

standard interpretation in the constructible hierarchy.



The rules of LRS

Having created names for a segment of the constructible universe,
we can introduce infinitary rules analogous to the the ω-rule.
Let

A, B, C , . . . ,F (t), G (t), . . .

range over RSΩ–formulae. We denote by upper case Greek letters

Γ, ∆,Λ, . . .

finite sets of RSΩ–formulae. The intended meaning of

Γ = {A1, · · · ,An}

is the disjunction
A1 ∨ · · · ∨ An

Γ, A stands for Γ ∪ {A} etc.. We also use the abbreviations
r 6= s := ¬(r = s) and r /∈ t := ¬(r ∈ t).



The rules of RSΩ are:

(∧)
Γ, A Γ, A′
Γ, A ∧ A′

(∨) Γ, Ai
Γ, A0 ∨ A1

if i = 0 or i = 1

(b∀) · · · Γ, s
◦∈t → F (s) · · · (s ∈ T (| t |))

Γ, (∀x ∈ t)F (x)

(b∃) Γ, s
◦∈t ∧ F (s)

Γ, (∃x ∈ t)F (x)
if s ∈ T (| t |)

(∀) · · · Γ, F (s) · · · (s ∈ T )
Γ, ∀x F (x)

(∃) Γ, F (s)
Γ, ∃x F (x)

if s ∈ T



(6∈)
· · · Γ, s

◦∈t → r 6= s · · · · · · (s ∈ T (| t |))
Γ, r 6∈ t

(∈) Γ, s
◦∈t ∧ r = s
Γ, r ∈ t

if s ∈ T (| t |)

(Cut)
Γ, A Γ,¬ A

Γ

(RefΣ) Γ, A
Γ, ∃z Az if A is a Σ-formula,

where a formula is said to be in Σ if all its unbounded quantifiers
are existential.
Az results from A by restricting all unbounded quantifiers to z .



H–controlled derivations
If we dropped the rule (RefΣ) from RSΩ, the remaining calculus
would enjoy full cut elimination owing to the symmetry of the pairs
of rules

(∧) (∨)

(∀) (∃)
(6∈) (∈)



However, partial cut elimination for RSΩ can be attained by
delimiting a collection of derivations of a very uniform kind.
Fortunately, Buchholz has provided us with a very elegant and
flexible setting for describing uniformity in infinitary proofs, called
operator controlled derivations.



Definition Let

P(ON) = {X : X is a set of ordinals}.

A class function
H : P(ON) → P(ON)

will be called operator if H is a closure operator, i.e monotone,
inclusive and idempotent, and satisfies the following conditions for
all X ∈P(ON):

1. 0∈H(X ).

2. If α has Cantor normal form ωα1 + · · ·+ ωαn , then
α∈H(X ) ⇐⇒ α1, ..., αn∈H(X ).

The latter ensures that H(X ) will be closed under + and σ 7→ ωσ,
and decomposition of its members into additive and multiplicative
components.



For Z ∈P(ON), the operator H[Z ] is defined by

H[Z ](X ) := H(Z ∪ X ).

If X consists of “syntactic material”, i.e. terms, formulae, and
possibly elements from {0, 1}, then let

H[X](X ) := H(k(X) ∪ X )

where k(X) is the set of ordinals needed to build this “material”.

Finally, if s is a term, then define H[s] by H[{s}].



To facilitate the definition of H–controlled derivations, we assign
to each RSΩ–formula A, either a (possibly infinite) disjunction∨

(Aι)ι∈I or a conjunction
∧

(Aι)ι∈I of RSΩ–formulae.

This assignment will be indicated by A ∼= ∨
(Aι)ι∈I and

A ∼= ∧
(Aι)ι∈I , respectively.

Define:

r∈t ∼=
∨

(s
◦∈t ∧ r = s)s∈T|t|

(∃x∈t)F (x) ∼=
∨

(s
◦∈t ∧ F (s))s∈T|t|

∃x F (x) ∼=
∨

(F (s))s∈T

A0 ∨ A1
∼=

∨
(Aι)ι∈{0,1}

¬A ∼=
∧

(¬Aι)ι∈I , if A ∼= ∨
(Aι)ι∈I .



Using this representation of formulae, we can define the
subformulae of a formula as follows. When A ∼= ∧

(Aι)ι∈I or
A ∼= ∨

(Aι)ι∈I , then B is a subformula of A if B ≡ A or, for some
ι∈I , B is a subformula of Aι.

Since one also wants to keep track of the complexity of cuts
appearing in derivations, each formula F gets assigned an ordinal
rank rk(F ) which is roughly the sup of the level of terms in F plus
a finite number.

Using the formula representation, in spite of the many rules of
RSΩ, the notion of H–controlled derivability can be defined
concisely. We shall use I ¹α to denote the set {ι∈I : | ι | < α}.



Definition Let H be an operator and let Γ be a finite set of
RSΩ–formulae.

H α

ρ Γ

is defined by recursion on α. It is always demanded that

{α} ∪ k(Γ) ⊆ H(∅).

The inductive clauses are:



(
∨

)
H α0

ρ Λ, Aι0

H α

ρ Λ,
∨

(Aι)ι∈I

α0 < α
ι0∈I ¹α

(
∧

)
H[ι]

αι

ρ Λ, Aι for all ι∈I

H α

ρ Λ,
∧

(Aι)ι∈I

| ι | ≤ αι < α

(Cut)
H α0

ρ Λ,B H α0

ρ Λ,¬B

H α

ρ Λ

α0 < α
rk(B) < ρ

(RefΣ)
H α0

ρ Λ, A

H α

ρ Λ,∃z Az

α0, Ω < α
A∈Σ



The specification of the operators needed for an ordinal analysis
will, of course, hinge upon the particular theory and ordinal
representation system.



To connect KP with the infinitary system RSΩ one has to show
that KP can be embedded into RSΩ. Indeed, the finite
KP-derivations give rise to very uniform infinitary derivations.



Theorem 1 If
KP ` B(a1, . . . , ar )

then
H Ω·m

Ω+n
B(s1, . . . , sr )

holds for some m, n and all set terms s1, . . . , sr and operators H
satisfying

{ξ : ξ occurs in B(~s)} ∪ {Ω} ⊆ H(∅).

m and n depend only on the KP-derivation of B(~a).



The usual cut elimination procedure works as long as the cut
formulae have not been introduced by an inference RefΣ. As the
principal formula of an inference RefΣ has rank Ω one gets the
following result.



Theorem 2 (Cut elimination I)

H α

Ω+n+1
Γ ⇒ H ωn(α)

Ω+1
Γ

where ω0(β) := β and ωk+1(β) := ωωk(β).



The obstacle to pushing cut elimination further is exemplified by
the following scenario:

H δ

Ω
Γ, A

H ξ

Ω
Γ, ∃z Az

(RefΣ)
· · ·H[s]

ξs

Ω
Γ,¬As · · · (s ∈ T )

H ξ

Ω
Γ,∀z ¬Az

(∀)

H α

Ω+1
Γ

(Cut)



Fortunately, it is possible to eliminate cuts in the above situation
provided that the side formulae Γ are of complexity Σ. The
technique is known as “collapsing” of derivations.



In the course of “collapsing” one makes use of a simple bounding
principle.

Lemma. (Boundedness) Let A be a Σ-formula, α ≤ β < Ω, and
β ∈ H(∅). If

H α

ρ Γ, A

then
H α

ρ Γ, ALβ .



If the length of a derivation of Σ-formulae is ≥ Ω, then
“collapsing” results in a shorter derivation, however, at the cost of
a much more complicated controlling operator.



Theorem 3. (Collapsing Theorem) Let Γ be a set of Σ-formulae.
Then we have

Hη
α

Ω+1
Γ ⇒ Hf (η,α)

ψΩ(f (η,α))

ψΩ(f (η,α))
Γ ,

where
(Hξ

)
ξ∈T (Ω)

is a uniform sequence of ever stronger operators.



From the Bounding Lemma it follows that all instances of RefΣ
can be removed from derivations of length < Ω.



For derivations without instances of RefΣ there is a well-known
cut-elimination procedure, the so-called predicative cut-elimination.
Below this is stated in precise terms.

It should also be mentioned that the ϕ function can be defined in
terms of the functions of T (Ω) and that ϕαβ < Ω holds whenever
α, β < Ω.



Theorem 4. (Predicative cut elimination)

H δ

ρ Γ and δ, ρ < Ω ⇒ H ϕρδ

0
Γ .



The ordinal ψΩ(εΩ+1) is known as the Bachmann-Howard ordinal.
Combining the previous results of this section, one obtains:

Corollary: If A is a Σ-formula and

KP ` A

then
LψΩ(εΩ+1) |= A.

The bound of this Corollary is sharp, that is, ψΩ(εΩ+1) is the first
ordinal with that property.



Below we list further results that follow from the ordinal analysis of
KP.
Corollary:

(i) |KP| = |KP|sup = |KP|Π2 = |KP|EΠ2
= ψΩ(εΩ+1).

(ii) spΣ1
(KP) = ψΩ(εΩ+1).


