
Abstract. We propose a novel model of visual contrast
measurement based on segregated ON and OFF pathways.
Two driving forces have shaped our investigation: (1)
establishing a mechanism selective for sharp local
transitions in the luminance distribution; (2) generating
a robust scheme of oriented contrast detection. Our
starting point was the architecture of early stages in the
mammalian visual system. We show that the circuit
behaves as a soft AND-gate and analyze the scale-space
selectivity properties of the model in detail. The theo-
retical analysis is supplemented by computer simulations
in which we selectively investigate key functionalities of
the proposed contrast detection scheme. We demon-
strate that the model is capable of successfully process-
ing synthetic as well as natural images, thus illustrating
the potential of the method for computer vision appli-
cations.

1 Introduction

An important goal of early visual information process-
ing in man and machine is the robust and reliable
detection of local luminance contrast. A discontinuity in
a visual stimulus signals a causally related change in at
least one physical scene parameter (Marr 1982). The
development of ®lters to detect such discontinuities has
been substantially in¯uenced by neurophysiological
investigations concerning the shape of receptive ®eld
(RF) pro®les of retinal and cortical neurons. Marr and
Hildreth (1980) proposed that the RF pro®le of
mammalian retinal ganglion cells can be modeled by a
Laplacian-of-Gaussian or di�erence of circular symmet-
ric Gaussians, both implementing an isotropic second-
order derivative ®ltering stage (Marr 1982). More
recently, oriented linear ®lters built from Gabor or
Gaussian derivative functions have been employed

(Daugman 1985; Koenderink and van Doorn 1990).
Such families of ®lters have been linked to the RF
structure of cortical simple cells (Pollen and Ronner
1983) which sample the image in an optimal fashion and
have been suggested to play a central role in human
feature detection (Morrone and Burr 1988).

Initial processing stages of the retina and the lateral
geniculate nucleus (LGN) utilize RFs with an isotropic
center-surround structure. Antagonistic ON-center/OFF-
surround and OFF-center/ON-surround cells comprise
two independent parallel systems capable of signaling
light increments and decrements (Schiller 1992). At the
level of the striate cortex, ON-contrast and OFF-contrast
cells converge onto the same target cells (Fig. 1). How
do cortical simple cells acquire their polarity-sensitive
elongated RFs? Hubel and Wiesel (1962) hypothesized
that a simple cell sub-®eld is generated directly by ex-
citatory synaptic inputs from a row of LGN neurons
whose RF centers overlap the sub-®eld. The ON sub-®eld
would be generated from ON-center LGN cells, and the
OFF sub-®eld by OFF-center LGN cells. The precise
mechanisms responsible for orientation selectivity re-
main, however, a subject of intense investigation (see a
recent review by Vidyasagar et al. 1996). Nevertheless,
there is evidence that an initial selectivity is brought
about by the thalamo-cortical input arrangement (e.g.,
Ferster 1988), in line with the original Hubel and Wiesel
(1962) proposal.

Local contrast information near localized luminance
transitions (or boundaries) not only signals the presence
of a discontinuity but also carries information about the
surface qualities of neighboring image regions. In
lightness computation of ¯at scenes, such as in the Re-
tinex theory (Land and McCann 1971), by measuring
the ratio of luminances at either side of a step transition,
information about surface re¯ectance may be recovered.
Such a class of lightness algorithms ®rst di�erentiates
the image and subsequently thresholds the result in or-
der to maintain only contrast responses coinciding with
sharp-edge-like transitions. Shallow gradients, i.e., those
changes that are generated by a gradual illumination
gradient, are thus ``discounted.'' The edge information
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left after threshold suppression is then integrated in or-
der to generate a lightness representation (Horn 1974;
Blake 1985; Arend and Goldstein 1987). A ®xed
threshold, however, cannot be determined for general
scenes. If a low threshold is chosen, shallow gradients
may be registered; if a high threshold is chosen, small
contrast step-like transitions will be missed. This high-
lights a problem for the edge detection mechanisms
mentioned above since their response amplitude is scaled
with the local magnitude of the luminance gradient.
What is needed is a mechanism that is selective to the
shapes of the luminance transitions ± i.e., whether they
are abrupt or shallow.

In this paper, we develop a contrast detection circuit,
referred to as a simple cell circuit, that exhibits such
selectivity building upon a previous simpli®ed imple-
mentation (Neumann and Pessoa 1994). The model uses
segregated streams for ON contrasts and OFF contrasts.
The proposed circuit (1) produces strong responses
whenever ON and OFF retinal responses occur next to
each other, such as at a luminance edge, while (2) pro-
ducing minor responses when only ON or OFF responses
are present, such as for gradual luminance gradients at
ramp edges. To achieve this, the circuit behaves as a soft
AND-gate whose responses have two components: a
linear combination of ON and OFF channel contrast re-
sponses, and a multiplicative, or gating-like, component
whenever inputs to the ON and OFF sub-®elds are spa-
tially adjacent, or juxtaposed. In essence, the combined
computational strategy implements a robust scheme of
oriented contrast detection and, in addition, establishes
a mechanism that is speci®cally selective for sharp local
luminance transitions.

In Sect. 2, we will introduce the proposed circuit for
contrast detection. For this purpose, we ®rst provide a
formal description of the functionality of each model
stage, including a center-surround pre-processing stage
and the elements of the non-linear circuit itself. We then
investigate the circuit's capability of contrast detection
providing an analysis of the steady-state response. The
spatial sampling of the input sub-®elds varies with the
parametrization of the spatial input blurring of the ini-
tial contrast measures which amounts to a multi-scale
scheme of Gaussian derivative operators. Following this

theoretical analysis, we show results of computer simu-
lations in which we selectively investigate key function-
alities of the proposed processing scheme. Finally, we
relate the present model to other proposals that also
have made use of non-linear or AND-gating processing
for edge detection, most notably those of Marr and
Hildreth (1980) and Iverson and Zucker (1995).

2 Neural model for oriented contrast measurement

Figure 2A shows the outline of the model. The input to
the system is composed of two streams or channels,
namely ON and OFF. The channels carry activations from
initial processing stages having concentric center-sur-
round RFs, as found in the retina and LGN. The model
itself consists of a series of processing stages, each of
which consists of a two-dimensional (2D) ®eld (or grid)
of processing units or cells. The input is also encoded as a
2D ®eld of activity. All connections between model
stages are topographically organized such that a spatial
location �i; j� at a given stage connects to location �i; j� in
the target ®eld. The activation levels at individual model
stages represent the output value of the respective stages.

2.1 Model stages

2.2.1 Center-surround interactions
The input luminance distribution, L, is processed by cells
having center-surround, antagonistic, RFs, such as
mammalian retinal ganglion cells. The model includes
both ON and OFF pathways that measure the degree of

Fig. 1. Cortical simple cell receptive ®elds (RFs). Hubel and Wiesel
(1962) hypothesized that lateral geniculate nucleus (LGN) cells with
concentric, center-surround RFs project to the cortex with the proper
arrangement so as to generate elongated RFs from unoriented ones.
Schematic representation of how ON-center LGN cells connect with
ON regions of cortical cells, and OFF-center LGN cells connect with
OFF regions

Fig. 2. A Proposed circuit of contrast cell sensitive to light-dark
contrast polarity. B Final competition of cells of opposite contrast
polarity at each spatial location. Two types of forward interactions
have been utilized. Those denoted with an arrow at the end in an
excitatory fashion, those with an oval at the ending of a link are
inhibitory. LD Light-dark; DL dark-light
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local luminance contrast in input images. Thus, at every
spatial location there are ON and OFF cells. These two
®elds of cells implement lateral inhibition that contrast-
enhance, or sharpen, the input luminance distribution ±
cells respond strongly to (unoriented) luminance discon-
tinuities.

A mechanism of local center-surround processing can
be approximated by ®ltering the input distribution with
di�erence-of-Gaussian ®lters such as were originally
proposed to model the receptive ®eld structure of retinal
ganglion cells (Rodieck 1965; Enroth-Cugell and Rob-
son 1966):

net� � L 
 Gr� and netÿ � L 
 Grÿ ; �1�
where net� and netÿ are net center and net surround
inputs, respectively, for ON-channel retinal ganglion
cells. The input luminance distribution is denoted by L,
Gr� and Grÿ are the respective Gaussian ®lters (para-
metrized by di�erently scaled space constants r� and rÿ,
respectively, with r� < rÿ), and 
 implements the
spatial convolution operator.

In classical proposals, such as, for example, in Rod-
ieck (1965) or Marr and Hildreth (1980), the center and
surround contributions combine linearly to determine
the cell's response. Other approaches have speci®ed vi-
sual adaptation processes that render responses sensitive
to luminance ratios. Such formalisms adopt multiplica-
tive, or shunting, mechanisms (Grossberg 1970; Hodg-
kin 1964; Furman 1965). Formally, the di�erent
computational approaches can be denoted in a gener-
alized framework such that an ON-center OFF-surround
interaction (generating y� activation) results in

d
dt

y� � ÿasy� � �bs ÿ csy
��net� ÿ �ds � gsy

��netÿ :

�2�
Here as, bs, cs, ds and gs are constants, and net�, netÿ are
the total excitatory/inhibitory inputs to y� (see Eq. 1).
The rest of the paper focuses on the description of a
simple cell circuit that is sensitive to oriented contrast.
Here, the arrangement of ON/OFF -contrast is relevant
and, therefore, we can restrict ourselves to the simplest
case having linear ganglion cell responses that generate
ON and OFF channel inputs.

The steady-state contrast input to the simple cell
circuit is given by the equilibrium form of Eq. (2) (i.e.,
d=dt y� � 0). By setting as � ds and cs � gs � 0, we ob-
tain zero DC contrast channel inputs

c� � bs

as
�R net� ÿ netÿ� � and

cÿ � bs

as
�R netÿ ÿ net�� �

�3�

(R�x� denotes a recti®cation operation max�x; 0��:3

2.1.2 ON/OFF input to contrast cell sub-®elds
The spatial branches of contrast cells receive excitatory
inputs from the ON and OFF contrast channels. This
input is sampled separately using elongated weighting
functions with a smoothly decaying coupling strength.
Before integration of contrast activity for excitatory and
inhibitory sub-®elds, the activities in both contrast
channels undergo local competition at each spatial
location. Such competitive interaction is necessary to
generate su�cient initial orientation tuning of the cell.
Otherwise, with separate blurring of each input channel
activity, simple cells will be activated even for an
orientation orthogonal to the local contrast. In formal
terms, the input to either sub-®eld of the circuit is
modeled by

p� �R��c� ÿ cÿ� 
 k�e � and

pÿ �R��cÿ ÿ c�� 
 kÿe � ;
�4�

(see Fig. 2), where the kernel k determines an elongated
spatial sampling function of orientation e.

These inputs are used to detect local contrast changes
of a given polarity, such as the presence of edges or other
abrupt luminance variations. In our simulations, we
used elongated 2D Gaussian weighting functions for
modeling the sensitivity pro®les of k�e (see Fig. 3), with
space constants rm and rM to denote the minor axis and
the elongation axis, respectively. In formal terms, the
anisotropic weighting kernel can be described by

ke � Nr exp ÿ1
2
~xTRT

e CmMRe~x
ÿ �� �

; �5�
where Nr is a scaling constant, ~xT � �x y� denotes the
(transposed) vector of the spatial location, CmM is the
diagonal matrix

CmM � 1=r2
m 0

0 1=r2
M

� �
;

determining the spreading along the principal axes, and
Re determines the matrix of rotation in 2D �x; y� space

Re � cos e sin e
ÿsin e cos e

� �
:

Fig. 3. E�ective spatial sensitivity pro®les of oriented contrast cells
with odd-symmetric ON and OFF input. The model uses elongated
Gaussian pro®les, k�e and kÿe , both with space constants rm � 3 and
rM � 2rm; relative o�set has been set to s � 3, orientation is e � 0�
(see text)

3 In the case of having imbalanced center-surround interaction,
an additional stage of cross-inhibition between contrast channels
helps to eliminate any residual DC-level activation (see Neumann
1996).
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The axis of elongation indicated by e determines the
preferred orientation of the cell.

In all cases, we used balanced weighting functions for
excitatory and inhibitory sub-®elds, such that k�e � kÿe .
By varying the space constants rm and rM of the elon-
gated weighting functions, one obtains kernels of dif-
ferent spatial extent in length and width. This de®nes a
family of kernels denoted as kS�

e and kSÿ
e , where S de-

notes the spatial scale (see the notion of scale below in
Sect. 3). The relative spatial o�set s of these sub-®elds
(see Fig. 3) varies as a function of the space constant rm,
such that we have s�r� � rm.

2.1.3 Sub-®eld opponent interactions
The second stage of the circuit receives direct linear
excitatory inputs from each ON or OFF sub-®eld, as well
as an opponent divisive interaction between channels.
The steady-state activity of the ON sub-®eld is given by

q� � p�

ac � bcpÿ
; �6�

where ac and bc are constants of this shunting inhibitory
interaction. For the OFF sub-®eld, we assume the same
setting of constants such that at equilibrium the qÿ-
response is generated by having the p� and pÿ inputs
interchanged in the right-hand side of Eq. (6).

2.1.4 Direct input and post-opponency signals combined
The third stage receives channel-speci®c inputs from
both the ®rst (excitatory) and second (inhibitory) stages.
Formally, ON-channel equilibrium activation is

r� � p�

cc � dcq�
; �7�

where cc and dc are constants of this second stage of the
circuit. Again, we assume the same setting of constants
in both channels. The OFF-channel activations rÿ are
then obtained by exchanging `�' and `ÿ' indices in the
right-hand side of Eq. (7).

The functionality of the sub-circuits realizing each
separate sub-®eld channel is to generate a self-inhibition,
thus normalization, of the input activity distribution.
The opponent interaction between these channels and
the corresponding overall net activity will be discussed
below under functional aspects.

The ®nal response for a light-dark (LD) cell is ob-
tained by pooling ON and OFF activities. We formalize
this as a simple linear combination by summing both r
activities and get

zLD � r� � rÿ : �8�
The dark-light (DL) response, zDL, is obtained in a
corresponding manner, such that the respective ON and
OFF input streams are reversed in their spatial arrange-
ment.

2.1.5 Mutual inhibition of cells
Cells sensitive to opposite contrast polarity at the same
spatial position ®nally undergo mutual inhibition (see

Fig. 2B). In functional terms, such a competitive stage
helps to sharpen the activity pro®le generated by each
cell sensitive to opposite contrast polarity alone. The
®nal cell responses are computed as

ZLD �R�zLD ÿ zDL� and

ZDL �R�zDL ÿ zLD� : �9�

2.2 Relationship to cortical simple cell physiology

Several design issues and functional properties of the
model have strong relationships to ®ndings about simple
cell physiology. For example, we utilize oriented spatial
weightings to model elongated sub-®elds for integrating
non-oriented input from cells with a concentric RF
outline (see Fig. 1). This is consistent with evidence that
an initial selectivity is brought about by the thalamo-
cortical input arrangement (e.g., Ferster 1988), in line
with the original Hubel and Wiesel proposal (1962).
Furthermore, we have utilized a local competition of
contrast channels before integrating sub-®eld activities.
This approach implements the opponent inhibition
mechanism for simple cell sub-®elds as described in
Ferster (1989; see also Tolhurst and Dean 1990). Also,
using partially overlapping spatially o�set sub-®eld
weighting functions has been suggested by the ®ndings
of Heggelund (1981, 1986) as well as Ferster (1988).

Our circuit integrates the activity from the corre-
sponding sub-®eld (ON or OFF) in an excitatory fashion,
while the opponent in¯uences this by inhibitory action.
This scheme now realizes a mechanism of opponent in-
hibition between sub-®elds, similar to those in other
simple cell models (see Pollen and Ronner 1983). The
mutual inhibition of cells with opposite polarity selec-
tivity follows the description in Liu et al. (1992), who
suggested the mutual inhibition between members of
pairs of phase-related opposite contrast simple cells.
Also, Ferster (1988) suggested that competition between
simple cells of opposite contrast polarity occurs at each
spatial location. In all, although we do not attempt to
explicitly model the underlying mechanisms of cortical
simple cells (e.g., orientation selectivity and spatial input
sampling), our model incorporates key features of sim-
ple cell physiology. We therefore suggest that our model
circuit also serves as an abstract description of infor-
mation processing at early stages in the mammalian vi-
sual system.

2.3 Functionality of the circuit

2.3.1 Equilibrium response
It is possible to gain insight into the precise functionality
of the model, especially with regard to its AND-gate
behavior, by combining the corresponding expressions.
The activation r in the ON and OFF branches can thus be
computed analytically. An assumed symmetry relation-
ship between both channels can be achieved by setting
the identity dc � bccc. In this case, for a LD cell, we get
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r� � p�

accc � dc�p� � pÿ� ac � bc pÿ� � and

rÿ � pÿ

accc � dc�p� � pÿ� ac � bc p�� � :
�10�

The ®nal response for a contrast cell selective to LD
polarity is computed as zLD � r� � rÿ. Using Eq. (10)
we get

zLD � 1

accc � dc�p� � pÿ� ac p� � pÿ� � � 2bc p�pÿ� � :

�11�
The response of a DL selective cell, zDL, is obtained in a
corresponding manner. In the ®nal steady-state re-
sponse, however, the roles of p� and pÿ are inter-
changed.

This demonstrates the non-linear interaction of ac-
tivity between the two branches. The basic functional
properties of the model could be highlighted by the
following more compact notation of Eq. (11) that reads

z �L � p� � pÿ� � �N � p� � pÿ� � : �12�
Here, L and N denote transformations of the initial
contrast activities in the ON and OFF channels that
generate the inputs to the circuit. In particular, we have
L � ac � C�c�; cÿ� and N � 2bc � C�c�; cÿ� with
C�c�; cÿ� � �accc � dc�p� � pÿ��ÿ1. In C���, the input
activities p� for each individual lobe are themselves
functions of c� and cÿ (see Eq. 4). Input to the model
circuit is integrated linearly from both channels. Spa-
tially adjacent activity (in the ON and OFF pathways) is
signaled by an additional correlational (gating-type)
component. The relative contribution of additive and
gated activities is controlled by the (shunting) parame-
ters ac and bc in Eq. (6). Moreover, the activity self-
normalizes with respect to the total input activity from
the ON and OFF channels [function C�c�; cÿ� above]. The
model thus relates to the scheme proposed by Carandini
and Heeger (1994) in which the activity of cortical
neurons is normalized through division of pooled
activity from a large number of cells.

2.3.2 Linear and non-linear responses
In all, the model behaves as a soft AND-gate that
combines linear and non-linear (gating) components of
sub-®eld activity. Adjacent ON and OFF signal con®gu-
rations generate an extra boosting activation in addition
to responses of reduced magnitude that are generated
for other signal con®gurations. In terms of the circuit
shown in Fig. 2A, it is the opponent inhibition of the
second stage (signals q� and qÿ) associated with the
within-channel inhibition (from the second to the third
stages) that implements the soft AND-gate behavior.
These interactions produce a mechanism of disinhibition
that generates large outputs only when both ON and OFF

channel inputs are large. To understand this, consider
the case where only ON signals are input to the model;
the OFF pathways are thus shut down. Responses will be
small since the (within channel) inhibition from the

second to the third stages will attenuate the input signal
via a normalization mechanism. Now consider the case
when there are potent inputs to both ON and OFF

channels. The cross-inhibition between the ®rst and
second stages will largely reduce second stage activities
(signals q� and qÿ). These, in turn, will not be able to
inhibit stage three signals and the original inputs will be
able to combine at the last stage (zLD and zDL) since they
reach it via the ``side pathways'' from the ®rst to third
stages. We see that the presence of inputs in both
channels leads to a disinhibition in the circuit and,
hence, powerful responses. In all, the circuit detects
when there are adjacent ON and OFF signals, hence
generating the soft AND-gate behavior.

The relative proportion of linear and non-linear re-
sponses is controlled by the parameters ac and bc. The
net input scaling for the initial ON and OFF channel
processing also directly contributes to the contrast cell
response in a systematic fashion. ON and OFF -channel
input to oriented sub-®elds is given by

p� / bs

as
�R��net� ÿ net�� 
 k�e � �13�

(compare Eqs. 3 and 4). We observe for a given net
input that the relative proportion of the non-linear
contribution in Eq. (11) is b0 � bsbc=as. For any further
analysis, one must therefore take into account the range
of activities generated in the initial center-surround pre-
processing stage. For convenience, an activity range of
�0::1� from initial center-surround ®ltering has been
ensured in all our simulations.

The key idea behind our model is that contrast
changes are better localized by a circuit that is selectively
sensitive to abrupt luminance transitions. These transi-
tions will be invariably associated with adjacent ON and
OFF contrast signals (for some spatial scales; see below).
A linear combination scheme is, of course, sensitive to
such transitions, but not sensitive enough such that it
shows only di�erential variations in response once pre-
viously adjacent activities in the ON and OFF channels
have been shifted farther apart (see also du Buf 1994).

3 Families of RFs and selectivity to spatial scale

3.1 Elementary properties

3.1.1 Motivation
The visual system is faced with the problem of measur-
ing the relevant structure of the outside world. Real-
world objects only exist as meaningful entities over
certain ranges of measurement scales. An example
stressed by Marr and Hildreth (1980) is the appearance
of the ®ne-textured veins of a leaf on a small scale but
the overall shape and luminance variation appearing on
a much coarser scale. Furthermore, more gradual
intensity variations often relate to illumination variation
or changes in surface orientation, whereas abrupt
changes in the luminance distribution are often caused
by transitions in surface properties, such as re¯ectance
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(Horn 1974). A vision system, in general, has no advanced
knowledge about the appropriate scales for analysis.
Therefore, in order to deal with such a multitude of
properties of real-world objects, themachinery of a vision
system has to process the input luminance distribution on
di�erent scales (see, for example, Witkin 1983; Koende-
rink 1984; Lindeberg and ter Haar Romeny 1994; and for
a short tutorial, Lindeberg 1996).

The raw luminance distribution is processed by an
initial center-surround mechanism. After opponent in-
hibition, this activity is integrated by oriented o�set
weighting functions which de®ne the excitatory and in-
hibitory sub-®elds to an oriented cell. The signals for ON

and OFF contrast responses are recti®ed such that the
contrast channels carry a single positively bounded data
representation from the initial ®ltering stage. By utilizing
weighting functions of di�erent sizes, kS�

e and kSÿ
e , these

contrast activities are blurred and sampled at increased
relative spatial o�sets; thus a family of cells sensitive to
di�erent spatial scales is introduced. The spatial scale
attribute S itself is a function of the space constant r,
thus S � S�r� (see Eq. 5).

3.1.2 Generation of scale-space derivative kernels
A contrast edge is processed by an initial center-
surround ®ltering stage. The results are half-wave
recti®ed and segregated into two separate representa-
tions for ON and OFF contrast, respectively. The results
of individual ON and OFF responses are blurred by
oriented spatially scaled weighting functions to generate
the input for the opponent contrast cell sub-®elds of
di�erent sizes. This non-linear processing cascade is
shown to be identical to a ®rst-order derivative kernel
applied to the activation generated by the center-
surround processing.

To simplify the mathematical analysis we approxi-
mate the initial center-surround ®ltering by a Laplacian-
of-Gaussian (LoG) operator. Consider a unit step
function as input that is modeled as a Heaviside function
H (Bracewell 1978). Input processing results in a pro®le
of a ®rst-order derivative of a Gaussian, D1G, which is
an odd-symmetric function with positive and negative
lobes. For a representation to carry positive signal re-
sponses only, the positive and negative lobes are half-
wave recti®ed. We get

c��u� �R�LoGr1
�u� 
 H�u�� � R

d
du
Gr1
�u�

� �
and

cÿ�u� �R�ÿLoGr1
�u� 
 H�u�� � R ÿ d

du
Gr1
�u�

� �
;

with R�x� � max�x; 0�. These responses are subsequently
®ltered by a Gaussian blurring function whose results
are then combined to generate the edge response of the
circuit. We get s�u� � R�d=duGr1

�u�� 
 Gr2
�u� �R

�ÿd=du Gr1
�u�� 
 Gr2

�u�. Since R�d=duGr1
�u�� � d=

duGr1
�u� � 1ÿH�u�� � and R�ÿd=duGr1

�u�� � ÿd=
duGr1

�u� �H�u�; we can rewrite the ®nal response to get

s�u� � d
du
Gr1
�u� 
 Gr2

�u� � d
du
G ����������

r2
1
�r2

2

p �u� : �14�

This demonstrates the equivalence of our hierarchical
processing scheme based on segregated representations
of ON and OFF activations and an approach that utilizes
®lters derived from an analytic description of ®rst-order
derivative operations. It also veri®es that the subsequent
blurring of separated contrast channel responses of one
frequency band ± generated by the initial center-surround
processing stage ± produces results equivalent to those
achieved with a bank of scaled center-surround ®lters.

3.1.3 Opponent o�set blurring approximates
®rst-order derivative ®ltering
The kernels k� were spatially o�set by an amount s
relative to the reference location of the target cell. They
collect responses in the ON and OFF contrast channels to
be further processed in the circuit. The di�erence of
spatial o�set Gaussians resembles the pro®le of a ®rst-
order derivative operation. Consider the model of a
parametrized ramp edge transition in a local �u; v�-gauge
coordinate system where the u-axis is oriented along the
contrast pro®le. Formally, the di�erence of o�set
Gaussians can then be written as a convolution of the
D1G pro®le with a unit impulse of width D � 2s, then
taking the limit, D! 0. We get

lim
D!0

1

D
G�u� ÿ G�uÿ D�� � � lim

D!0

d
du
Gr�u� 
 PD�u�

� �
� d

du
Gr�u� ;

where PD�u� �H�u� D
2� �H�D2 ÿ u�:

3.1.4 Responses as a function of scale
We now consider the processing of a luminance transi-
tion with a ramp pro®le of a priori unknown width
(compare du Buf 1993, 1994). The suggested model is
sensitive to the spatial adjacency of retinal ON and OFF

signals. Spatial proximity, however, is a relative measure
that will depend on the spatial scale of processing. What
may be spatially proximal for a large scale may be distant
for a small one. Sensitivity to spatial scale endows model
cells to selectively process a given visual structure, such
as the ramp transition shown in Fig. 4. For a wide
transition ramp, the initial center-surround processing
generates isolated ON and OFF contrast responses which
are located at the shoulders (``knees'') of the ramp
transition. A cell with a RF selective to odd symmetric
contrast variations located at position x � 0 at the center
of the ramp for the smallest scale receives no input from
either blurred ON or OFF contrast channels (compare
scale 1 in Fig. 4 middle, bottom). Cells slightly o�set to
either side of this central location receive input from only
one sub-®eld (lobe) and thus generate normalized linear
responses. As the blurring proceeds, more di�use
distributions of ON and OFF contrast responses appear,
which eventually meet at the center of the ramp such that
they appear to be juxtaposed for the coarse scale at
location x � 0 (scales 3 and 4 in Fig. 4, bottom). Now
integrated inputs from both sub-®elds add and a
superimposed component is generated by the product
of the magnitude of these inputs. If the product is
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su�ciently high in amplitude, the latter contribution
facilitates the target cell activation by an additional
``boost.'' The spatial juxtaposition of ON and OFF input
activation to the circuit signals a transition which is
sharply localized relative to the current spatial scale.

The circuit is thus selective to inputs with sharp
contrast transitions. The quantitative properties of the
cell responses in scale-space can be derived from the
activation given in Eq. (11). Below, we present the re-
sults of this investigation.

3.2 Quantitative analysis of scale-space response

In this subsection, we summarize the quantitative
®ndings for responses generated by scaled contrast cells
which are applied to di�erent idealized luminance

transitions. We ®rst show the results derived for step
edge responses. This motivates the subsequent deriva-
tion for the results processing the gradual transition of a
ramp as discussed above. In both studies, we compare
the results for the non-linear circuit with those generated
by a scheme of linear ®ltering. Detailed results of
investigations can be found in Appendices 1 and 2.

We utilize the compact notation of a non-linear re-
sponse of the circuit that is given by

z �L � p� � pÿ� � �N

L
� p� � pÿ� �

� �
�15�

(compare with Eq. 12). For quantitative analysis, we
omit the gain L and only consider the expression given
in brackets. For the gain of the non-linear component,
we de®ne

N0 �N

L
bs � ds� � � 2

bc

ac
bs � ds� � �16�

(see Appendix 2). Based on these de®nitions, we relate
the linear and non-linear response components.

3.2.1 Step edge response
A step edge pro®le of height h is de®ned by a Heaviside
function,

fstep�u� � h �H�u� ; �17�
in which the u-axis is taken in the direction orthogonal
to the local orientation tangent to the luminance
contrast. Processing this input ®rst by a center-surround
®lter (approximated by a Laplacian-of-Gaussian) sub-
sequently followed by a ®rst-order (Gaussian) derivative
®ltering generates a response pro®le with a unique
maximum at the step location u � 0. For the non-linear
circuit, the segregated contrast responses always appear
to be juxtaposed at either side of the contrast step. The
relevant component of response (contribution given in
brackets in Eq. 15) of the non-linear circuit at the
location of the luminance step is given by

snlstep�u � 0� � h������
2p
p

r3
1�N0 1������

2p
p

er

� �
: �18�

This shows that for a linear as well as a non-linear cell,
the response is maximal for the smallest scale, i.e., it
smoothly drops as blurring increases. Furthermore, it
shows that the non-linear contribution only becomes
signi®cant for a gain N0 � ������

2p
p

er � 7r. Considering
the de®nition of the gain in Eq. 16, it is reasonable to
treat the parameter bc as a non-zero function of r.

3.2.2 Ramp edge response
A ramp edge pro®le of height h and width R is de®ned by

framp�u� � h �H�u� 
 PR�u� : �19�
where PR�u� denotes a ®nite pulse of width R. In the
limit as R! 0, the ramp converges to a step function as
de®ned above. Again, we utilize the sequence of
processing steps of center-surround ®ltering and the

Fig. 4. Responses of a scaled family of contrast cells sensitive to an
odd-symmetric dark-light (DL) luminance transition (ramp contrast).
Top Input stimulus is shown together with schematic ON and OFF

responses generated by the initial stage of center-surround processing.
Responses of either contrast channel appear at the ``knee points'' of
the plateaus. Depending on the width of the ramp relative to the size
of the initial center-surround ®lter, they appear in spatial isolation (as
shown in the sketch) or juxtaposed. Middle Increased blurring of
initially isolated contrast responses for a wide transition ramp. Four
di�erent scale selectivities are shown with reference to the location at
the center of the ramp (x � 0). These blurred activations provide the
inputs to cells sensitive to DL transitions. Bottom Responses of
contrast cells for the four scales that integrate their input to sub-®elds
from increasingly distant o�sets [the display of responses for light-
dark cells has been omitted in order to keep the sketch simple]. For a
cell at a more coarser scale, ON and OFF inputs appear to be
juxtaposed such that the non-linear component can contribute via its
ignition. As a consequence, a unique maximum response is generated
as a function of the scale
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®rst-order Gaussian derivative operation. The latter is
approximated by the individual blurring of the contrast
responses followed by a numerical di�erentiation for
®nal sampling of the inputs from the sub-®elds of the
contrast cell. Now, depending on the ratio between the
operator scale and the width of the ramp, r=R, the ON

and OFF contrast responses appear in isolation (r� R)
or juxtaposed similar to the case of a step transition
(r � R). For the position u � 0 at the center of the ramp,
we can now treat the response as a function of scale. For
the linear model, a relative maximum in response occurs
at

rmax � R

2
���
3
p : �20�

For the analysis of scale-space response for the non-
linear circuit, we investigate the additional contribution
from (blurred) ON and OFF contrast responses sampled
from o�sets relative to the ramp center. The relevant
component (bracket part in Eq. 15) of the correspond-
ing response for the circuit is

snlramp�u � 0�jr�rmax
� 48

���
3
p

h������
2p
p exp ÿ 3

2

� �
� 1
R3

� 1�N0
���
2
p

8
������
3p
p h

R
exp

3

2

� � !
:

�21�
This shows that there exists an optimum scale for
processing a ramp edge of a priori unknown width and
height. The non-linear contribution is itself dependent
on the slope of the ramp and becomes signi®cant for a
gain N0 � 4

������
6p
p

exp ÿ 3
2

� �
mÿ1 � 4mÿ1, where m � h=R.

The non-linear circuit shows a multitude of desired
principles. For one, the additional ``boosting'' of activity
helps to drive the cell output to generate a response that
is maximal in absolute terms. It is shown in Appendix 2
that the non-linear cell tuned to an optimum scale gen-
erates absolute maximum amplitude responses. In ad-
dition, the contribution generated by the non-linearity
depends on the scale r (step) or on the slope m (ramp) of
the luminance transition. The parameter to control the
e�cacy of the non-linear contribution in N0 is bc, the
gain of opponent shunting inhibition in the circuit (see
Eq. 6). The gating of contrast activations ± adding to the
(linear) cell response ± enables the circuit to preferen-
tially respond to sharp transitions, irrespective of their
height. This selective functional property was one of the
principal motivations for the development of the circuit
in the context of the modeling of functional mechanisms
for neural contrast and brightness processing (Neumann
and Pessoa 1994; Pessoa et al. 1995).

4 Simulations

In this section, we evaluate the model on the basis of a
series of computer simulations that demonstrate the
functionality. The section is organized so as to start with
the demonstration of the usefulness of the approach for

image processing purposes. We tested its robustness to
noise in comparison with a corresponding pure linear
model and demonstrated its selectivity in automatic
scale selection, all based on synthetic test images. The
computational relevance is also demonstrated by means
of natural images from a test data set. Since we have also
shown that the model accounts for some relevant
properties of cortical simple cells that are usually
believed to behave almost linearly, we conducted an
experiment showing that our non-linear circuit also
shows substantial linear behavior. We then ®nally show
results that demonstrate the usefulness of the model as a
®rst step in a processing hierarchy in which initial
measurements are grouped together in order to generate
meaningful pieces for shape recognition. In particular,
we show the model's strength in the initial measurement
for subsequent integration by long-range grouping
processes.

In all simulations, responses are shown after mutual
inhibition (ZLD and ZDL). Luminance values of input
images have been normalized to the range �0::1�. The
initial center-surround processing stage involves shunt-
ing interaction and subsequent half-wave recti®cation to
generate segregated ON and OFF channels (see Sect. 2.1).
Model parameters for this initial stage were set to
as � 0:5, bs � 1:0, and ds � 0:1 (as already pointed out
above, we set cs � gs � 1:0 in order to yield symmetric
normalization in both channels). Parameters of isotropic
Gaussians were set to r� � 1:0 and rÿ � 3:0, thus ob-
taining a 1 : 3 center-surround ratio. The model pa-
rameters of the non-linear circuit were set to ac � 1:0,
bc � 10000:0, cc � 0:01, and dc � 100:0. Their speci®c
choice is non-critical as long as the linear components
scaled by ac and cc are small compared to the cross-
channel inhibition e�ect. The Gaussian weighting func-
tions were elongated by a rM : rm � 2 : 1 ratio; the
variance rm is measured in pixels along the short axis.
The separation s grows linearly with the variance (scale
S). Eight discrete, equally spaced orientations were
processed. The corresponding linear circuit was ap-
proximated simply by eliminating the opponent inter-
action between the sub-®elds in the non-linear contrast
cell circuit (stages q� and r�, see Fig. 2). Thus, the
scheme used for comparison directly integrates the ac-
tivity from both sub-®elds, namely z � p� � pÿ.

4.1 Image processing

As indicated, we demonstrate the capacity of the circuit
on the basis of synthetic as well as real camera images
from a test set. Test simulations run on synthetic data
were to justify the robustness of the model against noise
and the selectivity of the mechanisms to scale. Results
generated for natural images are intended to serve for
comparison of performance with other known methods.

4.1.1 Synthetic images
A ®rst strict test of an image processing algorithm
consists of probing it with noisy images. Figure 5 shows
a synthetic image containing an elliptic region embedded
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in a lighter background (left) and a cross-section pro®le.
The entire image was corrupted by Gaussian noise (half-
width 50% amplitude). Figure 5 (middle) shows the
output of the new model revealing that it is capable of
accurate contour localization, even in the presence of
non-trivial noise levels. It is also instructive to compare
the performance of the circuit with the linear scheme. As
shown in Fig. 5 (right), the linear scheme is less robust
to noise as it also shows less selectivity in terms of edge
localization. Note that no post-processing, such as ®nal
thresholding operations, was performed ± these could be
used to remove the low-intensity spurious signals due to
noise.

In order to evaluate the theoretical derivations on the
mechanism's selectivity to spatial scale we have con-
ducted a series of experiments based on the processing of
scaled gradual luminance transitions, namely ramps.
Figure 6 illustrates the spatial frequency selectivity of
the non-linear model by comparing its behavior with the
analogous linear scheme. For the non-linear contrast
cell, as the spatial scale of operation is increased, cells
whose centers are closer to the middle of the ramp
eventually become ignited by the non-linear proportion
of the response. That is, by using larger elongated
Gaussian operators that sample the blurred ON and OFF

sub-®eld inputs target cells conjointly receive input from
o�set positions as they appear to be juxtaposed in a
coarser scale ± a maximum response is produced at the
middle of the ramp. This behavior should be contrasted
to that of the linear scheme. It can be recognized that
although maxima evolve at the middle of the ramp, they

are only local such that the absolute maximum response
appears at a ®ne spatial scale, localized to the left and
right of the ``knee'' points.

4.1.2 Natural images
Natural images provide a good test of the image
processing capabilities of our model of contrast detec-
tion. In particular, we can assess the contrast localiza-
tion properties of the model by again comparing its
output with that produced by an analogous linear
scheme. Figure 7 illustrates the better contrast localiza-
tion properties of our circuit when compared to the
linear scheme. We see that much sharper ``edge signals''
are generated by the circuit e�ectively registering the
contour outlines present in the image.

4.2 Linear versus non-linear processing behavior

We have pointed out above (see Sect. 2.2) that our
model inherits a number of simple cell properties. We
developed a non-linear circuit that pronounces any input
con®guration of juxtaposed ON and OFF activation, thus
being speci®cally selective to sharp luminance transi-
tions. In order to justify the relevance of the model, it
has to be demonstrated that the overall behavior does
not, in general, contradict previous ®ndings in physiol-
ogy that have been taken as support for linear mecha-
nisms driving simple cells. Candidate tests include the
linear summing principle given increasing stimulus
length and using eigenfunctions of linear systems such

Fig. 5. Synthetic image with noise. Input luminance distribution corrupted by additive Gaussian noise with 50% amplitude of contrast height
(top left); pooled activity for all orientation ®elds generated by the non-linear circuit (top middle) and the linear circuit (top right). Corresponding
one-dimensional cross-sections of the above shown 2D distributions (bottom row)
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as spatial sine-wave luminance modulations. Sine-wave
stimuli have been used to characterize linear systems
such as a linear ®ltering operation. In order to demon-
strate the validity of our model in this respect, we
process a spatial cosine luminance waveform (Fig. 8).
The result generates a spatial distribution of activity that
corresponds to the initial cosine modulation and is
consistent with that predicted for a simple cell.

This demonstration shows that our circuit, although
intrinsically non-linear, shows signi®cant linear behavior
especially demonstrated for test cases similar to experi-
mental studies with sinusoidal luminance modulations.

4.3 Initial measurement and grouping

Glass patterns (Glass 1969) illustrate how the visual
system is capable of employing local information to

generate global structure. The perception of structure
generated by a Glass pattern (or a variation of it) is based
on two types of interaction: a local operation of feature
measurement or token extraction and a long-range
integration of local items (Sagi et al. 1993). A test of
the initial mechanisms underlying Glass pattern percep-
tion was provided by a recent investigation by Brookes
and Stevens (1991). In their study, they generated Glass
patterns using oriented white dot pair items which were
either radially or circularly oriented. Due to the contrast
sensitivity of oriented cells, the authors hypothesized
that the inclusion of an opposite polarity dark dot
between the two white dots of each local pair (``dot-
between'' arrangement) would disrupt the perception of
the structure seen without the distractor. In particular,
the experiment was designed such that the disruption of a
radial organization caused the pattern to be more likely
perceived as circular. In contrast, adding a black dot to

Fig. 6. Scale-space selectivity. A ramp luminance distribution is processed at small, medium and large spatial scales. For better visualization of
the responses, we plot one-dimensional cross-sections of the ramp as well as of responses generated with the non-linear circuit (top) and linear
scheme (bottom). Responses are shown for light-dark cells (solid line) and dark-light cells (dotted line). The ramp widths were parametrized by
R � 32 units

Fig. 7. Processing a real camera image (left). Pooled activity of all orientation ®elds generated by the non-linear circuit (center) versus the linear
model (right). Note that no further post-processing, such as local non-maximum suppression, has been applied to the data
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disrupt a circular organization made by white dot pair
items increases the tendency to perceive a radial orga-
nization. As a control, the ``dot-between'' case was
modi®ed so that the disrupting black dot was placed
beside one of the white dots (``dot-adjacent'' case).
Figure 9 shows the Glass patterns that are composed by
the local arrangements of Fig. 10.

Brookes and Stevens (1991) reasoned that if the per-
ception of structure intimately depends on localized
mechanisms sensitive to local contrast direction, then
the perceived structure should be lost since the local
oriented ``dot-between'' arrangement largely disrupts
responses for the orientation of the white dot pair item.
Even more, in the ``dot-between'' case, a strong response
in the orientation orthogonal to the item is predicted
while the ``dot-adjacent'' case should have no disturbing
e�ect (it may be even more supportive). The perceptual
results con®rmed this prediction. In an alternative-
forced-choice judgement, there was a signi®cant increase
in the subjects' responses to orthogonal apparent orga-
nization (reversing concentric and radial) when the black
dot was placed in the middle between the pairs of white
dots. The placement of the black dot adjacent to a white

dot had no in¯uence on the correct judgement of per-
ceptual organization.

The experimental setting described above demon-
strates that small di�erences in the local arrangement of
structure can cause categorical changes in global struc-
ture. Such behavior is suggestive of mechanisms that are
sensitive to precise contrast arrangements. Motivated by
this observation, we stimulated our circuit with the local
dot arrangements shown in Fig. 10 and compared the
results with those generated by a linear model. Each
pattern was pre-processed by the initial stage of center-
surround interaction, segregating representations of ON

and OFF contrast. Figure 11 displays the results. In order
to gain more insight into the orientation speci®city of the
generated activations, we produced ``needle'' diagrams
to encode individual response magnitudes for the dif-
ferent orientations. The certainty of orientation selec-
tivity serves as an indicator for the clarity of subsequent
long-range integration mechanisms for grouping [Sagi
et al. (1993); see computational mechanisms by, for ex-
ample, Grossberg and Mingolla (1985)]. For the white
dot pair item (Fig. 11, left), the non-linear response
shows a clear dominance along the orientation of the dot

Fig. 8. Processing results of the non-linear circuit generated for a one-dimensional spatial luminance sine wave. The input signal is shown on the
left, the responses for two simple cells sensitive to opposite contrast (dark-light, light-dark) are shown in the middle and in the right panel,
respectively. As predicted for a pure linear cell, symmetric responses occur for opposite contrast sensitivities at the positive and negative slopes of
the sine wave

Fig. 9. Displays of the di�erent variants of Glass patterns from the study of Brookes and Stevens (1991). Patterns with white dot-pair items,
``dot-between'' and ``dot-adjacent'' are shown from left to right. Each item in the radially oriented patterns is composed of local pairs of equal
polarity and local triples of mixed polarity dots (see ®gure below). Due to reduced resolution and additional discretization, the perceptual e�ect
may be signi®cantly reduced. However, in our original displays and the plates shown by Brookes and Stevens (1991), the variations produce
signi®cant e�ects
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pair. The linear model also shows a certain preference in
that direction but the response is much more blurred and
the orientations are much more uncertain. For the ``dot-
between'' stimulus (Fig. 11, middle), the non-linear cir-
cuit generates a categorically di�erent pattern with a
strong orthogonal contrast orientation. This coincides
with the observation in psychophysical experiments that
the correct organization is disrupted and a perception of
the orthogonal orientation appears. In the ``dot-adja-
cent'' case (Fig. 11), the correct organization is not

largely disturbed and the orientation is mostly along the
same polarity dot pair; between the pair of white and
black dots, contrast responses of high amplitude are
generated which support the overall orientation prefer-
ence. In comparison to the result of the white dot pair
alone, the spatial distribution of responses appears more
blurred. We suggest that the increased blurring weakens
the response in the subsequent stage of integration for
grouping and perceptual organization. The responses
generated by the linear model also show preferences

Fig. 10A±C. Local dot arrangements used in the Brookes and Stevens (1991) experiments to demonstrate categorical changes in the appearance
of Glass patterns. AA local pair of white dots is shown as it appears in the original version of a Glass pattern. Stimulus variants were obtained by
including a third dot of opposite polarity (black). The dot was either placed B in between the two white dots (``dot-between''), or C beside one of
the white dots (``dot-adjacent'')

Fig. 11. Results of processing the local
items used by Brookes and Stevens (1991)
to generate the Glass pattern variants.
Results of processing for the three items
(white dot pair, ``dot-between'', ``dot-
adjacent'') are shown for the non-linear
circuit (top row) and for the linear model
(bottom row). For a better visualization of
individual contributions for di�erent ori-
entations, we show ``needle'' diagrams in
which the activities for the spatial orien-
tations are plotted at each location. The
length of each oriented needle encodes the
relative magnitude of response (the mag-
nitudes are normalized with respect to the
maximum response that appears in the
display). The results indicate the individ-
ual dominances in orientation response
that correspond to that of the perceptual
appearance of the variants of Glass
stimuli (see text)
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corresponding to those of the non-linear circuit, al-
though weaker. In addition, as in the dot pair item, the
distribution appears much more blurred and more un-
certain in orientation space.

5 Discussion

We have introduced a circuit for non-linear contrast
detection. The development was motivated by an
analysis of the process of local structure measurement
within luminance distributions. The proposed mecha-
nism incorporates the local detection of contrast by
measuring the amplitude of luminance changes, while at
the same time accounting for the sharpness of any such
change. The importance of the latter functionality was
motivated by our earlier investigations on brightness
perception (Pessoa et al. 1995). However, as discussed in
Sect. 1, such functionality is also important for robust
contrast estimation in Retinex-like algorithms, where
shallow gradients need to be discounted. In fact, we
claim that processes of contrast measurement need to be
considered from a broader perspective, one in which
issues such as the determination of surface qualities,
ratio processing, to name a couple, are adequately taken
into account. Mechanisms only based on contrast
amplitude measurements may be too limited to account
for general processing needs.

The circuit for contrast detection produces non-zero
responses whenever ON or OFF responses from initial
center-surround processing are present. This allows the
circuit to signal shallow luminance gradients as in the
case of ramps or harmonic modulations. The sharpness
of a luminance transition, for example, at a luminance
edge, is encoded by the spatial juxtaposition of such ON

and OFF responses. Relative to the sampling scale of the
proposed mechanism, the circuit registers any juxta-
posed input con®guration producing an extra strong
response component with respect to the individual linear
contributions.

The response properties of the circuit were embedded
within the framework of scale-space processing, in par-
ticular the mechanism of scale selection. With reference
to linear models of contrast processing based, for in-
stance, on Gaussian derivatives, we have speci®ed con-
ditions for the generation of absolute maximum scale-
space responses and veri®ed these results through
speci®c computer experiments. We suggest that the
representation generated by the circuit is uniquely
selective to intrinsic parameters of the luminance tran-
sition of a priori unknown width and height.

5.1 Relation to other proposals

Our scheme shares important features with other
contrast measurement proposals including the well-
known Marr and Hildreth (1980) edge detection pro-
posal. Marr and Hildreth's main idea is that it is possible
to detect edges by linking the outputs of ON and OFF

center-surround cells (such as LGN cells) through a

logical AND gate. Such a scheme is based on the idea
that spatially adjacent ON and OFF responses represent
the in¯ection point of a sharp transition ± thus the zero-
crossings of its second-order derivative indicate the edge
transition (Poggio 1983). A closer inspection of the
process of zero-crossing detection indicates that it
utilizes an oriented multiplicative combination of initial
ON/OFF responses based on a simple ®rst-order di�erence
mechanism. The zero-crossing detection can be formal-
ized using our previous notation used in Sect. 2. A LD
(DL) transition is detected via

zLD �max
�
c�i;j � cÿi�1;j; c�i;j � cÿi;j�1

�
and

zDL �max cÿi;j � c�i�1;j; cÿi;j � c�i;j�1
h i �22�

(compare with Eqs. 3, 4 and 11).
While our model provides a circuit capable of real-

izing an AND-gate-like behavior, it does not compute a
logical AND gate, but instead a soft gate. This property
is one of the key di�erences between the present pro-
posal and the Marr and Hildreth method. Although
important, edge detection should not be the sole aim of
contrast measurement. As stated above, what is needed
is a general, robust method of contrast measurement
that incorporates not only physical contrast assessment,
but also other factors, such as transition form. In ad-
dition, image contours are present not only at edges but
at other luminance distributions [see, for example, Fig. 8
of Pessoa (1996)]. Moreover, utilizing a numerical dif-
ference scheme, simple Fourier interpretation renders
such a mechanism highly sensitive to noise. This is not
the case in our model as we use Gaussian low-pass ®lters
before sampling ON and OFF inputs.

The analysis of the di�erential structure of image
curves and contrast outlines led Zucker and colleagues
(Dobbins et al. 1990; Iverson and Zucker 1995) to pro-
pose a syntactic scheme de®ning a language of logical/
linear operators. In this formalization, operators com-
posed of tangentially separated sub-®elds were designed
to selectively respond to contrast (``edge'') and line
features while enabling the operators to automatically
suppress ``false'' responses. The characterizing feature of
Zucker's logical/linear scheme is that it selectively sup-
presses any response that is generated by a luminance
structure to which a contrast or line operator does not
®t. Yet, it generates the responses in a linear fashion ±
but only at locations that match the ®lter's structure. In
our case, the circuit signals the presence of a relevant
``sub-optimal'' structure, i.e., a structure that does not
match the spatial arrangement the circuit is most sensi-
tive to. In the case of optimal structures (e.g., step
transitions), however, the presence of such a sharp
contrast is signaled by an extra amount of high ampli-
tude response that raises the activation over that of the
linear response alone. This allows the decision as to what
constitutes signi®cant structure to be postponed, allow-
ing more global stages of visual integration to selectively
focus and enhance the visual structure that initially may
not appear as dominant (in terms of amplitude re-
sponse). In all, the non-linearities in Zucker's and in our
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scheme di�er: in Zucker's approach, the non-linearity
functions as an early local decision mechanism, while in
our model it serves as an emphasizing, or ``boosting,''
mechanism to generate a high amplitude or energy re-
sponse.

While other computational models have not explicitly
discussed any scale-space-related processing properties,
our scheme nicely generalizes to the multi-scale frame-
work of edge detection. We have demonstrated how the
non-linearity in the response to juxtaposed ON and OFF

input can be utilized to signal the optimal operator scale
for a gradual luminance transition of a certain spatial
extent. The multi-scale scheme approximates a Gaussian
®rst-order derivative scheme that makes use of the non-
linearity in a scale-dependent input combination of ad-
jacent contrast arrangement.

5.2 Simple cell physiology

Originating from Hubel and Wiesel's proposal (1962), a
long-standing view of simple cell response is that it
depends on the linear sum of ON and OFF LGN signals
(for a review see von der Heydt 1987). Simple cells
linearly sum (or pool) all of their inputs ± weighted by
their e�ective strength which is de®ned by the RF
response pro®le. Data supporting the view that simple
cells behave as linear devices come from a study by
Schumer and Movshon (1984) showing that simple cells
integrate their inputs in a sum-to-threshold linear
manner. In addition, stimulus-response measurements
of cells using spatial frequency modulated luminance
gratings reveal a basically linear relationship whose
sensitivity pro®le can be closely approximated by,
among others, Gabor/Wavelet pro®les generated by a
Gaussian weighted sinusoidal spatial modulation (Pollen
and Ronner 1983; see Daugman 1985, for a mathemat-
ical description), derivative of Gaussian pro®les, or
o�set Gaussian pro®les (Heggelund et al. 1983).

Non-linearities utilized in several computational
schemes, like ours, have also been observed in cortical
simple cell behavior, thus indicating that the view of
such cells as linear devices is, in general, untenable (see
von der Heydt 1987). For example, Hammond and
MacKay (1983) investigated the length-summation
characteristics and probed cells with bars composed of
opposite polarity segments (i.e., light and dark seg-
ments). An OFF sub-®eld was probed by a dark bar that
included two light ends, and the same was done for the
ON sub-®eld using light bars with dark segments at their
ends. The inclusion of inverse-polarity segments largely
suppressed cell responses instead of only causing a re-
duction of response that is proportional to the length of
the opposite polarity segments used ± as predicted by
linearity. A more recent investigation by von der Heydt
et al. (1991) has demonstrated the existence in areas V1
and V2 of cells selectively responsive to oriented high
spatial frequency gratings. Cells of this type vividly re-
spond to gratings composed of alternating light and
dark bars while remaining silent when stimulated by
isolated bars of either contrast polarity. This has been

interpreted as evidence for non-linear sub-®eld integra-
tion, since the responses could not be reconciled with a
linear ®lter model responsive to gratings of the given
spatial frequency. The responses were critically depen-
dent on the precise stimulus periodicity, suggesting that
the cells integrate spatially aligned arrangements of al-
ternating ON and OFF LGN input in a non-linear way
[see von der Heydt (1987) for an overview and discussion
of previous ®ndings in that direction, and Petkov and
Kruizinga (1997) for an approach to model the key be-
havior].

These and several other observations suggest that the
view of cortical contrast selective cells as being basically
linear devices is too limited. In addition, there is growing
evidence that they are sensitive to more than just local
contrast magnitude. We suggest that an analysis based
on a broader view of the functionality of early stages of
visual processing may guide the development of models
of visual contrast measurement.
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Appendix 1: A linear Gaussian edge detector
in scale-space

This section draws upon previous work by Neumann and Otten-
berg (1992a,b) who investigated the optimum scale-space response
for one-dimensional odd-symmetric intensity transitions based on a
linear pre-processing stage. In particular, we utilize here the cas-
cade processing of the initial center-surround processing stage
followed by an operation that realizes a low-pass ®ltered ®rst-order
derivative. We use an oriented gauge coordinate system �u; v� as
introduced above in order to express the derivative attributes in
terms of matched directional derivative operations. We utilize this
framework to relate the ®ndings on the evolution of scale-space
response to the concept of automatic scale selection, which has only
recently been suggested by Lindeberg (1996).4 It should be noted
that for the analysis of the scale-space response, we only analyze
here the numerator term of the normalized response. Since we
further investigate the relation between linear and non-linear re-
sponses in relation to their scale-selection properties (see Appen-
dix 2), the denominator component for normalization was omitted
here. We start with the analysis of the response to a step edge, then
proceed to the more general case of a ramp transition.

Response for a step edge luminance transition

A step edge pro®le of height h is de®ned by an amplitude-scaled
Heaviside function H�:�, thus having

4 Thanks to Maria Quiteria (Inst. of Oceanographic Studies, Rio
de Janeiro) for providing some of the insights and a fresh view on
recent modeling approaches.
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fstep�u� � h �H�u� :
The model consists of a sequence of principal processing stages.
The ®rst step consists of a center-surround mechanism de®ning an
isotropic band-pass ®ltering operation. We approximate the (nor-
malized) di�erence-of-Gaussian by a Laplacian-of-Gaussian (LoG)
operation. The response is generated by the spatial convolution of
the step pro®le with the impulse response of the LoG ®lter,
fstep�u� 
 LoGr�u�. We get5

LoGstep�u� � h
d
du

Gr�u� :

The LoG-®ltered pro®le is processed subsequently by a ®rst-order
(Gaussian) derivative (D1G) ®lter. At its limit, for r! 0, the
Gaussian derivative will converge to d=du d�u�. The ®nal spatial
pro®le of contrast cell responses for its minimum spatial scale limits
is given by

sstep�u� � h � d2

du2
Gr�u� � h

r2
1ÿ u2

r2

� �
Gr�u� :

The response amplitude at the step edge location, u � 0, for a
normalized Gaussian weighting function is then

sstep�u � 0� � h
r2

Gr�u�
���� ���� � h������

2p
p � r3

���� ���� :
The result shows that the response taken as a function of scale r is
strong monotonically decreasing such that the maximum response
appears for the smallest scale.

Response for a ramp edge luminance transition

A ramp edge pro®le of width R and height h can be generated by
the convolution of an amplitude-scaled Heaviside function (see
above) with a unit-pulse function P�:� of the corresponding width.
The pro®le is thus described analytically as

framp�u� � h �H�u� 
 PR�u� :

The response of the model is generated by the spatial convolution
of the ramp pro®le with the impulse response of the LoG-®lter,
framp�u� 
 LoGr�u�. We get

LoGramp�u� � h
R

Gr u� R
2

� �
ÿGr uÿ R

2

� �� �
:

Corresponding to the procedure we have adopted for the step case,
further processing of the LoG-®ltered pro®le by a ®rst order
(Gaussian) derivative (D1G) ®lter yields

sramp�u� � h
R

d
du
Gr u� R

2

� �
ÿ d

du
Gr uÿ R

2

� �� �
:

The response consists of a sum of two Gaussian derivative pro®les
of opposite sign shifted to either side of the central location of the
ramp transition. For completeness, we can con®rm the result to
include the special case of a step transition. By taking the limit
R! 0, the response sramp�u� converges to that derived for a step,
limR!0 sramp�u� � sstep�u� (see above).

Scale-space processing and responses
at ramp edge location

Depending on the width of the ramp and the relative scaling of the
cascaded pre-processing stage, the response pro®le appears in dif-
ferent spatial arrangement. We consider a case that has been
sketched in Fig. 4. For a scale that is small relative to the transition
width (r� R), Gaussian derivatives appear as isolated ON and OFF

channel responses at the ``knees'' where the plateaus meet the ramp
transition. For a coarser scale after blurring, the central lobes of
either ON or OFF responses (depending on a light-dark or a dark-
light transition, respectively) meet and overlap at the center of the
ramp and appear as juxtaposed input contrast responses. Analyti-
cally, for a condition R� r (corresponding to R! 0), we will get
the second-order derivative of a Gaussian pro®le that peaks at the
center of the ramp (compare with the results of mathematical in-
vestigation above and see Fig. 6).

In order to evaluate the behavior of a scale-space edge detector
for a gradual luminance transition, we evaluate its response at the
center of the ramp (u � 0). We make use of the even-symmetry of
the Gaussian, such that we ®nally get the amplitude

sramp�u � 0� � 2
h
R
�G0r

R
2

� �
:

We now treat sramp as a function of scale r such that we derive the
magnitude function

sramp�r�ju�0 �
h������
2p
p

r3
exp ÿ R2

8r2

� �
:

Figure 12 shows pro®les of scale-space responses of a linear cell for
variable parameter settings of ramp transition widths R and con-
stant height h = 1. The responses for a ramp transition shown in
Sect. 4 (Fig. 6, bottom) represent a coarse sample of the analytic
pro®le presented in Fig. 12 (right). For a mechanism capable of
selecting an appropriate scale it needs a proper selection and de-
cision criterion. A useful candidate for this selection appears to be
the maximum scale response along u � 0. The unique peak re-
sponse along the scale is determined by the zero-crossing of the
slope function for sramp�r�ju�0. We get

d
dr

sramp�r� � ÿ h������
2p
p

r4

R2

4r2
ÿ 3

� �
exp ÿ R2

8r2

� �
� 0 :

The solution for the scale-space location of the peak response is
given by

rmax � R

2
���
3
p ;

which indicates an operator scaling slightly less than half the ramp
transition width. A mechanism reading out such maximum re-
sponses must rely on a robust selection criterion that guarantees the
correspondence with a representation of variable-width contrast
edges. We investigate this topic below in terms of absolute maxi-
mum contrast responses suggesting a winner-take-all type mecha-
nism.

Scale selection for a ramp contrast

In order to investigate the relevant conditions for selecting maximal
responses corresponding to a ramp of certain width, we compare
the activations generated for sramp�rmax� u�0 � sramp�u � 0��� ��

r�rmax

with the absolute height of one lobe in the pro®le of D1G. In
particular, we investigate the response for sramp�u � ÿR=2� r0�.
The latter corresponds to the case of isolated contrast responses
at the ``knees'' of the ramp that are processed by the D1G ®lter.
For the condition r0 � R, the response pro®le in the u direction
shows

5 For simplicity, we are neglecting the fact that, for this 2D iso-
tropic pre-®ltering stage, the e�ective space constant is re �

���
2
p

r.
Since this refers only to a rescaling of coordinate axes, we further
deal with the original scale constant r only.
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sramp�u � ÿR=2� r0�jr0�R

� h
R

d
du
Gr�r0� ÿ d

du
Gr�ÿR� r0�|������������{z������������}

�0

2664
3775

(see Fig. 6 for comparison). Since the second derivative term al-
most vanishes, we can simplify the equations by only considering
the dominant component for further analysis. This condition cor-
responds to a situation where r0 < rmax holds. If we compare the
responses of the two selected cases we get

sramp�u � 0�jr�rmax
� 48

���
3
p

h������
2p
p exp ÿ 3

2

� �
� 1
R3

sramp�u � ÿR=2� r0�jr0�R �
h������
2p
p exp ÿ 1

2

� �
� 1

Rr2

With the ratio of these two expressions, we get a condition for
absolute maximum response. For this purpose we introduce the
normalized scale-space variable r̂ � r=R. The condition then ®nally
reads

48
���
3
p

e
r̂2 > 1 or; equivalently

r̂ >
������������

e

48
���
3
p

r
� 0:18; with e � exp�1� :

We left the ®rst version of the inequality for direct comparison with
the result derived for the non-linear circuit (Appendix 2).

The result for the linear model demonstrates that the identi®ed
optimum scale is not guaranteed to yield maximum responses in
absolute terms as related to the overall ®eld of activities. In par-
ticular, if r̂ becomes less than approximately 1=5, the response
sramp�u � 0�jr�rmax

declines to a value lower than the maximum
response for the smallest scale, as demonstrated in Fig. 6 (bottom).
If, however, the necessary condition is met, the maximum scale
response determines the overall maximum amplitude in the array of
scale-space ®lter responses.

Appendix 2: Scale-space response
for the non-linear circuit

It has been shown in Appendix 1 that the linear model already
shows a selectivity for an optimal scale. The response taken as a
function of scale S�r� yields a unique maximum value, pre-req-
uisite for automatic scale selection. However, it was shown that
this value cannot be guaranteed to be the maximum response in
absolute terms ± as also demonstrated by the simulations shown
in Fig. 6.

A compact notation of the response properties of the non-linear
circuit is given by

z �L � p� � pÿ� � �N

L
� p� � pÿ� �

� �
(compare with Eq. 12). This demonstrates that the non-linear cir-
cuit in its linear processing behavior inherits all the qualitative
properties shown in Appendix 1. Moreover, for con®gurations
approaching the optimum scale conditions, i.e., con®gurations with
juxtaposed ON and OFF activations, the results of the linear pro-
cessing component are superimposed by the correlation (gating)
between ON and OFF responses.

The function L only de®nes a proportionality for both
linear and non-linear components. For any further analysis of
the response z, it is therefore su�cient to consider the terms in
large brackets (see equation above). The non-linear contribu-
tion is scaled by the factor N=L. Since we want to relate the
cell response to the activations generated by the initial center-
surround processing stage, we have to scale this ratio ac-
cordingly. Based on the dependency described in Eq. (3), we
arrive at

N0 �N

L

bs

as
� 2

bc

ac

bs

as
;

in which bs=as is the gain of the initial center-surround processing
stage, denoted by net� ÿ net�.

Fig. 12. Linear contrast cell response at ramp location u � 0 treated as a function of scale (r). Processing results of a family of ramp pro®les of
unit height (h � 1� is shown as a surface for di�erent widths R (left); the shape of the response pro®le for one ®xed setting of R shows a unique
maximum in response as a function of scale (right). As it is predicted by the equation for sramp�r�ju�0, a unique shape of scale-space pro®les is
shifted in peak location for increasing values of R accompanied by a drop in overall response amplitude
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Non-linear response for step edges

In Appendix 1, we have analyzed the responses of a linear mech-
anism processing a step edge pro®le. The non-linear part of the
total response is contributed by p� � pÿ� �. We determine the mag-
nitudes from the maxima in the D1G pro®le. These correspond to
the o�set points for sub-®eld integration given by s � �r. For the
pro®le of a ®rst-derivative of a Gaussian we get

h
d
du

Gr�u � r� � ÿ h������
2p
p

r2
exp ÿ 1

2

� �
:

We introduce the functions slinstep � sstep (see Appendix 1) and snlstep
and show the non-linear response in terms of the linear response
derived in Appendix 1. The signi®cant part of a step edge response
(proportion of response z given in brackets, see above) generated by
the non-linear circuit is then given by

snlstep�u � 0� � h������
2p
p

r3
�N0 1������

2p
p

er
;

� slinstep�u � 0� � 1�N0 1������
2p
p

er

� �
:

Two observations can be made from this result: (1) as in the linear
case, the response for a step edge is a monotonically decreasing
function of scale in which the maximum response is generated at
the smallest scale, and (2) the contribution of the non-linearity
dominates for a gain factor

N0 �
������
2p
p

er :

Optimum input conditions for non-linear processing

Non-zero correlation between ON and OFF channel activation is
available when both sub-®elds of a cell integrate positive input
activation. The initial center-surround responses at the ``knees'' of
the ramp (see Appendix 1) therefore have to be progressively
blurred to meet at the center of the ramp. For each Gaussian bump
in the initial LoGramp�u� pro®le we get

h
R
�Gr0

u� R
2

� �

 Gr�u�

� �
� � h

R
G ����������

r2
0
�r2

p u� R
2

� �
:

Proper scaling of the blurred pro®le approaches the value deter-

mined for the optimum scale, such that
����������������
r2
0 � r2

q
� rmax. The

pro®le showing the di�erence of two broadly tuned o�set Gaussi-
ans assembles a D1G ®lter.

Input integration and maximum scale response
for ramp edges

Since o�sets were symmetric around the center of the ramp, we
sample each shifted Gaussian Grmax

�u� R=2� at u � �s � �R=2.
For the gating-type input to the non-linear response we therefore
get

p� � pÿ� �jr�rmax
� h2

R2
� 1

2p � r2
max

� 6h2

p � R4
;

with rmax � R=�2 ���
3
p �. We can now write the response amplitude of

the non-linear circuit at the optimum scale condition, rmax, as a
combination of the linear (additive) and non-linear (correlational)
input contribution. We introduce the functions slinramp � sramp (see
Appendix 1) and snlramp and present the non-linear response in terms
of the linear response derived in Appendix 1. We get

snlramp�u � 0�jr�rmax
� 48

���
3
p

h������
2p
p exp ÿ 3

2

� �
� 1
R3
�N0 6h2

p � R4
;

� slinramp�u � 0�jr�rmax

� 1�N0
���
2
p

8
������
3p
p h

R
exp

3

2

� � !
:

Several observations can be made from this result: (1) the response
of the circuit for a ramp edge transition can be predicted for an
optimum scale, (2) the contribution of the non-linearity depends on
the slope of the ramp transition denoted as m � h=R, (3) the plain
non-linearity of the circuit (without the gain N0) contributes with a
26% increase ± times the slope ± in output magnitude. In the case
of discrete signals and images, any transitions are of unit width at
minimum, i.e., RP1. For a ramp of unit slope, and the non-linear
component to dominate the response, the gain factor N0 has to be
high enough to ``boost'' the output activation. Moreover, with such
a gain factor it can be guaranteed that the magnitude of response is
maximal in absolute terms (compare the analysis for a linear ®lter
in Appendix 1). A dominance of the response caused by the non-
linear, i.e., multiplicative, contribution from both ON and OFF sub-
®eld is achieved for

N0 � 4
������
6p
p R

h
exp ÿ 3

2

� �
:

Since the signal parameters h and R are not known in advance, the
gainN0 may be chosen high enough to guarantee the dominance of
any non-linear contribution.
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