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Abstract: Since many security incidents of networked computing infrastructures arise 

from inadequate technical management actions, we aim at a method support-

ing the formal analysis of those implications which administration activities 

may have towards system security. We apply the specification language cTLA 

which supports the modular description of process systems and facilitates the 

construction of a modeling framework. The framework defines a generic mod-

eling structure and provides re-usable model elements. Due to cTLA’s connec-

tion to the temporal logic of actions TLA, formal analysis can resort to sym-

bolic reasoning. Supplementarily, automated analysis can be applied. We fo-

cus here on automated analysis. It is supported by translation of cTLA specifi-

cations into suitable model descriptions for the powerful model checking tool 

SPIN. We outline the utilized methods and tools, and report on the modeling 

and SPIN-based analysis of IP-Hijacking. 
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1. INTRODUCTION 

The current practice of those computer networks which form the basis of 

the IT infrastructure for companies and institutions shows, that a consider-

able part of the occurring security incidents has to be ascribed to vulnerabili-

ties which result from inadequate technical management. One can perceive 

that network and system administrators are often overstrained by the com-

plexity of the system structure, by the frequency of dynamic changes, and by 

the high number of existing service interdependencies. Moreover, since 

management operations can potentially control all components of a network, 

interferences of attacks and inadequate management may result in substantial 

vulnerability propagation and a plethora of unforeseen threats. Therefore the 
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security of IT-systems does not only depend on their suitable design, on the 

trustworthiness of their components and on the employment of suitable secu-

rity services, but also on their proper technical management. Considering 

that background, our work focuses on the formal modeling and analysis of 

technical management effects in order to support clear descriptions of rele-

vant attack procedures and management effects as well as a better under-

standing of the interrelations between management operations and attacks. 

Moreover, the work shall finally contribute to the discovery of new vulner-

abilities and threats. 

With respect to the type of modeling, we have to consider that manage-

ment operations as well as attacks usually do not appear as atomic actions 

but rather as processes consisting of sequences of steps where each step per-

forms a set of contiguous modifications of a system component. The inter-

esting effects trace back to functional interactions between processes. There-

fore we have to resort to a formal modeling technique for the functional as-

pects of concurrent process systems. The application of such modeling tech-

niques for the analysis of security aspects is not new. In particular, they are 

applied in the context of protocol design for the verification of authentication 

protocols and in the context of trustworthy software system development for 

the verification of implementation code. In both fields the modeling regards 

rather narrow systems consisting of closely related elements which can 

mainly be represented in one major level of abstraction. Nevertheless, ap-

proaches of both fields report on the high complexity of models, on high 

costs and efforts for model design and analysis, and finally on the failure of 

automated analysis tools due to huge time and memory demands. 

The application field of management operations and network-centered at-

tacks imposes further requirements. Interesting scenarios comprise a broad 

spectrum of processes. Interactions can be relevant which concern operations 

on different abstraction levels. Therefore we attach special importance to the 

model specification technique. With respect to modeling it shall support the 

efficient description of broad models by means of composing re-usable 

specification modules. With respect to analysis, the defined models shall be 

concise and have a clear formal semantics. They shall be well-suited to the 

application of automated analysis tools, and – considering the limitations of 

these tools – they shall also support creative symbolic reasoning. Moreover, 

since most computer networks are very complex, there is a needs for partial 

modeling, i.e., one shall be able to focus the formal modeling on interesting 

parts and substructures of a network and the analysis of partial models shall 

supply clear contributions to the analysis of the network as a whole. 

Our approach is based on the specification language cTLA, which sup-

ports the flexible and modular description of process systems [Her00]. In 

particular, in cTLA processes can describe the behavior of implementation 
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components as well as general behavioral constraints (cf. [Vis88]). cTLA’s 

process composition has the character of superposition (cf. [Cha88, Kur93]), 

i.e. properties of subsystems are preserved in embedding systems. Therefore 

analysis results of partial models can be valid for systems as a whole. We 

already made good experiences with cTLA in the field of communication 

protocol verification where a formal modeling and verification framework 

was developed [Her00]. The framework consists of model architecture prin-

ciples, re-usable specification modules, and theorems. It supports the effi-

cient design of models as well as structured logical proofs of model proper-

ties. The semantics of cTLA specifications is directly defined by TLA formu-

las [Lam93] and the TLA methods for symbolic logical reasoning can be ap-

plied. Since TLA formulas refer to state transition systems, which is a well-

understood and commonly used modeling technique, several suitable auto-

mated verification tools are available. Especially we translate cTLA specifi-

cations into the modeling language Promela and apply the corresponding 

model checker SPIN [Hol97], which is currently one of the most powerful 

and elaborated automated process system verification tools. We abstain from 

the direct use of Promela because it has a relatively complex C-language 

oriented semantics and does not directly support symbolic logical reasoning. 

Moreover, Promela specifications tend to be less abstract than cTLA specifi-

cations. 

In the sequel we firstly refer to related work in the security analysis field. 

Then, after outlining the specification language cTLA, we describe the trans-

lation of cTLA specifications into SPIN/Promela model definitions. The next 

section explains the generic model structure, all models of our approach 

shall comply with. Thereafter, the example problem “IP Hijacking” is intro-

duced. Its modeling and cTLA-based model specification are discussed. Fi-

nally, we report on the SPIN-based analysis of this model. Concluding re-

marks refer to the current state and planned developments. More details of 

the work are described in [Rot03]. 

2. RELATED WORK 

There is a wide spectrum of work which uses formal modeling and analy-

sis of execution and interaction processes for the verification of security 

properties. In the main, program verification techniques are applied to en-

hance the trustworthiness of software systems (e.g. [Bal00]) and protocol 

verification techniques to detect vulnerabilities of cryptographic protocols 

(e.g. [Mea95]). In both application fields, a variety of basic methods is em-

ployed covering classic logic and algebraic calculi (e.g. [Kaw03]), special 

calculi (e.g. [Bur89]), and process system modeling techniques (e.g. 
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[Led99]). Many approaches consider tool support in order to facilitate the 

verification tasks and ensure the correctness of the reasoning. Most tools 

take advantage of existing more general analysis tools like Prolog, expert 

system shells, theorem provers, algebraic term rewriting systems, and reach-

ability analysis based model checkers. Some powerful tools combine several 

analysis techniques [Mea96]. 

Formal model checking based analysis focusing on network management 

effects, network attacks, and vulnerability propagation is relatively new. 

[Ram98, Ram02] report on the analysis of computer systems for those vul-

nerabilities, which result from the combined behavior of system components. 

The underlying model is a composition of processes representing the com-

ponents’ and user’s security-related behavior. The processes are specified in 

a special high level language and translated to Prolog. Mainly, simple secu-

rity properties are modeled by labeling states safe or unsafe. A custom model 

checker built on top of a Prolog environment searches execution sequences 

which lead to unsafe states and correspond to vulnerability exploitations. 

[Amm00] reports on checking networks of hosts. A network is statically 

modeled by a set of hosts, a set of vulnerabilities per host, an attacker access 

level per host, and a network connectivity matrix. The analysis investigates 

the possible combinations vulnerabilities and their stepwise propagation in 

the network. The model is implemented using the well-known model 

checker SMV. In [Noe02] this approach is extended and called topological 

vulnerability analysis. The model uses a multi-valued connectivity matrix 

which supports the representation of low level communication exploits. 

3. CTLA 

cTLA is based on TLA [Lam93]. In comparison with TLA it supplies ex-

plicit notions of processes, process types, and process composition [Her00]. 

Furthermore, there is a different look of cTLA specifications since canonical 

parts are not explicitly written down. A wide variety of data types can be 

defined, in particular those with finite (and preferably small) value sets in 

order to support the SPIN-based model checking. 

3.1 TLA 

TLA [Lam93] describes state transition systems by means of a so-called 

canonical formula. A state transition system STS ::= < S, S0, T > is defined 

by a set of states S, a set of initial states S0 ⊂ S, and a set of transitions T ⊂ S 

× S. A canonical TLA formula fSys ::= Init ∧ □ [ Next ]V  ∧ FA directly ad-

dresses the state transition system model. V is a set of state variables (e.g. 
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V = {x1, x2, …, xn}) spanning the state space S. Init denotes the Init-predicate 

defining the set of initial states S0. Next denotes the next state predicate 

which defines the set of transitions T and is structured into a set of actions: 

Next ::= act1 ∨ act2 ∨ act3 … ∨ actm. The always-subformula □ [ Next ]V  

means that each pair of two consecutive states <si, si+1> of each execution 

state sequence of Sys has to fulfil the formula: Next ∨ (x1’=x1 ∧ x2’=x2 ∧ … 

∧ xn’=xn), i.e. the state pair has to comply with one of the actions of Next or 

represent a so-called stuttering step where si equals si+1. FA  specifies live-

ness properties by a conjunction of fairness assumptions FA ::= WF(actj) ∧ 

WF(actk) ∧ … ∧ SF(actp) ∧ … ∧ SF(actq). A weak fairness assumption 

WF(actj) assumes, that the action acti has to be executed in situations, where 

the action is enabled and continuously will be enabled until its execution. A 

strong fairness assumption SF(actj) assumes, that the action acti has to be 

executed, if the action will be enabled again and again until its execution. 

TLA facilitates formal verification. It supplies inference rules supporting 

the deduction of implications of the form fSys ⇒ fProp, where the formula fSys 

describes a system Sys in more detail and the formula fProp represents a more 

abstract property of Sys. The deduction of the implication formally verifies 

that the system Sys has the property Prop. 

3.2 cTLA Simple Process Type 

Each cTLA specification module describes a process type, an instance of 

which corresponds to a state transition system modeling a process of this 

type. A simple process type declaration defines a state transition system di-

rectly. As an example, the following type Media models the physical packet 

transfer of a local area network and is part of the “IP Hijacking” model: 
PROCESS Media(); 

VAR  buf: ARRAY[MAXZONES] OF PacketBufT; 

INIT::= FORALL i:MAXZONES: [ buf[i].usd = FALSE ]; 

ACTIONS 

in( pkt: PacketT ) ::= 

  fSrcToZone( pkt.scn, pkt.sci ) != UNKNOWN_ZONE 

  AND buf[ fSrcToZone( pkt.scn, pkt.sci ) - 1 ].usd = FALSE 

  AND buf[ fSrcToZone( pkt.scn, pkt.sci ) - 1 ].usd' = TRUE 

  AND buf[ fSrcToZone( pkt.scn, pkt.sci ) - 1 ].pkt' = pkt; 

out( pkt: PacketT ) ::= … 

END 

The state space of the state transition system is spanned by state vari-

ables. In Media the variable buf is an array of packet buffers. The set of ini-

tial states is defined by the predicate INIT which in the example claims that 

all buffer fields are flagged as unused. The actions directly constitute the 

next state relation. Action in applies to those state transitions which model 
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that the Media accepts and transfers a sent packet pkt. Aktion out models 

that a packet pkt is delivered to a set of receiving nodes. Syntactically, ac-

tions are predicates over state variables (referring to the current state, e.g. 

buf), so-called primed state variables (referring to the successor state, e.g. 

buf’), and action parameters (e.g. pkt). 

A subset of actions can be classified as so-called internal actions. An in-

ternal action defines a set of state transitions in exactly the same way as a 

normal action. The difference between both sorts of actions concerns the 

composition of systems from processes. When a process instance is em-

ployed as a component in a system, the internal actions of the process cannot 

be coupled with actions of other processes. Each internal action is accompa-

nied by stuttering steps of all other system components. 

With respect to liveness properties, it has to be mentioned, that currently 

fairness assumptions are not used since we concentrate on safety properties. 

3.3 cTLA Process Composition Type 

A process composition type describes a process system which is com-

posed from process instances of imported types. It is exemplified by the fol-

lowing type IpArpExample which models a small local computer network 

and is part of the “IP Hijacking” model: 
PROCESS IpArpExample(); 

CONTAINS 

med: Media(); bnA: IpArpNode( NA_ID, NA_MII ); 

    bnB: IpArpNode( NB_ID, NB_MII ); 

    bnC: IpArpNode( NC_ID, NC_MII ); 

ACTIONS  /* send system actions */ 

snd_A( pkt: PacketT ) ::= bnA.snd( pkt ) AND med.in( pkt ); 

snd_B( pkt: PacketT ) ::= bnB.snd( pkt ) AND med.in( pkt ); 

snd_C( pkt: PacketT ) ::= bnC.snd( pkt ) AND med.in( pkt ); 

   /* receive system actions */ 

rcv_A( pkt: PacketT ) ::= bnA.rcv( pkt ) AND med.out( pkt ); 

rcv_B( pkt: PacketT ) ::= bnB.rcv( pkt ) AND med.out( pkt ); 

rcv_C( pkt: PacketT ) ::= bnC.rcv( pkt ) AND med.out( pkt ); 

   /* broadcast receive system actions */ 

rbc( pkt: PacketT ) ::= 

   bnA.rbc( pkt ) AND bnB.rbc( pkt ) AND bnC.rbc( pkt ) AND med.out( pkt ); 

/* implicitly added: internal actions of the nodes, e.g. rpcs, spcs */ 

END 

An IpArpExample network contains four process instances, one process 

med of the type Media which is described above, and three node processes 

bnA, bnB, and bnC of type IpArpNode. These processes are coupled accord-

ing to the system actions (e.g. snd_A). The right side of a system action is a 

conjunction of process actions (e.g. bnA.snd(pkt), med.in(pkt)) and 
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lists those process actions which have to be performed jointly in order to re-

alize a system action. Each process can contribute to one system action by at 

most one process action. If a process does not contribute to a system action, 

it performs a stuttering step. In the special cTLA-variant used here, process 

stuttering steps are not explicitly listed in the right side of system actions. 

The state transition system which models an instance of a process com-

position type, is defined indirectly. Its state space is spanned by the vector of 

all state variables of all contained processes. Its Init-predicate is the conjunc-

tion of the Init-predicates of the contained processes, and its Next-predicate 

is the disjunction of the system actions. In this way the concurrent execution 

of processes is modeled according to interleaving semantics, while process 

interactions are modeled by joint actions where two or more processes si-

multaneously perform non-stuttering steps. System actions and process ac-

tions can be supplied with data parameters supporting the communication 

between processes. 

The TLA formula describing a cTLA process system is equivalent to a 

conjunction of the process formulas and consequently a system implies its 

constituents. The process composition of cTLA has therefore the character of 

superposition (cf. [Cha88, Kur93]) which guarantees that a property fulfilled 

by a process or a subsystem is also a property of each system which contains 

this process or subsystem. In particular, superposition supports the so-called 

structured verification. In order to prove that a system Sys has a property 

Prop it is sufficient to find a subsystem of Sys, where Prop can be proven. 

4. TRANSLATION TO SPIN/PROMELA 

The model checker SPIN accepts models written in the Promela (Process 

Meta Language) specification language [Hol97]. Promela’s basic syntax re-

sembles the C programming language. But most of the computational func-

tions have been removed and constructs for modeling process systems have 

been added. These constructs are similar to Hoare’s CSP (Communicating 

Sequential Processes) but more flexible. Process types can be declared and 

dynamically executed through instantiation. Communications between proc-

esses are modeled with special channels or through shared variables. 

Guarded statements can be used for synchronisation. 

We developed a compiler, CTLA2PC (cTLA to Promela Compiler), for 

translating high level specifications written in cTLA into the more low level 

Promela language. CTLA2PC generates highly optimized Promela code and 

supports various switches. For example the –optbitarrays switch can 

decrease the state vector size considerably in comparison to a native Pro-

mela model (cf. Sec. 7.1). 
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The general steps of the translation process are as follows. First 

CTLA2PC builds a parse tree from the cTLA input. Using this tree the com-

positional system is then expanded to an equivalent flat system. The flat sys-

tem representation is necessary because Promela specifications don’t sup-

port systems of composed processes coupled through system actions. In the 

flat system only a single process with all actions exists. This process con-

tains the system initialization (merged from all processes) as well. 

The flat system is used for all further steps. Different back-ends can be 

used to generate code in a target language. A simple cTLA backend just out-

puts the flat system definition (switch –ctla). But for Promela, more trans-

formations have to be done. Processes can’t contain multiple actions in Pro-

mela. CTLA2PC therefore generates a non-deterministic selection with ap-

propriate guards for each action. Furthermore, Promela doesn’t support ac-

tion parameters like cTLA. These parameters are implicitly existentially 

quantified. Hence CTLA2PC creates extra input generator processes in Pro-

mela and shared variables which replace the parameters. Each input genera-

tor uses a non-deterministic selection loop over all possible values of the 

parameter. The value selected is written to the parameter variable. An alter-

native approach would be to use SPIN’s channels instead of parameter vari-

ables for passing the value, but in our experiments SPIN needed more state 

space that way. 

Many more points not mentioned here due to space reasons have to be 

taken into account during the compilation process. These include particularly 

the mapping of data type definitions, functions, and predicates.  

5. GENERIC MODEL STRUCTURE 

The goal of our modeling is to have a generic structure suitable for de-

scribing computer networks and applying automated verification techniques. 

It shall be abstract enough to hide low level details which would quickly 

enlarge the state space and make verification impossible. But it must allow 

specific models to be derived easily and augmented with more detailed be-

havior required by the example, e.g. ARP protocol handling. Thus we choose 

a middle level of abstraction which can be extended both for low level 

packet oriented modeling and high level service oriented processes. 

The modeling shall be as natural as possible. From a bird’s eye view, a 

real computer network consists of several nodes transmitting packets over 

media. Thus these are the basic elements of our modeling (cf. Fig. 1). A 

Node process models any object (host, printer, ...) that sends (action snd) or 

receives (action rcv) packets with an interface over media. The processing 

of packets takes a layered approach. Which layers (e.g. Network Interface, 
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IP/ARP) are needed depends on the specific model, but the generic back-

ground is as follows. For both sending and receiving, each layer has its own 

packet buffer and appropriate actions for processing (spcs, rpcs). After a 

packet arrives at the layer the processing action can be activated. The proc-

essing of the packet may either terminate within this layer or the packet may 

be marked as “ready” to be passed to the next layer. Corresponding actions 

(smov, rmov) for moving “ready” packets between the layers have to be in-

cluded in the specific model. These actions as well as the processing actions 

belong to the internal actions of the node. 

Because the generic model is independent of addressing schemes (e.g. 

Ethernet hardware addressing), no constraints on received packets (e.g. re-

move the packet if it isn’t a broadcast packet and doesn’t match the inter-

face’s address) are defined. These constraints are included in the low level 

packet processing of specific models. Similarly, stamping of packets with a 

specific source address (other than the model internal source node, source 

interface attributes) before sending has to be done there as well. 

Each node has to have at least one interface, but may have multiple inter-

faces (e.g. a router node). Interfaces can be dynamically enabled or disabled 

(cf. Unix ifconfig up/down). Each interface has a buffer (variable rpa) to 
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Figure 1: Generic model stucture 
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hold a packet after it has been received and before it is processed by the net-

work stack on the node. Similarly each interface has a buffer (variable spa) 

to hold a packet that shall be transmitted to the media. 

All interfaces which can directly reach other interfaces via the link layer 

(i.e. without using higher level, e.g. IP, routing functions on a node) belong 

to a zone. Because a node may have multiple interfaces, a node can be in 

multiple zones. A low level broadcast by a node with a selected interface 

will reach all others nodes with an interface in the zone. Zones are assumed 

to be static, i.e. a node may not be dynamically equipped with a new inter-

face (but may enable or disable a previously existing interface).  

The Media process is used for packet exchanges. For each zone Media 

buffers (variable buf) one packet currently in transit in the media. Only one 

packet can be in transit in any zone at one time. A node can only transmit a 

packet over an interface to the media (action in) if no packet is already in 

transit for the zone. Similarly a packet can only be received by a node over 

an interface from the media (action out) if a packet is currently in transit for 

the zone. 

Within the generic model packets just contain two internal attributes for 

determining the zone of the packet. Without higher level routing a packet 

can’t move between zones (by definition). For a specific model further at-

tributes are typically added to packets. 

The System process associates node and media instances. It defines 

system actions which couple actions of process instances. Each node N can 

send a packet to media (action snd_N, coupling node N and Media) or re-

ceive a unicast packet from Media (action rcv_N). Furthermore a broadcast 

packet may be received by all nodes in a zone (action rbc, coupling Media 

and all nodes of a zone). 

Host A

Hub

Gateway C

Host B

Host D

Host E

Hub
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6. EXAMPLE SYSTEM 

The modeling structure described above provides a basis for concrete in-

stances. Consider the example depicted in Fig. 2. 

Two network zones are connected by a gateway. Zone 1 contains hosts A, 

B and the gateway C, zone 2 contains hosts D, E and the gateway C. Only 

the gateway has two interfaces. All hosts within a zone can directly reach 

each other without using the gateway. The hosts communicate over IP. We 

want to analyze the effects if an administrator (or ignorant user) hijacks an 

IP address (e.g. of the gateway) by changing the IP address of a host to an 

already used one. 

For the modeling of this example we use the abstract node element as 

starting point. It has to be augmented with appropriate behavior and attrib-

utes for IP communication. As described in the generic model IpArpNode’s 

actions (cf. Fig. 3) are layered, in this case akin to the TCP/IP reference 

model [Com01]. The layers Network Interface, Internet (including IP and 

ARP) and a minimal Application Layer Stub are needed. 

Submitted packets from the application (action snd_ip) are stored in a 

send buffer. Then the packet can be processed by the IP layer. Basically IP 

addresses have to be resolved to hardware addresses. If the IP address to 

hardware address assignment is not available within the cache, a broadcast 

ARP query is created (action spcs_nc), processed through the layers (espe-

cially ARP) and sent (action snd). After a matching ARP reply (or a query 

PROCESS IpArpNode

Network Interface Layer

rpcsspcs ...

Internet LayerIP

rpcs_ip spcs
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by the sought-after node) has been received and processed, the ARP cache is 

updated. Then the IP packet can be processed and finally sent. If the address 

was resolved before and is still in the ARP cache no ARP request is gener-

ated by the ARP layer (action spcs_c). 

Received packets (action rcv) are stored in the interface’s buffer and 

processed layer by layer as defined in the generic model. For this model, the 

low-level Network Interface layer checks the packet’s hardware destination 

address against the interface’s hardware address (if the interface is neither in 

promiscuous mode nor the packet is a broadcast packet). Invalid packets are 

thrown away immediately and don’t reach the Internet layer. Similarly, the 

send packet processing (action spcs) has been extended to set the hardware 

source address of the packet to the hardware address of the interface. 

Besides the layers and their actions each of IpArpNode’s interfaces is ex-

tended with a hardware (variable ha) and an IP address (variable ia). The 

initialization of IpArpNode has to be enhanced to include these as well. Fur-

thermore the packet structure is augmented for the Network Interface layer 

with hardware source and destination address and frame type. Depending on 

the frame type, a packet has either ARP or IP attributes on Internet layer. 

ARP packet attributes include a query type and pairs of hardware and proto-

col addresses. IP packet attributes are the IP source and destination ad-

dresses. 

To model the administrator, we introduce a new action for changing the 

IP address of a host to another address (action chg_ip). The system initiali-

zation is generated by CTLA2PC from the processes initialization automati-

cally. So no further explicit system initialization action has to be added. 

7. ANALYSIS 

Most of the time model checking is a challenging task. Even small mod-

els quickly exceed given time and memory constraints. Marginal model ad-

ditions can have a strong adverse impact on the performance of the verifica-

tion tool. This effect is well-known as state space explosion. 

7.1 Example System Optimizations 

In order to enable automated analysis, we started with two major model 

optimizations. First, we realized that a smaller subsystem suffices to study 

the effects of the administrator’s actions. The two zones are similar, so mod-

eling just one zone, e.g. zone 1 with the hosts A, B, and C, satisfies our re-

quirements. Due to the superposition property of cTLA’s process composi-

tion, the results can be carried over to embedding systems. Also, because all 
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hosts are of the same type, we can assume that a certain host, namely B, 

changes its IP address to the address of host C. 

Second, we apply an approach of the field of efficient protocol imple-

mentation in order to save on buffers and action steps. We refer to the activ-

ity thread approach which combines all those actions of several protocol lay-

ers into one integrated and non-interruptible execution thread, which proc-

esses the same stimulating packet request [Svo89]. Accordingly, we modify 

the host model by merging actions and eliminating interface buffers. As a 

result, just one processing action and working buffer for each direction 

(sending and receiving) remains. Furthermore we include the basic interface 

setup of the nodes (i.e. activation and assignment of original IP addresses) 

into the system initialization to save some steps. 

To evaluate the possibility of checking the model we translated it to Pro-

mela using CTLA2PC and performed several SPIN runs. The state vector 

size was about 250 bytes. A DFS search depth of over one million was 

reached within a minute and SPIN quickly used up over 512 MB of memory. 

Approximate (supertrace and bit-state-hashing) SPIN verification modes 

prevented the memory overrun but did not give any results in a reasonable 

amount of time. One of these runs was cancelled after over 150 hours. 

Hence we looked at the cTLA model again in order to cut down the state 

vector size further. In particular the action parameters were promising. cTLA 

action parameters correspond to existentially quantified value variables, and 

their translation to Promela introduces extra processes and state variables 

(cf. Sec. 4). We observed that for most of the action parameters value deter-

mining equalities exist, since many parameters of flat system actions serve 

as output parameters of constituting process actions. Therefore it is possible 

to replace these parameters with the corresponding symbolic output value. In 

turn this “paramodulated” version of the model was translated to Promela. 

Now the SPIN state vector size was shortened to about 210 bytes. Addition-

ally we improved the code generation of CTLA2PC to consider specific 

oddities of SPIN. In particular, SPIN’s built-in handling of arrays of those 

variables which use only a few bits, requires much more state space than 

necessary. With the switch –optbitarrays CTLA2PC wraps such an array 

into an integer type following a generalized version of the bitvector approach 

suggested by [Ruy01] and appropriately maps all read and write accesses to 

array elements. This led to a further considerable reduction of the state vec-

tor to a size of 168 bytes. 

7.2 Checking Assertions & Analyzing Trails 

Based on this version we wanted to check the property that a node cannot 

receive non-broadcast IP packets destined for other nodes. We inserted the 
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following assertion at the end of the non-broadcast receive action of each 

node: assert(  !(bnN_ifs[1-1].rpa.pkt.l2t==L2_IP &&   

  BVGET(bnN_ifs[1 - 1].rpa.pkt.dat, 3, DI_IDA) != bnN_ifs[1 - 1].ia )); 

It checks that a received IP packet’s destination address equals the inter-

face’s IP address that received the packet. We had in mind, that through a 

change of the IP address of node B to the IP address of node C (IP hijack-

ing) and a subsequent ARP query by B the entry for C in the ARP cache of 

the other nodes might be updated with B’s hardware address (ARP cache 

poisoning). This could lead to further packets intended for C to be received 

by B and violate the assertion. So we started a SPIN verification run. As ex-

pected the assertion was violated: 
pan: assertion violated   !(((bnB_ifs.rpa.pkt.l2t==1) && (((bnB_ifs.rpa.pkt.dat>>(1*3)) && 

  ((1<<3)-1))!=bnB_ifs.ia))) (at depth 12) 

pan: wrote ip-arp-example-verif-comp-flat-para-bitopt.promela.trail 

(Spin Version 4.1.0 -- 6 December 2003) 

  Warning: Search not completed + Using Breadth-First Search + Partial Order Reduction 

… 

State-vector 168 byte, depth reached 12, errors: 1 

But subsequent guided simulation with the created trail file revealed that 

the violation occurs in an unforeseen way (cf. Fig. 4). Node B changed its IP 

address (chg_ip) to 3 but has not yet updated the ARP cache of another 

node. Instead, a previously received (rbc) ARP query from node B still con-

tains the old IP address and node C updates its ARP cache from this query 

(rpcs) just now. Thus an already buffered IP packet for the (now unused) IP 

N o d e  CN o d e  BS y s te m /M e d ia

IN IT

s n d _ ip (d ia = 1 )

s p c s

s n d _ B

rb c

c h g _ ip

s n d _ ip (d ia = 2 )

rp c s

s p c s

s n d _ C

rc v _ B

A R P -Q  fo r  IA = 1

P ro c e s s  A R P -Q

B : IA = 2 ,  C :  IA = 3

S e n d  p a c k e t  H A = B  IA = 2

B : IA = 3

A s s e r t io n  v io la te d !

S e n d  b ro a d c a s t

N o d e  A

Figure 4: Violating path 
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address 2 can be processed (spcs) with the cached IP address to hardware 

address assignment. The packet is submitted to Media and received by node 

B (due to the matching hardware address). But the interface’s IP address is 

different and this violates the assertion. A typical (non promiscuous) IP 

stack would throw away such a packet. Thus this demonstrates the simple 

fact that an IP change may lead to lost packets until all nodes in the subnet 

have updated their ARP caches correctly. This is especially relevant to hosts 

with static ARP configurations since their settings have to be maintained 

manually. 

To analyze a scenario analogous to the originally intended situation an-

other assertion can be used, which has to be included in the send action of 

node A: 
assert(  !(bnA_ifs[1 - 1].spa.pkt.l2t==L2_IP &&  

  BVGET( bnA_ifs[1 - 1].spa.pkt.dat, 3, DI_IDA) == 

   bnC_ifs[1 - 1].ia && bnA_ifs[1 - 1].spa.pkt.dha != bnC_ifs[1 - 1].ha )); 

The resulting trail file shows node B immediately changing its IP address 

and poisoning the ARP cache of the other nodes as described above. Then 

the assertion is violated by node A sending an IP packet intended for node B 

to node C. 

8. CONCLUDING REMARKS 

Technical management processes and their security implications consti-

tute a new and practically relevant application field for formal modeling and 

analysis. It, however, has distinct demands. The modeling results in compre-

hensive models and shall therefore be supported by a modular and flexible 

specification technique, while on the other hand analysis tools shall be able 

to uncover unknown effects automatically. As shown by means of the IP-

Hijacking example, the proposed combination of modeling guidelines, the 

cTLA specification language, and SPIN-based analysis is a feasible approach 

which can substantially contribute to improve the understanding of manage-

ment effects. 

Current work studies intertwined network and security service reconfigu-

ration processes. Moreover we focus on an enhancement of the technique. 

The modeling framework will be completed by re-usable process type defi-

nition modules. The analysis of complex models will be supported by model 

architecture principles which are borrowed from the field of efficient com-

munication protocol implementation. The provision of improved tool support 

will be based on the integration of cTLA and SPIN into an Eclipse-based de-

velopment environment (cf. [Ecl02]). 
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