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Abstract

OceanStore is a utility infrastructure designed to
span the globe and provide continuous access to
persistent information. Since this infrastructure is
comprised of untrusted servers, data is protected
through redundancy and cryptographic techniques.
To improve performance, data is allowed to be
cached anywhere, anytime. Finally, monitoring of
usage patterns allows adaptation to regional outages
and denial of service attacks; monitoring also en-
hances performance through pro-active movement of
data. A prototype implementation is currently un-
der development.

1 Introduction

The computer revolution has occurred. In the past

decade we have seen astounding growth in the per-

formance of computing devices. Even more signi�-

cant has been the rapid pace of miniaturization and

related reduction in power consumption. Today,

globe-trotting executives routinely access informa-

tion on their laptops, pagers, and cell-phones; small

businesses and individuals have computers that rival

the mainframes of a decade ago; cars contain sophis-

ticated computing technology to control their tim-

ing. Based on these trends, many envision a world of

ubiquitous computing devices that add intelligence

and adaptability to ordinary objects such as cars,

clothing, books, houses, and chairs. Before such a

revolution can occur, however, computing devices

must become so reliable and resilient that they are

completely transparent to the user [58].

In pursuing transparency, one question immedi-

ately comes to mind: where does persistent infor-
mation reside? Persistent information is necessary

for transparency, since it permits the behavior of de-

vices to be independent of the devices themselves.

An embedded component can be rebooted or re-

placed without losing vital con�guration informa-
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tion. Further, the loss or destruction of a device

does not lead to lost data. Today, the loss of a lap-

top is a traumatic event precisely because of the irre-

placeable data and hours of con�guration time that

is lost with it. Note that a uniform infrastructure for

persistent information can also provide a framework

for transparent consistency; this is important since

users will access the same information from many

di�erent devices, sometimes simultaneously. Today,

such sharing is often laboriously accomplished via

manual \synchronization".

Ubiquitous computing places several require-

ments on a persistent infrastructure. First, some

form of (possibly intermittent) connectivity must

be provided to computing devices, no matter how

small. Fortunately, increasing levels of connectiv-

ity are being provided to consumers through cable-

modems, DSL, cell-phones and wireless data ser-

vices. Second, informationmust be kept secure from
theft and denial-of-service (DoS). Since we assume

wide-scale connectivity, we need to take extra mea-

sures to make sure that information is protected

from prying eyes and malicious hands. Third, in-

formation must be extremely durable. This means

that changes should be submitted to the infrastruc-

ture at the earliest possible moment; sorting out the

proper order for consistent commitment may come

later. Further, archiving of information should be

automatic and reliable.

Finally, information must be divorced from lo-
cation. Centralized servers are subject to crashes,

DoS attacks, and unavailability due to regional net-

work outages. Further, although bandwidth in the

core of the Internet has been doubling at a incredi-

ble rate, latency has not been improving as quickly.

Also, connectivity at the leaves of the network is in-

termittent, of high latency, and of low bandwidth.

Thus, to achieve uniform and highly-available ac-

cess to information, servers must be geographically

distributed and should exploit caching close to (or

within) clients. As a result, we envision a model in

which information is free to migrate to wherever it

is needed, somewhat in the style of COMA shared



memory multiprocessors [28, 49].

1.1 OceanStore: a True Data Utility

As a rough estimation, we might imagine provid-

ing service to roughly 1010 users each with at least

10,000 �les. This means that OceanStore must sup-

port over 1014 �les. As mentioned above, network

connectivity is growing at a rapid pace, as is the

total amount of data storage and server hardware.

Unfortunately, despite the level of physical connec-
tivity enjoyed by Internet devices, most of these de-

vices are still disconnected at the protocol level. At
most, small subsets of devices (owned by individual

companies) serve as oases of connectivity to pro-

vide specialized services. The great opportunity for

reliability, availability, and scalability a�orded by

millions or billions of devices is lost.

We envision a cooperative utility model in which

consumers pay a monthly fee in exchange for ac-

cess to persistent storage. Such a utility should be

highly-available from anywhere in the network, em-

ploy automatic replication for disaster recovery, use

strong security by default, and provide performance

that is similar to that of existing LAN-based net-

worked storage systems under many circumstances.

Actual services would be provided by a confedera-

tion of companies. Each user would pay their fee

to one particular \utility provider", although they

could consume storage and bandwidth resources

from many di�erent providers; providers would buy

and sell capacity amongst themselves to make up

the di�erence. Airports or small caf�es could install

servers on their premises to give customers better

performance; in return they would get a small divi-

dend for their participation in global utility.

Ideally, a user would entrust all of his or her data

to the OceanStore; in return, the utility's economies

of scale would yield much better availability, per-

formance, and reliability than would be available

otherwise. Further, the geographic distribution of

servers would support deep archival storage, i.e.

storage that would survive major disasters and re-

gional outages. In a time when desktop worksta-

tions routinely ship with tens of gigabytes of spin-

ning storage, the management of data is far more ex-

pensive than the media to store it on. OceanStore

hopes to take advantage of this excess of storage

space to make the management of data seamless and

carefree.

1.2 Two Unique Goals

The OceanStore system has two design goals which

di�erentiate it from similar systems: (1) the ability

to be constructed from an untrusted infrastructure
and (2) support of nomadic data.

Untrusted Infrastructure: OceanStore as-

sumes that the infrastructure is fundamentally

untrusted. Servers may crash without warning or

leak information to third parties. This lack of trust

is inherent in the utility model and is di�erent

from other cryptographic systems such as [41].

Among other things, only clients can be trusted

with cleartext and all information that enters

the infrastructure must be encrypted. However,

rather than assuming that servers are passive

repositories of information (such as in CFS [6]), we

want servers to be able to participate in protocols

for distributed consistency management. To this

end, we must assume that most of the servers are

working correctly most of the time and that there

is one class of servers that we can trust to carry

out protocols on our behalf (but not trust with

the content of our data). This responsible party is

�nancially responsible for the integrity of our data.

Nomadic Data: In a system as large as

OceanStore, locality is of extreme importance.

Thus, we have as a goal that data can be cached

anywhere, anytime. We call this policy promiscu-
ous caching. Data which is allowed to ow freely

is called nomadic data. Note that nomadic data is

an extreme consequence of separating information

from its physical location. Although promiscuous

caching complicates data coherence and location,

it provides great exibility to optimize locality and

to trade o� consistency for availability. To exploit

this exibility, continuous introspective monitoring

is used to discover tacit relationships between ob-

jects. The resulting \meta-information" is used for

locality management. Promiscuous caching is an

important distinction between OceanStore and sys-

tems such as NFS [22] and AFS [51], in which cached

data is con�ned to particular servers, in particular

regions of the network. Experimental systems such

as XFS [5] allow \cooperative caching" [17], but this

is limited to systems connected by a fast local LAN.

Nomadic data lends itself to a number of \uid"

analogies: the aggregate collection of servers in the

world form an \ocean" of data; this data quickly

\ows" to where it is needed; individual caches

could be thought of as comprising \pools" of data.

This notion is illustrated in Figure 1.
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Figure 1: The OceanStore system. The core of the

system is composed of a multitude of highly con-

nected \pools". Clients connect to one or more

pools, perhaps intermittently.

The rest of this paper is as follows: Sec-

tion 2 shows sample applications of the OceanStore.

Section 3 gives a system-level overview of the

OceanStore system. Section 4 gives more architec-

tural detail, and Section 5 reports on the status of

the current prototype. Section 6 examines related

work. Concluding remarks are given in Section 7.

2 Example Applications

Before delving into the design of OceanStore, we

outline three classes of applications to motivate the

system and its architecture.

E-Mail: OceanStore provides a storage and distri-

bution system that can easily replace traditional e-

mail services. OceanStore users can receive their e-

mail within OceanStore by reserving an OceanStore

object as their \inbox". To send mail to such a user,

other users simply append messages directly to the

inbox object. Use of public-key cryptography per-

mits many users to append messages to the inbox,

but only permits a single person to read them. Al-

though this style of e-mail delivery will initially re-

quire proxies to translate SMTP, POP, and IMAP

requests into OceanStore requests, e-mail clients will

eventually invoke OceanStore interfaces directly.

To read e-mail, a client would invoke their favorite

reader program. This program would truncate mes-

sages from the beginning of the inbox and place

the resulting messages into a database-like structure

of folders within folders. Since this \mail reposi-

tory" would be in the OceanStore, copies would be

kept coherent automatically without explicit syn-

chronization operations (such as with IMAP [16]).

OceanStore objects, unlike e-mail addresses, are

not bound to speci�c servers. This location indepen-

dence combined with replication makes the system

more robust to failures and denial-of-service attacks.

Barring extensive network partitioning, a user is un-

likely to be out of e-mail contact for long. Note that

this example utilizes two styles of consistency: weak,

simultaneous updates to the e-mail inbox (as long as

updates are committed \atomically") and stronger

consistency for the e-mail repository.

Multimedia Applications: OceanStore pro-

vides an interesting platform for streaming multi-

media applications given its e�cient append and

truncate from beginning semantics on objects (see

Section 4.3). When objects are updated, new in-

formation is rapidly disseminated via \push-based"

mechanisms. This is a good match to the fact that

multimedia applications require e�cient and timely

delivery of new information. Note that extremely

weak update semantics may be used on streams,

permitting e�cient pipelining of updates. Further,

OceanStore's integral support of encryption permits

content-for-fee applications requiring strong secu-

rity guarantees.

Database Applications: As a �nal example,

OceanStore's update mechanism can support ACID

database semantics as long as the rate of conict-

ing transactions is reasonable. To achieve this, an

application uses the OceanStore API in a formof op-

timistic concurrency, packaging the read and write

sets into an OceanStore update packet and request-

ing update as long as no conicting transactions oc-

cur. The existence of transactions provides great

exibility to OceanStore clients.

3 System Overview

The fundamental unit of information in OceanStore

is the persistent object. Users interact with objects

to store information and to communicate with other

users. All naming, consistency, and access control

center around objects. Since objects may contain

pointers to other objects or names of other objects,

they can represent directories or local name spaces

(as in SDSI [48]) in addition to raw data. Hence,

OceanStore provides su�cient data semantics to

construct arbitrary persistent data structures.

OceanStore exploits recent gains in processor per-

formance, storage capacity, and network bandwidth

to achieve durability, stability, predictability, and
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security of objects while at the same time provid-

ing fast access. Redundancy and coding are used to

provide durability. Caching and excess bandwidth

are coupled with monitoring to yield predictable

performance. Extra processing cycles are used for

cryptographic protection of information. Mecha-

nisms such as multicast are used whenever possible

to push updates quickly to users. The OceanStore

API seeks to provide su�cient abstraction to enable

many interesting optimizations \under the covers";

the OceanStore utility exploits these opportunities.

The remainder of this section introduces some of

the salient features of the OceanStore system, cul-

minating with a description of the OceanStore API.

The actual implementation of these features is ex-

plored in greater detail in Section 4.

3.1 Version Based Consistency and

Deep Archival Storage

In principle, every update to an OceanStore object

creates a new version1. Consistency based on ver-

sioning, while more expensive to implement than

update-in-place consistency, provides for cleaner re-

covery in the face of system failures [56]. It also

obviates the need for backup and supports \perma-

nent" pointers to information.

OceanStore objects exist in both active and

archival forms. An active form of an object is the

latest version of its data together with a handle for

update. An archival form represents a permanent,

read-only version of the object. Archival versions

of objects are encoded with an erasure code and

spread over hundreds or thousands of servers [15];

since data can be reconstructed from any su�ciently

large subset of fragments, the result is that nothing

short of a global disaster could ever destroy informa-

tion. We call this highly redundant data encoding

deep archival storage.

3.2 Security, Encryption, and

Conict Resolution

OceanStore supports traditional access control no-

tions such as read and write permissions, owners,

and groups. Since servers may leak or corrupt

data, the underlying mechanisms used to support

those policies must be signi�cantly di�erent from

the trusted operating system code used by most sys-

tems. In general, we are concerned with two stan-

dard types of policy enforcement:

1In fact, groups of updates are combined to create new

versions, and we plan to provide interfaces for retiring old

versions, as in the Elephant File System [50].

� Restricting readers | In order to prevent unau-

thorized reads, we encrypt all data in the sys-

tem which is not completely public, and dis-

tribute the encryption key to those users with

read permission.

� Restricting writers | OceanStore writes must

be signed, so that well-behaved servers and

clients can verify them against an access con-

trol list. Since decisions to commit data are

performed by a quorum of servers, we can trust

that writes are only performed if allowed.

Note the asymmetry that has been introduced by

encrypted data: reads are restricted at clients

via key distribution, while writes are restricted at

servers by ignoring unauthorized updates.

The distributed server problem is fundamentally

more interesting in an untrusted infrastructure.

Here it is important to enforce secrecy and integrity

not only of the data in the system, but also of the

meta-data and the lookup process. For instance, a

user who looks up the �le ssh must check not only

that the �le she receives is signed appropriately, but

also that it is indeed ssh. Section 4.1 discusses this

issue in more detail. Further, servers must be able

to perform logging, commitment, and Bayou-style

conict resolution [18] without access to cleartext or
encryption keys. Although this restricted form of

computation on encrypted data might appear to be

impossible, it is not. Section 4.3 discusses our ap-

proach.

One of the most di�cult problems in OceanStore

is guaranteeing access to authorized parties. Foiling

denial-of-service attacks is an issue that OceanStore

tackles in several ways, including redundant re-

quests, rapid migration, and on-demand replication.

Since data is nomadic and replicated, OceanStore

presents no centralized target to attack.

3.3 Floating Replicas and the

Update Architecture

Objects which are being read or written must be

in an active state, i.e. composed of geographically

distributed oating replicas. As shown in Figure 2,

a oating replica contains a complete copy of the

object's data, its meta-data, and logs of uncommit-

ted updates. The term \oating replica" indicates

the presence of all of the major components of a

replica of a traditional database, while emphasizing

that an OceanStore replica is not tied to a particu-

lar physical server. To activate an inactive object,

OceanStore coalesces archival fragments of the lat-

est version of this object into oating replicas at
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Figure 2: An active object. Combining a public key and human-readable name via a secure hash gives a

global ID. The location mechanism take this ID and returns a pointer to a oating replica, which contains

the current data and a log of client-signed updates, as well as other administrative information.

several di�erent locations. Once an object is active,

client reads and writes are directed a nearby oat-

ing replica, which may reside on the client itself.

As updates are committed, the oating replicas co-

operate to produce new archival copies. Should an

object become inactive for a su�ciently long period

of time, its oating replicas are destroyed or \reab-

sorbed" into the infrastructure.

Floating replicas are organized into primary and

secondary tiers on a per-object basis and cooperate

with one another to provide consistent update se-

mantics (see Section 4.3). Members of the primary

tier are responsible for serializing updates. They

reside in the backbone of the network and com-

municate via a Byzantine-fault tolerant protocol,

such as [12]. The secondary tier rapidly dissem-

inates tentative commits to improve performance

and survivability. Update requests are similar to

updates in the Bayou system [18], in that they sup-

port conict resolution. Through its update mecha-

nisms, OceanStore supports a wide variety of com-

mit semantics, from extremely weak \eventual con-

sistency" semantics to ACID transactions.

3.4 Data Location and Introspective

Optimization

Unlike other systems, persistent objects in

OceanStore are free to migrate throughout the

infrastructure. This capability provides important

exibility for tuning the availability, durability,

and performance of object access. To support this

exibility, OceanStore employs a unique two-part

data location mechanism that combines a quick,

probabilistic search with a slower, guaranteed

traversal of a redundant and fault-tolerant backing

store (See Section 4.2). Every name, oating

replica, archival fragment and access-control list

is assigned a globally unique ID (GUID) derived

from a cryptographically secure hash function. The

location mechanism takes this GUID and returns

a pointer to the closest copy of the corresponding

object. Using a uniform lookup and caching struc-

ture allows everything, including names, ACLs, and

objects, to use the same resources for caching.

Given the exibility a�orded by the namingmech-

anism, OceanStore exploits a number of dynamic

optimizations to control the placement, number,

and migration of objects. We classify all of these

optimizations under the heading of introspection, an
architectural paradigm which formalizes the auto-

matic and dynamic optimization employed by \in-

telligent" systems. Introspection is used to direct

many aspects of the OceanStore system, as dis-

cussed in Section 4.5.

Also, OceanStore seeks to achieve \stability

through statistics", i.e. the use of many components

to achieve more predictable behavior. Introspection

is a major component of this strategy, dynamically

adjusting system resources to adapt to denial-of-

service attacks and regional outages of components.
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Figure 3: OceanStore client applications can choose

from the native API, or special purpose APIs for

database or �le system semantics.

3.5 The OceanStore API

There is little expectation of uniformity of either

the clients or the applications of OceanStore. Some

clients may be desktop workstations with constant

connectivity, while others may be personal dig-

ital assistants (PDAs) or cellular phones, which

only connect intermittently. Applications might ex-

pect �le system consistency semantics, require strict

ACID semantics, or design custom semantics to

achieve greater update performance or read avail-

ability. Finally, di�erent types of data might have

di�erent security needs.

In response to these diverse requirements, we plan

to o�er several di�erent Application Programming

Interfaces (APIs) through which OceanStore can be

accessed. A base API will provide access to the

full set of parameters, while user-level libraries will

provide traditional abstractions. Figure 3 illustrates

this layering of APIs.

The following list enumerates most of the obvi-

ous parameters that an OceanStore application or

library might wish to tune:

� Consistency guarantees | OceanStore's con-

ict resolution mechanisms combined with ap-

plication callbacks permit a range of consis-

tency requirements to be met.

� Security requirements | The level of security

is appropriate for the data. The access control

policy and limits to promiscuous caching can

both be varied.

� Archiving information |Users can specify how

quickly the data should be archived or forgot-

ten.

� Replication requirements | Replication degree

determines the level of durability and availabil-

ity for the data.

� Introspective hints | Automatic data place-

ment and prefetching can be assisted by users'

hints.

Of course, OceanStore is a new system in a world

of legacy code, and it would be unreasonable to ex-

pect the authors of existing applications to port

their work to an as-yet lightly deployed system.

Therefore, OceanStore will also provide a number

of layers which implement common APIs, including

Unix �le system semantics and simple transactions.

In addition, a gateway to the World Wide Web will

permit users to access legacy documents, while still

enjoying the performance advantages of promiscu-

ous caching.

4 System Architecture

In this section, we will describe underlying technolo-

gies that support the system of Section 3. We start

with security issues, such as naming and access con-

trol. We proceed with a description of the data lo-
cation mechanism, which must locate objects any-

where in the world. Next, we discuss issues involved

in consistency management for an untrusted infras-

tructure. After a brief word on the architecture for

archival storage, we �nish by describing the role of

introspection in OceanStore.

4.1 Security Issues

The untrusted infrastructure assumption provides

many unique challenges to OceanStore. First and

foremost, it imposes a requirement that all infor-

mation which is not public be encrypted. Below,

we describe the design elements of OceanStore that

allow secure operation in such an infrastructure.

4.1.1 GUIDs and Naming

At the lowest level, objects in the OceanStore are

identi�ed by a globally unique identi�er (GUID).

There are two distinct classes of objects in

OceanStore: read-only objects, such as archival ver-

sions, and oating replicas. The GUID of a read-

only object is a secure hash over the data. Every

version of every object is uniquely identi�ed in this

6



way. Clients requesting read-only data via its GUID

can easily verify that they received the proper data

by recomputing the hash. GUIDs for read-only ob-

jects are much like inodes in a traditional system,

except that they are valid for all time.

For replicas, on the other hand, GUIDs must be

chosen more carefully. We need a mechanism for

mapping human-readable names to GUIDs which

is decentralized and resistant to attempts by adver-

saries to \hijack" names which belong to other users.

We solve this problem by adapting the ideas of self-

certifying path names due to Mazi�eres [41]. Replica

GUIDs combine the human-readable name and the

public key of the owner using a cryptographically

strong hash such as SHA-1 [44]. This scheme allows

servers to verify an object's owner e�ciently, which

facilitates access checks and resource accounting2.

To permit veri�cation of the mapping from the name

to object data, all signatures over the data include

the GUID in the input.

The above scheme does not solve the problem of

generating a secure GUID mapping, but rather re-

duces it to a problem of secure key lookup, which

we address using the locally linked name spaces from

the SDSI framework [1, 48].

4.1.2 Access control

The owner of an object can securely choose the ac-

cess control list (ACL) for each object. The meta-

data for object foo contains a signed certi�cate,

which translates to \Owner says use ACL x for ob-
ject foo". The responsible party also signs the cer-

ti�cate, along with its expiration date. The speci-

�ed ACL may be another object, or may be a value

indicating a common default.

An ACL entry extending privileges must describe

the privilege granted and the signing key, but not

explicit identity, of the privileged users. We make

such entries publicly readable, so that servers can

check whether a write is allowed. We plan to adopt

ideas from systems such as Taos and PolicyMaker

to allow users to express and reason formally about

a wide range of possible policies [2, 3, 7, 35].

Restricting read access is entirely a matter of re-

stricting access to an encryption key. To revoke read

permission, the owner must request that replicas be

deleted or resigned with the new key. A recently-

revoked reader will be able to read old data from

cached copies or from misbehaving servers which

2Note that each user might have more than one public

key. They might also choose di�erent public keys for private

objects, public objects, and objects they share with various

groups.

fail to delete or re-key; however, this problem is not

unique to OceanStore. Even in a conventional sys-

tem, there is no way to force a reader to forget what

has been read.

4.1.3 Admission control

Clients and servers may not regard all other par-

ticipants in the OceanStore as equals. A business

may want OceanStore services internally, but not

allow external information on their servers. Or it

may want to ensure that critical data never leaves

physically secure servers owned by the company. In

the \ocean of data" metaphor, we need some way to

create guarded \bays". Therefore, we allow servers

to enforce a local policy for admission and export of

data.

OceanStore attempts to tackle denial-of-service

attacks on several fronts. Underlying everything is

a strict accounting of resource usage. In principle,

OceanStore has su�cient accounting to track and

reject excessive requests from a single source. In ad-

dition, OceanStore employs intelligent fault recog-

nition and automatic adaptation to heavy loads; see

Section 4.5.

4.2 Data Location

The role of data location is to provide a mapping

from GUIDs to oating replicas, access control lists,

or versions of data objects. The mechanism is a two-

tiered approach featuring a fast, probabilistic algo-

rithm backed up by a slower, reliable hierarchical

method. The local algorithm returns objects rapidly

if they are locally available. A large-scale hierarchi-

cal data structure in the style of Plaxton et. al. [46]

locates objects that cannot be found locally. This

data location mechanism is used uniformly through-

out the system along with secure pointers to validate

that the returned object is correct.

4.2.1 The Local Algorithm

The local algorithm is fully distributed and uses a

constant amount of storage per server. It is based

on the idea of hill-climbing: if a query cannot be

satis�ed by a server, local information is used to

route the query to a likely neighbor. A modi�ed

version of a Bloom �lters [8]|called an attenuated
Bloom �lter|is used to implement this potential

function.

An attenuated Bloom �lter of depth D can be

viewed as an array of D normal Bloom �lters. In

the context of our algorithm, the �rst Bloom �lter is
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forwarded to n3, (5) which veri�es that it has the object.

a record of the object contained locally on the cur-

rent node. The ith Bloom �lter is the merger of all

of the Bloom �lters for all of the nodes a distance i

through any path from the current node. An atten-

uated Bloom �lter is stored for each directed edge

in the network. A query is routed along the edge

whose �lter indicates the presence of the object at

the smallest distance. This process is illustrated in

Figure 4. Our current metric of distance is hop-

count, but in the future we hope to include a more

precise measure corresponding roughly to latency.

Also, \trust factors" can be applied locally to in-

crease the distance to nodes which have abused the

protocol in the past, automatically routing around

certain classes of attacks.

4.2.2 The Global Algorithm

The global algorithm for the OceanStore is a vari-

ation on Plaxton et. al.'s randomized hierarchical

distributed data structure, which embeds a tree in

the network and uses a pre�x-based labeling scheme

and per-node neighbor tables to maintain a good

path from every node to every object. Requests are

satis�ed optimally with high probability and docu-

ment motion updates require O(logn) messages in

the number of servers.

The algorithm is sensitive to a number of di�erent

failures, so we introduce a modi�ed version for use

in OceanStore. A small, constant number of label-

ing schemes can be used to decrease the dependency

on a single root. Since true updates are expensive,

the backing store can pro�t by storing forwarding

pointers to regions in the OceanStore where a local

search is guaranteed to �nd the object. This al-

lows small-scale object migration without requiring

expensive tree updates.

4.3 Update Model

The OceanStore model of updates involves conict
resolution, as introduced in the Bayou system [18].

Conict resolution supports a wide range of consis-

tency semantics, but requires the ability to perform

server-side computations on data. In an untrusted

infrastructure, servers have access only to cipher-

text, and no one server is trusted to perform com-

mits. Both of these issues complicate the update

architecture. In the following paragraphs, we de-

scribe the issues and our progress towards solving

them.

8



4.3.1 The Bayou Mechanism

Application speci�c conict resolution as presented

in Bayou provides a mechanism for the automatic

handling of update conicts in a weakly-consistent

storage system. Each update consists of three parts:

a dependency check, an update set, and a merge pro-

cedure. To apply an update, a server �rst runs the

dependency check against its version of the given

object. If the check succeeds, the update set is ap-

plied to the object; otherwise, the merge procedure

is executed to resolve the conict.

Updates are propagated between servers in the

system via a process called anti-entropy, which

is similar to log shipping [43, 25] in a replicated

database. Until an update reaches a speci�c server,

called the primary server, it is considered tentative.
The primary server serializes the update with re-

spect to other updates on the same data object; at

that point the update is said to have committed.
Bayou supported a number of applications, in-

cluding a group calendar, a shared bibliographic

database, and a mail application [19]. However, the

model can be applied more generally. For instance,

Coda [31] provided speci�c merge procedures for

conicting updates of directories; this type of con-

ict resolution is easily supported under the Bayou

model. Slight extensions to the Bayou model can

support Lotus Notes-style conict resolution, where

unresolvable conicts result in a branch in the ob-

ject's version stream [30]. Finally, the Bayou model

can be used to provide ACID semantics: the predi-

cate becomes the read set of a transaction, the up-

date becomes the write set, and the merge predicate

always fails3.

4.3.2 Extending the Bayou Mechanism to

Work over Ciphertext

In OceanStore, servers are not trusted with un-

encrypted information. This complicates all three

server-side Bayou operations: computing predi-
cates, applying modi�cations, and performing merge.
Since arbitrary computations and manipulations on

ciphertext are still intractable, this leads us to aban-

don the notion of a general merge procedure, using

a list of alternate predicate-update pairs instead.

Fortunately, a number of powerful but specialized

operations can be applied to encrypted data. For

instance, the following predicates are currently pos-

sible:

3This is similar to optimistic concurrency control as dis-

cussed in [34].

insert
encrypted

Block 43
Block 42
Block 41

Block 41.5

Block 41

Block 43

Block 42

Figure 5: Block insertion on ciphertext. The client
wishes to insert block 41.5, so she appends it and

block 42 to the object, then replaces the old block 42

with a block pointing to the two appended blocks.

The server learns nothing about the contents of any

of the blocks.

� compare-version (version-id) | Check that the

version of this object is greater than version-id.

� compare-size (size) | Compare the size of this

object to size.

� compare-block (block-no, expected-value) |

Compare a block of an object against a given

expected value.

� search (search-string) | Does the given string

occur within the object? If so, how many times

does it occur?

The �rst two predicates are trivial since they are

over the unencrypted meta-data of the object. The

compare-block operation is easy if the encryption

technology is a position-dependent block cipher: the

client simply encrypts the given block and submits

it along with the block number for comparison.

Perhaps the most impressive of these predicates is

search, which can be performed directly on cipher-

text [54]; this operation reveals only that a search

was performed along with the encrypted result. The

cleartext of the search string is not revealed, nor can

the server initiate new searches on its own.

In addition to these predicates, the following op-

erations can be applied to ciphertext:

� replace-block (block-no, new-value) |Modify a

block to have the given new value.

� insert-block (block-no, value) | Insert a new

block into the object.

� delete-block (block-no) | Remove the given

block from the object.

� append (value) | Append the given block to

the object. (This operation and the next are

useful for streaming media data objects.)
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� truncate-from-start (num-blocks) | Remove

the �rst num-blocks from an object.

Again assuming a position-dependent block cipher,

the replace-block and append operations are sim-

ple for the same reasons as compare-block. The

truncate-from-start operation is trivial, leaving only

the insert-block and delete-block operations.
These last two operations can be performed by

grouping all blocks of the object into two sets, in-

dex blocks and data blocks, where index blocks con-

tain pointers to other blocks elsewhere in the ob-

ject, similar to inodes in the Unix FS [42]. Insertion

involves replacing the block at the insertion point

with a new block that points to the old block and

the inserted block, both of which are appended to

the object. Deletion involves replacing the block in

question with an empty pointer block. This scheme

is illustrated in Figure 5. Note that it leaks a small

amount of information and thus might be suscepti-

ble to tra�c-analysis; users uncomfortable with this

leakage can simply append encrypted log records

to an object and rely on powerful clients to occa-

sionally generate and re-encrypt the object in whole

from the logs.

The schemes presented in this section clearly im-

pact the format of objects. However, these schemes

are the subject of ongoing research; more exible

techniques will doubtless follow.

4.3.3 Serializing Updates in an Untrusted

Infrastructure

Bayou relies on a single primary server to pick its

�nal order of updates. Unfortunately, trusting any

one replica to perform this task is incompatible with

the untrusted infrastructure on which OceanStore

is based. Thus, we replace this primary server with

a primary tier of oating replicas. These replicas

cooperate with one another via a Byzantine fault-

tolerant algorithm to choose the �nal commit order

for updates. A secondary tier of replicas communi-

cates amongst themselves and the primary tier via

an enhanced epidemic algorithm, as in Bayou.

The decision to use two classes of oating repli-

cas is motivated by several considerations. First,

all known protocols that are tolerant to arbitrary

replica failures are too communication-intensive to

be used by more than a handful of replicas. The pri-

mary tier thus consists of a small number of repli-

cas located in high-bandwidth, high-connectivity re-

gions of the network4. Since existing protocols for

4We also assume that the client's responsible party par-

ticipates in the primary tier and so assists in guaranteeing

commitment.

serialization by a group of replicas do not include

provisions for later o�-line veri�cation by a party

who did not participate in the protocol, we are ex-

ploring techniques like veri�able secret sharing [11]

to allow o�-line auditing of the serialization process.

To this end, our group is currently investigating ex-

tending the protocol in [12] to allow for quick o�-line

validation.

Some applications may gain performance or avail-

ability by requiring a lesser degree of consistency

than ACID semantics. These applications are

well supported by the secondary tier of replicas in

OceanStore. Secondary replicas can be more numer-

ous than primary replicas and exist at the leaves

of the network. They make use of multicast or

other transport mechanisms to quickly push ten-

tative commits amongst themselves and to decide

a tentative serialization order. This property aids

streaming applications, since data is rapidly and ef-

�ciently distributed to replicas. Since the serializa-

tion decisions of the secondary tier are tentative,

they may be safely decided by untrusted servers;

applications requiring stronger consistency guaran-

tees must simply wait for their updates to reach the

primary replicas. We intend to provide session guar-

antees for individual clients, much in the avor of

Bayou [57].

4.4 Deep Archival Storage

The archival mechanism of OceanStore employs

erasure codes, including interleaved Read-Solomon

codes [45] and Tornado codes [37]. Erasure coding is

a process which treats input data as a series of frag-

ments (say n) and transforms these fragments into

a greater number of fragments (say 2n or 4n). The

essential property of the resulting code is that any n

of the coded fragments are su�cient to construct the

original data5. Assuming that we spread coded frag-

ments widely, it is very unlikely that enough servers

will be down to prevent the recovery of data. We

call this arrangement deep archival storage.
For the user, we provide a naming syntax which

explicitly incorporates version numbers. Such

names can be included in other documents as a form

of permanent hyper-link. In addition, interfaces will

exist to examine modi�cation history and to set ver-

sioning policies [50].

New archival copies are generated at regular in-

tervals and after a user-selected number of updates.

Although in principle every version of every object is

5Tornado codes, which are faster to encode and decode,

require slightly more than n fragments to reconstruct the

information
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archived, clients can choose to produce versions less

frequently. Archival copies are also produced when

objects are idle for a long time or before objects

become inactive. When generating archival frag-

ments, the oating replicas of an object participate

together: they each generate a disjoint subset of the

fragments and send this subset into the infrastruc-

ture.

To maximize the survivability of archival copies,

we identify and rank administrative domains by

their reliability and trustworthiness. Of key im-

portance is to avoid dispersing all of our fragments

to locations that have a high correlated probabil-

ity of failure. Further, the number of fragments

(and hence the durability of information) will be

determined on a per-object basis. As mentioned in

Section 4.5.3, OceanStore contains processes which

slowly sweep through all existing archival data, re-

pairing or increasing the level of replication to fur-

ther increase durability.

To reconstruct archival copies, OceanStore con-

sults the global location index (Section 4.2), which

stores the location of every fragment. The search

for fragments is keyed o� the GUID of archival ver-

sions. This search has nice locality properties since

closer fragments tend to be discovered �rst. When

activating an inactive object, we initiate search in

several di�erent locales simultaneously, one for each

oating replica. Note that we can make use of ex-

cess capacity to insulate ourselves from slow servers

by requesting more fragments than we absolutely

need and reconstructing the data as soon as we have

enough fragments.

4.5 Introspection

The e�ort required to optimize a system increases

with its size and complexity. As envisioned,

OceanStore would consist of millions of individual

servers, each of which di�er in connectivity, disk

capacity, and computational power. New servers

or disk devices will come online sporadically. The

loads on individual servers will vary frommoment to

moment. Hence, manually tuning a system as large

and varied as OceanStore is completely implausible.

Worse, in the utility model, manual tuning would

involve cooperation between competing administra-

tive domains.

To address this problem, OceanStore employs in-
trospection, an architectural paradigm that mimics

adaptation in biological systems. As shown in Fig-

ure 6, introspection augments system functionality

(computation), with observation and optimization.
Observation modules monitor the activity of a run-

Observation
Optimization

Computation

Figure 6: The Cycle of Introspection

ning system and keep a historical record of system

behavior. They also employ sophisticated analyses

to extract patterns from these observations. Opti-
mization modules use the resulting analysis to ad-

just or adapt the computation. Introspection gen-

erates non-linear feedback that can be directed to

enhance or dampen system variations.

OceanStore uses introspection to select the place-

ment and number of oating replicas, to prefetch

information, and to monitor and repair the level

of redundancy. Introspection also helps to improve

the quality of service. Although we have insu�cient

space to describe these in detail, we will give a avor

for our techniques in the following paragraphs.

4.5.1 Adaptive Replica Management

Both the number and location of oating replicas

greatly a�ect availability and performance. A high

degree of replication increases availability and de-

crease access latency. For read-only objects, this

is clearly desirable. For frequently written objects,

however, each replica increases the e�ort and over-

head required to maintain consistency. An optimal

placement and degree of replication, even if it could

be computed, would vary from moment to moment

as clients moved or changed their behavior.

In OceanStore, each oating replica tracks client

requests and measures the server load consumed

when servicing these requests. This information is

distilled and used to decide whether the oating

replica should migrate closer to the source of client

requests or toward the centroid of a group of updat-

ing clients. The information is also used to decide

when a oating replica should spawn a copy of itself

or be destroyed. At the same time, servers extract

knowledge of the network topology from routing in-

formation collected during data location. This in-

formation is used to select which neighboring server

will receive new replicas.

Unfortunately, compromised servers may wreck

havoc by initiating excessive migration or by im-
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properly destroying oating replicas. OceanStore

takes a conservative approach in preventing adver-

saries from spoo�ng introspection. First, gratuitous

migration is masked through hysteresis. Further,

we ignore requests not properly authenticated by

clients and are careful to gather and contrast infor-

mation from a number of di�erent sources before we

act on it. Finally, serious decisions such as the de-

struction of a replica involve agreement by a quorum

of its peers.

4.5.2 Prefetch and Pro-Active Migration

Access to distant data in OceanStore could incur

high latency. We are investigating two categories of

data prefetch to ameliorate this latency: on-demand

prefetch of clusters of related objects and pro-active

migration of objects (or clusters) before they are

needed. By migrating complete clusters of related

objects, OceanStore seeks to improve average ac-

cess time. A simple example is the set of pages

linked from a given web page; some of these will be

accessed after the base page with high frequency.

Clustering these pages exploits this semantic infor-

mation in order to increase prefetch coverage.

Each client includes introspective monitoring that

examines the client's access stream to determines

the semantic distance [33] between objects as ac-

cessed by a given client; semantic distance is a met-

ric that attempts to capture the degree of \related-

ness" between di�erent objects. This information

is collected over time for a better characterization

of access behavior6. The result of this monitoring

is a weighted, directed graph of distances between

objects. This graph is partitioned by a clustering

algorithm to discover clusters of related objects.

Other introspective monitors track access pat-

terns to clusters as a whole. These patterns are

analyzed via time-series techniques such as Hidden

Markov Models or Kalmann �lters to discover clus-

ter orbits (repeated patterns over time). Examples

include users who spend their weekdays at work,

evenings at home, and weekends at a cabin. Their

data should be waiting for them when they arrive at

each new venue. We hope to extract such patterns

and migrate data to places where it will be needed

in the future.

4.5.3 Stability and Durability Enhancement

If not properly checked, nearly any optimization in

the OceanStore can cause instability. In one sce-

6There is an interesting tradeo� here between privacy and

optimization bene�ts; we are still exploring these issues.

nario, data could oscillate wildly fromplace to place,

resulting in a decreased quality of service. Un-

der high load, the possibility of a \data brownout"

arises. We are investigating ways in which monitor-

ing can make global adjustments to stabilize mean

response time and variance. This is a form of nega-

tive feedback for stabilization.

In addition, the durability of data stored in the

OceanStore is imperative. The design of the sys-

tem ensures that data is protected from a reason-

able numbers of failures and localized attacks. To

increase durability further, OceanStore includes in-

trospective mechanisms which perform \sweep and

repair" functionality. Two key subsystems are

targeted by this functionality: the data location

mechanism, and the archival storage mechanism.

For the global data location structure, we contin-

ually rebuild the search tree and pointers for data.

For archival data, OceanStore servers slowly sweep

through all fragments, increasing the level of repli-

cation when necessary.

5 Status

We are currently implementing an OceanStore

prototype, designed for \read-mostly" workloads,

which we will deploy for testing and evaluation. The

system is written in Java, using Jaguar [59] and a

state machine-based request model for fast I/O. Ini-

tially, OceanStore will communicate with legacy ap-

plications both through a UNIX �le system interface

and a read-only proxy for the World Wide Web.

We have explored the requirements which our se-

curity guarantees place on a storage architecture.

Speci�cally, we have explored di�erences between

enforcing read and write permissions in an untrusted

setting, emphasizing the importance of the ability

of clients to validate the correctness of any data re-

turned to them. This included not only checking the

integrity of the data itself, but also checking that the

data requested was the data returned, and that all

levels of metadata were protected as strongly as the

data itself. A prototype cryptographic �le system

provided a testbed for speci�c security mechanisms.

A prototype for the data location component has

been implemented and veri�ed. Simulation results

show that our algorithm �nds nearby objects with

near-optimal e�ciency.

We have implemented prototype archival systems,

which use both Reed-Solomon and Tornado codes

for redundancy encoding. Although only one half

of the fragments were required to reconstruct the

object, issuing requests for extra fragments proved
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bene�cial, due to dropped requests.

We have implemented the introspective prefetch-

ing mechanism for a local �le system. Testing

showed that the method correctly captured high-

order correlations, even in the presence for noise.

That mechanismwill be combined with an optimiza-

tion module appropriate for the wide-area network.

6 Related Work

Distributed systems such as Taos [3, 35] assume

untrusted networks and applications, but rely on

some trusted computing base. Cryptographic �le

systems such as Blaze's CFS [6] provide end-to-end

secrecy, but include no provisions for sharing data,

nor for protecting integrity independently from se-

crecy. The Secure File System [29] supports sharing

with access control lists, but fails to provide inde-

pendent support for integrity, and trusts a single

server to distribute encryption keys.

SDSI [1, 48] and SPKI [20] address the problem

of securely distributing keys and certi�cates in a de-

centralized manner. PolicyMaker [7] deals with the

description of trust relations. Mazi�eres proposes

self-certifying paths to separate key management

from system security [40, 41].

Bloom �lters [8] are commonly used as com-

pact representations of large sets. The R* dis-

tributed database [38] calculates them on demand

to implement e�cient semijoins. The Summary

Cache [21] pushes Bloom �lters between cooperating

web caches, although their method does not scale

well.

Distributing data for performance, availability, or

survivability has been studied extensively in both

the �le systems and database communities. A sum-

mary of distributed �le systems can be found in [36].

In particular, Bayou [18] and Coda [31] use replica-

tion to improve availability at the expense of con-

sistency and introduce specialized conict resolution

procedures. Neither system addresses the range of

security concerns that OceanStore does, although

Bayou examines some problems that occur when

replicas are corrupted [55].

Gray et. al. argue against promiscuous replication

in [26]. OceanStore di�ers from the class of systems

they describe because it does not bind oating repli-

cas to speci�c machines, and it does not replicate all

objects at each server.

OceanStore's second class of oating replicas are

similar to transactional caches; in the taxonomy

of [23] our algorithm is detection-based and per-

forms its validity checks at commit time. In contrast

to such systems, our merge predicates decrease the

number of transactions aborted due to out-of-date

caches.

Many previous projects have explored feedback{

driven adaptation in extensible operating sys-

tems [52], databases [13, 14], �le systems [39], global

operating systems [9], and storage devices [10, 60].

Although these projects employ di�ering techniques

and terminology, each could be analyzed with re-

spect to the introspective model.

The Seer project formulated the concept of se-

mantic distance [33] and collects clusters of related

�les for automated hoarding. Others have used

�le system observation to drive automatic prefetch-

ing [27, 32].

Introspective replica management for web content

was examined in AT&T's Radar project [47], which

considers read-only data in a trusted infrastructure.

The Mariposa project [53] addresses inter-domain

replication with an economic model. Others opti-

mize communication cost when selecting a new lo-

cation for replica placement [4] within a single ad-

ministrative domain.

The Intermemory project [24] uses Cauchy Reed-

Solomon Codes in a distributed storage system.

Such codes tolerate fewer simultaneous failures than

those used in OceanStore. Additionally, we antic-

ipate that our combination of active and archival

object forms will allow greater update performance

than such systems, while retaining their survivabil-

ity bene�ts.

7 Conclusion

The rise of ubiquitous computing has spawned an

urgent need for persistent information. In this pa-

per, we presented OceanStore, a utility infrastruc-

ture designed to span the globe and provide secure,

highly available access to persistent objects.

Two properties distinguish OceanStore from

other systems: the untrusted infrastructure and sup-
port for truly nomadic data. We assume that servers

may be run by adversaries and cannot be trusted

with cleartext; as a result, server-side operations

such as conict-resolution must be performed di-

rectly on encrypted information. Nomadic data per-

mits a wide range of optimizations in which informa-

tion access can be optimized by bringing it \close"

to where it is needed. These optimizations are as-

sisted by introspection, the continuous online collec-
tion and analysis of access patterns. Nomadic data

also enables rapid response to regional outages and

denial-of-service attacks.
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OceanStore is under construction. This paper

presented many of the design elements and algo-

rithms of OceanStore; several have been imple-

mented. Hopefully, we have convinced the reader

that an infrastructure such as OceanStore is possi-

ble to construct; that it is desirable should be obvi-

ous.
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