
© Copyright IBM Corp., 2000, 2004. All rights reserved.

OS/390 Assembler Programming Introduction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 2 of 58

Assemblers

What are Assemblers?

In the very early days programmers wrote in
Machine Language. It was a slow, tedious and
error prone process, only feasible for short and
simple programs. To simplify the task of
Programming and allow larger programs to be
created, programs called Assemblers were
created.

Continued…

00011000 0001100001000000 0000100011010010 00001111

ASSEMBLER LANGUAGE

MVC PLACE 1, PLACE 2

Concepts

Unit: Assembler Language Overview Topic: Language Hierarchy

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 3 of 58

Assemblers (cont’d)

Assembler allowed programmers to write in
Assembler Language. Although an Assembler
Language program had the same number of
instructions as the equivalent machine program,
writing Assembler program is much simpler.

In Assembler Language, operations are
represented by mnemonic codes (such as MVC
for MOVE) and the data is represented by
symbolic codes (such as PLACE1) rather than
addresses.

Continued…

M
E

N
E

M
O

N
IC

 C
O

D
E

S
Y

M
B

O
LIC

 N
A

M
E

S

00011000 0001100001000000 0000100011010010 00001111

ASSEMBLER LANGUAGE

MVC PLACE 1, PLACE 2

Concepts

Unit: Assembler Language Overview Topic: Language Hierarchy

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 4 of 58

What is a High Level Language?

High Level Languages (HLL) go one step further
than Assembler languages in simplifying the
programming task.

In a HLL, the program is expressed at a higher
level of abstraction.

An Assembler language program might contain
five or ten times as many instructions as the same
program written in a HLL.

High Level Languages

Continued…

ADD A TO B

COBOL
HLL (COBOL)

PACKX,A (11110010.........)
PACKY,B (11110010.........)
AP X,Y (11111010......…)
UNPKB,X (11110011.........)

Concepts

Unit: Assembler Language Overview Topic: Language Hierarchy

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 5 of 58

Listed below are some examples of HLL:

� Fortran – first HLL language in general
use, developed for scientific and general
computing

• COBOL – another early HLL, designed
to facilitate the programming of business
and commercial programs

• C – most popular in use today for a wide
range of programming tasks

• C++ and Smalltalk – object oriented
languages that are becoming
increasingly popular

High Level Languages (cont’d)

Continued…

COBOL

FORTRAN

C

C**

ADD A TO B GIVING C

C=A+B

C:=A+B; /*ADD A TO B*/

- C:=A+B; //ADD A TO B

Concepts

Unit: Assembler Language Overview Topic: Language Hierarchy

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 6 of 58

What are the advantages of HLL over
Assembler Language?

HLL is advantageous over Assembler Language
because of the following reasons:

• Ease of development
• Portability

What is the advantage of Assembler
Language?

Assembler Language contains statements that
correspond instruction by instruction to the
Machine Language of the computer.

Advantages of HLL and Assembler Language

S/390
Assembler

S/390 Processor

INTEL
Assembler

INTEL Processor

S/400
Assembler

AS/400 Processor

RS/6000
Assembler

RS/6000 Processor

Concepts

Unit: Assembler Language Overview Topic: Language Hierarchy

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 7 of 58

Why program in Assembler Language?

Assembler Language is chosen for programming
because of the following reasons:

• It provides extensive control of the
hardware environment

• Assembler Language instructions
correspond one-for-one with machine
instructions making it possible to do
anything the hardware allows

HLLs on the other hand, do not provide the
programmer with extensive control of the
hardware. The efficiency of a HLL program is
subject to the way the compiler translates the HLL
program.

Advantages of Assembler Language

Continued…

ASSEMBLER ADVANTAGES

Control of environment����

Concepts

Unit: Assembler Language Overview Topic: Language Hierarchy

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 8 of 58

Assembler may also be considered when
efficiency is a major concern.

A compiler must be designed to translate all
possible valid combination of HLL code, and in
some cases may not translate it to produce the
most efficient Machine Language. Assembler
instructions are translated one-for-one into
Machine Language, and a good Assembler
programmer can achieve the maximum efficiency
of Machine Language code.

Advantages of Assembler Language (cont’d)

Continued…

ASSEMBLER ADVANTAGES

Control of environment����
Maximum efficiency����

Concepts

Unit: Assembler Language Overview Topic: Language Hierarchy

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 9 of 58

It may not be necessary to code a whole program
in Assembler Language to achieve the benefits of
increased efficiency. Coding only those parts of a
program which are executed frequently may
achieve significant efficiency gains.

In many cases, Assembler coding is not done for
a whole system or even a whole program, but
only for selected modules.

Advantages of Assembler Language (cont’d)

Concepts

Unit: Assembler Language Overview Topic: Language Hierarchy

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 10 of 58

Program Execution

What is an Image?

In order for a program to execute, it must be
loaded into the memory or main storage area of
the computer. The image is a program which is
loaded into the memory in order to execute in the
Assembler program space.

What does the program space consist of?

A program space consists of:
• Executable Machine Language

instructions
• Areas to store the program’s variable

data
• The program’s constant data
• File definitions for use in Input/Output

operations

Continued…

Machine Language Instructions
Variable Data
Constant Data
File Definitions

10110010

8 BITS

1 BYTE

ADDRESS SPACE

Concepts

Unit: Assembler Language Overview Topic: Assembler Program Components

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 11 of 58

General Purpose Registers

What are General Purpose Registers?

The architecture of S/390 computers
provides 16 General Purpose Registers

(GPRs). GPRs are part of the hardware of the
computer, and can be used by any Assembler
program when executing.

What are the functions of GPRs?

GPRs are very important to the Assembler
programmer. They are used in addressing both
instruction and data, and also for performing
binary arithmetic, counting for loops and many
other purposes.
GPRs are also used in conventional ways,
passing control and data from one module to
another.

Continued…

Executable Instructions

Constants

General Storage Areas

File Definitions

I/O Areas

Other

ADDRESS SPACE

General Purpose Registers

0 1 2 15

Concepts

Unit: Assembler Language Overview Topic: Assembler Program Components

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 12 of 58

General Purpose Registers (cont’d)

Essentials of GPRs

Effective management of GPRs is a basic skill
required of the Assembler programmer. It is
important to know which registers are available
and for what purposes specific GPRs must be
reserved.

0 1 2 153

Binary
Arithmetic

Address
Values

Concepts

Unit: Assembler Language Overview Topic: Assembler Program Components

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 13 of 58

Data Control Block Definition

What is a DCB ?

A file definition, called a Data Control Block
(DCB) must be created for each file the
Assembler programmer wishes to access in a
program. The DCB is a special kind of data area,
which maintains information about an external
file. The DCB is created using a system macro
instruction.

The DCB contains the following:

• Name used to refer to the data
• The format and size of the records and

blocks within the dataset
• Types of instructions used to access the

dataset and the current status of the
dataset

Executable Instructions

Constants

General Storage Areas

File Definitions

I/O Areas

ADDRESS SPACE

INFILE …, …,
OUTFILE …, …,

File Definitions - DCB

Concepts

Unit: Assembler Language Overview Topic: Assembler Program Components

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 14 of 58

Macro Instructions

What are macro instructions?

Assembler Language instructions generally
correspond one-for-one with Machine Language
instructions. However there are some situations
where it is not feasible for the Assembler
Language programmer to code at this detailed
level.

To help the programmer cope with such complex
situations, the Assembler provides macro
instructions. A macro instruction is an instruction
that is processed by the assembler to generate a
group of Assembler instructions.

Continued…
Concepts

Unit: Assembler Language Overview Topic: Assembler Program Components

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 15 of 58

Macro Instructions Definition (cont’d)

What are macro instructions?

The I/O macro instructions like OPEN, CLOSE,
GET, PUT and ENTRÉE create multiple
Assembler instructions to perform the specific I/O
operation required.

The DCB macro instruction generates the various
data areas and constants necessary to maintain
information about an external file. The Assembler
program only has to know how to handle I/O at a
high level. The expansion of the macro instruction
into multiple low level instructions generates the
detailed level code.

BEGIN ENTREE
NEXT MVC

SR
AR

etc

+BEGIN ENTREE
+BEGIN STM
+ BALR
+ USING
+ ST
+ LA
+ ST
+ LR
NEXT MVC

SR
AR

etc

Program Source Code Program Source Code

Concepts

Unit: Assembler Language Overview Topic: Assembler Program Components

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 16 of 58

What are registers?

Registers are another location where operands
reside in an Assembler Language program. There
are several registers in S/390 architecture.

Types of registers in S/390 architecture are:

• General Purpose Registers (GPRs)
• Floating Point Registers (FPRs)
• Control Registers
• Access Registers
• Vector Registers

Registers

General Purpose
Registers (GPRs)

Floating - Point
Registers (FPRs)

Control Registers

Access Registers

Vector Registers

GPR – Used by the
Programmer for Storage
Address, Accumulator
and Work Area.

FPR – Performs Floating
Point Arithmetic.

Control Registers and
Access Registers –
Used by the Operating
System.

Vector Registers – Used
for advanced math
calculations

Concepts

Unit: S/390 Memory Usage Topic: Hardware Components

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 17 of 58

What are General Purpose Registers (GPRs)?

GPRs are of the most interest to programmers.
There are 16 general purpose registers (GPRs),
numbered from 0-15. They are referred to with a
prefix of R (R0, R1, R2…. R15).

The GPRs are 32 bits in length and can hold
fixed-point values between -2, 147, 483, 648, and
+2, 147, 483, 647.

GPRs are used as:
• Part of the address for all storage

operands
• As accumulators and work areas in

performing fixed-point arithmetic

0 31BITS

R0 R1 R15

1 byte

General Purpose Registers

1 byte 1 byte 1 byte

Concepts

Unit: S/390 Memory Usage Topic: Hardware Components

General Purpose Registers

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 18 of 58

Program Status Word

What is a Program Status Word (PSW)?

The Program Status Word is a hardware location
where the current status of the Central
Processing Unit (CPU) is represented. It is a
register that is of particular interest to the
Assembler Language programmer.

Amongst other fields, the PSW contains:

• The address of the next instruction to be
executed

• The current value of the condition code
(CC)

• Other flags, such as the one to indicate
whether the CPU is in problem state or
supervisor state

C P CC Program
Mask 0000 0000

0000 0000 Instruction Address

0 8 12 18 20 24

32 40 63

31

Program Status Word (EC Mode)

Concepts

Unit: S/390 Memory Usage Topic: Hardware Components

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 19 of 58

Arithmetic Instructions

Although EBCDIC represents numbers in
character form, it cannot be used for arithmetic
operations.

What are the kinds of arithmetic instructions?

Fixed-Point (Binary) arithmetic and Decimal
arithmetic are integer based, handling only whole
numbers . Floating-Point arithmetic handles real
numbers, numbers with fractional portions.

Briefly look at each of the types and how it
is used to represent numeric values.

Fixed Point
(Binary)

Decimal:
Zoned Decimal
Packed Decimal

Floating Point:

0111111111111111

F3F2F7F6C7
32767C

278.31924

Concepts

Unit: S/390 Memory Usage Topic: Data Representation

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 20 of 58

Fixed-Point Arithmetic

What is Fixed-Point arithmetic?

Fixed-Point arithmetic uses three data types:
• Full words – sometimes called a word, is

four bytes (32 bits) in length
• Half words – 2 bytes (16 bits) in length
• Double words – 8 bytes (64 bits) in

length

What do fixed-point numbers consist of?

Fixed-point numbers consist of two parts, a sign
and a magnitude. The sign is in the leftmost, or
high-order bit, and the magnitude occupies the
rest of the field.

A zero bit represents a positive sign, a one bit a
negative sign.

Continued…

HALFWORD = 2 bytes

FULLFWORD = 4 bytes

DOUBLEWORD = 8 bytes

0 2

0 4

0 8

2 bytes x 8 Bits = 16 Bits

4 bytes x 8 Bits = 32 Bits

8 bytes x 8 Bits = 64 Bits

HALF

FULL

DOUBLE

0 0 0 0 1 0 0 1

Magnitude

Sign

Concepts

Unit: S/390 Memory Usage Topic: Data Representation

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 21 of 58

Fixed-Point Arithmetic (cont’d)

For positive numbers, the magnitude is
represented in true binary. A half word value of
+25 would be represented as:

0000 0000 0001 1001

For negative numbers the magnitude is expressed
in twos-complement form. To convert a binary
value to twos-complement, flip all the bits, change
1s to 0 and 0s to 1, and then add one. A halfword
value of -25 would be represented as:

1111 1111 1110 0111

Halfword Value of + 25

0000 0000 0001 1001

Halfword Value of - 25

1111 1111 1110 0110

1111 1111 1110 0111

1TWOS-COMPLEMENT

= +25
REVERSE
BITS

ADD + 1
= -25

Concepts

Unit: S/390 Memory Usage Topic: Data Representation

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 22 of 58

Leading Zeros and Twos-complement

Leading zeroes

Note that in positive numbers, leading zeroes (0s)
are insignificant, and in negative numbers, leading
one (1s) are insignificant. In general, bits equal to
the sign bit are insignificant.

Twos-complement

Twos-complement notation used to represent
negative fixed-point numbers makes doing
arithmetic easy for the computer.

Positive Numbers:

0000

1111

1000 0001

0111 1111

Negative Numbers:

Leading Ones

Leading Zeros

Concepts

Unit: S/390 Memory Usage Topic: Data Representation

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 23 of 58

Types of Decimal Numbers

Decimal numbers are of the following two types:

• Zoned Decimal
• Packed Decimal

What is packed decimal?

Packed decimal requires less storage than
EBCDIC, since each number is represented by
half a byte (4 bits). Arithmetic is only done on
packed decimal numbers.

What is zoned decimal?

Zoned decimal is an intermediate format, used in
converting numbers from characters to packed
decimal. Packed numbers can be from 1 to 31
digits in length, while zoned can be from 1 to 16
digits.

to
DIGITS

1 16

Zoned Decimal

to
DIGITS

1 31

Packed Decimal

Concepts

Unit: S/390 Memory Usage Topic: Data Representation

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 24 of 58

Zoned Decimal Number

What is a zone nibble?

Each byte in a zoned decimal number consists of
a zone nibble and a numeric nibble. The zone
nibble is the first half of each byte, and the
numeric nibble is the second half.

Each numeric nibble contains the decimal digit
value for that position. All zone nibbles except the
rightmost contain the hex value F (one one
binary). The rightmost nibble contains the sign.
The hex character C represents a positive sign
and D represents a negative sign.

A nibble is half a byte.

Zoned Decimal Number:

F 0 F 4 F 5 F 2 C 1

Numeric nibble

Sign

Zone nibble

Concepts

Unit: S/390 Memory Usage Topic: Data Representation

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 25 of 58

Packed Decimal Number

Packed decimal notation adds one decimal digit
into each nibble, except for the rightmost nibble,
which contains the sign. The sign is coded the
same way as for zoned decimal.

A three byte packed decimal number containing
the value 4521 would be represented (in hex) as:
04521C

Packed Decimal Number:
-2 digits/byte

04 52

Byte 1 Byte 2 Byte 3

F0 F4 F5 F2 C1

1C

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

Zoned Decimal Number:
-1 digit/byte

Concepts

Unit: S/390 Memory Usage Topic: Data Representation

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 26 of 58

Using Floating Point Numbers

Fixed point and decimal numbers are integers.
Real numbers, numbers with a fractional part, are
represented with floating point numbers. Floating
point numbers allow you to represent a large
range of numbers.

= 174642000000000000

1.74642 X 1017

Concepts

Unit: S/390 Memory Usage Topic: Data Representation

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 27 of 58

Floating-Point Numbers

Following are the 3 data types used for floating-
point numbers?

• Short numbers – 4 bytes in length
• Long - 8 bytes in length
• Extended – 16 bytes in length

A floating-point number consists of the following
parts:

• A Sign
• A Mantissa
• An Exponent

Floating Point Numbers:

4 bytes

8 bytes

16 bytes EXTENDED

0 1010001

SHORT

Mantissa
7 bytes

High Order

Sign (1st bit)
0 – Positive
1 - Negative

1 byte

Exponent (7 bits)

Mantissa (3 bytes)

LONG

Mantissa 7 bytes

Mantissa
7 bytes

Low Order
1 byte (Unused)

Concepts

Unit: S/390 Memory Usage Topic: Data Representation

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 28 of 58

Floating-Point Formats

The three floating-point formats all provide for
essentially identical ranges of magnitude, since
the exponent is the same size in each.

Going from short to long or from long to extended
simply increases the length of the mantissa, and
thus provides more precision.

Floating-Point Formats

0.32641 X 1070

0.32641347961 X 1070

0.3264134796128439 X 1070

Concepts

Unit: S/390 Memory Usage Topic: Data Representation

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 29 of 58

What are the two modes of operation in System /390 architecture?

One of the most distinctive features of a computer’s architecture is the way it addresses main storage. The
S/390 architecture provides two modes of operation:

• Basic Control Mode (BC)
• Extended Control Mode (EC)

Modes of Operation

BC MODE

EC MODE

111111111111111111111111

0111111111111111111111111111111

ADDRESS LENGTH

(0- 16,777,215) Address Range

(0 – 2,147,483,647 bytes) Address Range

24 BITS

31 BITS

16Mb System
(16,777,216 bytes)

2 Gb System
(2,147,483,647 bytes

Concepts

Unit: S/390 Addressing and Instructions Topic: Addressing

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 30 of 58

Address Space

Flat address space means that the memory is
continuously addressable, with no segmentation
of memory from the programmer’s point of view.

In a few cases the programmer must deal with
absolute addresses. However the most common
concern of a programmer is addresses within
instructions.

BASE
ADDRESS

BASE
REGISTER

4096 Bytes

0K

4K

8K

12K

16K

20K

24K

(8,192)

(12,288)

Concepts

Unit: S/390 Addressing and Instructions Topic: Addressing

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 31 of 58

Machine instructions consist of operations (add,
multiply and so on); and a number of operands,
specifying the data upon which the operation is to
be performed. The operands may specify
registers or memory locations.

Architecture with instructions specifying absolute
addresses is generally not designed because:

• The length of absolute addresses
depends on the mode BC or EC.

• If absolute addresses were used in
instructions, either instructions would
vary in length depending on the mode,
or there would be wasted space when
BC mode was used. Specifying 31 bits
for each address in an instruction will
produce very long instructions.

• Using absolute addresses in instructions
affects program relocatability.

Machine Instruction

OPCODE R1 X2 B2 D2

BC Code

EC Code

Machine Instruction:

OPERATION
(EG.ADD,
MULTIPLY,
MOVE, etc.)

OPERAND 1
(DATA 1)

OPERAND 2
(DATA 2)

24 Bits

31 Bits

Concepts

Unit: S/390 Addressing and Instructions Topic: Addressing

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 32 of 58

What is Base Displacement Addressing?

The form of address used in instructions is called
base displacement addressing. In this form the
address is specified as a displacement from the
address contained in a GPR. This is represented
as a BDDD. B stands for base, and when a GPR
is used in this way it is called a base register.

There are 16 GPRs, numbered 0 – 15, so any
register can be represented by one hex digit (one
nibble). The displacement DDD is a 3 nibble or a
12 bit quantity, and so contains values from 0 –
4095. When the processor is decoding an
instruction, it converts each base-displacement
address to an absolute address by adding the
specified displacement DDD to the contents of the
specified base register B.

Base Displacement Address

B DDD

B2 D2

1 NIBBLE 3 NIBBLES

Base Register Displacement

(4 Bits) (12 Bits)
(0- 4095)

Concepts

Unit: S/390 Addressing and Instructions Topic: Addressing

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 33 of 58

There is an exception to this rule of address
formation. If the base register B specifies register
0, it means that no base register is to be used in
the address calculation. That is, you cannot use
R0 as a base register in the normal way, but
to specify that you wish to use displacement only
in the address calculation.

What are RX instructions?

It will be seen in the next section unit 2 -1, that
there is one instruction type which extends this
address formation process. RX instructions use
two registers, a base register B and an index
register X , along with a displacement in address
generation.

Base Displacement Address (cont’d)

With RX instructions, if R0 is specified as
base and/or index register, it is ignored in
the address calculation.

B DDD

RO D2

Base Register Displacement

GPR – RO = no Base
Register

Displacement
Only=

Unit: S/390 Addressing and Instructions Topic: Addressing

Concepts

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 34 of 58

A base displacement address uses 16 bits, 4 to specify the base register, and 12 to specify the displacement.

When it decodes the instruction, prior to execution, the processor takes the contents of the base register (32
bits), adds the displacement and drops either 1 high order bit to get a 31 bit EC address, or 8 high order bits to
get a 24 bit BC address. The instructions are kept short, while still specifying full address indirectly.

Base Displacement Address (cont’d)

OPCODE R1 (X2) 1100 0100000000000

Base Register
(B2)

Displacement
(D2)

0 7 8 11 12 15 16 19 20 31

4 Bits 12 Bits

16 Bits
Base Displacement

Address

Concepts

Unit: S/390 Addressing and Instructions Topic: Addressing

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 35 of 58

Advantages of base displacement are:

• Base displacement addresses keep
instruction length short

• It allows for common instruction format
with no wasted space, regardless of
processor mode

• Provides easy relocatability of programs

Why is relocatability important?

It is highly desirable, from an operating system
point of view, that programs be allowed to run on
any location in main storage. If instructions used
absolute addresses, they would always have to
be loaded in the same storage location in
order to run properly.

Advantages of Base Displacement

PROG10K

64K

128K

192K

256K

384K

PROG2

PROG3

PROGA

Concepts

Unit: S/390 Addressing and Instructions Topic: Addressing

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 36 of 58

Many programs do contain some absolute addresses. These addresses do have to be adjusted when the
program is loaded into main storage for execution to reflect the program’s actual load point. This is a relatively
simple task, since the number of absolute addresses is usually very small.

Absolute Addresses

FIRST EXECUTION
BASE ADDRESS = 6144

DISPLACEMENT = 1122
(FIELD A) -------
ADDRESS = 7266

• FIELD A

MAIN
STORAGE
ADDRESS

2,048

6,144

10,240

14,336

18,432

SECOND EXECUTION
BASE ADDRESS = 10240

DISPLACEMENT = 1122
(FIELD A) --------
ADDRESS = 11362

• FIELD A

PROG1 PROG1

Concepts

Unit: S/390 Addressing and Instructions Topic: Addressing

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 37 of 58

Assembler Language instructions are 1,2 or 3 halfwords in length, and are always aligned on a halfword
boundary, which is an address evenly divisible by 2.

What are opcodes?

The first field in every instruction is the operation code (opcode), which is 1 byte in length (there are two
instructions with 2 byte opcodes, but they are not commonly used in application programming). The operation
code specifies what the instruction does, such as add, divide, move or compare.

Assembler Language Instructions

OPCODE

OPCODE

OPCODE

Assembler Language Instructions:

2 Bytes

4 Bytes

6 Bytes

1 Halfword

2 Halfwords

3 Halfwords

Halfword Boundary

Concepts

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 38 of 58

What are the different types of operands?

Most instructions have 2 operands, but some
have 0, 1, 2 or 3. The different types of operands
are:

• Registers, specified by a register
number

• Main storage location, specified by a
base displacement address (BDDD)

• Main storage locations, specified with
an indexed base displacement address
(XBDDD)

• A single byte of immediate data,
contained within the instruction itself (I).

Types of Operands

Continued…

R1Register

Base Displacement Address
(BDDD)

Indexed base
Displacement
Address (XBDDD)

Immediate Data (I)

B2 D2

B2 D2X2

I1

Concepts

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 39 of 58

In some cases, the length of a storage operand is implied by the instruction. The storage operand for an Add
Halfword (AH) instruction is a halfword in length.

In other cases, the length of a storage operand is explicitly specified as part of the instruction (L).

Types of Operands (cont’d)

Continued…

OPCODE X B D B D

1 Halfword

ADD HALFWORD
(AH) INSTRUCTION

STORAGE
OPERAND

Concepts

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 40 of 58

Most instructions have two operands. In most
instructions, the result of the operations replaces
the first operand. For example, Add has two
operands.

The Add instruction (A) fetches both operands,
adds them together and replaces the first operand
with the sum.

Types of Operands (cont’d)

Concepts

OPCODE R1 R2

SUM

R2 + R1 = SUM

Operation
(Add)

Operand 1

Operand 1

Addition

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 41 of 58

What are the different instruction lengths?

There are 3 possible instruction lengths, 1, 2 or 3 halfwords. They are:

• 1 halfword instructions have no storage operands
• 2 halfword instructions have one storage operand
• 3 halfword instructions have 2 storage operands

Instruction Lengths

OPCODE

OPCODE

OPCODE

1 Halfword – no Storage Operands

2 Halfwords

3 Halfwords

1 Storage Operand

2 Storage Operands

Concepts

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 42 of 58

Format

The instruction is 16 bits or one halfword in
length. The first byte contains the opcode, and the
second byte contains the two operands, both of
which are registers.

RR Instruction

In numbering the bits in the instruction
format, start from zero, not one.

Continued…

OPCODE R1 R2

RR Instruction:

Operation

Operand 1

Operand 2

0 7 8 11 12 15 Bits

Concepts

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 43 of 58

An example of RR Instruction is:
1A34

1A is the operation code for the Add Register
instruction. The first operand is R3. The second
operand is R4.

When this instruction is executed, the contents of
R4 would be added to the contents of R3 and the
sum would be placed in R3, replacing the first
operand.

RR Instruction (cont’d)

Concepts

OPCODE R3 R4

SUM

R4 + R3 = SUM

Operation
(Add)

Operand 1

Operand 1

SOURCE CODE
1A 3 4

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 44 of 58

Format
This instruction is 32 bits (or 2 halfwords) in length. The first byte contains the opcode. The following nibble
contains the first operand, which is a register.

The remaining fields in the instruction contain the three components that specify the second operand. They
are:

• X2, the index register specification
• B2, the base register specification
• D2, the 12 bit displacement of the second operand

RX Instruction

Continued…

OPCODE R1 X2 B2 D2

1 HALFWORD 1 HALFWORD

0 7 8 11 12 15 16 19 20 31 Bits

1st
OPERAND

INDEX
REGISTER

BASE
REGISTER

DISPLACEMENT

2nd OPERAND

RX Instruction:

Concepts

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 45 of 58

An example of RX instruction is:
5B58C12E

5B is the operation code for the Subtract instruction. The first operand is R5. The second operand is the
fullword at the storage location whose absolute address is formed by adding together the contents of R8, the
contents of R12, and the value of the displacement, 12E.

When this instruction is executed, the fullword from storage will be subtracted from the value in R5 and the
difference placed in R5.

RX Instruction (cont’d)

Concepts

OPCODE R1 X2 B2 D2

5B 5 8 C 12E

Address Storage

FULLWORD
Absolute Address

(R8 + R12 + D2)

2nd OPERAND

R5 – FULLWORD = DIFF

DIFF

R5 R8 R12 D2

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 46 of 58

Format

The instruction is 32 bits or 2 halfwords in length. The first byte of the instruction is the opcode. This is
followed by the first and third operands, both registers. Finally the second operand, the storage operand,
specified in base displacement form.

RS Instruction

Note that this instruction has three operands not
just two.

Continued…

OPCODE R1 R3 B2 D2

1 HALFWORD 1 HALFWORD

0 7 8 11 12 15 16 19 20 31 Bits

1st
OPERAND

3rd
OPERAND

BASE
REGISTER

DISPLACEMENT

2nd OPERAND
BASE DISPLACEMENT

RS Instruction:

Concepts

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 47 of 58

Format

9849C124

98 is the opcode for the Load Multiple instruction. The first operand is R4. The third operand is R9.

The second operand is the 6 consecutive full words starting at the storage location, whose absolute address is
formed by adding the displacement 124 to the contents of R12, the base register. When this instruction is
executed, the first fullword at the storage location would be loaded into R4, the next into R5, the next into R6,
the next into R7, the next into R8 and the next into R9.

RS Instruction (cont’d)

Concepts

OPCODE R1 R3 B2 D2

98 4 9 C 124

Absolute
Address

2nd OPERAND

1ST FULLWORD LOADED - R4
NEXT FULLWORD LOADED - R5
NEXT FULLWORD LOADED - R6
NEXT FULLWORD LOADED - R7
NEXT FULLWORD LOADED - R8
NEXT FULLWORD LOADED - R9

DIFF

R4 R9 R12 D2 SOURCE CODE

(R12 + 124)

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 48 of 58

Format

The instruction is 32 bits or two halfwords in length. The first byte of the instruction is the opcode. The next
byte is the second operand, an immediate storage operand. This byte contains the actual operand, not an
address. The operand is exactly one byte long. The rest of the instruction is the base and displacement
specifying the first operand.

SI Instruction

Continued…

OPCODE I2 B2 D2

1 HALFWORD 1 HALFWORD

0 7 8 15 16 19 20 31 Bits

BASE
REGISTER

DISPLACEMENT

1st OPERAND
BASE DISPLACEMENT

SI Instruction:

2nd OPERAND

IMMEDIATE
DATA

Concepts

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 49 of 58

An example of SI instruction is:

9240C33A

92 is the opcode for the Move Immediate instruction. 40, the EBCDIC code for space, is the second operand.

The first operand is the byte at the absolute storage address formed by adding the displacement 33A to the
contents of R12, the base register. When this instruction is executed a blank would be moved to the address
specified by the first operand.

SI Instruction (cont’d)

Concepts

OPCODE I2 B1 D1

92 40 C 33A

Storage Address

(R12 + D2)

1ST OPERAND
Base DisplacementBLANK MOVED TO

ADDRESS
SPECIFIED BY B1D1

EBCDIC
(SPACE)

R12 D2 SOURCE CODE

Address Storage

BLANK

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 50 of 58

What are the two formats of SS instructions?

The first format has single length specification, which applies to both of its operands. The second has a
separate length specified for each operand.

SS Instruction

Continued…

OPCODE L B1 D1

0 7 8 15 16 19 20 31 Bits

BASE
REGISTER

DISPLACEMENT

1st OPERAND
BASE DISPLACEMENT

SS Instruction:

TWO LENGTH

B2 D2

32 35 36 47

L1 L2

BASE
REGISTER

DISPLACEMENT

2nd OPERAND
BASE DISPLACEMENT

8 15 Bits

ONE LENGTH

Concepts

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

1 HALFWORD 1 HALFWORD 1 HALFWORD

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 51 of 58

When there are two lengths, each is specified as a nibble, and can contain values from 0 – 15. when there is a
single length specification it is a byte in length, and can contain values from 0 – 255.

All lengths in machine instructions are coded as 1 less than the actual length. This is because a zero length
dosen’t make sense for an operation, and so in order to provide maximum facility, a machine length
specification of 0, represents a real length of 1, 1 represents 2, and so on.

The two SS formats are shown above. The instructions are 48 bits or 3 halfwords in length. The first byte is
the opcode. The next byte is the length or lengths. This is followed by operand one and operand two, both
specified in base displacement format.

SS Instruction (cont’d)

Continued…

OPCODE L B1 D1

1 HALFWORD 1 HALFWORD

0 7 8 15 16 19 20 31 Bits

BASE
REGISTER

DISPLACEMENT

1st OPERAND
BASE DISPLACEMENT

SS Instruction:

TWO LENGTH

B2 D2

32 35 36 47

1 HALFWORD

L1 L2

BASE
REGISTER

DISPLACEMENT

2nd OPERAND
BASE DISPLACEMENT

8 15 Bits

ONE LENGTH

Concepts

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 52 of 58

SS Instruction (cont’d)

An example of one length SS instruction is:
D263C124C388

D2 is the opcode for the Move Characters instruction. 63 is the machine coded length, equivalent to an actual
length of 100 bytes.

The first operand is the 100 character string whose absolute address is formed by adding the displacement of
124 to the contents of R12. The second operand is the 100 character string whose absolute address is formed
by adding the displacement of 388 to the contents of R12. When this instruction is executed, the 100 bytes of
the second operand, would be copied to the first operand, destroying the original value of the first operand.

Concepts

OPCODE L B1 D1

D2 63 C 124

MOVE
CHARACTERS (R12 + 124)

1ST OPERAND
Base Displacement

LENGTH R12 D1

B1

C
R12

B2

388
D2

D2

(R12 + 388)

(100 BYTES)

(COPY 100 BYTES OF 2ND OPERAND
OVERWRITING 1ST OPERAND)

100
BYTES

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 53 of 58

SS Instruction – An Example

An example of two length SS instruction is:
5B40C1AAC249

5B is the opcode for the Subtract Decimal instruction. 4 is the machine coded length of the first operand,
equivalent to an actual length of 5. 0 is the machine coded length of the second operand, equivalent to an
actual length of one.

Concepts

OPCODE L1 B1 D1

5B 4 C 1AA
L1 R12 D1

L1

C
R12

B2

249
D2

D2

0
L2Two Length

SS Instruction
Source Code

SUBTRACT
DECIMAL

CODED
LENGTH

1st OPERAND
(5)

1st OPERAND 2nd OPERAND

CODED LENGTH
2nd OPERAND (1)

Absolute Address
(L1)(5 Byte Packed
Decimal Number

Absolute Address
(L1)(1 Byte Packed
Decimal Number

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 54 of 58

SS Instruction – An Example (cont’d)

An example of two length SS instruction (cont’d)

The first operand is the 5 byte packed decimal number whose absolute address is formed by adding the
displacement of 1AA to the contents of R12. The second operand is the 1 byte packed decimal number whose
absolute address is formed by adding the displacement of 249 to the contents of R12. When this instruction is
executed the value of the second operand will be subtracted from the value of the first, and the difference
would replace the first operand.

Unit: S/390 Addressing and Instructions Topic: Machine Instruction Formats

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 55 of 58

In the RR format, the components for both
Machine language and Assembler language
follow in the same order; operation, operand 1
and operand 2.

Difference in RR Format

Machine Language

Assembler Language

R1 R2OPCODE

RR Format

Example Code: 1A34

1A 3 4 Instruction

Op R1,R2

AR R3,R4 Instruction

Concepts

Unit: S/390 Addressing and Instructions Topic: Assembler Language Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 56 of 58

With RX format where we have storage operands, the syntax is quite different. Start with operation, followed
by operand1. Operand2 is specified with the displacement first. Notice displacement is decimal in the
Assembler language and hexadecimal in machine language.

This is followed by the index register and the base register, separated by a comma, and in parentheses
(example: R8, R12).

Difference in RX Format

Continued…

RX Format
Example Code:
5B58C12E

Machine Language

Assembler Language

OPCODE D2R1 X2 B2

Instruction5B 5 8 C 12E

Op

S

R1,D2(X2,B2)

R5,302(R8,R12) Instruction

Concepts

Unit: S/390 Addressing and Instructions Topic: Assembler Language Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 57 of 58

With RS format, again notice the opcode and register operands in Assembler Language parallel the machine
language format. The storage operand is specified as displacement (decimal), and is followed by the base
register in parentheses.

Difference in RX Format (cont’d)

Example Code:
9849C124

Machine Language

Assembler Language

OPCODE D2R1 R3 B2

Instruction98 4 9 C 124

Op

LM

R1,R3D2,(B2)

R4,R9,292(R12) Instruction

Concepts

Unit: S/390 Addressing and Instructions Topic: Assembler Language Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 58 of 58

In SI format, the order of the operands is different in the two formats. In Machine Language, the immediate
operand I2, precedes the storage operand. In Assembler Language, the storage operand comes first. The
immediate operand is specified as a hex value of 40 in the notation shown.

Difference in SI Format

SI Format,
Example Code:
9240C33A

Machine Language

Assembler Language

OPCODE D1I2 B1

Instruction98 4 9 33A

Op

MVI

D1,(B1),I2

826(R12),X’40’ Instruction

Concepts

Unit: S/390 Addressing and Instructions Topic: Assembler Language Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 59 of 58

When a length is specified with a storage operand, it is specified as the actual length, and precedes the base
register, followed by a comma, within parentheses, for example (100,R12).

If there is only one length, it is placed with the first operand, not the second. Note in the example that the
length is 100 decimal. 10010 = 6416. The machine length is one less than the actual length, so the
machine length is 63.

Difference in SS1 Format

Example Code:
D263C124C388

Machine Language

Assembler Language

OPCODE D1L B1

CD2 63 C 124

Op

MVC

D1,(L,B1),D2(B2)

292(100,R12),904(R12) Instruction

B2 D2

388 Instruction

Concepts

Unit: S/390 Addressing and Instructions Topic: Assembler Language Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 60 of 58

This example follows the same pattern as the previous one. In this case there are two lengths, one for each
operand. Lengths are coded before the base register, within parentheses.

Difference in SS2 Format

SS2 Format
Example Code:
5B40C1AAC249

Machine Language

Assembler Language

OPCODE L1 L2

1AA5B 4 0 C

Op

SP

D1,(L1,B1),D2(L2,B2)

426(5,R12),585(1,R12) Instruction

D1 B2

C Instruction

D2

249

B1

Concepts

Unit: S/390 Addressing and Instructions Topic: Assembler Language Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 61 of 58

What is an Assembler Program?

Looking at all the instruction formats for both
Assembler and Machine Languages may be
somewhat intimidating. However the job of the
Assembler programmer is not as complex as you
might expect. The Assembler program converts
your Assembler statements to Machine Language
for you.

Assembler Program

Continued…
Concepts

Unit: S/390 Addressing and Instructions Topic: Assembler Language Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 62 of 58

Thus, instead of writing an instruction like this:

SP 426(5,R12),585(1,R12)

You would probably write something like this:

SP NETPRICE, DISCOUNT

Assembler Program (cont’d)

426(5,R12), 585(1,R12)

NETPRICE, DISCOUNT

SP

Concepts

Unit: S/390 Addressing and Instructions Topic: Assembler Language Formats

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 63 of 58

What are Statements?

Assembler Language programs are made up of
statements. Statements are composed of
characters. Lower case alphabetic characters are
considered equivalent uppercase characters by
the Assembler, except when used in
quoted strings.

Assembler Language Statements

Continued…

Alphabetic characters a –z and A- Z
National characters @, $, and #
Underscore _
Digits 0 – 9
Special characters + - , = , * () ‘ / &

blank

Characters:

Concepts

Unit: The Program Development Process Topic: Assembler Language Syntax

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 64 of 58

What constitutes Assembler Language
Statements?

Assembler Language Statements are coded in 80
character records or lines. By default, each 80
character line consists of 3 fields; positions 1-71
constitute the statement field, 72 is the
continuation indicator field, and 73-80 is the
identifier/sequence field.

Assembler Language statements and comments
must be written in the statement field. It consists
of:

• Begin Column - The first position of the
statement field

• Continue Column - second and
subsequent statements of a continued
statement begin

• Continuation Indicator Field - The
position following the end column

Assembler Language Statements (cont’d)

1 71 72 73 ……….80

STATEMENT

Identifier/
Sequence

Field

Statement
Field

Begin Column
(Position 1)

End Column
(Position 71)

Continuation
Indicator Field

Concepts

Unit: The Program Development Process Topic: Assembler Language Syntax

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 65 of 58

Assembler Language Instruction Statement
consists of up to 4 fields, specified in the
following order:

1. Name
2. Operation
3. Operand
4. Comments

Assembler Language Instruction Statements

Continued…

Name Field

NOTEQ

STORERTN

BE

MVC

CLI

STM

EQUALRTN

THERE,HERE

C’A’,TESTFLD

2,12,SAVEAREA

SET THERE FIELD

COMPARE TO”A”

SAVE REGISTERS

BRANCH ON EQUAL

Operation Field

Operand Field

Comment Field

Begin Column
(Position 1)

Concepts

Unit: The Program Development Process Topic: Assembler Language Syntax

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 66 of 58

Assembler Language instructions are free format,
with one or more blanks delimiting fields. The
name field and operation field is separated by one
or more blanks, as are the operation and the
operand, and the operand and the comment.

Embedded blanks are not allowed in the operand
field, unless they are part of a quoted string.
Otherwise they would indicate the end of the
operand field.

The name field, if present, must begin in the begin
column. If the name field is omitted, the operation
field must start after the begin column.

Assembler Language Instruction Statements (cont’d)

Continued…

Begin Column
(Position 1)

NOTEQ

BE

MVC

EQUALRTN BRANCH ON EQUAL

THERE,HERE SET THERE FIELD

One or more BLANKS
denoting Change of Field

Concepts

Unit: The Program Development Process Topic: Assembler Language Syntax

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 67 of 58

Although the Assembler allows free format
statements, most programmers align their fields
(operation, operand and comments) in specific
positions for readability.

If you wish to code a comment field on a
statement with no operand field, you must indicate
to the Assembler, that the operand field is
missing. You do this by coding a comma,
preceded and followed by a blank, between the
operation and the comment. An example of this is
shown on the right.

Assembler Language Instruction Statements (cont’d)

The end of the programEnd ,

BLANK

Comma
Statement

Coding a Comment Field with no Operand Field :

Concepts

Unit: The Program Development Process Topic: Assembler Language Syntax

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 68 of 58

How can you use comments effectively?

As noted previously comments can be included as
the fourth field on any Assembler Language
instruction statement.

It is also possible to have statements in your
program consisting entirely of comments.

An Assembler Language comment statement has
an asterisk in the statement in the begin column.
The rest of the statement, up to and including the
end column, is interpreted as a comment.

Use of Comments

Concepts

THE FOLLOWING ROUTINE IS USED TO
INITIALIZE THE OUTPUT AREA

*
*
*
*

Begin Column
(Position 1)

End Column
(Position 71)

Unit: The Program Development Process Topic: Assembler Language Syntax

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 69 of 58

How can you use comments effectively?

It is good programming practice to include plenty
of comments. It is desirable to clearly document
what your code is doing when using a low level
language like Assembler Language.

A block of comment statements should describe
the purpose of each module and of each major
section of code.

Comments should be coded on instruction
statements to indicate the purpose of each
individual statement.

Use of Comments (cont’d)

NOTEQ

STORERTN

MVC

CLI

STM

THERE,HERE

C’A’,TESTFLD

2,12,SAVEAREA

SET THERE FIELD

COMPARE TO”A”

SAVE REGISTERS

Comment Field
Typical Comments

Concepts

Unit: The Program Development Process Topic: Assembler Language Syntax

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 70 of 58

Formatting Assembler Language Statements

The example above shows a statement
continued on the next line.

Most Assembler Language statements will easily fit in one line. Sometimes, particularly with complex macro
instructions, a statement will not fit on a single line, between the start and end columns.

DCB

LRECL=80,EODAD=ENDRTN

Position 1
Position 16 Position 72

XINDCB DDNAME=INFILE,DSORG=PS,MACRF=GM,RECFM=FB,

Concepts

Topic: Assembler Language SyntaxUnit: The Program Development Process

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 71 of 58

Following are the two ways of breaking a statement for continuation:

1. Code the statement up to the end column, put a non-blank character in the continuation indicator
column and resume coding in the continuation column of the next line

2. Code the statement to the end of a complete operand and its following comma, put a non-blank
character in the continuation indicator column and resume coding with the start of the next operand
in the continuation column of the next line

Breaking Statements

BE

MVC

EQUALRTN

THE COMMENT FOR THIS STATEMENT CONTINUES ON LINE 2

BRANCH ON EQUAL

TO FIELD,’ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDE FGHIJKLMN

OPQRSTUVWXYZ0123456789’

Position 1
Position 16 Position 72

X

X

Concepts

Topic: Assembler Language SyntaxUnit: The Program Development Process

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 72 of 58

What are the functions of an Assembler?

The major purpose of the Assembler is to take a
source program, written in Assembler Language
and convert it to an object module in Machine
Language. This conversion includes:

• Converting Assembler Language
mnemonic opcodes into Machine
Language numeric opcodes

• Converting the Assembler Language
instruction formats into Machine
Language forms

• Converting the numeric notation used in
the source program (decimal by default)
to hexadecimal form used in the
Machine Language

• Determining the address of all the
instructions and data areas used in the
program

• Converting reference symbols into base
displacement addresses

Assembler Functions

ASSEMBLER
(Converts Assembler
Language to Machine
Language)

OBJECT
MODULE

Concepts

Topic: The Assembly ProcessUnit: The Program Development Process

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 73 of 58

What is USING Instruction?

In order for the Assembler to convert addresses to
base-displacement format, you must tell the
Assembler what register to use as a base register,
and what value the register will contain at
execution time. This information is provided with
the USING instruction.

You must also include machine instructions in
your program, to load the proper value into the
base register at execution time. A standard way of
accomplishing these two actions is with the
following instructions, included as part of the
program initiation:

BALR R12,R0 and USING*, R12

Converting Addresses to Base-Displacement Format

Continued…

BALR R12,0

USING *,R12

Load the base register

Established address ability

Concepts

Topic: The Assembly ProcessUnit: The Program Development Process

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 74 of 58

The first of these instructions, a Machine
instruction, places the absolute address of the
next instruction after BALR into register 12. The *
symbol is used to represent the current value of
the location counter in an Assembler program.
The USING instruction tells the Assembler that
R12 is to be used as the base register, and that
R12 will contain the address of the current
instruction.

Since BALR has in fact loaded R12 with the
address of the instruction following BALR (which
is now the current instruction) this correctly
establishes addressability in the program.

Converting Addresses to Base-Displacement Format (c ont’d)

To established Program Address ability:

BALR R12,0

USING *,R12

ABSOLUTE ADDRESS

Current Value

Loads next
Instruction intro R12

Established R12 as the Base Register

Concepts

Topic: The Assembly ProcessUnit: The Program Development Process

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 75 of 58

As previously discussed, storage operands can
be represented as either symbols, or in base
displacement format. The Assembler allows
certain portions of the base displacement, base
index displacement, or base length displacement
forms to be omitted, and uses default values for
the omitted parts.

This process is indicated in the table on the right.

After the Assembler produces an object module it
can be linked and executed.

SS Instruction Example

Concepts

Full
Operand

From
Omission

Assembler
Default

D (B) D

D

D (X)

D (,B)

D

D (1)
D (,B)

D (X,B)

D (1,B)

B=0

X=0 , B=0

B=0

X=0

B=0 , 1=length
Attribute of D

B=0
1=length attribute

of D

Topic: The Assembly ProcessUnit: The Program Development Process

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 76 of 58

What is Define Storage (DS) Instruction ?

The Define Storage (DS) Assembler instruction is
used to define storage areas within a program.

If you wish to assign a name to the storage being
defined, you specify a symbol in the name field of
the DS instruction. The operation for defining
storage is DS.

Define Storage Instruction

Since DS does not define an executable
instruction, but rather sets up an area of storage,
it is an Assembler instruction. Continued…

Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

Object Module

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 77 of 58

What are the components of a DS statement?

The operand field of a DS statement consists of
up to 4 components, which are:

• A duplication factor
• A type specifier
• A length modifier
• A nominal value

Define Storage Instruction (cont’d)

Concepts

Object Module

Unit: Defining Data Topic: The Define Storage (DS) Instructions

Object Module

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 78 of 58

The type specifier must be supplied, while the
other three components are optional.

The duplication factor and the length modifier has
default values when not coded explicitly.

The nominal value field is not used, and is simply
considered as documentation since it is defining
storage, not a constant.

Components of a DS Statement

A common mistake is coding a nominal value in a
DS statement, when a DC statement is intended.
This is not flagged as an error by the Assembler,
since the syntax is correct, but will likely produce
an execution time error. Continued…

d – duplication factor

t – type specifier

LI – length attribute

‘value’ – nominal value

DS dtLI’value’

Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 79 of 58

Components of a DS Statement (cont’d)

The type specifier indicates the type of data the field should contain. Each data type is specified by a single
character identifier, and has a default length and alignment. The most common field types are indicated
above.

Example:
To define a fullword called FWD1, you would specify the following statement as indicated: FWD1 DS F

Character
Data Type Type Specifier Default Length Default Alignment

Hexadecimal
Binary

Zoned Decimal
Packed Decimal

Halfword
Fullword

Long Floating Point

C
X
B
Z
P
H
F
D

1
1
1
1
1
2
4

byte
byte
byte
byte
byte

halfword
fullword

8 doubleword

Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 80 of 58

Length Modifier
What is the function of a length modifier?

Often you wish to define a field with a length
different from a default length. To do this, you
specify a length modifier. This consists of the
letter L, followed by the desired field length in
bytes. It is placed immediately following the type
specifier.

To define a character field 100 bytes long, called
STRING1, you would specify:

STRING1 DS CL100

Length Modifier

Continued…
Concepts

Length Modifier

STRING1 DS CL100

Length Modifier

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 81 of 58

For fields that are aligned on other than a byte
boundary, specifying a length modifier removes
the alignment guarantee, and reverts to byte
alignment.

There is a guarantee that FWD2 would be aligned
on a fullword boundary. There is no boundary
alignment guarantee for FWD3. One way to force
boundary alignment even if the definition does not
guarantee it, is to precede the field with another
statement that forces the desired alignment.

Length Modifier (cont’d)

Concepts

FWD2 DS F

FWD3 DS FL3

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 82 of 58

The Assembler assigns each new field you define
immediately following the previous one, except
when alignment is required.

The Assembler maintains a location counter (LC),
which starts at zero at the beginning of the
Assembly, and is increased by the length of each
assembled instruction as the assembler proceeds.
If the alignment is required, and the value of the
location counter is not at an address that would
provide the appropriate alignment, then the
Assembler skips enough bytes to such an
address that provides the required alignment. The
skipped bytes are not initialized to any specific
value.

Location Counter

Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 83 of 58

The value specified as the length modifier, or the
default length if no length modifier is coded, is the
length attribute of the field. The Assembler
associates a length attribute to each field you
define, and you may use it in assembling SS type
Machine instructions, which reference the field.

Length Attribute

Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 84 of 58

What is the duplication factor?

The duplication factor, if it is provided, is coded as
the first part of the operand, preceding the type
specifier. If the duplication factor is omitted, a
default value of 1 is assumed. The duplication
factor specifies the number of occurrences of the
specified type and length specified.

The Duplication Factor

The amount of storage allocated by a DS
instruction is the product of the duplication
factor and the length.

Concepts

1 – To define a program
save area of 18
fullwords, we would
code:
SAVEAREA DS 18F

2 – To define an array with
24 entries to hold
hourly temperature
readings (represented
as halfwords) for one
day we would code:
TEMPARR DS 24H

3 – To define an array to
hold the marks of 100
students, each
represented by a 2 byte
packed decimal number
we would code:
MARKS DS 100PL2

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 85 of 58

Why is the length attribute important?

Consider the following three declarations on the
right. What is the difference between them?

They all allocate 100 bytes of storage, which is
defined as character type. Are they identical in
effect? Not quite. Remember that each data item
as a length attribute assigned to it. The length
attribute is the implicit or explicit length modifier.
Thus the length attribute of the three declarations
are as shown on the right:

The Length Attribute

Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 86 of 58

What is the effect of the following 3
statements on the right?

All three of these statements move data from the
location DATA1 to the destination (first operand)
field. In the first case, 100 bytes of data are
moved. In the second case, only 1 byte is moved
and in the third case 2 bytes are moved.

The Length Attribute (cont’d)

Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 87 of 58

To move 100 bytes of data from DATA1 to X2, the
length would need to be coded explicitly in the
MVC instruction. It would look like the statement
on the right.

When an explicit length is omitted in an SS
instruction, the length attribute of the destination
field is used.

The Length Attribute (cont’d)

Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 88 of 58

Why are zero duplication factors used?

To specify a duplication of zero is a special
situation of a data declaration. Why is this done?

Remember that the amount of storage allocated is
the product of the duplication factor and the
length. If the duplication factor is zero, so is the
product of duplication factor and length, so no
storage is allocated.

Use of Duplication Factors

Continued…
Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 89 of 58

Common reasons for using zero
duplication factors:

One reason is to force alignment.

Suppose a 100 - byte character field is to be
defined which is aligned on a doubleword
boundary. The easiest way to do this is to define
a doubleword (forcing doubleword alignment)
immediately followed by the character field. Since
the doubleword is not actually used for anything,
other than to force alignment, it is defined with a
duplication factor of zero. It does not even have to
be given a name, since it will not be used. Its only
purpose is to cause the Assembler to skip enough
bytes to move to the doubleword boundary.

Thus the definition looks as it does on the right.

Use of Duplication Factors (cont’d)

Continued…
Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 90 of 58

In the other situation a zero duplication factor is
often used is when the same piece of storage is
defined in two or more different ways.

Suppose an area of storage is to be set up to hold
a record that will be read into our program from
disk. The record is 120 bytes in length, but
suppose this record contains 3 fields, each 40
bytes in length. When reading the record the
programmer wishes to treat it as a single 120-byte
field. After it is read, the programmer wants to
process its fields separately. It can be
accomplished using a zero duplication factor on
the first definition.

The definition is shown on the right.

Use of Duplication Factors (cont’d)

Continued…

RECORD

MULTIPLE REFERENCES TO DATA

DS 0CL120

FLD1 DS CL40

FLD2 DS CL40

FLD3 DS CL40

RECORD

FLD1 FLD2 FLD3

Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 91 of 58

The RECORD is defined with a zero duplication
factor, the actual space assigned to it is 0 * 120 =
0.
The length attribute of RECORD is 120. FLD1 has
the same location as RECORD, but has a length
attribute of 40. The space assigned by the
Assembler is 1 * 40 = 40.

The address of FLD2 is 40 higher than the
address of FLD1. FLD2 also has a length attribute
of 40 as does FLD3.

The fields can be broken down even further. FLD1
could consist of 4 smaller fields.

Use of Duplication Factors (cont’d)

MULTIPLE REFERENCES TO DATA

DSRECORD 0CL120
FLD1

FLD1A
FLD1B
FLD1C
FLD1D
FLD2
FLD3

DS
DS
DS
DS
DS
DS
DS

0CL40

CL40

CL5
CL15
CL8
CL12
CL40

RECORD

FLD1

FLD2 FLD3

F
L
D
1
A

F
L
D
1
B

F
L
D
1
C

F
L
D
1
D

Concepts

Unit: Defining Data Topic: The Define Storage (DS) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 92 of 58

What is Define Constant (DC) Instruction?

The Define Constant (DC) instruction is used to
define constants. In fact the term constant is
somewhat misleading since there is no guarantee
that the storage set up by a DC Assembler
instruction will remain constant throughout
program execution. In fact, what DC does is to
define storage and initialize it to the value you
specify in the DC instruction.

The operand field of DC contains the same 4
components as the DS instruction, but the
nominal value field is compulsory. The nominal
value specifies the value to which the field is
initialized.

Define Constant (DC) Instruction

Concepts

Unit: Defining Data Topic: The Define Constant (DC) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 93 of 58

The length of a field defined by a DC statement
can be established in one of two ways. If a length
modifier is specified in the definition, that length is
the one used.

If no length modifier is specified, then the length
required to hold the nominal value is used. If an
explicit length is specified, and it does not agree
with the length of the nominal value, then the
nominal value is either padded or truncated to fit
the explicitly specified field length.

The way that padding or truncation is done
depends on the field type. For character
constants, the nominal value is left justified and
padded on the right with blanks if it is shorter than
the field length. It is truncated on the right if it is
too long. The nominal value is specified as a
series of characters.

Length of a Field

Length Modifier Specified:

DC CL4‘THINK’

Value = ‘THIN’
Length attribute
= 4 bytes

No Length Modifier Specified:

Value = ‘THINK’
Length attribute
= 5 bytes

DC C’THINK’

Concepts

Unit: Defining Data Topic: The Define Constant (DC) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 94 of 58

The Assembler converts the character value
specified in the definition into EBCDIC code. In
the following examples, we will represent the field
contents (EBCDIC) in hex notation.

Character Value

Concepts

Continued…

With no length modifier the length is determined by
the nominal value

Definition Field Contents
CFLD1 DC C'ABC' C1C2C3

Explicit length of 5, the nominal value is left jus tified
and right padded with blanks

Definition Field Contents
CFLD2 DC CL5'ABC' C1C2C34040

Explicit length of 2, the nominal value is left jus tified
and right truncated

Definition Field Contents
CFLD3 DC CL2'ABC' C1C2

Duplication factor of 2, with length determined
by the nominal value

Definition Field Contents
CFLD4 DC 2C'ABC' C1C2C3C1C2C3

Unit: Defining Data Topic: The Define Constant (DC) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 95 of 58

The maximum length of a character constant is
256 bytes.

Character Value (cont’d)

Duplication factor of 2 and explicit length of 3

Definition Field Contents
CFLD5 DC 2CL3'ABC' C1C 2C3C1C2C3

Explicit length of 10, the nominal value is left ju stified
and right padded with blanks

Definition Field Contents
CFLD6 DC CL10'*' 5C404040404 04040404040

Duplication factor of 10, length of 1 is determined
by the nominal value

Definition Field Contents
CFLD7 DC 10C'*' 5C5C5C5C5C5 C5C5C5C5C

Unit: Defining Data Topic: The Define Constant (DC) Instructions

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 96 of 58

When do you use hexadecimal constants?

Hexadecimal constants, like other numeric
constants, are right justified in their field, padded
on the left with zeroes or truncated on the left if
needed. The nominal value is specified as a
series of hexadecimal characters. The examples
below illustrate the use of hexadecimal constant
definitions.

Hexadecimal Constants

Concepts

With no length modifier the length is determined
by the nominal value

Definition Field Contents
XFLD1 DC X'3C2F' 3C2F

Explicit length of 3 is longer the nominal value.
Field is right justified and left padded with zeros .

Definition Field Contents
XFLD2 DC XL3'3C2F' 003C2F

Explicit length of 1 is shorter then the nominal
value. Field is left truncated.

Definition Field Contents
XFLD3 DC XL1'3C2F' 2F

Field must contain an even number of nibbles.
Leading zero is inserted.

Definition Field Contents
XFLD4 DC X'ABC' 0ABC

Continued…

Unit: Defining Data Topic: The Define Constant (DC) Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 97 of 58

Duplication factor of 2 and and padded to an
even number of nibbles.

Definition Field Contents
XFLD5 DC 2X'ABC' 0ABC0ABC

Duplication factor of 3 and left truncated to 3 byt es.

Definition Field Contents
XFLD6 DC 3XL3'1234567AB' 4567AB4567AB456 7AB

Two values, with each length determined from the
length of the nominal value.

Definition Field Contents
XFLD7 DC X'AB,CDE' AB0CDE

Hexadecimal Constants (cont’d)

With data types other than character, multiple
values can be defined in a single DC statement,
by separating the values with commas.

Unit: Defining Data Topic: The Define Constant (DC) Instructions

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 98 of 58

When do you use binary constants?

As a numeric type, binary constants are right
justified, truncated on the left or padded on the left
with zeroes. The nominal value is specified as a
string of bits (ones and zeroes).

Both binary and hexadecimal constants have a
maximum length of 256.

Binary Constants

With no length modifier, length is determined by th e
nominal value. Three leadings zero bits are added t o
form a complete byte.

Definition Field Contents (Hex)
BFLD1 DC B'10111' 17

Length modifier of 2 determines the field length.Th e
field is padded on the left with zeros.

Definition Field Contents
BFLD2 DC BL2'10111' 0017

Length modifier of 1 determines the field length. T he
nominal value is right justified and left truncated .

Definition Field Contents (Hex)
BFLD3 DC BL1'10101010101' 55

Duplication factor of 2, left padded with zeros to form
a complete byte.

Definition Field Contents (Hex)
BFLD4 DC 2B'101101' 2D2D

Unit: Defining Data Topic: The Define Constant (DC) Instructions

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 99 of 58

What are the two formats of decimal
numbers?

There are two formats of decimal numbers, zoned
decimal and packed decimal.

Zoned decimal is represented one digit per byte,
with each byte consisting of a zone nibble and a
numeric nibble.

In packed decimal format, each byte contains two
numeric nibbles, except the rightmost, which
contains one numeric nibble and the sign nibble.

Zoned Decimal Format

The zone nibble is F in all nibbles except the
rightmost, where it is a sign (usually C for + and D
for -).

Continued…

Zoned (Z) format:

F 1 F 2 C 3

NUMERIC NIBBLE

ZONE NIBBLE SIGN: C = +
D = -

F
1 2 3 C

ONE
BYTE

ONE
BYTE

SIGN: C= +
D= -

Packed (P) format:

Unit: Defining Data Topic: The Define Constant (DC) Instructions

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 100 of 58

As with other numeric types, decimal constants
are right justified, padded on the left with zeroes
or truncated on the left.

Some examples of zoned decimal constants are
shown on the right.

Zoned Decimal Format (cont’d)

With no length modifier, length is determined by
the nominal value.

Definition Field Contents
ZFLD1 DC Z'12345' F1F2F3F4C5

Explicit length of 6, so field is left padded with a zero.

Definition Field Contents
ZFLD2 DC ZL6'12345' F0F1F 2F3F4C5

Explicit length of 4, so field is left truncated.

Definition Field Contents (Hex)
ZFLD3 DC ZL4'12345' F2F3F4C5

Three separate constants.

Definition Field Contents (Hex)
ZFLD4 DC Z'1,-2,3' C1D2C3

Duplication factor of 2.

Definition Field Contents
ZFLD5 DC 2ZL3'125' F1F2C 5F1F2C5

Unit: Defining Data Topic: The Define Constant (DC) Instructions

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 101 of 58

Although decimal numbers are integers, you can
specify nominal values that have an embedded
decimal point. In such cases, the decimal point is
ignored. The technique can be useful for
documentation purposes, if the numbers are
being used to represented a quantity with a
decimal, such as dollars and cents. The hardware
treats the value as an integer, but the programmer
can provide code to present the number with a
decimal point when it is printed.

The maximum length of a decimal constant is 16
bytes.

Packed Decimal

With no length modifier, length is determined
by the nominal value.

Definition Field Contents
PFLD1 DC P'12345' 12345C

Explicit length of 4, so left padded with a zeros.

Definition Field Contents
PFLD2 DC PL4'12345' 0 012345C

Explicit length of 2, so left truncated.
Definition Field Contents (Hex)
PFLD3 DC PL2'12345' 345C

Three constants, last two padded.

Definition Field Contents (Hex)
PFLD4 DC P'1,37,-4892' 1 C037C04892D

Decimal point is ignored, left padded with zeros.

Definition Field Contents
PFLD5 DC PL4'39.45' 0 003945C

Unit: Defining Data Topic: The Define Constant (DC) Instructions

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 102 of 58

Fixed-point numbers (halfwords and fullwords) are
represented internally in true binary format for
positive numbers and in two’s complement form
for negative numbers. The nominal value is coded
in decimal.

Fixed Point Numbers

Constant is 2 bytes (1 halfword) long, represented
in two's complement form.

Definition Field Contents
HFLD2 DC H'-5' FFFB

Duplication factor of 2.

Definition Field Contents (Hex)
HFLD3 DC 2H5'5' 00050005

Three constants.

Definition Field Contents
HFLD4 DC H'50,-10,160' 0032FF F600A0

Constant is 2 bytes (1 halfword) long, represented
in true binary

Definition Field Contents
HFLD1 DC H'10' 000A

Continued…

Unit: Defining Data Topic: The Define Constant (DC) Instructions

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 103 of 58

Constant is 4 bytes (1 fullword) long, represented
in two's complement.

Definition Field Contents
FFLD2 DC F'-100' FFFFFF9C

Duplication factor of 3.

Definition Field Contents
FFLD1 DC 3F'0' 000000000000

0000000000000

Four constants.

Definition Field Contents
FFLD4 DC FL'31,28,31,30' 000000 1F000000

1C0000001F0000001E

Constant is 4 bytes (1 fullword) long, represented in
two's complement.

Definition Field Contents
FFLD1 DC F'255' 000000FF

Fixed Point Numbers (cont’d)

Unit: Defining Data Topic: The Define Constant (DC) Instructions

Concepts

The nominal value is coded in decimal.

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 104 of 58

What is an Address Constant?

The final type of constant is called an address
constant. There are several types of address
constants, but only one will be discussed. An A-
type address constant is 4 bytes long by default
and is aligned on a fullword boundary. An A-type
address constant contains the absolute address
of its operand. The nominal value of an address
constant is specified within parentheses, rather
than quotes.

To have the Assembler generate an address
constant containing the address of FFLD1, you
would specify:

AFLD1 DC A(FFLD1)

Address Constant

Unit: Defining Data Topic: The Define Constant (DC) Instructions

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 105 of 58

What are Literals?

Literals are used as a shortcut in Assembler
Language programming.

Suppose you wished to add 1 to the fixed-point
value in GPR 5.

One way to do this would be to be to code a
constant with a value of 1, and then add that
constant to the register. An example of the code is
shown on the right.

Literals

AH R5,ONE
.
.
.
.

ONE DC H’1’

Without Literals:

Unit: Defining Data Topic: Literals

Concepts

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 106 of 58

What are the uses of literals?

Using a literals allows you to eliminate the
separate definition of the constant. A literal is
represented as an equal sign, followed by a value
that would be valid in the operand field of a DC
instruction.

In the example, =H’1’ is the literal value. What
actually happens when you code a literal is that
the assembler sets up a constant, at some place
in storage (called the literal pool) and places the
address of that constant in the operand field of the
AH Instruction.

Literals (cont’d)

AH R5, = H’1’

Without Literals:

Literal Value

Unit: Defining Data Topic: Literals

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 107 of 58

The Assembler creates an area called literal pool
and places all literals into that area. The
assembler provides the programmer with some
control over where that literal pool is created. Why
should we care? One reason is that some
programs are composed of multiple modules,
each of which establishes it own addressability.

A value defined in one module may not be
addressable by code in another module. Each
module should be self-contained. Unless we tell
the Assembler differently, it will create a single
literal pool for all the modules in the assembly.
This is likely to produce addressability problems.

Addressability

Unit: Defining Data Topic: Literals

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 108 of 58

What is the function of the LTORG?

The assembler instruction that directs the location
of the literal pool is LTORG. It does not have any
operands. If you do not use any LTORG
instructions in your program, the literal pool is
placed at the end of the first control section
(CSECT) of your program.

When the assembler encounters a LTORG
instruction within a program, it creates a literal
pool at that point, containing all the literals
specified since the last LTORG instruction, or
since the beginning of the program, if this is the
first LTORG.

Functions of LTORG Instruction

Continued…

Unit: Defining Data Topic: Literals

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 109 of 58

To avoid addressability problems in multi-
modular programs, you should code a LTORG
instruction as the last instruction of each control
section in the program. So, each CSECT will have
its own literal pool at the end of the module.

Functions of LTORG Instruction (cont’d)

MOD1 CSECT
LTORG

MOD2 CSECT
LTORG

MOD3 CSECT
LTORG

END

Unit: Defining Data Topic: Literals

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 110 of 58

Processing Input and Output Data

The main purpose of most assembler programs is
to read in data (input), process it, and then print
out the resulting data (output).

The major steps for processing input and output
data in a program are shown. I/O macros are
used to accomplish all of these tasks, except for
the definition of I/O areas, which is done with
assembler instructions.

I/O PROCESSING TASKS

1. Define the data set

2. Define I/O areas

3. Make the data set available

4. Read input data

5. Write output data

6. Free the data set

MVS MACRO

DCB

DS,DC

OPEN

GET

PUT

CLOSE

Concepts

Unit: Basic MVS I/O Facilities Topic: Defining Data Sets

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 111 of 58

Unit: Basic MVS I/O Facilities Topic: Defining Data Sets

Every Assembler program that processes I/O
must provide information to the Assembler about
the data sets to be processed. The data is
organized sequentially and processed by the DCB
(Data Control Block) macro in the same manner.

The DCB macro instruction generates a large
block of constants in order to process the data
set. The block of constants is a set of data fields
(or parameters) that control the look of the data
set being processed.

Elements of Defining Data Sets

Concepts

GET

EXE DCB PUT

DCB

RECORD1

DATA SET

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 112 of 58

Elements of Defining Data Sets (cont’d)

Name Field
DCB Name

INFILE DCB

Data Control
Block Macro

Data Control Block

DDNAME=IN,RECFM=FB,LRECL=80,DSORG=PS,MACRF=GM, X
EODAD=ENDDATA

DATA
FIELD

DATA
FIELD

DATA
FIELD

DATA
FIELD

DATA
FIELD, , , , , X

DATA
FIELD Key Word Operand

Keyword=SIGN Value

MACRF=GM

Concepts

Unit: Basic MVS I/O Facilities Topic: Defining Data Sets

A DCB is a collection of data fields that contain information concerning the data set, including:
• The size and format of the records
• The I/O macros used to process the data
• The name and the current status of the data set

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 113 of 58

What are the parameters used in DCBs?

A variety of keyword parameters are used with
input and output DCBs.

The DDNAME parameter is used as a link to the
external file this DCB represents. The value of the
DDNAME parameter must match the DDNAME
on the JCL DD statement for batch execution, or
the FILE parameter on the ALLOCATE TSO
statement for interactive execution.

Parameters

Concepts

IN DCB DDNAME=INPUT,etc

//INPUT DDetc.

ALLOCATE FILE(INPUT)etc.

DCB

JCL

TSO

Unit: Basic MVS I/O Facilities Topic: Defining Data Sets

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 114 of 58

The DSORG parameter specifies the organization
of the data set represented by this DCB. In the
examples in this course, the parameter is always
PS, which is an acronym for Physical Sequential.

The MACRF parameter specifies the format of
macros used to access the records in the data
set. You specify GM (Move mode of the GET
macro) for input, and PM (Move mode of the
PUT Macro) for output.

The RECFM parameter specifies the record
format of the data set being processed. You
specify FB (fixed length blocked records) for input,
and FBA (fixed length blocked records with
American National Standard Institute (ANSI)
printer control characters) for output.

Kinds of Parameters

Continued…

DSORG

MACRF

RECFM

PS

GM

PM

FB

FBA

INPUT

INPUT

OUTPUT

OUTPUT

Concepts

Unit: Basic MVS I/O Facilities Topic: Defining Data Sets

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 115 of 58Concepts

The LRECL parameter specifies the length of logical records in the data set. You specify 80 for input and 133
for output.

The BLKSIZE parameter specifies the size of physical records, or blocks, in the data set. Omit this parameter
for input data sets and use 6650 for output.

The EODAD parameter (End of Data Address) specifies a label in your program where control is to be
transferred when a GET is attempted and no more data exists. This parameter is only specified for input data
sets.

Kinds of Parameters (cont’d)

INPUT DATA SET

INFILE DCB DDNAME=IN,RECFM=FB,LRECL=80, DSORG=PS,MACRF=GM, X
EODAD=ENDDATA

OUTFILE DCB DDNAME=OUT,RECFM=FBA, LRECL=133 ,BLKSIZE=6650, X
DSORG=PS,MACRF=PM

OUTPUT DATA SET

SPECIFY WITH INPUT DATA SETS ONLY

OUTPUT 133 Characters to Printer

INPUT 80 Bytes from Data

Concepts

Unit: Basic MVS I/O Facilities Topic: Defining Data Sets

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 116 of 58

Before input and output operations on data sets
can be performed, they must be opened, or made
available for processing. You use the OPEN
macro instruction for this purpose.

What is the function of the OPEN macro?

The OPEN macro generates executable
instructions that invoke operating system routines
to check for the presence of a data set, confirm
that it matches your specifications, and prepare it
for processing. For output data sets, OPEN will
create a new data set if the JCL or ALLOCATE
statement so specifies.

Defining Data Set Elements

OPEN (INFILE,(INPUT)) (OUTFILE,(OUTPUT))

Macro Input DCB Outpu t DCB

,

Label of the DCB
statement associated
with the data set

Indicates the purpose
for which the data set
is being opened

Concepts

Unit: Basic MVS I/O Facilities Topic: Defining Data Sets

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 117 of 58

Once the DCB has been opened, code data
transfer macros, GET for input and PUT for
output.

These statements are discussed in more
detail in the next section.

Having finished the I/O processing, close the
DCBs, prior to ending the program.The CLOSE

macro is used for file housekeeping.

The CLOSE macro to close the two data sets is
coded as follows:

CLOSE (INFILE,,OUTFILE)

Defining Data Sets - Summary

CLOSE (INFILE OUTFILE),,

Macro (GET) (PUT)

no options
required

Close Macro:

Concepts

Unit: Basic MVS I/O Facilities Topic: Defining Data Sets

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 118 of 58

What is Move Mode?

The method by which data is transferred from or
to an I/O device is called Move Mode.

Although data is transferred between the I/O
device and buffer is main storage, one block at a
time, Move Mode I/O moves single logical record
to/from a work area. When using this mode, you
must define a work area for each data set.

The Move Mode data transfer macro, for input,
moves the record from the data set to a buffer in
main storage and from the buffer to the work area
named INAREA.

The Move Mode data transfer macro, for output,
moves the record from the work area named
OUTAREA to the buffer in the main storage and
from the buffer to the I/O device.

Move Mode

Continued…

LOOP

GET INFILE,INAREA
MVC OUTREC,INAREA
PUT OUTFILE,OUTAREA

B

OPEN (INFILE,(INPUT),OUTFILE,(OUTPUT))

EQU *

LOOP

ENDDATA EQU *

CLOSE (INFILE,,OUTFILE)

Concepts

Unit: Basic MVS I/O Facilities Topic: Data Transfer Macros

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 119 of 58

The work area must be the same length as the
logical record.

The logical records in the input data set are 80
bytes in length, so the input work area is defined
as shown.

The output records are 133 characters in length,
so the output work area is defined as shown.

These areas could be subdivided by using the
zero duplication factor technique.

Move Mode (cont’d)

Concepts

Unit: Basic MVS I/O Facilities Topic: Data Transfer Macros

DATA

INAREA DS CL80

GET

MVC

OUTAREA DS CL133

80-bytes

PUT
CL80

CL133

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 120 of 58

Once a data set is opened, the GET macro reads
the next logical record in the data set into a work
area. The format of the GET macro in the move
mode is shown on the right.

Using the names used up to this point, the macro
would be coded as shown on the right.

When the end of the input data is reached, and
another GET macro is issued, control is
transferred to the address specified as the
EODAD in the DCB macro.

GET Macro

workareanamedcbname

INFILE INAREA

Move Mode:

GET

GET ,

,

Concepts

Unit: Basic MVS I/O Facilities Topic: Data Transfer Macros

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 121 of 58

What is the function of the PUT Macro?

The PUT macro is used to write the next logical
record from the work area to the output data set.
The format of the PUT macro in move mode is
shown on the right.

Using the names used up to this point, coding
would appear as shown on the right.

PUT Macro

workareanamedcbname

OUTFILE OUTAREA

Move Mode:

PUT

PUT ,

,

Concepts

Unit: Basic MVS I/O Facilities Topic: Data Transfer Macros

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 122 of 58

The record format parameter we have used for
our output data set is FBA and is coded as
shown:

RECFM=FBA

The A specifies that the first byte of each
record is an ANSI control character, which is
used to specify spacing on the printer.

The most common ANSI printer control
characters and their meanings are shown on
the right.

ANSI Control Character

ANSI Printer
Control Character

Space

Meaning

Single space

0 Double space

- Triple space

+
Suppress space

(overprint last line)

1
Skip to top
of next page

RECFM=FBA ANSI Control
Character

Concepts

Unit: Basic MVS I/O Facilities Topic: Data Transfer Macros

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 123 of 58

LO
O

P

M
VC

Concepts

Consolidating I/O Information

Concepts

To put all of this I/O information together, you code a program segment to read data from an input data
set, and then print it out, double spaced, on the printer.

DATA

INPUT

O
U

T
P

U
T

GET
RECORD

P
U

T

RECORD

RECORD

LOOP OPEN (INFILE, (INPUT) , OUTFILE, (OUTPUT)) prepare dcbs for processing
EQU *
GET INFILE, INAREA get next input record
MVC OUTREC, INAREA move to output record
PUT OUTFILE, OUTAREA write output record
B LOOP continue with next record

ENDDATA EQU * handle end of data situation
CLOSE (INFILE,,OUTFILE) close dcbs

INAREA DS CL80
OUTAREA DS 0CL133 specify double spacing
OUTASA DC C'0' copy of input goes here
OUTREC DS CL80 make the rest spaces

DC CL52 ' '
INFILE DCB DDNAME=IN,RECFM=FB,LREC L=80,DSORG=PS,MACRF=GM, X

EODAD=ENDDATA
OUTFILE DCB DDNAME=OUT,RECFM=FBA,LRECL =133,BLKSIZE=6650, X

DSORG=PS,MACRF=P

RECORD

Unit: Basic MVS I/O Facilities Topic: Data Transfer Macros

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 124 of 58

What do packed decimal operands contain?

Packed decimal operands are fields in main
storage from 1 to 16 bytes in length. The
rightmost byte of a packed decimal field contains
a decimal digit in the left nibble and a sign in the
right nibble. The preferred signs for packed
decimal numbers are C for positive and D for
negative. The remaining bytes of a packed
decimal number (other than the rightmost) contain
two decimal digits, one in each nibble.

Packed Decimal Operands

If you attempt to perform decimal arithmetic
with an operand that is not in valid format, a
data exception will occur.

Packed Decimal Operand:

40 4C

Digits 0 to 9
Sign Code
C, F, A or E = (+) Positive
D or B = (-) Negative

Valid Packed
Decimal Number

Concepts

Continued…

Unit: Decimal Arithmetic Topic: Basics of Decimal Arithmetic

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 125 of 58

A packed field n bytes long can hold 2 * n -- 1
digits. The maximum number of digits in a packed
decimal number is 31, since the maximum field
length is 16. The maximum field length for a
multiplier or divisor is 8 bytes.

Packed Decimal Operands (cont’d)

Packed Decimal Operand:

40 4C

Digits 0 to 9
Sign Code
C, F, A or E = (+) Positive
D or B = (-) Negative

Valid Packed
Decimal Number

Unit: Decimal Arithmetic

Concepts

Topic: Basics of Decimal Arithmetic

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 126 of 58

What are decimal arithmetic instructions?

The decimal arithmetic operations are SS
(Storage to Storage) (2 length) instructions.
Operands do not have to be of the same length.
Decimal arithmetic is performed in main storage.

Unlike fixed-point representation, which only
provides one zero value, decimal arithmetic
allows both +0 and -0 to be represented. If a
packed decimal arithmetic operation generates a
zero result without overflow, the result will be +0.
If overflow occurs, the truncated number is zero,
the sign generated is that of the non-truncated
number.

Decimal Arithmetic Instructions

Concepts

+

Bytes truncated

Zero Result Without Overflow – Result Equals (+0)

Overflow-truncation-Result Equals (-0)

1C 0C1D

+5D 0D5D

Unit: Decimal Arithmetic Topic: Basics of Decimal Arithmetic

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 127 of 58

What is a condition code?

The condition code is a two-bit field in the
Program Status Word (PSW) that is set by some
instructions, and can then be tested by
subsequent instructions to implement conditional
execution.

Where are instruction operands located?
Instruction operands are located in main storage
or in registers. The operand's instruction type
determines the location of the operands for each
particular instruction:

• RR instructions have two operands in
registers

• RX instructions have the first operand in
a register and the second in storage.

• SS instructions have both operands in
storage.

Condition Code

EC Mode PSW:

CC Program Mask

RR

RX

AR R1, R2

L R3, DATA1

Instruction Operands:

2 bit Field

18 20

SS MVC FLD2,FLD1

Concepts

Unit: Decimal Arithmetic Topic: Basics of Decimal Arithmetic

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 128 of 58

How many digits do zoned decimal and
packed decimal data contain?

Zoned decimal data has one digit per byte, with
each byte consisting of a zone nibble and a
decimal numeric nibble. The zone in the rightmost
byte is the sign.

Packed decimal data consists of two decimal
digits per byte for the rightmost, which contains a
numeric nibble followed by a sign nibble.
Numbers in character form (EDCDIC code) are
zoned, with an 'F' sign.

Digits in Zoned and Packed Decimal Types

1

ZONED DECIMAL DATA

Numeric
Nibble

Zone
Nibble

Sign
Nibble
C – (+)
D – (-)

Sign
Nibble
C – (+)
D – (-)

Numeric
Nibble

One Byte

PACKED DECIMAL DATA

Concepts

1 F 1 F 1

2 3 C

F

Unit: Decimal Arithmetic Topic: Decimal Type Conversion

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 129 of 58

How do you convert zoned decimal numbers
to packed decimal format?

You often need to convert zoned decimal
numbers to packed decimal format. The numbers
are read in zoned form, but in order to be used in
decimal arithmetic they must be packed.

The instruction that performs this conversion is
called Pack (PACK) and is shown on the right.

The second operand is converted from zoned to
packed format, and the result stored in the first
operand.

For example: PACK NUM,DATA

Converting Zoned Decimal Numbers to Packed Decimal Numbers

Continued…

PACK NUM, DATA

00 00 I2 3C F1 F2 C3

00 00 I2 3C

PACK

DATANUM

Pack (PACK):
SS Format (2 length) – Storage to Storage

Target

CC setting – Condition Code is Unchanged

Result

Left padding
Supplied by PACK

2nd Operand1st Operand

Source

Conversion

Concepts

Unit: Decimal Arithmetic Topic: Decimal Type Conversion

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 130 of 58

The operation of PACK is as follows:

• It processes each operand right to left.
The rightmost byte of the second
operand has its nibbles reversed in
order and the result is stored in the
rightmost byte of the first operand.

• Pairs of bytes are selected from the
second operand and combined into a
single byte by combining numeric
nibbles and discarding zone nibbles.
The combined single byte is stored in
the first operand.

• If the length of the second operand, L2,
is greater than 2*L1-1, left truncation
occurs. If L2 is less than 2*L1-1, left
padding with zeroes occurs.

Converting Zoned Decimal Numbers to Packed Decimal Numbers (cont’d)

Length
of FLD2 Contents of FLD2

Resulting value
of FLD1

4 F1F2F3F4 01234F

5

6

F1F2F3F4F5

F1F2F3F4F5F6

12345F

23456F

F1 F2 F3 F4 F1 F2 F3 F4

F1 F2 F3 F4 F5 F6

01 23 4F 12 34 5F

23 45 6F

Length =4 Length =5

FLD2 FLD2

FLD1 FLD1

FLD1

FLD2

Ignored, truncated
By PACK

Length = 6
Left padding

supplied by PACK

F5

Concepts

Unit: Decimal Arithmetic Topic: Decimal Type Conversion

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 131 of 58

How do you convert from packed decimal to
zoned decimal numbers?

The reverse conversion, from packed decimal to
zoned decimal is performed by the Unpack
(UNPK) instruction.

The second operand is converted from packed to
zoned format and the result stored in the first
operand.

For example: UNPK OUTFLD, CALCFLD

Converting from Packed Decimal to Zoned Decimal Num bers

Continued…

UNPK OUTFLD, CALCFLD

00 00 00 00 00

F0 F1 F2 F3 C4

UNPK

01 23 4C

Target

Result

Conversion

Source

CALCFLDOUTFLD

1st Operand 2nd Operand

Unpack (UNPK):
SS Format (2 length) – Storage to Storage

CC setting – Condition Code is Unchanged

Concepts

Unit: Decimal Arithmetic Topic: Decimal Type Conversion

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 132 of 58

The operation of UNPK is as follows:

1. It proceeds from right to left through its
two operands. The nibbles of the
rightmost byte of the second operand
are swapped and stored in the rightmost
byte of the first operand.

2. Each nibble of the second operand is
expanded to a byte by inserting an 'F' in
the zone nibble. It is then stored in the
first operand.

3. If L1 is not equal to 2*L2-1, left
truncation, or left padding with zero will
occur.

For example: UNPK FLD3, FLD4

Converting from Packed Decimal to Zoned Decimal Num bers (cont’d)

Length
Of FLD4

Contents of FLD4
Resulting value

Of FLD3

123C F0F0F1F2C32

3

4

12345C

1234567C

F1F2F3F4C5

F3F4F5F6C7

F0 F0 F1 F2 C3 F1 F2 F3 F4 C5

F3 F4 F5 F6 C7

12 3C 12 34 5C

12 34 56 7C

Length =2 Length =3

FLD4 FLD4

FLD3FLD3

Length = 4

FLD4

FLD3

Ignored, truncated
by UPNK

Left padding supplied by UPNK

Concepts

Unit: Decimal Arithmetic Topic: Decimal Type Conversion

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 133 of 58

Notice that when you do arithmetic on packed
numbers, the signs generated are C for + and D
for -. To unpack a number with one of these signs,
and interpret the contents as characters, the right
most character is not a digit. That is because
digits have 'F' in the zone position, while an
unpacked number has 'C' or 'D'.

Converting from Packed Decimal to Zoned Decimal Num bers (cont’d)

F1 FL

0I

F3

F1 F2 F3

DATA + 2, X ‘FO’

C3
F0

OR Immediate
changes the sign
nibble

Prints as 12C

Result

Prints as 123
DATA

DATA

OR Immediate:

C3

Concepts

Unit: Decimal Arithmetic Topic: Decimal Type Conversion

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 134 of 58

Converting from Packed Decimal to Zoned Decimal Num bers (cont’d)

The following code shown on the right formats the
contents of a 4 byte packed field called NUM5 for
printing.

F1 F2 F3 F4 F5 F6 C7

F1 F2 F3 F4 F5 F6 F7

F7
0I PRTFLD + 6, X ‘F0’

C7
F0

Prints
As

123456c

Prints
as

1234567

Result

PRTFLD

PRTFLD

UNPK PRTFLD, NUM5
OI PRTFLD + 6, X ‘F0’
.
.
.
DS PL4
DS ZL7

NUM5
PRTFLD

OR immediate
Changes the

sign nibble

Concepts

Unit: Decimal Arithmetic Topic: Decimal Type Conversion

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 135 of 58

What is the Zero and Add Instruction?

The Zero and Add (ZAP) instruction is used to
move packed data from one main storage location
to another.

The field sizes of the sending and receiving fields
do not have to be equal. However, overflow can
occur if the receiving field is not long enough to
hold all of the significant digits of the sending field.
The sending field must contain a valid packed
number , but the initial contents of the receiving
field are not checked. The operation proceeds as
if the receiving field was zeroed, and then the
spending field is added to it.

For example: ZAP RESULT, DATA1

Zero and Add Instruction

Continued…

ZAP RESULT,DATA1

BA C0 F312 34 5F

00 00 00

12 34 5F

00

49

ZAP

Zero and Add (ZAP):
SS Format (2 length) – Storage to Storage

1st Operand 2nd Operand
DATA RESULT

Add 2nd Operand

CC setting: 0 – result is zero
1 - result is negative
2 - result is positive
3 - overflow

Zero 1st Operand

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 136 of 58

Zero and Add Instruction (cont’d)

The condition codes shown previously are
standard for many arithmetic instructions. The
abbreviation "CC setting: Arithmetic" will be in
reference to these condition code settings.

The overflow condition occurs when the
magnitude of an arithmetic result is too large to fit
into the result field.

You would get an overflow condition if you
executed the instruction on the right. 100 will not
fit into a 1 byte packed field. 10 is truncated and
CC is set to 3.

Continued…

0C

0C

10

0C10

FLD1
- 1 Byte

LITERAL 100
- 100 requires 2 Bytes

-Overflow
Indicator

Receiving

Truncated

0C

0C

10

0C10

ZAP

DS

FLD1, = P ‘100’
.
.
.
PL1FLD1

Concepts

CC <- 3

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 137 of 58

Zero and Add Instruction (cont’d)

In the latter case, the program may seem to
execute correctly but produce incorrect numeric
results. It is important to give sufficient thought to
choosing appropriate field lengths and to use
greater lengths if you are unsure.

For example: ZAP FLD1,=P'0'

Continued…

0C

0C

FLD1
- 1 Byte

LITERAL 0
- 1 Byte

The fields FIT
CC - 0

Sending

Receiving

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

FLD1, = P ‘0’
.
.
.
PL1

ZAP

DSFLD1

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 138 of 58

ZAP is used primarily to initialize packed decimal
fields and to move packed data from one location
to another.

For some operations, like multiplication and
division, it is necessary to place an operand in a
larger field for the operation to work successfully.
ZAP is used in these cases.

Zero and Add Instruction (cont’d)

Concepts

Packed
Decimal

Packed
Decimal

ZAP

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 139 of 58

What is the function of Add Decimal?

The Add Decimal (AP) adds a packed decimal
sending field (second operand) to a packed
decimal receiving field (first operand). It places
the sum in their receiving field, and sets the
condition code according to the result.

For example: AP COUNT,=P'1‘

A literal value of one is added to count.

Add Decimal

AP COUNT, = P ‘1’

AP

VALUE VALUE

SUM

Add Decimal (AP):
SS Format (2 length) – Storage to Storage

CC Setting - Arithmetic

Sending

LITERAL 1 COUNT

1st Operand 2nd

Operand

Receiving

+

Sum replaces value
in COUNT

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 140 of 58

Add Decimal (cont’d)

To sum 4 values called X1, X2, X3 and X4 into a
field called TOTAL, you could use the code shown
on the right.

The first instruction has to be a ZAP, since
no information is given about whether
TOTAL was initialized to zero.

X1ZAP

AP

VALUE VALUE

SUM

CC Setting - Arithmetic

Sending

X2 TOTAL

Receiving

+

TOTAL

TOTAL is an unknown
ZAP moves X1 to Zero TOTAL

SUM replaces
Value in TOTAL

Repeat for
X3 and X4

ZAP TOTAL, X1
AP TOTAL, X2
AP TOTAL, X3
AP TOTAL, X4

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 141 of 58

What is the function of the Subtract Decimal?

The Subtract Decimal (SP) instruction subtracts a
packed decimal in the sending field (second
operand) from a packed decimal in the receiving
field (first operand), places the difference in the
receiving field (first operand), and then sets the
condition code according to the results.

For example: SP TOTAL, DISCOUNT

The contents of DISCOUNT are subtracted from
TOTAL, and the difference placed in TOTAL.

Subtract Decimal

SP TOTAL, DISCOUNT

SP

VALUE VALUE

DIFF

CC Setting - Arithmetic

Sending

DISCOUNT TOTAL

Receiving

-

DIFF replaces
value in TOTAL

2nd Operand
1st Operand

Subtract Decimal (SP):
SS Format (2 length) Storage to Storage

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 142 of 58

Multiply Decimal

What are the functions of the multiplier and
multiplicand?

Decimal multiplication takes into account the fact
that the length of the product can be as long as
the combined lengths of multiplier and
multiplicand.

The length of the multiplier may not exceed 8
bytes, and must be less than the length of the
multiplicand, which also holds the product. If
these conditions are not satisfied, a specification
exception occurs.

Also, when the instruction is executed the
multiplicand must have as many bytes of high
order zeros, as there are bytes in multiplier. If
this condition is not met, a data exception occurs.

00 00 12 3C

00 12 34 5C

99 9C

99 9CMPLR

MPCND

2 bytes of high– order
Zeros not present –
Data ExceptionData Exception:

Specification Exception:
2 bytes longer
Specification Exception
Does not occur

MPLR

MPCND

MP MPCND, MPLR
.
.
.
DS PL4
DS PL2

MPCND
MPLR

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 143 of 58

How do you determine the sign of a product?

The sign of the product is determined by the rules
of algebra. That is, if the signs of the multiplier
and the multiplicand are the same, the product is
positive, otherwise the product is negative. This
rule holds even when either multiplier or
multiplicand is zero, so a negative zero result can
occur.

The Multiply Decimal (MP) instruction multiplies a
packed decimal multiplicand contained in the first
operand storage location by a packed decimal
multiplier contained in the second operand
storage location.

For example: MP NUM1, NUM2

Signs

MP NUM1, NUM2

MP

VALUE VALUE

PRODUCT

Sending

NUM2 NUM1

Receiving

*

PRODUCT replaces
value in NUM1

Multiply Decimal (MP):
SS Format (2 length) – Storage to Storage

2nd Operand1st Operand

CC Setting – Condition Code is Unchanged

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 144 of 58

Field Lengths

How do you avoid problems with field
lengths?

A standard technique to avoid problems with field
lengths using Multiply Decimal is to use a field
which is the sum of the lengths of multiplier and
the multiplicand for the product. If NUM1 was a 5
byte field, and NUM2 a 3 byte field, you would
define a field 8 bytes long to hold the product. The
code to perform the multiplication is shown on the
right.

5 Byte 3 Byte 8 Byte

Length of NUM1 Length of NUM2 Length of Product

+ =

To ensure that you have enough Low – Order
Zeros, the Product field must be > or =to
the Sum of the lengths of Multiplicand and

Multiplier.

ZAP PRODUCT.NUM1
MP PRODUCT.NUM2
.
.
.
DS PL5
DS PL3
DS PL8

NUM1
NUM2
PRODUCT

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 145 of 58

What is the function of the Divide Decimal?

The Divide Decimal (DP) instruction divides a
packed decimal dividend (first operand) by a
packed decimal divisor (second operand). The
quotient and the remainder replace the dividend in
the first operand.

For example: DP NUM3,=P'4'

NUM3 is divided by 4, with the quotient replacing
all but the rightmost byte of NUM3, and the
remainder in the rightmost byte.

Divide Decimal

DP NUM3,=P’4’

DP

VALUE VALUE

REM

Divisor

Literal 4 NUM3

Dividend
Quotient and
Remainder
replaces value
In NUM3

Divide Decimal (DP):
SS Format (2 length) – Storage to Storage

2nd Operand
1st Operand

CC Setting – Condition Code is Unchanged

QUO

%

Concepts

Continued…

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 146 of 58

Decimal division is integer division and so it
produces both an integer quotient and an integer
remainder. After the division, the quotient and
remainder share the first operand field that initially
contained the dividend.

Both quotient and remainder are packed decimal
fields, with the quotient preceding the remainder.
The length of the quotient field is equal to the
length of the dividend field, minus the length of
the divisor field. The length of the remainder field
equals the length of the divisor field.

A specification exception results if the dividend
field is not longer than the divisor field, or if the
divisor length is greater than 8 bytes. If the divisor
is zero, or the quotient is too large to fit into the
quotient field, a decimal divide exception occurs.

Divide Decimal (cont’d)

DIVIDEND

DIVISOR

QUO REMAINDER

L1

Decimal Division:

Before DIV

L2

L2L1 –L2

S2

S1

L1 = Length of Dividend in Bytes
L2 = Length of Divisor in Bytes
Rules:
L1 – Maximum of 16 Bytes
L2 – Maximum of 8 Bytes
L1 must be greater than L2

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 147 of 58

Divide Decimal (cont’d)

A useful technique in performing decimal division
is to move the dividend to a field as large as the
sum of the dividend and the divisor field lengths,
prior to the division. You can use the technique of
zero duplication factor to define this single field in
two ways: one for the dividend (before the
division), and one for the quotient and remainder
(after the division).

To divide NUM4 (6 bytes long) by NUM5 (2 bytes
long), the code shown on the right could be used.

After the DP instruction, the quotient is in
QUOTIENT and the remainder in REMAINDER.

Assume NUM4 = 1000
NUM5 = 7

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 C

0 0 0 0 0 0 0 0 1 4 2 C 006C

QUO REM

QUOREM

PL6 PL2After Division

QUOREM

Before Division After ZAP

ZAP QUOREM,NUM4
DP QUOREM,NUM5
.
.
.
DS PL6
DS PL2
DS PL8
DS PL6
DS PL2

NUM4
NUM5
QUOREM
QUOTIENT
REMAINDER

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 148 of 58

What is the function of the Shift and Round
Decimal Instruction?

The Shift and Round Decimal Instruction (SRP)
allows you to multiply and divide packed decimal
numbers by powers of ten, and to round when
right shifting (dividing).

The SRP instruction is a two length SS format
instruction, but with a difference. The first operand
specifies the number to be shifted. What would
normally be the L2 field is called l3 and holds the
rounding factor.

Shift and Round Decimal Instruction

B2FO L1 I3 B1 D1 D2

S XXXXX

Shift and Round Decimal (SRP):
SS Format (2 length) – Storage to Storage

Immediate
Data

Used to generate
Shift Magnitude
And Direction

0 - 31

Signed Fixed – Point
Value

+ value – Left Shift
- value – Right Shift

CC Setting - Arithmetic

Concepts

Second
Operand

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 149 of 58

If a significant digit is shifted out during a left shift,
the condition code is set to indicate overflow.

The first operand is shifted the number of
positions and direction specified by the second
operand. In the case of a right shift, the absolute
value of the first operand is rounded by the
rounding factor.

For example: SRP NUM9,3,0

NUM9 is shifted 3 decimal positions to the left.
This is equivalent to multiplying NUM9 by 1000.

Shift and Round Decimal Instruction (cont’d)

23

00 00 12 34 5C

01 45 00 0C

NUM9,3,0SRP

Rounding:

NUM9

NUM9

+ ve shift
left

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 150 of 58

It is useful to look at the syntax of the above
instruction before proceeding. NUM9 is the first
operand. 3, the second operand, is a
displacement field only. 0 is the immediate
operand, the rounding factor.

Shift and Round Decimal Instruction (cont’d)

SRP

0

NUM9,3,0

0 0 3

1st Operand

Immediate
Data

2nd Operand

Displacement

B D D D

Rounding:

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 151 of 58

If you want to specify a right shift of 3, you might
be tempted to specify -3 as the second operand.
This would be incorrect. Displacements must be
in the range of 0-4095. Negative displacements
are invalid. What is needed in the displacement
field is the value that corresponds to the 6 bit
value -3, in sign and two's complement form.
Calculate this as 1111012, which is 6110. To shift
NUM9 3 positions to the right, with half rounding,
specify this as follows.

SRP NUM9,61,5

Shift and Round Decimal Instruction (cont’d)

SRP NUM9,61,5

= - 3

Rounding:

00011 = +3
11100 – Flip Bits

+1 – Add 1
11101 = -3 Twos Complement

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 152 of 58

In general, to shift n positions to the right, specify
the second operand as 64-n. You can actually
code the second operand of SRP as follows, to
make the code more clear.

SRP NUM9,64-3,5 shift right 3 positions and
half round

Shift and Round Decimal Instruction (cont’d)

ZAP CALC, PRICE
MP CALC, =P’ 108’ (Price with

Sales tax)

SRP CALC , 64-2 ,5 price with
sales tax,
half rounded

.

.

.

PRICE DS PL4
CALC DS PL6

Concepts

Unit: Decimal Arithmetic Topic: Decimal Arithmetic Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 153 of 58

For many programs, it is important to present
numeric results in a format that is easy to read
and interpret. If you are dealing with large
numbers, you can use commas to break the
number up for readability . Numbers such as
123,456,789 are easier to read and interpret than
123456789.

If you are doing currency calculations, you might
want to present your results with a dollar sign, and
with a period separating dollars and cents. In this
case, your output might be presented as
$1,234,567,89. The Edit instruction is provided for
the purpose of formatting numeric output.

Editing Decimal Data

MASK, PACKEDED

DE L B DDD B DDD

1st Operand 2nd OperandLength

Instruction Structure

Indicates
formatting

Number according
to MASK

Editing:

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 154 of 58

What is an Edit Instruction?

Edit is a very powerful instruction, in that it allows
you greater control and flexibility in presenting
numeric output. However, the power comes at a
price. Edit is a very complex instruction. In order
to use the full power of Edit, you must take the
time to understand the details of how it works.

Edit Instruction

Value

1234567

Formatted Value

12,345.67

0123456 1,234.56

123.450012345

0001234 12.34

0000123 1.23

0.120000012

0.01

-1234567

0000001

12,345.67-

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 155 of 58

The values of all consist of seven digits and a
sign. The positive sign is not shown.

The formatted values contain digits, and
punctuations such as commas, periods and minus
signs, to make reading the numbers easier. Note
that the values are all 7 digits and a sign.

However, not all of the digits are significant in all
of the examples. Zeroes preceding the first non-
zero digit in a value are not significant.

Edit

Sign (-)

Value

1234567

Formatted Value

12,345.67

0123456 1,234.56

0.010000001

-1234567 12,345.67-

Punctuation

Significant
Digit

Not a
Significant

Digit

Digit prior to period
is also chosen

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 156 of 58

If you were printing an amount on a check, you
might want to format the amounts in dollars and
cents to make it difficult to manually change the
check.
One way to do this is to print asterisks rather than
spaces prior to the first significant digit.

The table of formatted values would then look like
the table shown on the right.

Edit (cont’d)

Value

1234567

Formatted Value

12,345.67

0123456 *1,234.56

***123.450012345

0001234 ****12.34

0000123 *****1.23

*****0.120000012

*****0.010000001

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 157 of 58

What is the Significance Indicator?

In order to handle this type of editing, Edit must
be aware of whether the digit it is handling is
significant or not. Edit maintains a Significance
Indicator to keep track of whether a significant
digit has yet been detected.

To be able to always print a digit before the
decimal point, the programmer must be able to
specify that Edit will behave as if it has found a
significant digit once it reaches a certain position
in the output field. This is known as forcing
significance

Significance Indicator

SIGNIFICANCE
INDICATOR

Turned on by
detecting a

non - zero

Turned on by
Character in MASK

Forcing Significance:

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 158 of 58

What is the fill character?

The programmer must also be able to tell Edit
what to place in the output field if the Significance
Indicator has not been turned on. In the first table
a blank is used, while in the second table, an
asterisk is used. The character used to fill the
output field, until the Significance Indicator is
turned on, is known as the fill character.

Fill Character

DS DS*

Specifies position for digit (SI ON)
Or Fill Character (SI OFF)

First character replaces
leading zeros or punctuation
before significance Indicator
is Turned On

MASK

Significance Indicator:

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 159 of 58

What is an edit mask?

The first operand of Edit is an edit mask that Edit
replaces with the edited number. It is through the
edit mask that the programmer specifies how the
Edited number is to look. The first character of the
edit mask is the fill character. The remaining
characters of the edit mask are a combination of
the characters shown in the table on the right.

Edit Mask

Character

X ’20’

Meaning

Digit Select

X ’21’ Significance Start

Field SeparatorX ’22’

Anything else Message Character

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 160 of 58

What are the components of an edit mask?

A digit select character specifies a position where
a source digit is to be placed if the Significance
Indicator is set, or the fill character is placed
otherwise. A significance start character has the
same effect as a digit select, but also forces the
Significance Indicator on, after the digit or fill
character is placed. The field separator character
is only used if the Edit operation is editing multiple
numbers. It causes the significance indicator to be
turned off.

Edit Mask (cont’d)

Fill ds ds , ds ss ds . ds ds -

Message Characters

MASK

12,345.67-

Unit: Decimal Arithmetic Topic: Editing Decimal Data

Continued…
Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 161 of 58

The Significance Indicator is initially turned off. It
is turned on when a non-zero digit is encountered
in the second operand, and after processing a
byte in the mask containing a significance start
character.

It is turned off when a positive sign is encountered
in the second operand, and when a field separator
character is found in the mask.

Edit Mask (cont’d)

Significance
Indicator

(Initially OFF)

Significance
Start Character

Non – Zero
Digit

Turned ON

Turned OFF

+ ve Sign Field
Separator

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 162 of 58

How do you format packed decimal data with
Edit instruction?

The Edit (ED) instruction is used to format packed
decimal data. The first operand is an edit mask.
The second operand is a field containing one or
more packed decimal numbers.

The second operand is edited according to the
values in the mask, and the edited number
replaces the mask in the first operand field. The
single length specifies the length of the mask. The
two operands are processed left to right.

For example: ED MASK,PD1

The value in PDI is edited, according to the
specifications in MASK, and the edited number
replaces MASK.

Formatting Packed Decimal Data with Edit Instructio n

ED MASK,PD!

PD1 MASK

RESULT MASK

PD1

2nd Operand1st Operand

Replace

EDIT PD1
According to MASK

Edit (ED)
SS Format (1 length) – Storage to Storage

CC setting – 0 – the last field edited
is zero or zero length.

1 – the last field edited is
less than zero

2 – the last field edited is
greater than zero

Concepts

Continued…

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 163 of 58

The mask field is replaced by the edited
number. It is necessary to move the mask to
the location where the editing is to be done
before each repeated ED instruction to avoid
destroying the mask.

Formatting Packed Decimal Data with Edit Instructio n (cont’d)

Concepts

ED MASK,PD!

PD1 MASK

RESULT MASK

PD1

2nd Operand1st Operand

Replace

EDIT PD1
According to MASK

Edit (ED)
SS Format (1 length) – Storage to Storage

CC setting – 0 – the last field edited
is zero or zero length.

1 – the last field edited is
less than zero

2 – the last field edited is
greater than zero

Unit: Decimal Arithmetic Topic: Editing Decimal Data

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 164 of 58

To devise the mask necessary to edit the 7
digit number specified in the earlier example,
you must remember that you will want the
edited number to represent a dollar and cents
amount.

If you look at this table, you can see that the
fill character is blank. That blank will be the first
character of the edit mask. If at least one digit
is desired to be printed prior to the decimal point,
you will need to specify a significance start
character two positions before the decimal
point, because the significance indicator is
turned on after the byte with the significance
start character is processed. From the last line
of the table, it seems that the last character of
the mask must be a minus sign.

Formatting Packed Decimal Data with Edit Instructio n (cont’d)

Value

1234567

Formatted Value

12,345.67

0123456 1,234.56

123.450012345

0001234 12.34

0000123 1.23

0.120000012

0.01

-1234567

0000001

12,345.67-

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 165 of 58

To edit a positive number, the positive sign turns
the Significance Indicator off, so the fill character
of blank would replace the minus sign message
character. Using a minus sign does not turn the
Significance Indicator off, so the message
character is printed.

The mask will need to contain the following
characters in the order shown in the table in the
right.

Formatting Packed Decimal Data with Edit Instructio n (cont’d)

Contents

Blank

Purpose

Fill character

X’20’ Digit select

Digit selectX’20’

Comma Message character

X’20’ Digit select

Message characterMinus sign

Significance start

X’20’

X’21’

Digit select

Period Message character

Digit selectX’20’

Digit selectX’20’

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 166 of 58

There are seven digits being edited in this example, so the total number of digit selects and significance start
character is seven. When you add the fill character and message characters, the total length of the mask is
11 bytes. It is always a good idea to check that your masks have the proper number of digit selects and
significance starts. Having too many may cause a data exception. Having too few will cause truncated values
to be generated.

Assuming that the number to be edited was called PK1 and the field where you wanted to place the edited
number was called PRTAMT, the code to do the editing is as shown above.

Digit Selects and Significance Starts

MVC PRTAMT , MASK mc
ED PRTAMT , PK1 oc
.
.
.
DS PL4
DS CL11
DC X’4020206B2021204B202060

PK1
PRTAMT
MASK

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 167 of 58

EBCDIC Code

Concepts

OPEN (INFILE,(INPUT),OUTFILE,(OUTPUT)) prepare dcbs f or processing
GET INFILE,INAREA get next input record
PACK WKAREA,NUM convert number to packed
ZAP SUM,WKAREA move first number to sum
GET INFILE,INAREA get next input record
PACK WKAREA,NUM convert number to packed
AP SUM,WKAREA add second number to sum
GET INFILE,INAREA get next input record
PACK WKAREA,NUM convert number to packed
AP SUM,WKAREA add third number to sum
MVC OUTNUM,MASK move edit mask to output
ED OUTNUM,SUM edit the sum
PUT OUTFILE,OUTAREA write output record
CLOSE (INFILE,,OUTFILE) close dcbs

The EBCDIC codes for blank, comma, period and minus are 40, 6B, 4B and 60 respectively. These are codes
that you should memorize if you are going to be doing a lot of editing.

Continued…

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 168 of 58

INAREA DS 0CL80
DS CL73

NUM DS CL7
WKAREA DS PL4
SUM DS PL5
MASK DC X’402020206B2020206B202120’
OUTAREA DS 0CL133
OUTASA DC C’0’ specify double spacing

DC CL10’The Sum is’
OUTNUM DS CL12

DC CL110’ ‘ make the rest spaces
INFILE DCB DDNAME=IN,RECFM=FB,LRECL=80,DSORG=PS,MACRF =GM, X

EODAD=ENDDATA
OUTFILE DCB DDNAME=OUT,RECFM=FBA,LRECL=133,BLKSIZE=66 50, X

DSORG=PS,MACRF=PM

A complete code segment, to read 3 seven digit numbers from the first seven positions of 3 in a dataset, add
them and then print the edited sum, is shown above.

EBCDIC Code (cont’d)

Concepts

Unit: Decimal Arithmetic Topic: Editing Decimal Data

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 169 of 58

A load operation moves data from main storage
into a GPR. You will find this useful when
performing fixed-point binary arithmetic, or using
data for addressing. The first two instructions you
will learn are Load (L) and Load Halfword (LH).

The Load (L) instruction is used to move a
fullword of data from main storage into a
General Purpose Register (GPR). The data is
moved unchanged, from storage to the register.

For example: L R3,FWD1

The fullword of data at location FWD1 would be
loaded into R3. The data at location FWD1 is
unchanged.

Load Operation

Concepts

R3,FWD1L

00 00

07

L

07 3C EA 0000 00

3C EA 00

Load (L) Instruction:
RX Format – Register and Indexed Storage

1st Operand 2nd Operand

R3 FWD1

Target
Full word Source

Full word

Copies FULWORD from main
Storage address beginning at
location FWD1 to GPR R3

CC setting: Condition Code is unchanged

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 170 of 58

The Load Halfword (LH) instruction takes a
halfword of data from main storage HWD1,
expands it to a fullword by sign extension,
and places the resultant fullword into a
GPR R4.

For example: LH R4,HWD1

Load Halfword Instruction

The expansion occurs within the processor
and does not alter any values in the main
storage.

Concepts

R4,HWD1LH

Load Half word (LH):
RX Format – Register and Indexed Storage

1st Operand 2nd Operand

00 00

00

LH

00 0100 00

00 00 01

R4 HWD1

Target
Full word

Source
Half word

Sign
Extension

Copies HALFWORD from main storage address beginning
at location HWD! To GPR r4 (low – order 16 bits). Since
The sign of HWD1 is 0, HWD1 is expanded into a full word
By inserting 16 o bits in front of the 16 bits of HWD1
CC setting: Condition Code is unchanged

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 171 of 58

The example above shows how sign extension works. The high order bit of a fixed-point number is its
sign, and the sign bit of the source field directly affects the high-order 16 bits in the target register.

Sign Extension

Concepts

1 1 1 1 1 1 1

0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11101011 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 111010110 0 0 0 0 0 0 0

1

0

Sign Extension
(Half word to
Full word
Expansion):

0

Register 4
FULL WORD
Changes Sign

To 1 or (+)

Propagates 16
High – order bits

FULL WORD
CHANGES SIGN TO OR (+)

Propagates 16
High – order bits

Copies into 16
Low – order bits

31 0

Copies into 16
Lo –order bits SOURCE FIELD

HWD1 HALF WORD

HALF WORDHWD1

15
SIGN: 0 = (+)

1 = (-)

15
SIGN: 0 = (+)

1 = (-)

0

1

LH

0
LH

Half word

Half word

o

o

31

0
Register 4

TARGET REGESTER

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 172 of 58

What is the Load Multiple (LM) Instruction?

This operation could be performed by a number of
load instructions, each loading a single fullword
into a register one at a time. However the Load
Multiple (LM) instruction is provided to facilitate
this fairly common requirement by a single
instruction.

Using the LM instruction, a number of consecutive
fullwords from main storage are loaded into a
range of GPRs, from the GPR specified as the
first operand to the GPR specified as the second
Operand, both inclusive.

For example: LM R5,R7,FWDS

Load Multiple Instruction

Continued…

LM
L R5,FWDS
L R6,FWDS+4
L R7,FWDS+8

R5,R7,FWDS

Load Multiple (LM):
RS Format: Register Storage

=

FF FF FF FF

FF FF FF FF

FF FF FF FF

Target
Fullword

R5

R6

R7

01 42 77 FF

0B 72 1A 80

EF FF FF FF

Source
Fullword

LM

FWDS

CC Setting - Condition Code Unchanged

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 173 of 58

When the instruction executes, it loads a fullword
from main storage at location FWDS to the GPRs
beginning with R5, the next fullword in storage
(i.e. at location FWDS+4) would be loaded into R6
and the next (at location FWDS+8) into R7.

The effect of LM R5,R7,FWDS is identical to the
three instructions shown on the right.

Load Multiple Instruction (cont’d)

Continued…

LM
L R5,FWDS
L R6,FWDS+4
L R7,FWDS+8

R5,R7,FWDS

Load Multiple (LM):
RS Format: Register Storage

=

FF FF FF FF

FF FF FF FF

FF FF FF FF

R5

R6

R7

01 42 77 FF

0B 72 1A 80

EF FF FF FF

CC Setting - Condition Code Unchanged

LM

FWDS

Target
Fullword

Source
Fullwood

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 174 of 58

Load Multiple (LM) is a Register Storage
format instruction.

LM has three operands:

• The first operand is the first in a group of
consecutive target registers

• The second operand specifies the
last register in the group

• The third operand specifies the
source main storage address

Load Multiple Instruction (cont’d)

Continued…
Concepts

1st OPERAND 2nd OPERAND 3rd OPERAND

LM R5,R7,FWDS

Lowest
Register
in Range

Highest
Register
in Range

Ascending order:
R5, R6, R7

LM R14,R13,FWDS

Lowest
Register
in Range

Highest
Register
in Range

Ascending order:
R14, R15, RO, R1,
R2, R3, R4, R5,
R6, R7, R8, R9
R10, R11, R12, R13,

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 175 of 58

One interesting feature of Load Multiple (LM)
is that if the second operand specifies a lower
numbered register than the first operand, this
indicates a range of registers from R14 to R15
and from R0 to R12.

Thus LM R14,R12,SAVE

Loads 15 registers; R14, R15, R0, R1….R12 in
that order, from the 15 consecutive fullwords
beginning at SAVE.

Load Multiple Instruction (cont’d)

Concepts

01 42 77 FF

0B 72 1A 80

2B 08 75 FF

Source
Fullword

R14

R15

R0

FF FF FF FF

FF FF FF FF

FF FF FF FF

Target
Fullword

0C 72 1B 64

EF FF FF FF

FF FF FF FF

FF FF FF FF

R11

R12

LM R14,R12,SAVE

LM

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 176 of 58

The two instructions LR and LTR covered in this
section are both RR (register to register) type.
That is, both of their operands specify registers.
The first operand specifies the target register, and
the second operand specifies the source register.

The Load Register (LR) instruction copies a
fullword from one GPR (2nd Operand) to
another GPR (1st Operand).

For example: LR R7,R3

Load Register

LR R7,R3

Load Multiple (LR):
RR Format - Register to Register

Target
Fullword

Source
Fullword

CC Setting: Condition Code is Unchanged

LR

R3

00 00 00 00 07 3C EA 00

R7

2nd Operand1st Operand

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 177 of 58

The Load and Test (LTR) instruction is identical to
Load Register (LR), except that it sets the
condition code.

The instruction copies the contents of one GPR
(2nd Operand) to another GPR (1st Operand),
setting the CC to indicate if the result is zero,
negative or positive.

For example: LTR R7,R3

Load and Test Instruction

LTR R7,R3

Load and Test (LTR):
RR Format - Register to Register

Target
Fullword

Source
Fullword

CC Setting – 0-Result is Zero
1-Result is Negative
2-Result is Positive

LTR

R3

00 00 00 00 07 3C EA 00

R7

2nd Operand1st Operand

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 178 of 58

This section describes two operations: Store (ST) and Store Halfword (STH). A store operation is the opposite
of a Load (L); it is a move of data from a register to main storage. The store instructions are the first examples
of instructions you will see that work backwards. That is, the result of a store operation is placed in the
second operand field, rather than the first as is normal.

Store and Store Halfword Operations

FullwordGPRs 0

1

15

STORE

Main
Storage

LOAD

1st Operand 2nd Operand

1st Operand 2nd Operand

LOAD

STORE

RX Format - Normal Process
Loads Fullword from Main Storage to GPR

GPR
RX Format - Backward Process
Stores Fullword from GPR to Main Storage

GPR Main Storage

Main Storage

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 179 of 58

The Store (ST) instruction is similar to the Load
(L). ST stores a fullword, located in a GPR,
unchanged into a specified main storage location.

For example: ST R3,FWD3

The ST instruction stores a fullword from the GPR
(1st Operand) R3 into a fullword in indexed
storage (2nd Operand) at location FWD3.

Store Instruction

Store (ST):
RX Format - Register and Indexed Storage

ST R3,FWD3

07 3C EA 00 00 00 00 00

Source
Fullword

Target
Fullword

ST

R3 FWD3

2nd Operand1st Operand

CC setting: Condition Code is unchanged

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 180 of 58

The Store Halfword (STH) instruction stores the
Low- order 16 bits (halfword) of a GPR into a
Halfword location in main storage. The high order
16 bits are truncated, with no indication if
significant digits are truncated or the sign is
changed.

For example: STH R4,HWD3

Store Halfword Instruction

Store Halfword (STH):
RX Format - Register and Indexed Storage

STH R4,HWD3

00 00 00 01 00 00

00 01

Source
Fullword

Target
Fullword

STH

R4 HWD3

2nd Operand1st Operand

CC setting - Condition Code is unchanged

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 181 of 58

Store Multiple (STM) is a RS format (register to
Storage) instruction. The STM instruction
performs the opposite operation of the LM
instruction.

STM has three operands:

• The first operand specifies the starting
register number

• The second operand specifies the last
register in the group

• The third operand specifies the target
main storage address

Store Multiple Register

Continued…

1st OPERAND 2nd OPERAND 3rd OPERAND

STM R5,R7,FWDS

Lowest
Register
in Range

Highest
Register
in Range

Ascending order:
R5, R6, R7

STM R14,R13,FWDS

Lowest
Register
in Range

Highest
Register
in Range

Ascending order:
R14, R15, RO, R1,

R2, R3, R4, R5,
R7, R8, R9, R10,

R11,R12, R13

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 182 of 58

What is the function of the Store Multiple
Instruction?

The Store Multiple (STM) instruction is used as
part of the standard housekeeping done at the
beginning of a program. This is performed to save
the register contents of a program's caller, so they
can later be restored before returning control to
the caller.

In fact, the first instruction frequently used is a
STM to perform this operation. An example is
shown on the right.

For example: STM R14,R12,12(R13)

Elements of the Topic

01 42 77 FF

0B 72 1A 80

2B 08 75 FF

Source
Fullword

R14

R15

R0

FF FF FF FF

FF FF FF FF

FF FF FF FF

Target
Fullword

0C 72 1B 64

EF FF FF FF

FF FF FF FF

FF FF FF FF

R11

R12

R13

STM R14,R12,12(R13)

STM

Save Area
Address

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 183 of 58

The load and store instructions presented in this
course all work with either fullwords or halfwords.
There are also instructions that transfer bytes of
data between main storage and GPRs.

What is the function of the IC Instruction?

The Insert Character (IC) instruction transfers a
single byte of data from main storage to the low
order 8 bit positions of the register specified. The
high order 24 bits of the register are unchanged.

For example: IC R5,BYTE1

Insert Character Instruction

Insert Character (IC):
RX Format Register Index Storage

IC R5,BYTE1

Target
Fullword

Source
Byte

CC Setting - Condition Code is Unchanged

IC

BYTE1

07 3C EA 00 C4

R5

2nd Operand1st Operand

C4

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 184 of 58

What is the function of the Store Character
(STC) Instruction?

The Store Character (STC) instruction stores the
low order byte of a GPR to a byte in main storage.
Note that it is the second operand that receives
the result.

For example: STC R3,BYTE2

The low order byte of GPR (1st Operand) R3 is
placed in Indexed storage (2nd Operand) at
location BYTE2.

Store Character Instruction

Store Character (STC):
RX Format - Register to Index Storage

STC R3,BYTE2

Source
Fullword

Target
Byte

CC Setting - Condition Code is Unchanged

STC

BYTE2

07 3C EA C4 00

R3

2nd Operand1st Operand

C4

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 185 of 58

The IC and STC instructions are limited in that
they process only a single byte of data, and only
use the low order byte of the GPR specified as
the first operand. The Insert Characters under
Mask (ICM) and Store Characters under Mask
(STCM) instructions provide more flexibility.

These two instructions, ICM and STCM, are RS
format register storage instructions. The
second operand for these instructions is a mask
field, not a GPR. The 4 bits of the mask field
correspond, one for one, with the four bytes of the
GPR specified as the first operand.

ICM and STCM Instructions

1310 = 11012 is translated to
The mask field below

MASK FIELD

Remains
unchanged

1 1 0 1

0 1 2 3

BYTES

YES YES YESNO

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 186 of 58

What is the function of the ICM Instruction?

The Insert Characters Under Mask (ICM)
instruction is used for logical bit and byte
operations. It inserts consecutive bytes starting at
the third operand address, into positions of the
GPR specified as the first operand for which the
corresponding mask bits are one. Other bytes in
the first operand are unchanged.

For example: ICM R4,13,FLD1

Insert Characters Under Mask Instruction

Insert Characters Under Mask (ICM):
RS Format - Register Storage

ICM R4,13,FLD1

2nd Operand (MASK)1st Operand

FLD1

00 00 00 00 07 EA3C

3rd Operand

R4 Target Fullword

Source
BytesICM

1

0 1 2 3Bytes

1 0 1 MASK FIELD

CC Setting - 0 Mask is zero or all inserted bits are zero
1 Leftmost inserted bit is one
2 Leftmost inserted bit is zero and not
all inserted bit zeros

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 187 of 58

What is the function of the Store Characters
Under Mask Instruction?

The Store Characters Under Mask (STCM)
instruction is used for logical bit and byte
operations.

This instruction stores the contents of those byte
positions of the register indicated by a one bit in
the mask, to consecutive main storage locations
starting at the address specified as the third
operand.

For example : STCM R5,6,FLD2

Store Characters Under Mask Instruction

Store Characters Under Mask (STCM):
RS - Register Storage

STCM R5,6,FLD2

2nd Operand (MASK)1st Operand

FLD2

07 3C 00 EA 0000

3rd Operand

R5

Target
Bytes

0

0 1 2 3
Bytes

1 1 0 MASK FIELD (6)

CC Setting - Condition Code is Unchanged

STCM
Source
Bytes

Concepts

Unit: Data Manipulation Instructions Topic: Load and Store Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 188 of 58

The Move Characters (MVC) instruction is used to move data from one location in main storage to
another. It is a one-length SS instruction, so up to 256 bytes of data can be moved with a single MVC
instruction. Data is moved, one byte at a time, left to right from the second operand location to the first.

For example: MVC FLD1,FLD2

Move Characters Instruction

MVC FLD1, FLD2

MVC FLD1(4), FLD2

MVC FLD1, FLD2

40 40 40 40 40 40 40 40

Move Characters (MVC): SS(1 length) Storage to
Storage. The actual number of bytes to be copied
is Indicated by the first operand.

When the format is used as shown above the Assembler
supplies the understood length code.

1st Operand
2nd Operand

MVCThe Length can be explicitly stated as shown above. Then
length is 4 byes. CC Setting – Condition Code is Unchanged.

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 189 of 58

What is the function of the Move Immediate
(MVI) Instruction?

The Move Immediate (MVI) instruction is in SI
format. It moves its immediate operand, the one
byte operand contained within the instruction
itself, to the first operand location.

For example: MVI FLD3,C’*'

This instruction moves an asterisk to FLD3, a
one-byte field.

Move Immediate Instruction

Move Immediate (MVI):
SI Format - Storage Immediate Data

Copies the Immediate Data '*' (one
byte second operand field) to the first
operand (one bite field)

CC Settings - Condition Code is Unchanged

MVI FLD3,C'*'

Target
Byte

1st Operand

0*

MVI

*
Source

Byte

C'*' FLD3

2nd Operand

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 190 of 58

You can take advantage of knowing that MVC works left to right, one byte at a time, to produce an
initialization technique that does not require a long constant. Consider the code above.

The MVI instruction sets the first byte of PRTLINE to blank. Consider the operation of the MVC
Instruction byte by byte. It works byte by byte, left to right, so the first byte that gets moved is the byte
at PRTLINE to the destination, PRTLINE+1. Now, both, PRTLINE and PRTLINE+1 contain blanks.

Move Characters Instruction

Continued…

b o

MVI

bSource
byte

Target
byte

First Position

PRTLINEC ‘ ’

MVI PRTLINE,C ‘ ’
MVI PRTLINE+1(132),PRTLINE

MOVE BLANK TO FIRST POSTION
PROPAGATE BLANK THROUGH FIELD

MVC

Receiving

Sending b

o

b

MVC propagates 132
b characters

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 191 of 58

The next byte is moved from PRTLINE+1 to PRTLINE+2. Now, PRTLINE+2 contains a blank. The
destination field on each cycle becomes the sending field on the next. The MVI moves in the first blank
to the leftmost position.

The MVC moves the other 132 bytes, one by one, down through the field. The whole field is initialized,
without defining a long field to contain a constant.

Move Characters Instruction (cont’d)

b o

MVI

bSource
byte

Target
byte

First Position

PARTLINEC ‘ ‘

MVI PRTLINE,C ‘ ‘
MVC PRTLINE+1(132),PRTLINE

MOVE BLANK TO FIRST POSTION
PROPAGATE BLANK THROUGH FIELD

MVC

Receiving

Sending b

o

b

MVC propagates 132
b characters

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 192 of 58

The MVC instruction is only capable of moving up
to 256 bytes. There are many situations when a
programmer wants to move much larger blocks of
data. It could be done with multiple MVCs, but
that would be tedious, and not very efficient.

What is the function of the Move Long
Instruction?

The Move Long (MVCL) instruction allows moving
up to 16,777,215 bytes of data with a single
instruction. The first thing you will notice is that
although MVCL is an instruction that specifies
movement of one storage operand to another, it is
an RR format instruction.

Move Long Instruction

Continued…

Move Long (MVCL):
RR Format - Register to Register

CC Setting - 0 - Operand lengths equal.
1 - First operand length low
2 - Second Operand length high.
3 - Destructive Overlap, No Movement.

MVCL R4,R6

1st Operand 2nd Operand

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 193 of 58

The MVCL Instruction moves the content of the
memory location whose address is in GPR (2nd

operand) R6 to the memory location whose
address is in GPR (1st operand) R4.

The content of the receiving field is filled with the
pad character if the length of the sending field is
shorter than the receiving field.

The number of bytes to be moved has to be
specified, namely the length of the operands have
to be specified in other registers.

The following pages explain this in detail.

Move Long Instruction (cont’d)

Continued…

Move Long (MVCL):
RR Format - Register to Register

CC Setting - 0 - Operand lengths equal.
1 - First operand length low
2 - Second Operand length high.
3 - Destructive Overlap, No Movement.

MVCL R4,R6

1st Operand 2nd Operand

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 194 of 58

Both operands of MVCL are registers, each of
which in fact implies a pair of registers. The
operands must specify even numbered registers.
Since each operand is a register pair, the actual
operands are the even numbered registers
specified, and the odd numbered registers one
higher than the registers specified .The usage of
the registers is as shown on the right.

The second operand is moved to the first. If the
length of the second operand is shorter than the
length of the first, the additional bytes on the right
of the first operand are filled with the pad
character.

Move Long Instruction (cont’d)

Continued…

/ 1st Operand Address

Unused 1st Operand Length

/ 2nd Operand Address

PAD 2nd Operand Length

Operands: - Registers

31

31

31

310

0 1

0

0 1

8

8

R1

R1 + 1

R2

R2 + 1

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 195 of 58

The Move Long (MVCL) instruction is best
illustrated with some coding examples. In the first
case, move 3000 bytes of data from a field called
LONG3 to LONG4.

Move Long Instruction (cont’d)

L R4,=A(LONG4)

LH R5,=H‘3000'

L R6,=A(LONG3)

LH R7,=H‘3000'

address of receiving
field

length of receiving
field
address of sending
field
length of sending
field

MVCL R4,R6 Move the data

Address Op2 Length Op2

EVEN/ODD Register

Address Op1 Length op1

EVEN/ODD Register

R6 Sending Field

R7

R4

R4 R5

Receiving Field

R6

MVCL

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 196 of 58

Another way to do this, with fewer executable instructions, would be as shown above.

In this version, you set up the initial data in four consecutive full words in storage, and use LM to put it into the
four registers. One thing about coding in Assembler Language is that there are usually many different ways to
do the same thing.

Move Long Instruction (cont’d)

initialize registers for MVCL to
move the data

LM R4,R7, MVCLDATA
MVCL R4,R6
.
.
.
.
DC A (LONG4)
DC F ‘3000'
DC A (LONG3)
DC ‘ F ‘3000'

MVCLDATA

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 197 of 58

For the second example of MVCL, move a field
1500 bytes long at LONG3 into a 5000 byte field at
LONG4 and fill the extra 3500 bytes at the end of
LONG4 with EBCDIC zeros. This is accomplished
as shown on the right.

Move Long Instruction (cont’d)

L R4,=A(LONG4)

LH R5,=H'5000'

L R6,=A(LONG3)

LH R7,=H'1500'

ICM R7,8,=C'0'

MVCL R4,R6

address of receiving
field

length of receiving
field
address of sending
field

length of sending
field

pad character

move data

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 198 of 58

To set the previous example up with a LM
instruction, you would use the code as shown on
the right.

Using LM Instruction

Since there is a length modifier on the
FL3’1500’, no alignment is done.

LM R4,R7,INIT
MVCL R4,R6
.
.
.
.
DC A (LONG4)
DC F '5000'
DC A (LONG3)
DC C '0' , FL3 '1500'

INIT

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 199 of 58

You can also use MVCL to initialize a field so that
each byte contains a certain character, by making
that character the pad character and specifying a
sending field length of zero.

In this case, the address of the sending field is
ignored and the whole receiving field is filled with
the pad character. To fill a 500 byte field called
BUFF with binary zeros, use the code shown to
the right.

Here the second operand's address, length and
the padding character are all zero.

Using MVCL Instruction

LM R8,R11,INIT1
MVCL R8,R10
.
.
.
DC ACBUFF
DC F '500,0,0'

INIT1

Concepts

Topic: Move InstructionsUnit: Data Manipulation Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 200 of 58

How is conditional execution implemented?

High Level Languages implement conditional
execution with IF-THEN and IF-THEN-ELSE
structures. They implement looping with DO-
WHILE or other iterative constructs. Assembler
Language does not have these high level control
statements. Rather, conditional execution and
looping structures must be built from lower level
instructions.

In Assembler Language, conditional execution is
broken into parts. One instruction tests a
condition. A following instruction, a conditional
branch, alters the execution path, depending on
the result of the test. The condition code, a two-bit
field in the Program Status Word (PSW) is where
the result of the test is held, awaiting subsequent
conditional branch instruction.

Implementing Conditional Execution

Continued…

EC Mode PSW

CC

00 01 10 11

3210

Program Mask

Decimal

Binary

CC Possible Values:

2 bit Field

18 20

Concepts

Unit: Comparing and Branching Topic: Decision Making in Assembler

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 201 of 58

Some instructions set the condition code and
some do not. If and how an instruction sets the
condition code is an important part of the
instruction description. Once the condition code is
set by an instruction, that value remains in the
condition code until a subsequent instruction
changes it.

Implementing Conditional Execution (cont’d)

Continued…

AP
SP
MVCL

MP
DP
MVC

CC – is set

Condition Code is
unchanged.

Condition Code: - Some Examples

Concepts

Unit: Comparing and Branching Topic: Decision Making in Assembler

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 202 of 58

The condition code is a two-bit field, so that it may
take on 4 unique values; 0,1,2 or 3. The CC
always contains one of these four values.

You have seen that many arithmetic instructions
set the condition code to indicate if the result is
zero (CC=0), negative (CC=1), positive (CC=2) or
if overflow has occured (CC=3). You have seen
other instructions that set the condition code in
other ways.

Another major group of instructions that set the
condition code is the compare instructions. These
instructions compare two operands and set the
condition code to indicate their relative
magnitudes. The condition code set by compare
instructions are shown on the right.

Implementing Conditional Execution (cont’d)

Continued…

Op1 = Op2

Relation of
Operands

CC Setting

0

Op1< Op2

Op1 > Op2 2

1

Compare Instructions set CC as follows:

Concepts

Unit: Comparing and Branching Topic: Decision Making in Assembler

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 203 of 58

A condition code setting of 3 does not occur after
compare instructions. For brevity, these settings
will be referred to as CC setting - Comparison in
the instruction descriptions that follow.

Compare Instructions

Continued…

Condition Code Setting:

0 - Equal

1 – First Operand is Low

2 – First Operand is High

3 – Not Used

CC Setting – Comparison:

Concepts

Unit: Comparing and Branching Topic: Decision Making in Assembler

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 204 of 58

What is numeric comparison?

When two operands are compared, it is important
that you be clear about their format. If the
operands represent signed numeric quantities,
then a numeric comparison is needed. On the
other hand, if the operands do not represent
signed numeric data, a logical comparison is
performed, treating the operands simply as strings
of bits.

Numeric Comparison

NUMERIC

TEXT

NUMERIC

TEXT = Logical

= Arithmetic

1st Operand 2nd Operand

Comparisons:

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 205 of 58

If you compared R3 containing X'FFFFFFF6' and
FDW1 containing X'0000000A', the condition code
that will be set will depend on the type of
comparison.

In an arithmetic comparison, the register contents
would be interpreted as -10. The storage operand
is interpreted as +10, so the first operand (the
register) would be lower, and the condition code is
set to 1.

In a logical comparison, FFFFFFF6 is a higher
hex value than 0000000A, so the first operand
would be higher and the condition code be set to
2.

Kinds of Comparison

FFFFFFF6 0000000A

FFFFFFF6 0000000A

Comparisons:

1st Operand 2nd Operand

R3 FWD1

FWD1R3

-10 < +10

Higher Hex > Lower Hex

= CC set to 1

LOGICAL

ARITHMETIC

Concepts

= CC set to 2

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 206 of 58

What is Logical Comparison?

Comparison of textual data would be a Logical
Comparison, based on the relative position of the
characters in the EBCDIC code tables. If C'A' is
compared with C'5', the second operand
would be larger, since the EBCDIC code for 5
(F5) is higher than the EBCDIC code for A (C1),
as shown on the table in the right.

Logical Comparison

A

EBCDIC CODE

C1

5 F5

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 207 of 58

What is the Compare (C) Instruction?

The Compare (C) instruction is used to
arithmetically compare the first operand, a
fullword in GPR and the second operand, a
fullword in main storage. Neither operand is
modified but the condition code is set to indicate
the result of the comparison.

For example: C R4,FWD1

The contents of R4, as shown in the table on the
right, are compared arithmetically to the contents
of the fullword at location FWD1. The condition
code is set to indicate the result of the
comparison.

Compare Instruction

R4,FWD1C

FW FW

C

Compare (C):
RX Format – Register to Indexed Storage

CC Setting:
If R4 = FWD1 -- 1
If R4 < FWD1 -- 1
If R4 > FWD1 -- 2

COMPARE

R4 FWD1

1st Operand 2nd Operand

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 208 of 58

What is the Compare Halfword (CH)
Instruction?

The Compare Halfword (CH) instruction is used to
expand the second operand, a halfword in main
storage, to a fullword by sign extension, and
compare it arithmetically to the first operand, a
fullword in a GPR. Neither operand is modified but
the condition code is set to indicate the result of
the comparison.

For example: CH R3, HWD1

The halfword at HWD1, as shown in the table on
the right, is transparently expanded to a fullword
through sign extension, and compared
arithmetically to the value in R3. The condition
code is set to indicate the result of the
comparison.

Compare Halfword Instruction

R3,HWD1CH

Compare Half word (CH):
RX Format – Register to Indexed Storage

1st Operand 2nd Operand

FW HW

S

COMPARE

R3 HWD1

FW S HW CH

SIGN EXTENSIONCC Setting:
If R3 = HWD1 -- 0
If R3 < HWD1 -- 1
If R3 > HWD1 -- 2

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 209 of 58

What is the Compare Register (CR)
Instruction?

The Compare Register (CR) instruction is used to
compare two operands, both fullwords in GPRs,
arithmetically. Neither operand is modified but the
condition code is set to indicate the result of the
comparison.

For example: CR R5,R6

The contents of R5 are compared arithmetically to
the contents of R6, as shown in the table on the
right. The condition code is set to indicate the
result of the comparison.

Compare Register Instruction

R5,R6CR

Compare Register (CR):
RR Format – Register to Register

1st Operand 2nd Operand

FW FW

CR
CC Setting:
If R5 = R6 -- 0
If R5 > R6 -- 1
If R5 > R6 -- 2

COMPARE

R5 R6

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 210 of 58

Fixed-point compare instructions are used
whenever the larger of the two fixed-point
quantities is to be determined, or if they are equal.
One common application is rounding after
division.

Fixed-point division yields a fixed-point quotient
and a fixed-point remainder. In many applications,
you will want to round the quotient up to the next
higher integer if the remainder is equal to or
greater than half the divisor. This is called half
rounding.

Fixed-Point Compare Instruction

DIVIDEND

QUO REM

REM * 2

DIVISOR

Half-Rounding:

1st Operand

EVEN/ODD
Register Pair

APPLY HALF
ROUNDING

2nd Operand

COMPARE

If Remainder is = or > than
Divisor (ROUND UP)
If Remainder is < than Divisor
(DO NOT ROUND)

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 211 of 58

What is the Compare Decimal (CP)
instruction?

Packed decimal operands too have an arithmetic
comparison operation.

The Compare decimal (CP) instruction is used to
compare two operands, both packed numbers in
main storage arithmetically. If the fields are of
different lengths, the shorter length is expanded
by inserting leading zeroes. Neither operand is
modified, but the condition code is set to indicate
the result of the comparison.

For example: CP PK1,PK2

As shown in the example on the right, the
contents of PK1 and PK2 are compared
arithmetically. The condition code is set to
indicate the result of the comparison.

Compare Decimal Instruction

CP PK1,PK2

CONTENTS CONT.

00 00 CP

Compare Decimal (CP):
SS Format – (2 length) Storage to Storage

1st Operand 2nd Operand

PK1 PK2

COMPARE

CONT

LEADING ZEROS
If neededCC Setting:

If PK1 = PK2 -- 0
If PK1 < PK2 -- 1
If PK1 > PK2 -- 2

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 212 of 58

You may want to implement half rounding with decimal arithmetic. Suppose a series of numbers have been
summed into SUM, and the numbers have been counted into a field called COUNT. The average of the
numbers, half rounded would be calculated as shown above.

Rounding Up – Example 1

ZAP QUOREM, SUM
DP QUOREM, COUNT
AP REM, REM
CP REM, COUNT
BL NOROUND
AP QUO, = P ‘1’
EQU *

.
DS PL6
DS PL3
DS PL9
DS PL6
DS PL3

move sum work area
divide to get quotient and remainder
double the remainder
is it less then divisor?
Yes – don’t round
no – round up

NOROUND

SUM
COUNT DS
QUOREM
QUO
REM

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 213 of 58

In this example, a teacher wants to raise student marks on a test by 10%, but also wants to assure that no
mark exceeds 100. If the original mark was in a field called MARK, the above code would perform the
calculation for a single student.

Rounding Up – Example 2

ZAP CALC, MARK
MP CALC, = P ’11’
SRP CALC, 64 –1,5
CP CALC, = P’100’
BNH NOADJUST
ZAP CALC, = P’100’
EQU *
ZAP MARK, CALC
.
.

DS PL2
DS PL2

NOADJUST

MARK
CALC

MARK
CALC

move mark to calculate field
multiply by 1.1 to add 10% (10 times too large)
divide by 10 and round
is adjusted mark > 100?
no (branch if first operand not high)
yes – reduce to 100
move increased mark back to mark

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 214 of 58

What is the Compare Logical Register?

There are several logical comparison instructions
to handle the various types of operands. In each
case, the instruction compares its two operands,
treating them as logical quantities that are simply
strings of bits.
The Compare Logical Register (CLR) instruction
is used to compare its operands logically, both 32
bit logical quantities in GPRs. Neither operand is
modified but the condition code is set to indicate
the result of the comparison.

For example: CLR R4,R5

The contents of R4 and the contents of R5 are
compared logically. The condition code is set to
indicate the result of the comparison.

Compare Logical Register

R4,R5CLR

Compare Logical Register (CLR):
RR Format – Register to Register

1st Operand 2nd Operand

CONTENTS CONTENTS

CLR
CC Setting:
If R4 = R5 -- 0
If R4 < R5 -- 1
If R4 > R5 -- 2

COMPARE

R4 R5

Register Register

CC Setting - Comparison

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 215 of 58

What is the Compare Logical Instruction?

The Compare Logical (CL) instruction is used to
compare logically the first operand, a 32 bit logical
quantity in a register, with the second operand, a
32 bit logical quantity in main storage. Neither
operand is modified but the condition code is set
to indicate the result of the comparison.

For example: CL R3,FWD2

The contents of R3 and the contents of FWD2 are
compared logically. The condition code is set to
indicate the result of the comparison.

Compare Logical Instruction

R3,FWD2CL

Compare Logical (CL):
RX Format – Register to Indexed Storage

1st Operand 2nd Operand

CONTENTS CONTENTS

CL
CC Setting:
If R3 = FWD2 -- 0
If R3 < FWD2 -- 1
If R3 > FWD2 -- 2

COMPARE

R3 FWD2

Register

Main
Storage

CC Setting - Comparison

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 216 of 58

What is the Compare Logical Immediate
Instruction?

The CLI instruction is used to compare the first
operand logically with the second operand. The
first operand is a byte in main storage. The
second operand is a byte of immediate data in the
instructions. Neither operand is modified during
comparison but the condition code is set to
indicate the result of the comparison.

For example: CLI STATEMENT,C'*'

The byte of main storage at STATEMENT is
compared to an asterisk. The condition code is
set to indicate the result of the comparison.

Compare Logical Immediate Instruction

STATEMEMT,C’*’CLI

Compare Logical Immediate (CLI):
SI Format – Storage to Immediate Data

1st Operand 2nd Operand

BYTE BYTE

CLI
CC Setting:
If STATEMENT = C’*’ -- 0
If STATEMENT < C’*’ -- 1
If STATEMENT > C’*’ -- 2

COMPARE

STATEMENT *

Main
Storage

Immediate
Data

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 217 of 58

What is the Compare Logical Character?

The Compare Logical Characters (CLC)
instruction is used to compare logically the two
operands, equal length character strings in
storage. Neither operand is changed, but the
condition code is set to indicate the result of the
comparison.

For example: CLC FLD1,FLD2

The contents of FLD1 and FLD2 are compared
logically. The condition code is set to indicate the
result of the comparison.

Compare Logical Characters

Continued…

FLD1,FLD2CLC

Compare Logical Characters (CLC)
SS Format (1 length) – Storage to Storage

1st Operand 2nd Operand

CONTENTS CONTENTS

CLC
CC Setting:
If FLD1 = FLD2 -- 0
If FLD1 < FLD2 -- 1
If FLD1 > FLD2 -- 2

COMPARE

FLD1 FLD2

Main
Storage

Main
Storage

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 218 of 58

What is the CLM instruction?

The Compare Logical Characters Under Mask
(CLM) instruction is used to compare logically the
bytes of the GPR specified by 1 bit in the mask,
with an equal number of consecutive bytes in
main storage beginning at the third operand
location. The operands are unchanged, but
the condition code is set to indicate the results of
the comparison.

For example: CLM R3,5,FWD3

Bytes 1 and 3 of R3 are compared logically with
the two bytes in storage beginning at FWD3. The
condition code is set to indicate the results of the
comparison.

Compare Logical Characters Under Mask Instruction

0 1

BYTE

32

BYTE

CC Setting:
If R3 bytes = FWD3 -- 0
If R3 bytes < FWD3 -- 1
If R3 bytes > FWD3 -- 2

R3,5,FWD3CLM

Compare Logical Characters Under Mask (CLM):
RS Format – Register to Storage

1st Operand 2nd Operand

R3 Register

3rd

Operand

BYTES

Main StorageFWD3

COMPARE

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 219 of 58

This instruction is analogous to the Move Long instruction (MVCL). Like Move Long, both operands must
specify even numbered GPRs using the Compare Logical Long (CLCL) instruction, which, in each case
represent even-odd register pairs. The even numbered registers contain the addresses of the two operands.
The odd numbered registers contain the length of the operands, in their low order 24 bits. The high order byte
of R2+1 contains the padding byte.

Compare Logical Characters Long Instruction

Continued…

Address of OP1 Length of OP1 Address of OP2 Length of OP2

CLCL R2,R4Compare Logical Long (CLCL):
RR Format – Register to Register

R1 (EVEN) R2 + 1 (ODD)

EVEN – ODD REGISER PAIR

CC Setting - Comparison

COMPARE COMPARE

1st Operand 2nd Operand

R2 (EVEN) R2 + 1 (ODD)

EVEN – ODD REGISER PAIR

If Lengths are not =
the shorter one is extended with PAD Characters

Concepts

Unit: Comparing and Branching Topic: Compare Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 220 of 58

What is the Branch on Condition Instruction?

The way you implement conditional execution in
Assembler Language is with the Branch on
Condition (BC) Instruction. This instruction tests
the current setting of the condition code, using a
mask field in the instruction.

If the mask field corresponds to the setting of the
condition code, then the next instruction to be
executed is the one at the address specified as
the second operand of Branch on Condition. If
there is no correspondence, then execution
proceeds sequentially with the instruction
following Branch on Condition.

Branch on Condition Instruction

BC
MASK Corresponds

To Condition
Code

2nd Operand
of BC

Next Sequential
Instruction

YES

Branch on Condition

NO

Concepts

Unit: Comparing and Branching Topic: Branching

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 221 of 58

The mask field is 4 bits in length, allowing 16
possible values. The condition code is 2 bits long,
allowing 4 possible values. The 4 bits of the mask
correspond to the 4 possible condition values.

If the mask value is 8, the Branch on Condition
instruction tests for a CC setting of zero. If the CC
= 0, the branch is taken, otherwise normal
sequential execution occurs.

The Mask Field

Continued…

Condition Code Setting 0 1 2 3

0 1 2 3

8 4 2 1

Corresponding Mask Bit

Mask Value

8 4 2 1

X X X X

0 1 2 3

Mask Field:

MASK BIT
(4 BITS)

BIT Value

BIT Position

Concepts

Unit: Comparing and Branching Topic: Branching

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 222 of 58

Mask values can be any value in the range of 0 to
15. A mask value of 7 (4+2+1) tests if the CC is
1 or 2 or 3. If so, the branch is taken. Otherwise it
is not.

Any combination of condition codes can be tested
in a single Branch on Condition instruction. A
mask value of 15 tests if the CC is 0 or 1 or 2 or 3.
Since the CC must be one of these values, this
constitutes an unconditional branch.

The Mask Field (cont’d)

MASK = 710 DECIMAL

BINARY= 01112

CC = 1 CC = 2 CC = 3

Mask Values:

Concepts

Unit: Comparing and Branching Topic: Branching

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 223 of 58

When using the Branch on Condition (BC)
instruction the first operand of BC specifies a
mask, not a GPR. If the bit in the mask
corresponding to the current value of the condition
code is on, then the address specified as the
second operand replaces the next instruction
address in the PSW. If not, the normal sequential
instruction sequencing occurs.

For example: BC 8,EQRTN

If the condition code is zero, branch to EQRTN.
Otherwise, continue with the next instruction after
the BC.

BC – An Example

Continued…

BC

MASK
ADDRESS TO
BRANCH

BC

8, EQRTN

Branch on Condition (BC):
RX Format – Register to Indexed Storage

1st Operand 2nd Operand
8 EQRTN

If CC = 0
Branch to EQRTN

If CC is (1 or 2 or 3)
Continue to Next Instruction

CC Setting – Condition Code is Unchanged

Concepts

Unit: Comparing and Branching Topic: Branching

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 224 of 58

When using the Branch on Condition Register
(BCR) instruction, the first operand specifies a
mask, not a GPR. If the bit in the mask
corresponding to the current value of the condition
code is on, then the address in the second
operand register replaces the next instruction
address in the PSW. If not, normal instruction
sequencing occurs. However, if the second
operand specifies 0, no branch is taken
regardless of the mask and condition code values.

For example: BCR 15,R11

Regardless of the condition code setting, branch
to the address in register 11.

Branch on Condition Register Instruction

BCR 15, R11

Branch on Condition Register (BCR):
RR Format – Register to Register

1st Operand 2nd Operand

UNCONDITIONAL
BRANCH

CC Setting – Condition Code is Unchanged

Concepts

Unit: Comparing and Branching Topic: Branching

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 225 of 58

What are Extended Mnemonic branch
instructions?

The two operands of the Branch on Condition
instruction specify the conditions under which a
branch is taken, and the branch address.

It can be hard to remember the actual condition
code for the various instructions and to calculate
mask values, particularly when testing
combination of condition codes.

Therefore, the Assembler Program simplifies the
process by introducing extended mnemonic
branch instructions.

Extended Mnemonic Branch Instructions

CR R3,R4

?

Branch if not high?

What is CC?

What is Mask?

Extended Mnemonics Branch
Instructions Simplifies the Process

Concepts

Unit: Comparing and Branching Topic: Branching

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 226 of 58

The extended mnemonic branch instructions
combine the operation code for branching and the
mask, which specifies the conditions under which
the branch is taken, into a simple extended
mnemonic.
For example, if you wanted to branch to
NOROUND if the value in R3 was less than the
value in R4, you would specify:

CR R3,R4
BC 4,NOROUND

With extended mnemonics, the code would be
as follows:

CR R3,R4
BL NOROUND

The extended mnemonic BL (branch if first
operand low) takes the place of the actual
instruction BC and the mask value of 4.

Extended Mnemonic Branch Instructions (cont’d)

BC 4, NOROUND

BL NOROUND

Extended Mnemonic Branch Instructions:

Concepts

Using BC

Using Extended Mnemonic

Unit: Comparing and Branching Topic: Branching

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 227 of 58

There is a set of extended mnemonics you can use after comparison instructions. They are shown above.

Extended Mnemonics (Logical)

BH
Mask Value RX Extended Mnemonic RR Extended Mnemonic Interpretation

BNHR
BNLR
BER
BNER
BLR
BHR

Branch if Op1 Not High
Branch if Op1 Not Low
Branch if Equal
Branch if Not Equal
Branch if Op1 Low
Branch if Op1 High

BL
BNE
BE
BNL
BNH

2
4
7
8

11
13

Extended Mnemonics Branch Instructions: (Logical)

Concepts

Unit: Comparing and Branching Topic: Branching

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 228 of 58

After arithmetic instructions, you use the extended mnemonics shown above.

Extended Mnemonics (Arithmetic)

Mask Value RX Extended Mnemonic RR Extended Mnemonic Interpretation
1
2
4
7
8

11

Extended Mnemonics Branch Instructions: (Arithmetic)

13
14

BZ
BNM
BNP
BNO BNOR

BNPR
BNMR
BZR
BNZR
BMR
BPR
BOR

Branch on No Overflow
Branch on Not Plus
Branch on Not Minus
Branch on Zero
Branch on Not Zero
Branch on Minus
Branch on Plus
Branch on Overflow BO

BP
BM
BNZ

Concepts

Unit: Comparing and Branching Topic: Branching

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 229 of 58

The general extended Mnemonics are shown in Table 1 above.

The Test under Mask instruction that is used to test selected bits in a byte, has its own set of extended
mnemonics, as shown in Table 2. This instruction is discussed in the Assembler Language (Advanced)
Course.

The use of extended branch mnemonics makes a program easier to read, as well as easier for the
programmer to code.

Mask Value RX Extended Mnemonic RR Extended Mnemonic Interpretation
0

15 BR
NOPR

Unconditional Branch
No OperationNOP

B

Mask Value RX Extended Mnemonic RR Extended Mnemonic Interpretation
1
4
7
8

11
14

BNM
BNO BNOR

BNMR
BZR

BNZR
BMR
BOR

Branch on Not Ones
Branch on Not Mixed

Branch on Zeros
Branch on Not Zeros

Branch on Mixed
Branch on OnesBO

BM
BNZ
BZ

Table1

Table2

Extended Mnemonics Branch Instructions

Test under Mask Instruction

Concepts

Unit: Comparing and Branching Topic: Branching

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 230 of 58

A basic IF-THEN structure in C looks like this:

if (a=b) {
a:=a+b;
}

The corresponding code in Assembler Language
would look like this:

CP A,B if (a=b) {
BNE NOADD
AP A,B

NOADD EQU * }

IF-THEN Structure in C

a = b
?

a = a + b

IF

NO ADD

YES

NO

IF – THEN Structure:

Concepts

Unit: Comparing and Branching Topic: Building Structured Constructs

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 231 of 58

A basic IF-THEN-ELSE structure in C looks like
this:

if(a=b) {
a:=a+b;
}

else {
a:=a-b;

}
The corresponding Assembler Language code
would be:

CP A,B if (a=b) {
BNE SUBTR
AP A,B
B CONDEND

SUBTR EQU * } else {
SP A,B

CONDEND EQU * }

IF-THEN-ELSE Structure

a = b
?

a = a + b a = a - b

IF

NO
YES

CONDEND

IF – THEN – ELSE Structure:

Concepts

Unit: Comparing and Branching Topic: Building Structured Constructs

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 232 of 58

The most common and flexible looping structure
is DO-WHILE. Like the conditional structures, it
must be built in Assembler Language using the
Branch on Condition statement. A DO – WHILE
loop in C might look like this:
while (i>1){

prod:=prod*i;
i=i-1;
}

The equivalent Assembler Language code would
look like this:
LOOPSTART EQU *

CP I,=P'1' while (I >1) {
BNH LOOPEND
MP PROD,I
SP I,=P'1'
B LOOPSTART

LOOPEND EQU * }

DO – WHILE Structure

l > 1
?

Prod = prod*I
I = i-1

LOOPEND

LOOPSTART

NO

YES

DO – WHILE Structure:

Concepts

Unit: Comparing and Branching Topic: Building Structured Constructs

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 233 of 58

How is numeric data read and stored?

Numeric data can be read and stored in a
computer in three formats:

• Binary
• Packed Decimal
• Zoned decimal

This unit will introduce you to the instructions that
work with conversions, which are Convert to
Binary (CVB) and Convert to Decimal (CVD).

Storing Numeric Data

BINARY

PACKED
DECIMAL

ZONED
DECIMAL

CONVERT TO
DECIMAL

(CVD)

CONVERT TO
BINARY
(CVB)

UNPACK
(UNPK)

PACK PRINT
OUT

EDIT
(ED)

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Decimal to Binary Conversion

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 234 of 58

What is Convert to Binary instruction?

The Convert to Binary (CVB) instruction converts
a number from the packed decimal to fixed-point
integer form. Conversion of data into fixed-point
format requires that it first be in an 8 byte packed
decimal field.

System /370 and earlier architectures required
that it be aligned on a doubleword boundary. If the
second operand is not a valid 8-byte packed
number, then a data exception will occur. If the
value being converted is too large to fit into a
GPR, a fixed-point divide exception will occur.

Convert to Binary Instruction

Continued…

PK1CVB R3,

1st Operand 2nd Operand

Convert to Binary (CVB):
RX Format - Register to indexed storage

00 00 00 00 02 45 8C

00 00 09 9A

00 00 00 00 00 02 5D

FF FF FF E7

Conversion of positive number

Conversion of negative number

PK1

R3

PK1

R3

Twos complement form of negative number
CC Settings: Condition Code is Unchanged

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Decimal to Binary Conversion

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 235 of 58

The second operand, an eight byte packed
decimal number, is converted to fixed-point format
and stored in GPR specified by the first operand.

For example: CVB R3, PK1

The 8 byte packed value in PK1 is converted to a
fixed point fullword and placed in R3.

Convert to Binary Instruction (cont’d)

PK1CVB R3,

1st Operand 2nd Operand

Convert to Binary (CVB):
RX Format - Register to indexed storage

00 00 00 00 02 45 8C

00 00 09 9A

00 00 00 00 00 02 5D

FF FF FF E7

Conversion of positive number

Conversion of negative number

PK1

R3

PK1

R3

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Decimal to Binary Conversion

Twos complement form of negative number
CC Settings: Condition Code is Unchanged

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 236 of 58

What is Convert to Decimal instruction?

The Convert to Decimal (CVD) instruction
performs the conversion from fixed point to
packed format. This is another instruction that
works backwards. That is, the second operand is
the result field.

The first operand, a fixed point fullword in a
register, is converted to an eight byte packed
decimal number, at the main storage location
specified by the second operand. System /370
and earlier architectures required that the storage
location be aligned on a doubleword boundary.

Convert to Decimal Instruction

Continued…

R4,NUMCVD

1st Operand 2nd Operand

Convert to Decimal (CVD):
RX Format - Register to indexed storage

00 02 14 74 83 64 7C

FULLWORD DOUBLEWORD

R4

Sending
Field

Receiving
Field

CVD

00

011.........11

Converts FULLWORD
to packed Decimal Format

CC Setting: Condition Code is Unchanged

NUM

0 31

R4

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Decimal to Binary Conversion

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 237 of 58

For example: CVD R4,NUM

The fullword in R4 is converted to a packed
decimal number and stored in main storage in
eight bytes beginning at NUM.

Convert to Decimal Instruction (cont’d)

Continued…

R4,NUMCVD

1st Operand 2nd Operand

00 02 14 74 83 64 7C

FULLWORD DOUBLEWORD

R4

Sending
Field

Receiving
Field

CVD

00

011.........11

Converts FULLWORD
to packed Decimal Format

NUM

0 31

R4

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Decimal to Binary Conversion

Convert to Decimal (CVD):
RX Format - Register to indexed storage

CC Setting: Condition Code is Unchanged

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 238 of 58

The code to take two 4 byte zoned numbers
called Z1 and Z2, then calculate their sum using
fixed point arithmetic, and then put the sum into
an edited field called SUM. The code for this is
shown at the right.

Convert to Decimal Instruction (cont’d)

PACK DWD,21
CVB R2,DWD
PACK DWD,Z2
CVB R3,DWD
AR R2,R3
CVD R2,DWD
ED SUM,DWD+5

.

.

.
Z1 DS ZL4
Z2 DS ZL4
SUM DC X’4020206B20212060
DWD DS D

bb bb b1 1b

Character
after EDIT

F0 F0 F0 C5

F0 F0 F0 C6

00 00 00 00 00 00 00 5C

00 00 00 05

00 00 00 00 00 00 00 6C

00 00 00 06

00 00 00 0B 00 00 00 00 00 00 01 1C

R2

R3

R2

convert first number
to fixed point

convert second number
to fixed point
calculate sum
convert sum to edited
form

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Decimal to Binary Conversion

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 239 of 58

The System/390 architecture provides 3 sets of arithmetic instructions:
• Fixed-point arithmetic instructions deals with integers
• Decimal arithmetic instructions deals with integers
• Floating point arithmetic deals with real numbers (numbers with fractional parts)

Fixed-point arithmetic is performed in the General Purpose Registers (GPRs). Operands for fixed-point
arithmetic may be halfwords (16 bits), fullwords (32 bits) or doublewords (64 bits). For all three
operand types, the leftmost, or high-order bit, is the sign, with zero representing positive and 1
representing negative. The remainder of the fixed-point number represents the magnitude. Positive
numbers are represented in true binary, negative numbers in two's complement form.

Number Representation

S

S

S

HALFWORD

FULLWORD

DOUBLEWORD

MAGNITUDE
High Order Bit (Sign) 0=(+) Positive (True Binary) 1=(-) Negative (Two's Complement)

Concepts

Continued…

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 240 of 58

A halfword has 15 bits to represent the magnitude, and thus can represent values from -215 to +215-1
(32,768 to 32,767).

A fullword has 31 bits to represent the magnitude, and thus can represent values from -231 to +231-1
(-2,147,483,648 to 2,147,483,647).

A doubleword has 63 bits to represent the magnitude, and thus can represent values from -263 to 263-1
(-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807).

Number Representation (cont’d)

S

S

S

HALFWORD

FULLWORD

DOUBLEWORD

MAGNITUDE

01

01

01

15

31

63

-215 to + 215 - 1

-231 to + 231 - 1

-263 to + 263- 1

Concepts

Continued…

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 241 of 58

There is not a single instruction to handle all data
types for all arithmetic operations. As you look
at the individual instructions, you will see what
operand-operation combinations are allowed.

The Assembler Language programmer chooses a
particular fixed-point data type for each variable,
based on the range of values the variable can
take on, and the operations to be performed on it.
Generally speaking, using the smallest data type
that provides the range of values you require will
result in the smallest and fastest program.

Number Representation (cont’d)

Over 32,767 FULLWORD

HALFWORDUnder 32,767

STORAGE

2 Bytes

4 Bytes

HALFWORD
produces a smaller
more efficient program.
It uses 2 bytes rather then
4 bytes in storage.

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 242 of 58

If you choose a data type that is too small, you
may cause a condition known as overflow.
Overflow occurs when a generated result is too
large to fit into its destination field.

The setting of the fixed-point overflow bit in the
program work field of the PSW (Bit no. 20)
indicates that a program interrupt will occur
causing an abnormal termination. If this bit is not
set, the program may seem to execute correctly
but produce incorrect numeric results.

The Name Field

Program
Mask

CC

Program Status Word (PSW) EC Mode:

On - Abnormal Termination
Off - Sets Condition Code

and carries on

0 18 6320

Fixed-point Overflow Bit

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 243 of 58

The first group of fixed-point arithmetic
instructions to consider are the addition
instructions. There are three instructions in this
group: A, AH and AR.

The Add Instruction (A) adds a fullword in main
storage to a fullword in a GPR, with the sum
replacing the value in the GPR.

For example: A R3,NUM1

In this case, the fullword at NUM1 would be
added to the fullword in R3, and the sum would be
placed in R3.

Add Instruction

Continued…

A

A R3, NUM1

1st Operand 2nd Operand

FULLWORD FULLWORD

+NUM1 R3

SUM

SUM replaces
FULLWORD

CC Setting –
Arithmetic

Add Instruction(A):
RX Format – Register to Indexed Storage

Sending Receiving

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 244 of 58

The Add Halfword Instruction (AH) is similar to
Add (A), except that the second operand is a
halfword in main storage. The first operand is the
whole 32 bits in the register, and the sum is a
fullword.

For example : AH R5,NUM3

In executing this instruction, the halfword at
NUM3 would be added to the fullword in R5, and
the sum placed in R5.

Add Halfword Instruction

Continued…

AH

AH R5, NUM3

1st Operand 2nd Operand

HALFWORD FULLWORD

+NUM3 R5

SUM

SUM replaces
FULLWORD

CC Setting –
Arithmetic

Add Halfword Instruction(AH):
RX Format – Register to Indexed Storage

Sending Receiving

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 245 of 58

The fullword in the second operand register is
added to the fullword in the first operand register,
and the sum is placed in the first operand register.
The Add Register (AR) Instruction, is similar to
Add (A), except that the second operand is in a
register instead of main storage.

For example: AR R3,R4

The contents of R4 are added to the contents of
R3, with the sum being placed in R3.

The Add Register Instruction

AR

AR R3, R4

1st Operand 2nd Operand

CONTENTS CONTENTS

+R4 R3

SUM

SUM replaces
CONTENTS

CC Setting –
Arithmetic

Add Register Instruction(AR):
RR Format – Register to Register

Sending Receiving

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 246 of 58

There are also three fixed-point subtraction
instructions: S, SH and SR. They operate in a
similar way to the Add instructions, except that
the operation is subtraction rather than addition.

The Subtract Instruction (S) subtracts the second
operand, a fullword in a main storage, from the
first operand, a fullword in a GPR, and the
difference is placed in the register.

For example: S R7,NUM3

In the example on the right, the fullword at NUM3
is subtracted from the fullword in R7, and the
difference is placed in R7.

Subtract Instruction

S

S R7, NUM3

1st Operand 2nd Operand

FULLWORD FULLWORD

-NUM3 R7

DIFF

DIFF replaces
FULLWORD

CC Setting –
Arithmetic

Subtract Instruction(S):
RX Format – Register to Indexed Storage

Sending Receiving

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 247 of 58

The Subtract Halfword Instruction (SH) subtracts
the halfword at the main storage location specified
by the second operand, from the fullword in the
GPR specified by the first operand. The difference
is placed in the GPR.

For example: SH R4,=H'12'

In the example on the right, the SH instruction
subtracts 12 (specified as a literal) from the
value in R4, and the difference is placed in R4.

Subtract Halfword Instruction

SH

SH R4, =H’12’

1st Operand 2nd Operand

HALFWORD FULLWORD

-H’12’ R4

DIFF

DIFF replaces
FULLWORD

CC Setting –
Arithmetic

Subtract Halfword Instruction(SH):
RX Format – Register to Indexed Storage

Sending Receiving

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 248 of 58

The Subtract Instruction (SR) subtracts a fullword
in the second operand register, from a fullword
in the first operand register, and the difference is
placed in the first operand register.

For example: SR R3,R7

In the example on the right, the fullword in R7 is
subtracted from the fullword in R3, with the
difference placed in R3.

Subtract Register Instruction

Continued…

SR

SR R3, R7

1st Operand 2nd Operand

FULLWORD FULLWORD

-R7 R3

DIFF

DIFF replaces
FULLWORD

CC Setting –
Arithmetic

Subtract Instruction(SR):
RR Format – Register to Register

Sending Receiving

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 249 of 58

One application of SR is to zero a register. You
could set a register to zero by loading a fullword
of zero into it.

For example: L R4,=F'0'

This method requires 4 bytes for the instruction (L
is an RX instruction) plus 4 bytes for the literal.

A better way to set R4 to zero is by subtracting its
contents from itself.

SR R4,R4

Regardless of the initial value of R4, the result will
be zero. This method only uses 2 bytes of
storage, for the RR instruction.

Subtract Register Instruction (cont’d)

0

ZERO a register:

Uses 8 bytes of storage

Uses 2 bytes of storage

Register R4

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Addition and Subtraction

L R4, = F’0’

SR R4, R4

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 250 of 58

When you perform addition and subtraction, the
result is of roughly the same magnitude, or less
than the largest of the operands. Thus, it makes
sense that when you are adding two fullwords, the
sum also be a fullword. However, when you do
multiplication, the number of digits in the product
is roughly the sum of the number of digits in the
multiplicand and multiplier.

The multiplier and multiplicand have two digits
each, and the products has four digits. It makes
sense, then, that when a multiply instruction is
designed as a part of a computer architecture, it
should provide for a product larger than the
multiplier and the multiplicand.

Multiplication

Continued…

99
*
99

=9801

Even-Odd Register Pair:

2 digits
+

2 digits
=4 digits

Multiplicand

Multiplier

Product

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Multiplication

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 251 of 58

There are three fixed-point multiplication
instructions. They are:

• MH is analogous in operation to AH and
SH

• M and MR use the first operand GPR
specification in a non-intuitive way that
requires some explanation

Multiplication (cont’d)

The Product is larger then both the
Multiplicand and the Multiplier. The
hardware requires that the Product
forms an EVEN-ODD Register Pair.

99
99

=9801

2 digits
+2 digits

= 4 digits

Multiplicand
Multiplier
Product

Even-Odd Register Pair:

Concepts

Continued…

Unit: Fixed-Point Binary Arithmetic Topic: Multiplication

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 252 of 58

For both M and MR, the multiplicand and
multiplier are fullwords. The product is a
doubleword. The first operand must specify an
even numbered GPR. The multiplicand must be
located in the odd numbered GPR, one greater
than the first operand specification.

The multiplier is the second operand. The product
(64 bits) is placed in the even-odd register pair,
wiping out the multiplicand in the odd register of
the pair.

Multiplication (cont’d)

FULLWORD

FULLWORD

DOUBLEWORD

1st Operand

MULTIPLICAND

2nd Operand

MULTIPLIER

Even Odd Register Pair

PRODUCT

Located in the ODD
Register

1st Operand specifies
an Even Register for
the High Order half of
the Product

Placed in the Even-Odd
Register Pair, the Low
Order half of the Product
replaces the Multiplicand

=

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Multiplication

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 253 of 58

What is the Multiply Halfword Instruction?

The Multiply Halfword Instruction (MH) multiplies
a halfword in main storage (which is the Multiplier
specified by the second operand), by the 32 bit
multiplicand in the register specified as the first
operand. The low order 32 bits of the product
replace the multiplicand. If overflow occurs,
significant bits to the left of the 32 saved bits, are
lost, but there is no indication of this truncation.

For example: MH R7,=H'25'

The value in R7 is multiplied by 25, and the
product placed in R7.

Multiply Halfword Instruction

Multiply and divide instructions do not set
the condition code.

MH

MH R7,=H'25'

1st Operand 2nd Operand

HALFWORD FULLWORD

Multiplier Multiplicand

H’25’ R7X

Multiply Halfword Instruction(MH):
RX Format - Register to Indexed Storage

CC Setting -
Does not set the
Condition Code

PRODUCT

Product replaces
FULLWORD in R7

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Multiplication

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 254 of 58

What is the Multiply Instruction?

The Multiply Instruction (M) multiplies a fullword in
the GPR (one greater than the first operand
register specified), by a fullword second operand
storage. The product, a 64 bit fixed point
number is placed in the first operand register, and
in the register one greater. The first operand must
specify an even numbered register, or a
specification exception will occur. It is impossible
for overflow to occur.

For example: M R4, FWD4

The fullword in R5 is multiplied by the fullword at
main storage location FWD4. The 64-bit product
is placed in GPRs 4 and 5.

Multiply Instruction

Multiply Instruction (M):
RX Format - Register to Indexed Storage

M R4, FWD4

1st Operand 2nd Operand

M

FULLWORD FULLWORD

Multiplier Multiplicand

FWD4
Specifies

Even Register

PRODUCT placed
in Even-Odd Register

X

Low OrderHigh Order

PRODUCT

CC Setting - Does not set the Condition Code

R4 Located
in Odd

Register (R5)

R4 Even
Register

R5 Odd
Register

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Multiplication

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 255 of 58

What is the Multiply Register Instruction?

The Multiply Register Instruction (MR) multiplies a
fullword in the GPR one greater than the first
operand register specified, by the fullword in the
register specified as the second operand. The
product, a 64 bit fixed point number, is placed in
the first operand register, and in the register one
greater. The first operand must specify an even
numbered register.

For example: MR R2,R5

The fullword in R3 is multiplied by the fullword in
R5. The 64 bit product is placed in GPRs 2 and 3.

Multiply Register Instruction

Multiply Register Instruction (MR):
RR Format - Register to Register Storage

MR R2, R5

1st Operand 2nd Operand

MR

FULLWORD FULLWORD

Multiplier Multiplicand

R5
Specifies

Even Register

PRODUCT placed
in Even-Odd Register

X

Low OrderHigh Order

PRODUCT

CC Setting - Does not set the Condition Code

op2 located
in Odd

Register (R3)

R2 Even
Register

R3 Odd
Register

Concepts

Continued…

Unit: Fixed-Point Binary Arithmetic Topic: Multiplication

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 256 of 58

What are the two fixed-point division
operations?

There are only two fixed-point division operations,
D and DR. There is no DH instruction.

Fixed-point arithmetic is integer arithmetic, so
division produces both an integer quotient and an
integer remainder. The dividend is a 64-bit
quantity in an even-odd register pair. The divisor
is a fullword.

After the division, the remainder is placed in the
even numbered register, specified by the first
operand, and the quotient goes into the odd
numbered register one greater than the first
operand.

Fixed-Point Division

Continued…

DIVIDEND

D R2,X

1st Operand 2nd Operand

EVEN-ODD REGISTER PAIR

DOUBLEWORD

QUOTIENTREMAINDER

DOUBLEWORD

FULLWORDFULLWORD

Specified by
1st Operand

One Greater then
1st Operand

EVEN
REGISTER

ODD
REGISTER

AFTER EXECUTION

BEFORE EXECUTION

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 257 of 58

The sign of the quotient is determined by the rules
of algebra. That is, if the signs of dividend and
divisor are the same, the quotient is positive,
otherwise it is negative. The sign of the remainder
is the same as the sign of the dividend.

If the divisor is zero, or the quotient is too large to
fit into a fullword, a fixed-point divide exception
occurs. This will cause your program to
terminate abnormally.

Fixed-Point Division (cont’d)

SIGN of
Divisor

DIVIDEND

SIGN of
Dividend

S

If…

=

Then Quotient is Positive
(Otherwise it is Negative)

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 258 of 58

The table above indicates the results of some division operations, showing which signs are generated for both
quotient and remainder.

Signs of Quotient and Remainder

17

DIVIDEND

-17

17

-17

15

5

DIVISOR

5

-5

-5

5

3

QUOTIENT

-3

-3

3

3

2

REMAINDER

-2

2

-2

0

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 259 of 58

What is the Divide instruction?

The Divide Instruction (D) divides the 64 bit fixed
point number in the even-odd register pair
specified by the first operand (which must be
even), by the fixed point fullword in the storage
location specified by the second operand. The
result consists of a fullword remainder that is
placed in the even numbered register (R1), and a
fullword quotient which is placed in the odd
numbered register (R1 +1).

For example: D R4, DIVISOR

The 64 bit fixed point number in registers R4 and
R5 is divided by the fullword at DIVISOR, and the
integer remainder is placed in R4 and the integer
quotient in R5.

Divide Instruction

D

D R4, DIVISOR

1st Operand 2nd Operand

FULLWORD

R4
Specifies

Even Register

Remainder
R5

Odd
Register

R4
Even

Register

Divide Instruction(D):
RX Format – Register to Indexed Storage

DOUBLEWORD

÷

Quotient

DIVISOR

DivisorDividend

CC Setting – Does not set the Condition Code

Concepts

Continued…

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 260 of 58

If you wanted to divide a 64-bit variable called
DIVIDEND, by a fullword variable called
DIVISOR, to produce fullword QUOTIENT and
REMAINDER, you could use the code shown on
the right.

Divide Instruction (cont’d)

LM R2,R3,DIVIDEND
D R2,DIVISOR
ST R3,REMAINDER
ST R3,QUOTIENT

R3 32-bitR2 32-bit

LOAD MULTIPLE

DIVIDEND

HIGH ORDER
Even Register

LOW ORDER
Odd Register

DIVIDE - (R2,R3) Dividend by Divisor

STORE - Remainder into Even Register R2

Quotient into Odd Register R3

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 261 of 58

What is the Divide Register instruction?

The Divide Register Instruction (DR) divides a 64
bit fixed point number in the even-odd register
pair specified by the first operand (which must be
even), by the fixed point fullword in the GPR
specified by the second operand. The result
consists of a fullword remainder that is placed in
the even numbered register (R1), and a fullword
quotient that is placed in the odd numbered
register (R1+1).

For example: DR R4,R7

The 64 bit fixed point number in registers R4 and
R5 is divided by the fullword in R7, and the
integer remainder is placed in R4 and in the
integer quotient in R5.

Divide Register Instruction

DR

D R4, R7

1st Operand 2nd Operand

FULLWORD

R4
Specifies

Even Register

Remainder
R5

Odd
Register

R4
Even

Register

Divide Register Instruction(DR):
RX Format – Register to Register

DOUBLEWORD

÷

Quotient

R7

DivisorDividend

CC Setting – Does not set the Condition Code

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 262 of 58

What are the three ways of converting from
fullword to doubleword for division?

In performing fixed-point arithmetic, you are often
working with fullword operands.

There are many times when you will want to
perform division on a value that is in a fullword
variable. However, the division instructions
require that the dividend be a doubleword.

You must convert the fullword to a doubleword
prior to performing the division. There are three
standard ways that this fullword to doubleword
conversion can be done.

Converting From Fullword to Doubleword for Division

Continued…

DOUBLEWORD

Convert

Dividend must be Doubleword

Fullword

TO

DIVIDEND
Prepared for Division

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 263 of 58

First Method: Load (L) / Subtract Register
(SR)

For the first method, you are only working with
positive numbers, and the first half of the
doubleword will be binary zeros. Therefore, just
load the fullword into the odd register and set the
even register to zero. To divide fullword X by
fullword Y, you could code as shown on the right.

Converting From Fullword to Doubleword for Division (cont’d)

Continued…

L R3,X low half of doubleword (posit ive)
SR R2,R2 high half of doubleword (zero)
D R2,Y perform division

FULLWORD

EVEN ODD Register

0……………..0

Positive

R3 Low OrderR2

LOAD

High Order

SUBTRACT R2 from R2
To ZERO the Register

DOUBLEWORD prepared for Division

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 264 of 58

Second Method: Multiplication

The second and third methods will handle both
positive and negative dividends.

The second method uses multiplication.
Remember that multiplication multiplies two
fullwords, giving a 64-bit result.

If you multiply a fullword value by one, you do not
change its value, but u do change it to a 64-bit
quantity. Using this method to divide X by Y, you
could use the code shown on the right.

Converting From Fullword to Doubleword for Division (cont’d)

Continued…

L R3,X
M R2,=F’1’ prepare for division
D R2,Y

FULLWORD

EVEN ODD Register

F’1’

R3R2

MULTIPLY R2 by 1

High Order

DOUBLEWORD prepared for Division

Low Order

FULLWORD *

R2

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 265 of 58

Third Method: Shift Right Double (SRDA)

The third method uses an instruction you have not
seen yet, SRDA (shift right double). Using this
instruction, the fullword dividend is loaded into the
even numbered register of the even-odd pair, and
then shifted (double) 32 bits, producing a 64-bit
dividend. With this third method, the code to
perform the division is shown on the right.

Converting From Fullword to Doubleword for Division (cont’d)

L R2,X fullword in even register
SRDA R2,32 convert to doubleword
D R2,Y

EVEN Register

R3

DOUBLEWORD prepared for Division

Low Order

FULLWORD

R2 High Order

LOAD into EVEN Register

SRDA – Covert to Doubleword

FULLWORDSSSSSS

Propagate SIGN

Magnitude
Remains
the same

ODD Register

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 266 of 58

There is one more issue you should consider with regards to division. Often, you decide that you do not
want a remainder per se, but rather a rounded quotient. That is, if the remainder is equal to or greater than
half of the divisor, you increase the quotient by one. To round, perform the division, double the remainder and
compare it to the divisor. If it is equal or greater, you add one to the quotient. The code is shown above.

Rounding After Division

L
SRDA
D
AR
C
BL
AH
EQU

R2,X
R2,32
R2,Y
R2,R2
R2,Y
NOROUND
R3,=H'1'
*

Get fullword dividend
Convert to doubleword
Divide
Double the remainder
Compare double the remainder to divisor
Less, so do not round up
Round quotient up

NOROUND

Concepts

Unit: Fixed-Point Binary Arithmetic Topic: Division

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 267 of 58

Uses of Iterative Structure

What is looping?

Looping is a coding technique that enables to
repeatedly execute the same sequence of machine
instructions.

What is an iterative loop?

Unlike situations where the end condition is
unknown until execution time, an iterative loop is
coded when its known how many times the loop is
needed.

The example shows processing of an array with
one entry for each month.

Continued…

Unit: Looping

Month1
Month2
.
.
.
.
Month12

Array Next
Entry

Process

Result

Compare
Counter

Store
Results

=

<

Loop

Concepts

Topic: The Iterative Loop

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 268 of 58

Uses of Iterative Structure (cont’d)

How is an iterative loop built?

Iterative loop structure can be built by using a
counter and a comparison followed by a Branch on
Condition.

The example shows the code used to process the
array of 12 months.

Unit: Looping

LH R3,=H’1’ Initialize
counter to 1

MTHLOOP EQU *

* Process data for

* month number

* which is in R3

AH R3,=H’1’ Increment month
number

CH R3,=H’12’ Have you
processed all

the months

BNH MTHLOOP No

Topic: The Iterative Loop

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 269 of 58

Branch on Count

What is Branch on Count?

The Branch on Count (BCT) instruction is
designed to handle iterative looping.

One is subtracted from the first operand register
and the result is saved in the register. If the result
is zero, then normal instruction sequencing occurs
at the instruction, following BCT. If the result is
non-zero, the main storage address specified by
the second operand replaces the next instruction
address in the PSW.

If second operand is 0 (zero), no branching occurs
and execution continues with the next instruction.

Continued…

Unit: Looping

Branch on Count (BCT):
RX Format - Register and Indexed Storage

BCT R6,LOOP

Loop Counter
Register

Branch Address
(Main Storage)

10

R6

• Reduces the counter by 1
each time program loops

• Falls through to next instruction
when counter reaches 0

CC Setting - Condition Code is Unchanged

Concepts

Topic: The Iterative Loop

Counter

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 270 of 58

Branch on Count (cont’d)

How is a BCT used?

Using BCT involves the following steps:

1. Immediately before the body of the loop,
load a General Purpose Register (GPR)
with the number of times the loop needs
to be executed

2. Code the body of the loop, with the last
instruction being a BCT, using the
initialized register and the address at the
start of the loop

The code on the right shows how monthly
processing is repeated 12 times using BCT.

Continued…

Unit: Looping

LH R3,=H’12’ Loop count
for 12 months

MTHLOOP EQU *

*

*

Process data

for Month 13-

(value in R3)

BCT R3,MTHLOOP

Topic: The Iterative Loop

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 271 of 58

Branch on Count (cont’d)

What happens when BCT does not branch?

The fact that BCT does not branch when its
second operand is 0, allows it to be used as a way
to subtract one from a register with no literal value
needed.

That means, instead of using the following code:

SH R7,=H’1’

Use:

BCTR R7,0

The only difference between these two codes is
that the BCTR cannot cause overflow and it will
not set the condition code.

Unit: Looping

SH R7,=H'1'

BCTR R7, 0

Code subtracts the Literal Value 1
from the contents of R7,
(requires 2+4=6 bytes)

Code does not branch when the 2nd
Operand is 0, allowing it to subtract 1
from R7, (requires 2 bytes)

Concepts

Topic: The Iterative Loop

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 272 of 58

Address Arithmetic

While processing arrays in a loop, each iteration
of the loop processes a different element of the
array. The Assembler programmer must adjust
the address of the current element each time
through the loop.

The process of manipulating the addresses of
data is called address arithmetic.

The most important instruction used in writing
address arithmetic is the Load Address (LA)
instruction.

The address of the second operand is placed in
the first operand location. The condition code is
unaltered.

Unit: Looping

Concepts

Load Address (LA):
RX Format - Register and Indexed Storage

LA R4,ARRAY

1st Operand 2nd Operand
(Base Displacement)

R4 ARRAY

Contents Address

LA
Replaces Contents of
R4 with Address at
location ARRAY

CC Setting - Condition Code is Unchanged

Topic: Address Arithmetic

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 273 of 58

Load Address Instruction

What is the difference between Load and Load
Address?

In both cases, the effective address of the second
operand is calculated by adding the displacement
to the sum of the contents of the base, and index
registers. But in the case of Load Address, the
effective address is placed in the GPR specified by
the first register. For Load, the contents of the
effective address are placed into the GPR,
specified by the first operand.

Load makes a storage reference, while Load
Address does not.

Example: LA R4,ARRAY

The address of the storage location ARRAY is
placed into R4.

Continued…

Unit: Looping

Concepts

Calculate Effective
Address – Sum Of
Displacement,
Base, and Index

Storage

LA R4,ARRAY

L R4,ARRAY

Contents Of Effective Address In Storage

Topic: Address Arithmetic

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 274 of 58

Load Address Instruction (cont’d)

How effective addresses are formed?

For an RX format instruction, like Load Address,
adding the displacement, contents of the base
register, and the contents of the index register,
forms the effective address.

If either or both of the base and index registers
specify R0, then that component is not used in
address formation.

Unit: Looping

Concepts

LA R3, 10

LA R3, 10(,R4)

LA R3, 10(R4)

LA R3,10(R4,R5)

No Base or Index

No Index

No Base

Both Base and Index

Topic: Address Arithmetic

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 275 of 58

What does address arithmetic deal with?

Address arithmetic deals with storage addresses, which are non-negative integers less than the maximum
storage size.

In BC mode, the address arithmetic deals with numbers in the range of 0- 16,777,215.

In EC mode, the maximum number in address arithmetic is 2 ³¹ – 1

Address Arithmetic

Continued…

Unit: Looping

Concepts

Topic: Address Arithmetic

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 276 of 58

What are the uses of load address?

Load address can be used for the following purposes:

• It can be used for placing the address of a named storage area into a register

• It can be used to initialize a register

Example:

To place the value 10 into R5, instead of using: LH R5,=H’10’
Use, LA R5,10

To add 5 to the contents of R7, instead of using: AH R7,=H’5’
Use, LA R7,5(,R7)

Address Arithmetic (cont’d)

Unit: Looping

Concepts

Topic: Address Arithmetic

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 277 of 58

Address Arithmetic: Example

In the example, the effective address is formed by
adding the basic contents of the base register R7
and the displacement 5.

The result is placed in the first operand R7.

The effect is to add 5 to R7.

What are the limitations of address arithmetic?

Following are the limitations of address arithmetic:

• Displacements must be in the range 0-
4095

• The arithmetic must deal with non-
negative integers less than the storage
size, for address arithmetic to work

Unit: Looping

Concepts

Comma Indicates
Index Register is not specified

Displacement Base Register

R7,5(,R7)LA

1st Operand R1 D2 X2 B2

2nd Operand

Basic Instruction Format:
OP R1,D2,(X2,B2)

Topic: Address Arithmetic

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 278 of 58

Defining Arrays

An array is a repetitive data structure, consisting of
multiple elements of some base type.

In the example shown to record a a company’s
gross sales for each day in January, an array of 31
fullwords, or 31 packed decimal numbers have
been used.

Continued…

Unit: Looping Topic: Processing Arrays

Fixed-Point Array:

FDSALES DS 31F

Array of 31 Fullwords

Packed Decimal:

PDSALES DS 31PL4

31 Packed Decimal Fields of Length 4

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 279 of 58

The example shows how to create an array of constants. It shows an array to hold the number of days in each
month of a common (not a leap) year.

Here a duplication factor has not been specified. Rather, by defining twelve constants, the Assembler has
been told that the array has 12 elements.

Unit: Looping Topic: Processing Arrays

DAYSINMTH DC H‘31,28,31,30,31,30,31,31,30,31,30,31”

12 Constants – Each Being a Halfword

31 28 31 30 31 3130 31 30 31 30 31

Main Storage – 12 Elements

Concepts

Defining Arrays (cont’d)

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 280 of 58

Boolean Algebra

Boolean algebra is an algebra that deals with the
binary values of zero and one. In this algebra, 0
often represents false and 1 represents true.

The internal operation of computers is based on
Boolean logic, and most computer architectures
provide some Boolean instructions in their
instruction set.

Continued…

Unit: Logical and Shift Instructions

1

2

3

AND (N)
AND REGISTER (NR)

AND CHARACTER (NC)
AND IMMEDIATE (NI)

OR (O)
OR REGISTER (OR)

OR CHARACTER (OC)
OR IMMEDIATE (OI)

EXCLUSIVE OR (X)
EXCLUSIVE OR REGISTER (XR)

EXCLUSIVE OR CHARACTER (XC)
EXCLUSIVE OR IMMEDIATE (XI)

Concepts

Topic: Boolean Operations

2

3

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 281 of 58

Machine Instructions with Boolean AND

AND (N) Instruction

Here is an example of AND (N) instruction, which
is an RX format instruction.

Here, the 32 bits of the first operand (in a GPR)
are bit-wise ANDed with the 32 bits of the second
operand, which is a fullword in main storage. The
result replaces the first operand.

Continued…

Unit: Logical and Shift Instructions

FWD8N R3,

1st Operand 2nd Operand

FULLWORD FULLWORD

N

Result

R3 FWD8

Placed in R3

CC Setting: 0 - Result is all zero bits
1 – Result is not all zero bits

AND (N):
RX Format – Register and Indexed Storage

Concepts

Topic: Boolean Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 282 of 58

Machine Instructions with Boolean AND (cont’d)

AND (NR) Instruction

Here is an example of AND (NR) instruction.

In this RR format instruction, the 32 bits in the first
operand register are bit wise ANDed with the 32
bits in the second operand register. The result
replaces the first operand.

Continued…

Unit: Logical and Shift Instructions

Concepts

Topic: Boolean Operations

R8NR R7,

FULLWORD FULLWORD

NR

Result
Placed in R7

R7 R8

1st Operand 2nd Operand

CC Setting: 0 - Result is all zero bits
1 – Result is not all zero bits

AND (NR):
RR Format – Register and Register

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 283 of 58

Machine Instructions with Boolean AND (cont’d)

Continued…

Unit: Logical and Shift Instructions

X’7F’NI SWITCH,

1st Operand 2nd Operand
(Immediate Data)

1 Byte 1 Byte

NI

Result
Replaces contents
At location switch

SWITCH X’7F’

AND (NI):
SI Format – Storage and Immediate Data

0 1 2 3 4 5 6 7Turn bit 0 off Effect(Result)

Unchanged

CC Setting: 0 - Result is all zero bits
1 - Result is not all zero bits

Concepts

Topic: Boolean Operations

AND (NI) Instruction

The AND (NI) instruction is shown in the example.

In this SI format instruction, the eight bits of the
first operand are bit-wise ANDed with the 8 bits of
the immediate operand, and the result replaces the
first operand.

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 284 of 58

Machine Instructions with Boolean AND (cont’d)

Unit: Logical and Shift Instructions

FLD2NC FLD1,

AND (NC):
SS Format – Storage and Storage

1st Operand 2nd Operand

Bits Bits

NC

Result

Replaces contents
at location FLD1

FLD1 FLD2

CC Setting: 0 - Result is all zero bits
1 – Result is not all zero bits

Concepts

Topic: Boolean Operations

AND (NC) Instruction

The AND (NC) instruction is shown in the example.

In this SS format instruction, the bits of the first
operand are bit-wise ANDed with the bits of the
second operand, with the result replacing the first
operand.

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 285 of 58

Machine Instructions with Boolean OR

OR (O) Instruction

The OR (O) instruction is shown in the example.

In this RX format instruction, the 32 bits of the first
operand (in a GPR) are bit-wise ORed with the 32
bits of the second operand, witch is a fullword in
main storage. The result replaces the first operand.

Continued…

Unit: Logical and Shift Instructions

FWD8O R3,

OR (O):
RX Format – Register and Indexed Storage

1st Operand 2nd Operand

FULLWORD FULLWORD

O

Result
Placed in R3

R3 FWD8

CC Settings: 0 - Result is all zero bits
1 – Result is not all zero bits

Concepts

Topic: Boolean Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 286 of 58

Machine Instructions with Boolean OR (cont’d)

OR (OR) Instruction

The OR (OR) instruction is shown in the example.

In this RR format instruction, the 32 bits of the first
operand register are bit-wise ORed with the 32 bits
in the second operand register. The result replaces
the first operand.

Continued…

Unit: Logical and Shift Instructions

R8O R7,

1st Operand 2nd Operand

FULLWORD FULLWORD

OR

Result
Placed in R7

R7 R8

CC Settings: 0 - Result is all zero bits
1 – Result is not all zero bits

OR (OR):
RR Format – Register and Register

Concepts

Topic: Boolean Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 287 of 58

Machine Instructions with Boolean OR (cont’d)

OR (OI) Instruction

The OR (OI) instruction is shown in the example.

In this SI format instruction, the eight bits of the first
operand are bit-wise ORed with the 8 bits of the
immediate operand, the result replaces the first
operand.

Continued…

Unit: Logical and Shift Instructions

X’10’OI SWITCH,

OR (OI):
SI Format – Storage and Immediate Data

1st Operand 2nd Operand
(Immediate Data)

1 Byte 1 Byte

OI

Result
Replaces contents
At Location SWITCH

SWITCH X’7F’

30 1 2

Turn bit 3 on

Unchanged

4 5 6 7

CC Settings: 0 - Result is all zero bits
1 - Result is not all zero bits

Concepts

Topic: Boolean Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 288 of 58

Machine Instructions with Boolean OR (cont’d)

OR (OC) Instruction

The OR (OC) instruction is shown in the example.

In this SS format instruction, the bits of the first
operand are bit-wise ORed with the bits of the
second operand, with the result replacing the first
operand.

Continued…

Unit: Logical and Shift Instructions

FLD2OC FLD1,

OR (OC):
SS (1 length) Format – Storage and Storage

1st Operand 2nd Operand

Bits Bits

OC

Result

Replaces Contents
at Location FLD1

FLD1 FLD2

CC Settings: 0 - Result is all zero bits
1 – Result is not all zero bits

Concepts

Topic: Boolean Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 289 of 58

Machine Instructions with Boolean OR (cont’d)

OR (OC) Instruction

One use of the OC instruction is to convert text in
mixed case to all upper case.

The technique of using OC to change to uppercase
works because the EBCDIC codes for the lower
case letters is almost identical to the codes for the
uppercase.

The example shows a user reply into a 20-byte
field called REPLY. To convert the field to
uppercase, following code can be used.

OC REPLY,=20X’40’

X’40’ is the EBCDIC code for blank, so it can be
coded as:

OC REPLY,=CL20’ ‘

Unit: Logical and Shift Instructions

D1 96 88 95 40 E2 94 89 A3 88

40 40 40 40 40 40 40 40 40 40

JOHNbSMITH

REPLY john smith

Lower Case

CAPS
SpaceResult

Concepts

Topic: Boolean Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 290 of 58

Machine Instructions with Boolean Exclusive OR

EXCLUSIVE OR (X) Instruction

The EXCLUSIVE OR (X) instruction is shown in the
example.

In this RX format instruction, the 32 bits of the first
operand (in a GPR) are bit-wise XORed with the 32
bits of the second operand, which is a fullword in
main storage. The result replaces the first operand.

Continued…

Unit: Logical and Shift Instructions

FWD8X R3,

EXCLUSIVE OR (X):
RX Format – Register and Indexed Storage

1st Operand 2nd Operand

FULLWORD FULLWORD

X

Result
Placed in R3

R3 FWD8

CC Settings: 0 - Result is all zero bits
1 – Result is not all zero bits

Concepts

Topic: Boolean Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 291 of 58

Machine Instructions with Boolean Exclusive OR (con t’d)

EXCLUSIVE OR (XR) Instruction

The EXCLUSIVE OR (XR) instruction is shown in
the example.

In this RR format instruction, the 32 bits of the first
operand register are bit-wise XORed with the 32
bits in the second operand register. The result
replaces the first operand.

Continued…

Unit: Logical and Shift Instructions

R8XR R7,

EXCLUSIVE OR (XR):
RR Format – Register and Register

1st Operand 2nd Operand

FULLWORD FULLWORD

XR

Result
Placed in R7

R7 R8

CC Settings: 0 - Result is all zero bits
1 – Result is not all zero bits

Concepts

Topic: Boolean Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 292 of 58

Machine Instructions with Boolean Exclusive OR (con t’d)

EXCLUSIVE OR (XI) Instruction

The EXCLUSIVE OR (XI) instruction is shown in the
example.

In this SI format instruction, the eight bits of the first
operand are bit-wise XORed with the 8 bits of the
immediate operand, the result replaces the first
operand.

Continued…

Unit: Logical and Shift Instructions

X’01’XI SWITCH,

EXCLUSIVE OR (XI):
SI Format – Storage and Immediate Data

1st Operand 2nd Operand
(Immediate Data)

1 Byte 1 Byte

XI

Result
Replaces contents
At Location SWITCH

SWITCH X’01’

70 1 2 3 4 5 6Effect (Result) Flip Bit

CC Settings: 0 - Result is all zero bits
1 - Result is not all zero bits

Concepts

Topic: Boolean Operations

Unchanged

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 293 of 58

Machine Instructions with Boolean Exclusive OR (con t’d)

EXCLUSIVE OR (XC) Instruction

The EXCLUSIVE OR (XC) instruction is shown in
the example.

In this SS format instruction, the bits of the first
operand are bit-wise XORed with the bits of the
second operand, with the result replacing the first
operand.

Continued…

Unit: Logical and Shift Instructions

FLD2XC FLD1,

EXCLUSIVE OR (XR):
SS Format – Storage and Storage

1st Operand 2nd Operand

Bits Bits

XC

Result
Replaces Contents
at Location FLD1

FLD1 FLD2

CC Settings: 0 - Result is all zero bits
1 – Result is not all zero bits

Concepts

Topic: Boolean Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 294 of 58

Machine Instructions with Boolean Exclusive OR (con t’d)

EXCLUSIVE OR (XC) Instruction

There are two important applications of
EXCLUSIVE OR. They are:

• To set a field to binary zeros

• To write code to sort data

To Set A Field To Binary Zeros

The first application is shown in the truth table for
Exclusive OR. It shows that after a field is Exclusive
ORed with itself, the result will be all zeros.

Continued…

Unit: Logical and Shift Instructions

0

1

0 1

O
p

1
1 Flips the bit
0 retains the bit

0 1

1 0

Op 2

0 XOR 0 = 0

1 XOR 1 = 0

Concepts

Topic: Boolean Operations

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 295 of 58

Machine Instructions with Boolean Exclusive OR (con t’d)

Using the XC instruction, it is possible to exchange
values with the same number of instructions, but
with no intermediate data area, thus saving
storage.

The code is shown in the example.

Continued…

Unit: Logical and Shift Instructions

XC FLD1, FLD2

1

2

3

CONTENTS1 CONTENTS2

RESULT1

FLD1 FLD2

CONTENTS2 RESULT1

CONTENTS CONTENTS1

FLD1

FLD1FLD2

TEMP

1

XC FLD2, FLD12

XC FLD1, FLD23

CONTENTS2

FLD2FLD1
RESULT

XC
REPLACE

REPLACE XCCONTENTS1

REPLACE XC
CONTENTS2

The contents are now switched

Concepts

Topic: Boolean Operations

CONTENTS1

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 296 of 58

Shifting Instructions

Shifting instructions help in handling applications
that require altering bits of data in registers and
storage. Shifting instructions move the content of
GPRs to the left or the right, by a specified number
of bits.

The amount of data shifted can be 32 bits in a
single GPR or 64 bits in an even-odd register pair.
The data can be interpreted as an unsigned logical
quantity (logical shift) or as a signed arithmetic
quantity (arithmetic shift).

All combinations of the 3 types of shifting are
allowed, producing 2 x 2 x 2 or 8 shift instructions.

Unit: Logical and Shift Instructions

Arithmetic Shift:

Shift Left Single (Algebraic)
Shift Left Double (Algebraic)
Shift Right Single (Algebraic)
Shift Right Double (Algebraic)

(SLA)
(SLDA)
(SRA)
(SRDA)

Logical Shaft:

Shift Left Single Logical
Shift Left Double Logical
Shift Right Single Logical
Shift Right Double Logical

(SLL)
(SLDL)
(SRL)
(SRDL)

Logical Instructions:

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 297 of 58

There are eight shifting instructions in total. These instructions shift the contents of GPRs on a bit-wise basis.
Registers contents can be shifted left or right.

The eight instructions are shown here.

Types of Shifting

Unit: Logical and Shift Instructions

Direction

right

right

right

right

Left

Left

Left
Left

Size

single

single

double

double

single

single

double
double

Type

logical

arithmetic

logical

arithmetic

logical

arithmetic

logical
arithmetic

Instruction

SRL

SRA

SRDL

SRDA

SLL

SLA

SLDL
SLDA

Concepts

Topic: Shifting Instructions

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 298 of 58

Types of Shifting (cont’d)

What happens during a logical shift?

In a logical shift, all of the bits participate. Bits that
are shifted out of the register at the right end for a
right shift and at the left end for a left shift disappear.

Vacated bit positions are filled with zero bits. The
condition code is not changed in logical shifts.

What happens during an arithmetic shift?

In an arithmetic shift, only the 31 or 63 bits to the
right of the sign bit participate. Bits shifted out of the
register disappear. In a left arithmetic shift, vacated
bit positions are filled with zero bits. In a right
arithmetic shift, bits equal to the sign bit replace
vacated bit positions. The condition code is set in a
similar way to arithmetic instructions. An overflow
can occur in a left shift, when a significant bit is
shifted out of the register.

Continued…

Unit: Logical and Shift Instructions

Lost Bits

Lost Bits

SRL 310

SLL 310

0’s

0’s

Logical Shift:

Lost Bits
SRL 31

0

SLA 310
0’s1

Arithmetic Shift:

Lost Bits0 1

s

s

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 299 of 58

Types of Shifting (cont’d)

The shift instructions are all RS type. The R3 field
is not used in shift instructions, and is ignored in
the Machine Language format. The second
operand does not specify a field in main storage,
but it is used to represent the magnitude of the
shift.

The address arithmetic is done, and the rightmost
6 bits of that result specifies how many bit
positions to shift the first operand. Normally in
Assembler language source statements, this field
is specified as a displacement, indicating the
number of bit positions to move the register
contents.

A single shift instruction can specify any register
as the first operand. A double shift instruction must
specify an even numbered register, implying that
particular register and the next higher register.

Unit: Logical and Shift Instructions

OP R1 R3 B2 D2

Register
to be shifted

Unused
2nd Operand

Shift Instructions:
RS Format – Register and Storage

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 300 of 58

Logical Shifting Instructions

Shift Left Single Logical Instruction

The Shift Left Single Logical (SLL) instruction is
shown in the example.

With the SLL, an RS format instruction, the 32 bits
in the first operand shift left by the amount
specified by the rightmost 6 bits of the effective
address of the second operand. Zero bits replace
the displaced bits on the right.

Example:

SLL R5,7

Unit: Logical and Shift Instructions

Continued…

7SLL R5

Shift Left Single Logical (SLL):
RS Format – Register and Storage

1st Operand 2nd Operand
Bit Shift Count

FULLWORD SLL

Contents of R5
Is Changed

R5

CC Settings – Condition Code is Unchanged

Shift Left – 7 BITS

Low Order 7 bits of R5
are Filled with 0 bits

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 301 of 58

Logical Shifting Instructions (cont’d)

Shift Right Single Logical Instruction

The Shift Right Single Logical (SRL) instruction is
shown in the example.

With the SRL, an RS format instruction, the 32 bits
in the first operand shift right by the amount
specified by the rightmost 6 bits of the effective
address of the second operand. Zero bits replace
the displaced bits on the left.

Example:

SRL R9,5

Unit: Logical and Shift Instructions

Continued…

5SRL R9

Shift Right Single Logical (SRL):
RS Format – Register Storage

1st Operand 2nd Operand
Bit Shift Count

FULLWORD SRL

Contents of R9
Is Changed

R9

Shift Right – 5 BITS

High Order 5 bits of R9
are Filled with 0 bits

CC Settings – Condition Code is Unchanged

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 302 of 58

Logical Shifting Instructions (cont’d)

Shift Left Double Logical Instruction

The Shift Left Double Logical (SLDL) instruction is
shown in the example.

The SLDL, an RS format instruction, is similar to
the SLL instruction, except that it uses paired
registers. The instruction shifts 64 bits in the first
operand register, and the next higher register to
the left. The magnitude of the shift is specified, by
the rightmost 6 bits of the effective address of the
second operand. Zero bits replace the displaced
bits on the right.

Example:

SLDL R4,11

Unit: Logical and Shift Instructions

Continued…

11SLDL R4

Shift Left Double Logical (SLDL):
RS Format – Register and Storage

1st Operand 2nd Operand
Bit Shift Count

Doubleword SLDL

Contents of R4 and R5
are Changed

R4 and R5
Even/Odd

CC Settings – Condition Code is Unchanged

Shift Left – 11 BITS

Low Order 11 bits of R5
are Filled with 0 bits

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 303 of 58

Logical Shifting Instructions (cont’d)

Shift Right Double Logical Instruction

The Shift Right Double Logical (SRDL) instruction
is shown in the example.

The SRDL, an RS format instruction, is similar to
the SRL instruction. This instruction, however,
shifts 64 bits in the first operand register, and to
the next higher register to the right. The rightmost
6 bits of the effective address of the second
operand specify the magnitude of the shift. Zero
bits replace the displaced bits on the left.

Example:

SRDL R6,3

Unit: Logical and Shift Instructions

Continued…

3SRDL R6

Shift Right Double Logical (SRDL):
RS Format – Register Storage

1st Operand 2nd Operand
Bit Shift Count

Doubleword SRDL

Contents of R6 and R7
are Changed

R6 and R7
Even/Odd Pair

CC Settings – Condition Code is Unchanged

Shift Right – 3 BITS

High Order 3 bits of R6
are Filled with 0 bits

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 304 of 58

Logical Shifting Instructions (cont’d)

There are many applications of the logical shift
instructions that involve bit manipulation and
related application.

If R5 contains a storage address, to determine the
first address at or below the address in R5, that is,
a doubleword boundary.

To find the boundary, the low order 3 bits of the
address should be replaced by zeros.

The example shows how it is done using SRL and
SLL instructions.

Unit: Logical and Shift Instructions

SRL R5,3

SLL R5,3

Doubleword Boundaries:

Remove low order 3 bits
Replace with zeros

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 305 of 58

Arithmetic Shifting Instructions

Shift Left Single (Algebraic) Instruction

The Shift Left Single (Algebraic) (SLA) instruction
is shown in the example.

SLA, an RS format instruction, shifts numeric bits
of the signed first operand to the left. The rightmost
6 bits of the effective address of the second
operand, specify the magnitude of the shift. Zero
bits replace the displaced bits on the right.

Example:

SLA R7,5

Unit: Logical and Shift Instructions

Continued…

5SLA R7

Shift Left Single (SLA):
RS Format – Register and Storage

1st Operand 2nd Operand
Bit Shift

FULLWORD SLA

Contents of R7
Is Changed

R7

CC Settings – Arithmetic

Shift Left all
but Sign Bit

Vacated 5 bits right of R7
are Filled with zeros

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 306 of 58

Arithmetic Shifting Instructions (cont’d)

Shift Left Double (Algebraic) (SLDA) Instruction:

The Shift Left Double Algebraic (SLDA) instruction is
shown in the example.

The SLDA, an RS format instruction, is similar to
SLA, but operates on the data in an even-odd
register pair. The 63 bits are shifted left. The
magnitude of the shift is specified, by the second
operand. Zero bits replace the displaced bits on the
right.

Example:

SLDA R8,7

Unit: Logical and Shift Instructions

Continued…

7SLDA R8

Shift Left Double Algebraic (SLDA):
RS Format – Register and Storage

1st Operand 2nd Operand
Bit Shift Count

Doubleword SLDA

Contents of R8 and R9
are Changed

R8 and R9

CC Settings – Arithmetic

Shift Left all
but Sign - 7 BITS

Vacated 7 bits right of R9
are Filled with zeros

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 307 of 58

Arithmetic Shifting Instructions (cont’d)

Shift Right Single (Algebraic) Instruction

The Shift Right Single (Algebraic) (SRA)
instruction is shown in the example.

SRA, an RS format instruction, shifts 31 numeric
bits of the signed operand to the right. The
rightmost 6 bits of the effective address of the
second operand, specify the magnitude of the shift.
Bits equal to the sign bit replace the displaced bits
on the left.

Example:

SRA R7,5

Unit: Logical and Shift Instructions

Continued…

5SRA R7

Shift Right Single Algebraic (SRA):
RS Format – Register and Storage

1st Operand 2nd Operand
Bit Shift Count

FULLWORD SRA

Contents of R7
Is Changed

R7

CC Settings – 0 – Result is zero
1 – Result is less then zero
2 – Result is greater then zero

Shift Right all
but SIGN BITS

Vacated 5 bits left of R7
are Filled with equal

to the SIGN BIT

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 308 of 58

Arithmetic Shifting Instructions (cont’d)

Shift Right Double (Algebraic) Instruction

The Shift Right Double (Algebraic) (SRDA)
instruction is shown in the graphic.

SRDA, an RS format instruction, is similar to SRA,
but operates on the data in an even-odd register
pair. The 63 bits are shifted right. The magnitude of
the shift is specified by the second operand. Bits
equal to the sign bit replace the displaced bits on
the left.

Example:

SRDA R10,23

Unit: Logical and Shift Instructions

Continued…

23SRDA R10

Shift Right Double Algebraic (SRDA):
RS Format – Register and Storage

1st Operand 2nd Operand
Bit Shift

Doubleword SRDA

Contents of R10 and R11
are Changed

R10 and R11
Even/Odd Pair

CC Settings – 0 – Result is zero
1 – Result is less then zero
2 – Result is greater then zero

Shift all Right but
SIGN - 23 BITS

Vacated 23 bits left of R10
are Filled with bits equal

to the SIGN BIT

Concepts

Topic: Shifting Instructions

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 309 of 58

Test Under Mask

The Test under Mask instruction has been
summarized as shown.

In the TM instruction, the immediate operand,
which is the second operand, is an 8-bit mask. Bits
to be tested in the first operand are specified by
placing a 1 in the corresponding mask position.
Neither operand is changed, but the condition code
is set..

Example:

TM SWITCH,X’02’

Continued…

Unit: Logical and Shift Instructions

X’02’TM SWITCH,

TEST UNDER MASK (TM):
SI Format – Register and Immediate Data

1st Operand 2nd Operand
(Immediate Data)

TEST BITS MASK

TM

SWITCH X’02’

SETS
CONDITION CODE

CC Settings – 0 – Mask is zero
or all selected bits are zero

1 – Some selected bits are zeros
and some are ones

2 – All selected bits are ones

Concepts

Topic: Testing Bit Values

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 310 of 58

Test Under Mask (cont’d)

The TM instruction can test a single bit, or multiple
bits. A condition code of 1 is only possible if
multiple bits are being tested.

The condition code values assigned to the various
conditions may seem arbitrary. The reason for
these settings is to enable the extended branch
mnemonics Branch if Zeros (BZ), Branch if Mixed
(BM) and Branch if Ones (BO) to be used.

Unit: Logical and Shift Instructions

MASK

Specifies Bits
to Test

Concepts

Topic: Testing Bit Values

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 311 of 58

In order to provide consistency and ease of linkage between programs written in different languages, the
operating system defines certain conventions for passing and returning control and data between modules.
These conventions concern the standard use of the General Purpose Registers (GPRs) and the procedure for
saving and restoring them, as control passes from module to module.

Conventional Use of Registers

Unit: Modular Programming

Continued…

Passes and Returns
Control Between Modules

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

Control
MODULE 1

MODULE 1

MODULE 1

MODULE 1

16 GPRs

General Purpose Register (GPR):

Concepts

Topic: Using General Purpose Registers

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 312 of 58

When passing and returning control and data between modules, five of the GPRs (R0, R1, R13, R14 and
R15) are used in conventional ways.

These five registers are also used by many of the system macro instructions.

Conventional Use of Registers (cont’d)

Unit: Modular Programming

Continued…

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

Concepts

Topic: Using General Purpose Registers

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 313 of 58

Here is a list of the five GPRs with their description:

R0 - Returns a single fullword value from a called program to its caller. If the called program is a function,
and the type of the function is a fullword or smaller type, then R0 is used to return the function result.

R1- Used to pass the address of a parameter list from a calling program to its called program. The address
of the parameter list is passed in R1.

R13- Used to hold the save area address. The area used to save registers is called a saved area, and the
address of the save area is held in R13.

R14- Used to hold the return address in the caller when control is passed. When the called module
completes processing, it returns control to this address.

R15- Used for two purposes:
• When control is passed, it contains the address of the instructions in the called module where

execution is to begin.
• When control is returned, it contains a return code. This value normally indicates the success

of the called program, with 0 representing success.

Conventional Use of Registers (cont’d)

Unit: Modular Programming

Concepts

Topic: Using General Purpose Registers

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 314 of 58

Save Areas and Linkage

Save areas (SA) are 18 fullword areas that are
used to hold register contents when control is
passed from module to module.

Each module is responsible for defining a save
area for its called programs, in order to save the
caller’s registers.

Continued…

Unit: Modular Programming

MAIN CSECT
.

CALL SUB

MODULE A

Save Areas:

SUB CSECT
Save Registers in SA
.
Restore Registers from SA

RETURN

MODULE BControl

Return
Control

Concepts

Topic: Using General Purpose Registers

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 315 of 58

The format of the SA is shown in the here.

PSA is the address of the previous SA.
NSA is the address of the next SA.
R14 holds the contents of R14, which is the return address in the caller.
R15 holds the contents of R15, which is the entry point in the called program.
R0 – R12 contain the contents of registers R0 through R12.

Save Areas and Linkage (cont’d)

Unit: Modular Programming

Continued…

WD1 PSA NSA R14 R15 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

18 FULLWORD SAVE AREA (SA)

FULLWORD
(4 bytes)

Concepts

Topic: Using General Purpose Registers

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 316 of 58

Save Areas and Linkage (cont’d)

What is a Store Multiple?

The Store Multiple (STM) instruction stores the
contents of registers in their correct positions. This
is why it is the first instruction one encounters in
almost every program.

Example:

STM R14,R12,12(R13)

Continued…

Unit: Modular Programming

STM R14,R12, 12(R13)

1st Operand 3nd Operand

2nd Operand

R14
R15
R0

to

R12

ADDRESS STARTS
12 Bytes FROM
SAVE AREA (SA)
R13

Main Storage

STM

Registers

15 CONSECUTIVE
FULLWORDS

Store Multiple (STM)
RS Format – Register and Storage

Concepts

Topic: Using General Purpose Registers

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 317 of 58

Save Areas and Linkage (cont’d)

Each SA points to the Previous Save Area (PSA)
and the Next Save Area (NSA).

For this reason, all of the SAs, for active programs,
are linked together in a doubly linked list. If a
program fails, it is possible to determine the
register contents at each point, when control
passed from module to module.

Unit: Modular Programming

WD1 PSA NSA R14 R12

WD1 PSA NSA R14 R12

WD1 PSA NSA R14 R12SA3

SA2

SA1

Linkage:

Concepts

Topic: Using General Purpose Registers

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 318 of 58

Branch and Link

The Assembler Language instructions that
implement subroutine linkage are called Branch and
Link (BAL).

The next instruction address from the Program
Status Word (PSW) is loaded into the GPR
specified as the first operand. The address
specified as the second operand is placed in the
next instruction address field of the PSW.

Example:

BAL R11,SUBRTN

Continued…

Unit: Modular Programming

R11,SUBRTNBAL

1st Operand 2st Operand

BAL

Next Instruction
Address

ADDRESS

Next Instruction
Address Field

CONTROL

PSW

Replace Contents
of R11

R11

Branch and Link (BAL):
RX Format – Register and Indexed Storage

CC Settings – Condition Code is Unchanged

SUBRTN

Concepts

Topic: Using General Purpose Registers

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 319 of 58

Branch and Link (cont’d)

The code at SUBRTN performs its function, and
then control can be returned to the caller (the
instruction after the BAL), by branching to the
address saved in R11.

This can be coded as:

BR R11

Continued…

Unit: Modular Programming

Concepts

Topic: Using General Purpose Registers

SUBRTN EQU *
ST R11, SAVER11
.
.
.
L R11, SAVER11
BR R11

SAVER11 DS F

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 320 of 58

Branch and Link (cont’d)

RR Form of BAL instruction

In the RR form of Branch and Link (BALR)
instruction, the subroutine address must be loaded
into the second operand register before the BALR
instruction is executed. If R₂ specifies R0, then the
linkage information is stored in the first operand, but
no branch takes place.

Unit: Modular Programming

R14,R15BALR

1st Operand 2st Operand

Branch and Link (BALR):
RR Format – Register to Register

LOAD SUBROUTINE
ADDRESS INTO R,

Store Linkage
Information in R,

IF
R2 = R0

?

Store Linkage
Information in R 1

PASSES
CONTROL

NEXT INSTRUCTION
AFTER BALR

PASS CONTROL
TO SUBROUTINE

CC Settings – Condition Code is Unchanged

YES

NO

Concepts

Topic: Using General Purpose Registers

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 321 of 58

Passing Control

Passing module control involves the use of two
GPRs.

In cases where the entry point, to which the control
is being passed, is in a separate control section, or
in a separately assembled module, a special way is
required to reference it.

Assembler Language provides a V-Type external
address constant (VCON) to define entry points.

The Linkage Editor adjusts the value of the VCON.

Continued…

Unit: Modular Programming

00000000

Object Module

DC V(ENTPT)

Source Module

Load Module

ENTPT

00005000
Location X’5000’
In Load Module

V – Type External Address Constant (VCON)

Concepts

Topic: Passing and Receiving Control

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 322 of 58

Passing Control (cont’d)

To pass control from one module to another, the
address constant should be loaded into R15, and
then BALR should be used to pass control.

This places the address of the next instruction (the
return point) into R14.

The example shows how the control passed to the
module CALLED.

Unit: Modular Programming

Return
Address

R14

Save Return
Address in R14

BALR

Address of
‘CALLED’

R15

Pass Control
to Module ‘CALLED

Contents

R15

Replace Contents
with Address

L

Entry Point
Address

=V(CALLED)

L R15,=V(CALLED)

BALR R14,R15

Concepts

Topic: Passing and Receiving Control

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 323 of 58

The code to receive control in Assembler Language has the following responsibilities:

1. First, the program must save the callers registers
2. Next, addressability is established by designing a base register and loading it with an initial value
3. The program must then set up its own SA and chain the two SAs, the PSA slot and the NSA slot

together (so that its SA points to the PSA which then points to the NSA)

Addressability is established as shown.

Receiving Control

Unit: Modular Programming Topic: Passing and Receiving Control

Concepts

Continued…

CALLED CSECT
STM R14,R12,12(R13)
BALR R12,R0
USING *,R12
LR R11, R13
LA R13,SAVEAREA
ST R11,4(,R13)

ST R13,8(,R11)

Save caller’s registers

Establish addressability

Save previous save area address

Put our SA address into R13

Chain save areas together

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 324 of 58

Receiving Control (cont’d)

Another way to establish addressability uses the
entry point address, passed in R15. Instead of
BALR and USING, this variant uses the following:

LR R12,R15 Establish
USING CALLED,R12 Addressability

Unit: Modular Programming

MAIN CSECT
.
.
.

USING CALLED,R12

Addressability:

Establishes
Addressability

Concepts

Topic: Passing and Receiving Control

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 325 of 58

Returning Control

The code to return control back to the caller, must
do the following three things:

1. Restore the caller’s registers

2. Set the return code

3. Return control through the address that
was passed in R14

The code to return control is shown in the graphic.
In this example, the return code is set to zero.

Unit: Modular Programming Topic: Passing and Receiving Control

Concepts

L R13,4(,R13)

LM R14,R12,12(13)

SR R15,R15

BR R14

Restores previous SA address

Restores callers registers

Set return code to zero

Return to caller

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 326 of 58

Returning Control (cont’d)

For Return Code Other Than Zero

If a return code is specified to be other than zero,
the code will be a little more complex.

Suppose a return code set to 4 is required, the
following code is used:

LH R15,=H’4’

In order to access the literal, the base register
needs to be properly set. However, this instruction
has restored the caller’s registers, wiping out the
proper contents of the base register.

To get around this problem of setting the return
code to 4 the following code should be used:

LA R15,4

Continued…

Unit: Modular Programming

This code does not require a base register.

R15,4LA

CONTENTS ‘4’

D2 - Displacement

Effective Address = Displacement

R15 4

Loads Address
4 into R15

LA

Concepts

Topic: Passing and Receiving Control

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 327 of 58

Returning Control (cont’d)

For Multiple Possible Return Code

In this case, the code to return control should not
be duplicated, so that there is a separate copy for
each possible return code.

Instead, return code can be placed in a variable in
storage, say a halfword called RC. A single return
sequence places this value into R15.

Since you cannot address RC after restoring the
caller’s registers, set R15 and then restore
registers, without overwriting the value in R15.

However, this can cause addressability problems.

Continued…

Unit: Modular Programming

• RC Cannot Be Restored After
Restore Caller’s Registers

Addressability Problems:

• R15 Cannot Be Set Prior To
Restoring Registers, Without
Overwriting Contents of R15

Concepts

Topic: Passing and Receiving Control

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 328 of 58

There are two possible methods to solve addressability problem. The methods are explained here:

• In the first method, the value can be set into R15, and then the registers can be restored, except for
R15

• The other method is to put the desired return code value not into R15, but into R15 slot in the caller’s
save area. It will then be restored when the Load Multiple is completed prior to returning.

Returning Control: Solution to Addressability Probl em

Unit: Modular Programming

Concepts

Topic: Passing and Receiving Control

First Method:
LH R15,RC Sets return code
L R13,4(,R13) Restores the old SA pointer
L R14,12(,R13) Restores R14
LM R0,R12,20(R13) Restores R0 to R12
BR R14 Returns to the caller

Second Method:
LH R3,RC Gets the return code
L R4,4(,R13) Gets the old SA address
ST R3,16(,R4) Stores RC in R15 slot in old SA

(There may be other instruction here)
L R13,4(,R13) Restores the old SA address
LM R14,R12,12(R13) Restores the caller’s regs
BR R14 Returns to the caller

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 329 of 58

Single and Multiple Assemblies

While creating a multi-modular Assembler
Language program, modules can be assembled in
a single assembly or assembled separately.

Assembling the modules together provides the
advantage of only having a single source file to
manage.

The main disadvantage is that names must be
unique within an assembly.

Continued…

Unit: Modular Programming

B CSECT

A CSECT

B CSECT

A CSECT
FILE 1

Single
Assembly Multiple

Assembly

FILE 1

FILE 2

Concepts

Topic: Passing and Receiving Control

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 330 of 58

Single and Multiple Assemblies (cont’d)

When the number of modules exceeds 3 or 4, it is
better to use separate source files.

The linkage editor combines individual object
modules into a single, executable module.

It does this by matching external references (V-
type adcons in your program), with external
CSECT names in your program.

Unit: Modular Programming

Main CSECT
.
.
.

L R15,=V(SUB)
BALR R14,R15

SUB CSECT

FILE 2

FILE 1

Identical
Names

Concepts

Topic: Passing and Receiving Control

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 331 of 58

Parameter Lists

The mechanism used for passing data between
modules is the parameter list. A parameter can be
defined as a list of the addresses of the data being
passed from caller to called module.

Each entry in the parameter list is a fullword,
containing the address of the corresponding data.
Regardless of whether the actual data is a single
byte in length, or many thousands of bytes, it is the
address of the data that is passed, and this fits in a
fullword.

Continued…

Unit: Modular Programming

Address of
DATA 1

Address of
DATA 2

2 Entry Parameter List:

PLIST

DATA1

DATA2

Topic: Passing and Receiving Data

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 332 of 58

Parameter Lists (cont’d)

Fixed-Length Parameter List

In some cases, a module is designed to accept a
fixed number of parameters.

Consider a module to determine the length of a
string. It might be designed to use two parameters:
one to contain the string, the other to hold the
length. The parameter list to this module is fixed in
length with two entries.

Variable Length Parameter List

In other cases modules are designed to accept any
number of parameters.

Consider a module to calculate the maximum value
of a group of fullwords. It might receive 2, or 10, or
100 fullwords as parameters. The parameter list for
this module is variable in length.

Continued…

Unit: Modular Programming

Address of STRING

Address of LENGTH

Fixed Parameter List:

Parameter List =

Parameter 1

Parameter 2

Variable Length Parameter List:

Parameter List =

Address of FW 1

Address of FW n1

High Order Bit

Parameter 1

Parameter n

Topic: Passing and Receiving Data

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 333 of 58

Parameter Lists (cont’d)

When control is passed from one module to another,
the address of the parameter list is placed in R1.

So, R1 contains the address of the parameter list,
which itself is a list of addresses.

Unit: Modular Programming

@ of PL

STRING

@ of STRING @ of LENGTH

LENGTH

Passing Control:

R1

PL

Topic: Passing and Receiving Data

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 334 of 58

Fixed Length Parameter Lists

Consider a case of adding two packed decimal
numbers, and returning the sum.

A separate module, called ADDPD, is used here to
perform this simple operation.

This module receives three parameters. The first
two parameters are the two 6-byte packed decimal
numbers to be added together, and the third
parameter is an eight byte result field.

Continued…

Unit: Modular Programming

INPUT – 2 6-byte PACKED NUMBERS
(Parameters 1 and 2)

RESULT – 8-byte SUM OF NUMBERS
(Parameters 3)

ADDPD

Module:

Topic: Passing and Receiving Data

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 335 of 58

This example shows the code necessary to call ADDPD module.

In addition to the code for passing control, here, the parameter list has been set up and its address has been
placed in R1.

Fixed Length Parameter Lists (cont’d)

Unit: Modular Programming

LA R1,PARMLST Parameter list address in R1

L R15,=V(ADDPD) Call ADDPD

BALR R15,R15
.
.
.

PARMLST DC A(NUM1,NUM2,SUM)

SUM DS PL8

NUM1 DS PL6
NUM2 DS PL6

Topic: Passing and Receiving Data

Concepts

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 336 of 58

This example shows how to code ADDPD.
Since ADDPD is receiving the addresses of the parameters, it must load them into registers, and then use
explicit base displacement addresses, with length, to access them.

Fixed Length Parameter Lists (cont’d)

Unit: Modular Programming Topic: Passing and Receiving Data

Concepts

ADDPD CSECT
STM R14,R12,12(R13) Saves callers regs

BALR R12,R0 Establishes addressability
USING *,R12
LR R11,R13 Saves PSA address
LA R13,SAVEAREA Put the SA address into R13

ST R11,4(,R13) Chain save areas together
ST R13,8(,R11)
LM R3,R5,0(R1) Loads addresses of 3 parameters
ZAP 0(8,R5),0(6,R3) Moves first number to sum
AP 0(8,R5),0(6,R4) Adds second number to sum
L R13,4(,R13) Restores PSA address
LM R14,R12,12(R13) Restores registers
SR R15,R15 Sets return code to zero
BR R14 Return to the caller

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 337 of 58

A module called ADDPD1 has been shown in the example. This illustrates the variable-length parameter list.

ADDPD1 sums a set of 6-byte packed fields into an 8-sum field, provided as the last parameter. The code to
call ADDPD1 passes it 4 numbers to add, plus the result field, but the code of ADDPD1 will work with any
number of parameters from 1 up.

Variable Length Parameter Lists

Unit: Modular Programming

LA R1,PARMLST Parameter list address in R1
L R15,=V(ADDPD) Calls ADDPD1
BALR R15,R15

.

.

.
PARMLST DC A(NUM1,NUM2,NUM3,NUM4)

DC A(SUM+X’80000000’)
SUM DS PL8
NUM1 DS PL6
NUM2 DS PL6
NUM3 DS PL6
NUM4 DS PL6

Topic: Passing and Receiving Data

Concepts

Turns the High
Order Bit On

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 338 of 58

This example shows the code for ADDPD1.

Variable Length Parameter Lists (cont’d)

Unit: Modular Programming

ADDPD1 CSECT

STM R14,R12,12(R13) Saves caller’s regs

BALR R12,R0 Establishes Addressability

USING *,R12

LR R11,R13 Saves PSA address

LA R13,SAVEAREA Puts SA address into R13

ST R11,4(,R13) Chain saves areas together

ST R13,8(,R11)
SR R4,R4 Zeros index reg. for

accessing parameter list

Topic: Passing and Receiving Data

Concepts

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 339 of 58

Next, the last parameter needs to be detected by testing each address to see if it is negative. If a fullword is
negative, the high order bit is one.
This example shows the code information.

Variable Length Parameter Lists (cont’d)

Unit: Modular Programming

PARMLOOP EQU *

L R3,0(R4,R1) Loads next parameter address in R3

LTR R3,R3 Is it the last parameter?

BM LAST Yes

AP TEMPSUM,0(6,R3) No-add number to sum

LA R4,4(,R4) Increments index for next parm list entry

B PARMLOOP

Concepts

Topic: Passing and Receiving Data

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 340 of 58

The address of the result field remains unknown till the end of the parameter list. In this case, the programmer
must sum the numbers into a temporary sum field, and then move that field to the result field, after it is found.

Variable Length Parameter Lists (cont’d)

Unit: Modular Programming

LAST EQU *

ZAP 0(8,R3),TEMPSUM Moves the sum to the result field

L R13,4(,R13) Restores the PSA address

LM R14,R12,12(R13) Restores the callers registers

SR R15,R15 Sets the return code to zero

BR R14 Returns to the caller

TEMPSUM DC PL8’0’

Topic: Passing and Receiving Data

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 341 of 58

Dummy Sections

Sometimes processed parameters are complex
data structures, rather than simple variables.

Consider the case of a customer record, consisting
of name, two lines of address, city, state, and zip
code as a parameter. The example, here, shows
one such record.

In the module where this record was defined, the
whole record can be referred to, or any of its fields.
It is because, the technique of defining the whole
record with a zero duplication factor has been
used.

Unit: Modular Programming

Record:

CREC
CNAME
CADDR1
CADDR2
CCITY
CSTATE
CZIP

DS
DS
DS
DS
DS
DS
DS

OCL96
CL30
CL20
CL20
CL15
CL2
CL9

Topic: Passing and Receiving Data

Concepts

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 342 of 58

Dummy Sections (cont’d)

Consider a case where this customer record is
passed to another module.

The problem that occurs here is that, in the called
module, though there is a need to access the data,
it is not defined here. The definitions is in the calling
module.

In this case, the need is to specify the structure of
data, without actually setting up any storage for it.
This is because the storage already exists in
another module.

It is done with dummy section (DSECT).

Continued…

Unit: Modular Programming

CREC OCL96

70(15,R3)

Displacement Base

Address Length

Called Module:

CCITY

CCITY CL15

CSTATE CL2
CZIP CL2

CNAME CL30
CADDR1 CL20
CADDR2 CL20

Address Length of
CCITY

70-bytes of Combined
Address Lengths from
CREC

Address of CREC
in R3

DS
DS

DS

DS
DS
DS

DS

Topic: Passing and Receiving Data

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 343 of 58

Dummy Sections (cont’d)

A DSECT allows the Assembler Language
programmer to define a storage template, a
structure that defines names and relationships,
without allocating any storage.

A DSECT to represent the fields in the customer
record can be defined in the separately assembled
called module, as shown in the example.

Continued…

Unit: Modular Programming

Called Module:

Storage
Template

CREC
CNAME
CADDR1
CADDR2
CCITY
CSTATE
CZIP

DSECT
DS
DS
DS
DS
DS
DS

CL30
CL20
CL20
CL15
CL2
CL9

Topic: Passing and Receiving Data

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 344 of 58

Dummy Sections (cont’d)

How to use DSECT

Given the example of customer record, before
referring to CREC or any of its fields, it needs to be
made addressable. This is done with a USING
instruction.

If the address of the actual storage of CREC is
passed in a parameter list, the following code can
be used to make it addressable:

L R3,0(,R1) R3 points to CREC
USING CREC, R3 R3 makes the CREC

addressable

Continued…

Unit: Modular Programming

CREC

R3 Addresses Parameter list
CREC and USING makes DSECT
Addressable

USING CREC,R3

L R3,0(,R1)

DSECT (Dummy Section):

Topic: Passing and Receiving Data

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 345 of 58

Dummy Sections (cont’d)

At this point, fields of CREC can be referred to by
name. The Assembler translates a reference to
CCITY as 70(15,R3).

This is because CCITY is 70 bytes beyond CREC,
and Assembler has been told that R3 contains the
base address of CREC.

The same Machine Language code can be
generated without the DSECT. The use of DSECT
makes the code clearer, since it uses a symbol,
rather than a base displacement address.

The use of DSECTs should always be considered
while dealing with structured data defined in
another module, and passed as a parameter.

Unit: Modular Programming

CREC DSECT
CNAME DS CL30
CADDR1 DS CL20
CADDR2 DS CL20
CCITY DS CL15

70(15,R3)

Displacement Base

Address Length

Symbols:

Symbols

Fields:

Topic: Passing and Receiving Data

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 346 of 58

Each module should start with a block of comments explaining its purpose. The header comments for the
main module are shown in the example.

The Main Module

Unit: Creating a Complete Program

Continued…

Topic: Coding the Program

Concepts

**
* THIS PROGRAM READS A SET OF 24 HOURLY TEMPERATURE R EADING AND THEN *
* DETERMINES AND PRINTS THE HIGH AND LOW TEM PERATURES (WITH THEIR *
* TIMES OF OCCURENCE), THE MEAN AND THE MEDIAN TEMPERATURE FOR THE *
* DAY. THE TEMPERATURES ARE READ FROM 80 BYT E INPUT RECORDS, WITH *
* ONE READING PER RECORD. THE TEMPERATURE FORMAT IS SDDDD IN THE *
* FIRST 5 POSITIONS OF EACH RECORD, WHERE S IS THE SIGN AND DDDD IS *
* THE TEMPERATURE, WITH ONE IMPLIED DECIMAL PLACE, RIGHT JUSTIFIED. *
* THE 24 READINGS START AT 1:00 AM AND GO THR OUGH, AT HOURLY *
* INTERVALS, UNTIL MIDNIGHT. *
* THE 24 READINGS ARE PLACED IN AN ARRAY, ALONG W ITH CORRESPONDING *
* ENTRY NUMBER. THE ARRAY IS SORTED ON ASCEN DING TEMPERATURES TO *
* AID IN THE CALCULATIONS OF LOW, HIGH AND M EDIAN TEMPERATURES. *

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 347 of 58

Continued…

The Main Module (cont’d)

This example shows a part of the coding for main module.

Unit: Creating a Complete Program

PRINT NOGEN
YREGS ,

MAIN CSECT
STM R14,R12,12(R13)
BALR R12,R0
USING * ,R12
LR R11,R13
LA R13,SAVE1
ST R11,4(,R13)
ST R13,8(,R11)
SR R15,R15
ST R15,16(,R11)

LA R1,PARMLST
L R15,=V(GETINPUT)
BALR R14,R15
LTR R15,R15
BZ OK
L R11,4(R13)
ST R15,16(,R11)
B RTRN

SUPPRESSES MACRO EXPANSION PRINTING
GENERATES REGSITER EQUATES

SAVES REGSITERS
ESTABLISHES
ADDRESSABILITY
SAVES THE OLD AREA ADDRESS
POINTS TO THE NEW SAVE AREA
CHAIN SAVES
AREAS
SETS UP THE RETURN CODE
OF ZERO IN THE OLD SAVE AREA

POINTS TO THE PARAMETER LIST
LINKS TO THE INPUT
MODULE
WAS THE INPUT MODULE SUCCESSFUL?
YES
NO- SAVES THE

RETURN CODE OF INPUT
AND RETURNS

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 348 of 58

Continued…

The Main Module (cont’d)

This example shows the remaining half of the coding for main module.

Unit: Creating a Complete Program

OK EQU *
LA R1,PARMLST
L R15,=V(SORTARR)
BALSR R14,R15
LA R1,PARMLST
L R15,=V(PRINT)
BALR R14,R15

RTRN EQU *
L R13,4(,R13)
LM R14,R12,12(R13)
BR R14

SAVE1 DS 18F
TEMPARR DC 24H ‘0,0’
PARMLST DC A (TEMPARR)

LTORG
END

POINTS TO THE PARAMETER LIST
LINKS TO THE SORT
ROUTINE
POINTS TO THE PARAMETER LIST
LINKS TO THE
PRINTS TO THE ROUTINE

RESTORES
REGISTERS
AND RETURNS

ARRAY OF 24 ENTRIES (TIME,TEMP)

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 349 of 58

The Main Module (cont’d)

Control is then passed to the GETINPUT module,
and on return, the return code is tested. If it is non-
zero, it is placed into the caller’s save area, and
return control to the caller.

Otherwise, control is successively passed on to the
SORTARR and PRINT modules, and then return
control to the caller.

Unit: Creating a Complete Program

RC>0
?

NO YES

CALL
SORTARR

SAVE RC IN
CALLERS

SAVE
ADDRESS

CALL
PRINT

RETURN
TO

CALLER

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 350 of 58

Continued…

The GETINPUT Module

A part of the code of GETINPUT module is shown in the example.

Unit: Creating a Complete Program

PRINT NOGEN
YREGS ,

GETINPUT CSECT
STM R14,R12,12(R13)
BALR R12,R0
USING *,R12
LR R11,R13
LA R13,SAVE1
ST R11,4(,R13)
ST R13,8(,R11)
SR R15,R15
ST R15,16(,R11)

Suppresses Macro Expansions Printing
Generates Register Equates

Saves Registers

Establishes Addressability
Saves the Old Save Area
Points to the New Save Area
Chain Saves
Areas
Sets the Return Code
Of Zero in the Old Save Area

L R3,0(,R1)
OPEN (IN,(INPUT))
LA R4,24

LOOP EQU *
LA R5,24
SR R5,R4

Gets the First Parameter Address
Opens the Input Dcb
Sets the Loop Counter to 24

Calculates the
Entry Number

Topic: Coding the Program

Concepts

*
* THIS MODULE READS 24 TEMPEARTURES INTO AN ARRAY. EACH ARRAY ENTRY IS AN ENTRY NUMBER,*
* STARTING AT A 0 AND UP TO 23, AND A TEMPERATURE. *

**

**

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 351 of 58

Continued…

The GETINPUT Module (cont’d)

Another part of the code of GETINPUT module is shown in the example.

Unit: Creating a Complete Program

STH R5,0(,R3)
GET IN,REC
PACK DWD,RECTEMP
CVB R6,DWD
CLI RECSIGN,C’-’
BNE LOOPING
MH R6,=H’-1’

LOOPING EQU *
STH R6,2(,R3)
LA R3,4(,R3)

Places in First Half of Array Entry
Gets the next Temperature
Converts the Absolute
Value to Fixed Point
Is it Negative?

No
Yes – Change the Sign

Stores in Second Half of Array Entry
Points to the Next Array Entry

RTRN EQU *
CLOSE (IN)

L R13,4(,R13)
LM R14,R12,12(R13)
BR R14

Restores
Registers
And Returns

*
* THIS END OF DATA ROUTINE IS ONLY EXECUTED IF TH ERE ARE LESS THAN
* 24 INPUT RECORDS – AN ERROR CONDITION
*

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 352 of 58

Continued…

The GETINPUT Module (cont’d)

The remaining part of the code of GETINPUT module is shown in the example.

Unit: Creating a Complete Program

ERR EQU *
LA R15,12
L R11,4(,R13)
ST R15,16(,R11)
B RTRN

Sets the Error Return Code
Stores it in the
Old Save Area
Branches to Return

SAVE1 DS 18F
IN DCB

DDNAME=IN,DSORG=PS,MACRF=GM,RECF=FB,LRECL=80,EODAD= ERR

REC DS 0CL80
RECSIGN DS C
RECTEMP DS ZL4

DS CL75
DWD DS D

LTORG
END

Inputs Work Area
Sign
Temperature
Unused

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 353 of 58

The GETINPUT Module (cont’d)

To generate the entry number for each array
entry, the value of the loop counter in R4 is
subtracted from 24. The value in R4 decreases
from 24 to 1, so the entry number will range from
0 to 23.

To handle negative numbers on input, the
absolute value of the temperature is converted to
a fixed point. If the sign is negative, the fixed-point
value is multiplied by -1.

The parameter passed to this routine is the
address of the array, and each array is 4 bytes in
length. Therefore, the array can be processed by
incrementing R3 by 4, each time through the loop.

Unit: Creating a Complete Program

0000000D

FFFFFFF3

-0013

MULTIPLY BY -1
CONVERT TO BINARY

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 354 of 58

SORTARR module sorts the array by using a selection sort algorithm. This algorithm looks at all the elements
of the array, and selects the smallest. It then swaps the smallest value, with the value in the first position.
When the first element of the sorted array is in place, the procedure is repeated for the array, one position
smaller, which starts at the next element.

This is the outer loop of the code, controlled by R4. Within the outer loop, it is assumed that the first item is the
smallest. Each of the other items are then compared and if one smaller than the current smallest one is found,
its value and location is saved. After all items have been compared and the smallest item is found, it should be
swapped with the first. This inner loop is controlled by R6.

The SORTARR Module

Unit: Creating a Complete Program

Continued…

SMALLEST

ELEMENT 1
ELEMENT 2
ELEMENT 3

ELEMENT 24

SMALLEST

ELEMENT 1

ELEMENT 23

INNER LOOP:
Finds smallest
Value being sorted

OUTER LOOP:
Sorts 23 items

Continue sort
on Array of
23 items and
So on.

Find Smallest

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 355 of 58

The SORTARR Module (cont’d)

Swapping is done without an intermediate work area, using EXCLUSIVE OR.

R9 is used to hold the value of the currently lowest entry, and R8 holds the address of that entry.

As for the other registers, they perform the following functions:

R3: It holds the address of First Unsorted Array Element

R4: It holds the Counter for Outer Loop (starts at 23)

R5: It holds the address of Current Array Entry being Checked

R6: It holds the Counter for Inner Loop (start = Outer Loop Counter)

Unit: Creating a Complete Program

Continued…

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 356 of 58

Continued…

The SORTARR Module (cont’d)

A part of the code of the SORTARR module is shown in the example.

Unit: Creating a Complete Program

PRINT NOGEN
YREGS ,

SORTARR CSECT
STM R14,R12,12(R13)
BALR R12,R0
USING *,R12
LR R11,R13
LA R13,SAVE1
ST R11,4(,R13)
ST R13,8(,R11)

Suppresses Macro Expansions Printing
Generate Register Equates

Saves Registers
Establish
Addressability
Save Old Save Area
Points to the New Save Area
Chain
Save Areas

L R3,0(,R1)
LA R4,23

LOOP1 EQU *
LH R9,2(,R3)
LR R8,R3
LA R5,4(,R3)
LR R6,R4

Get the Address of the Array
Set Outer Loop Counter

First Value is Initially the Lowest
Save Address of the First Entry
Point to Next Entry
Set Inner Loop Counter = Outer

Topic: Coding the Program

Concepts

* THIS MODULE SORTS AN ARRAY OF 24 PAIRS OF HALFWORDS , IN ASCENDING *
* ORDER OF THE CONTENTS OF THE SECOND HALFWORD OF EAC H PAIR. THE *
* SORT ALOGORITHM IS SELECTION SORT. *

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 357 of 58Concepts

The SORTARR Module (cont’d)

The remaining part of the code of the SORTARR module is shown in the example.

Unit: Creating a Complete Program

LOOP2 EQU *
CH R9,2(,R5)
BNH NOSWAP
LH R9,2(,R5)
LR R8,R5

Is Entry Lower than Lowest So Far?
No
Yes – Make This the Lowest So Far

Point to Next Entry (Inner Loop)
Loop to Process Next Entry (Inner)
Is Lowest Other than First?

NOSWAP EQU *
LA R5,4(,R5)
BCT R6,LOOP2
CR R3,R8
BE NOSWAP1
XC 0(4,R8),0(R3)
XC 0(4,R3),0(R8)
XC 0(4,R8),0(R3)

NOSWAP1 EQU *
LA R3,4(,R3)
BCT R4,LOOP1
L R13,4(,R13)
LM R14,R12(R13)
SR R15,R15
BR R14

SAVE1 DS 18F
LTROG
END

No
Yes – Swap Lowest With First

Point to Next Entry (Outer Loop)
Loop to Process Next Entry (Outer)
Restore Regs

Set Return Code of Zero
Return

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 358 of 58

The PRINT Module

The print module is the longest in the program. It determines the following four things:

• Lowest temperature

• Highest temperature

• Average temperature

• Median temperature

It first gets the lowest temperature. The array has been sorted into ascending order by temperature, so the fist
entry is the lowest. The temperature is edited into the output line, and then the corresponding time is added.

The highest temperature is also processed in a similar manner.

The average temperature is determined by adding all 24 temperatures, and dividing by 24, and then rounding.

The median temperature is the average of the two middle entries in the array.

Unit: Creating a Complete Program

Continued…

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 359 of 58

Continued…

The PRINT Module (cont’d)

Like other modules, PRINT module too starts with a block of comments explaining its purpose. The code of PRINT module is
shown in the example.

Unit: Creating a Complete Program

PRINT NOGEN
YREGS ,

PRINT CSECT
STM R14,R12,12(R13)
BALR R12,R0
USING *,R12
LR R11,R13
LA R13,SAVE1
ST R11,4(,R13)
ST R13,8(,R11)

Suppresses Macro Expansions Printing
Generate Register Equates

Saves Registers
Establish
Addressability
Save Old Save Area @
New Save Area @
Chain
Save Areas

L R3,0(,R1)
OPEN (OUT,(OUTPUT)
LH R4,2(,R3)
CVD R4,DWD
ED LOWTEMP,DWD+5

Get the Array Address
Open the Output DCB
Get the Lowest Temperature
Edit

The Temperature

Topic: Coding the Program

Concepts

THIS MODULE PRINTS THE RESULTS OF THE CALCULATION. IT PRINTS THE LOWEST
TEMPERATURE (FIRST ENTRY) AND CORRESPONDING TIME, THE HIGHEST TEMPERATURE (LAST
ENTRY) AND CORRESPONDING TIME, THEN CALCULATES AND PRINTS THE MEAN OF ALL 24
ENTRIES, AND THE MEDIAN WHICH IS THE MEAN OF THE TW O MIDDLE VALUES.

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 360 of 58

Continued…

The continued code of PRINT module is shown in the example.

Unit: Creating a Complete Program

CVD R4,DWD
ED HIGHTEMP,DWD+5
LH R4,92(,R3)
MH R14,=H’10”
LA R4,TIMETAB(R4)
MVC HIGHTIME,0(R4)
PUT OUT,HIGHLINE

*
* CALCULATE THE AVERAGE TEMPERATURE
*

Edit
The Temperatures

Get the Entry Number for High Temp
Time Entries are 10 Bytes Long
Get @ of Corresponding Time Entry
Move Time to Output Line
Write High Temp Line

SR R4,R4
SR R5,R5
LA R6,24

AVGLOOP EQU *
AH R4,2(R5,R3)

Zero sum
Zero index for Array Entries
Set Loop Counter to 24

Add Current Entry to Sum

Topic: Coding the Program

Concepts

LH R4,0(,R3)
MH R4,=H’10’
LA R4,TIMETABLE(,R3)
MVC LOWTIME,0(R4)
PUT OUT.LOWLINE
LH R4,94(,R3)

Get the Entry Number for Low Temp
The Entries are 10 bytes Long
Get @ of Corresponding Time Entry
Move Time to Output Line
Write Low Temp Line
Get Highest Temp 94=23*4+2

The PRINT Module (cont’d)

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 361 of 58

Continued…

The continued code of PRINT module is shown in the example.

Unit: Creating a Complete Program

AH R5,=H’1’
NOROUND EQU *

CVD R5,DWD
ED AVGTEMP,DWD+5
PUT OUT,AVGLINE

*
* CALCULATE THE MEDIAN TEMPERATURE
*

Edit
Mean Temp

Print Mean Temp

LH R4,46(,R3)
AH R4,50(,R3)
SRDL R4,1
SRL R5,31
AR R4,R5
CVD R4,DWD
ED MEDTEMP,DWD+5

Get 12 th Temperature
Add 13 th Temperature
Divide by 2
Round

Edit
Median Temp

Topic: Coding the Program

Concepts

LA R5,4(,R5)
BCT R6,AVGLOOP
SRDA R4,32
D R4,=F’24’
C R4,=F’12’
BL NOROUND

Increment Index to Point to Next
Loop
Prepare for Division
Calculate Mean
Round

The PRINT Module (cont’d)

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 362 of 58

Continued…

The continued code of the PRINT module is shown in the example.

Unit: Creating a Complete Program

THIS TABLE CONTAINS PRINTABLE TIME ENTRIES. THE POS ITION OF THE
ENTRIES IN THE TABLE CORRESPONDS TO THE POSITION NU MBERS (0,1.)
OF THE ENTRIES IN THE UNSORTED ARRAY.

TIMETAB DC CL10’1:00 A.M.’
DC CL10’2:00 A.M.’
DC CL10’3:00 A.M.’
DC CL10’4:00 A.M.’
DC CL10’5:00 A.M.’
DC CL10’6:00 A.M.’
DC CL10’7:00 A.M.’
DC CL10’8:00 A.M.’
DC CL10’9:00 A.M.’
DC CL10’10:00 A.M.’

Topic: Coding the Program

Concepts

PUT OUT,MEDLINE
CLOSE (OUT)
L R13,4(,R13)
LM R14,R12,12(R13)
SR R15,R15
BR R14

SAVE1 DS 18F

Print Median Temp
Close Output DCB
Restore
Regs
Zero Return Code
Return

The PRINT Module (cont’d)

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 363 of 58

Continued…

The continued code of the PRINT module is shown in the example.

Unit: Creating a Complete Program

DC CL10’7:00 P.M.’
DC CL10’8:00 P.M.’
DC CL10’9:00 P.M.’
DC CL10’10:00 P.M.’
DC CL10’11:00 P.M.’
DC CL10’MIDNIGHT’

DWD DS D
LOWLINE DS 0CL133

DC C’1’
DC C’THE DAILY LOW TEMPERATURE WAS

LOWTEMP DC X’40202021204B2060
DC C’ AT ‘

LOWTIME DS CL10
DC CL83’ ‘

Topic: Coding the Program

Concepts

The PRINT Module (cont’d)

DC CL10’11:00 A.M.’
DC CL10’NOON’
DC CL10’1:00 P.M.’
DC CL10’2:00 P.M.’
DC CL10’3:00 P.M.’
DC CL10’4:00 P.M.’
DC CL10’5:00 P.M.’
DC CL10’6:00 P.M.’

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 364 of 58

The PRINT Module (cont’d)

The continued code of the PRINT module is shown in the example.

Unit: Creating a Complete Program

HIGHLINE DS OCL133
DC C’ ‘
DC C’THE DAILY HIGH TEMPERATURE WAS’

HIGHTEMP DC X’40202021204B2060’
DC C’ AT ‘

HIGHTIME DS CL10
DC CL82’ ‘

AVGLINE DS OCL133
DC C’ ’
DC C’THE EVRAGE TEMPERATURE WAS’

AVGTEMP DC X’40202021204B2060’
DC CL97

MEDLINE DS OCL133
DC C’ ‘
DC C’THE EMDIAN TEMPERATURE WAS’

MEDTEMP DC X’40202021204B2060
DC CL98’ ’

OUT DCB DDNAME=OUT,DSPRG=PS,MACRF=PM,RECFM=FB A,LRECL=133 X
BLKSIZE=6650

LTORG
END

Topic: Coding the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 365 of 58

Under Time Sharing Option/ Extended (TSO/E), the following two processing techniques can be used to
assemble and link programs:

• Background Processing: Here the necessary Job Control Language (JCL) is used to perform the
assemble, and link it to the source files with the Assembler code. It is then submitted for batch
processing. Alternatively, the programmer can put JCL in a separate file, and point to the source
code in the DD statements, specifying the assembler input.

• Foreground Processing: Here the programmer can use either TSO/E assemble and link
commands directly, or the foreground processing dialogs provided in Interactive System
Productivity Facility (ISPF).

Methods

Unit: Creating a Complete Program Topic: Assembling and Linking the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 366 of 58

Regardless of the processing techniques, Assembler and linker listings need to be produced. These listings
provide useful data to help you when you test and debug your program.
A small section of the listing for GETINPUT module is shown in the example.

Listings

Unit: Creating a Complete Program

Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R2.0 1999/06/20 14.06

THIS MODULE READS 24 TEMPERATURES INTO AN ARRAY.
EACH ARRAY ENTRY CONTAINS AN ENTRY NUMBER,
STARTING AT 0 AND UP TO 23, AND A TEMPERATURE.

1
2
3
3
4
5
6
7

26
27
28
29
30
31
32
33
34
35
36

PRINT NOGEN
YREGS

GETINPUT CSECT ‘
STM R14,R12,12(R13)
BALR R12,R0
USING *,R12
LR R11,R13
LA R13,SAVE1
ST R11,4(,R13)
ST R13,8(,R11)
SR R15,R15
ST R15,16(,R11)
L R3,0(,R1)

000000
000000 90EC D00C 0000C
000004 05C0

R:C 00006
000006 18BD
000008 41D0 C072 00084
00000C 50B0 D004 00004
000010 50D0 B008 00008
000014 1BFF
000016 50F0 BO10 00010
00001A 5830 1000 00000

Topic: Assembling and Linking the Program

Concepts

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 367 of 58

There are other parts of an Assembler listing, such as the cross-reference listing. The cross-reference listing
for GETINPUT is shown in the example.

Listings (cont’d)

Unit: Creating a Complete Program

Ordinary Symbol and Literal Cross References Page 6
Symbol Len Value Id R Type Defn Ref erences HLASM R2.0 1999/06/20 14.06
DWD 00000008 00000180 00000002 D 122 54M,55
ERR 00000001 00000074 00000002 U 71 93
IN 00000004 000000CC 00000002 F 81 41, 49
LOOP 00000001 0000002E 00000002 U 44 62B
LOOPING00000001 0000005E 00000002 U 59 57B
REC 00000080 0000012C 00000002 C 118 50

SAVE1 00000004 00000084 00000002 F 76 31
=H’-1’ 00000002 00000188 00000002 H 124 58

Unreferenced Symbols Defined in CSECTs Page 7
Defn Symbol HLASM R2.0 1999/06/20 14.06
26 GETINPUT
19 R10
11 R2
16 R7
17 R8
18 R9

Topic: Assembling and Linking the Program

Concepts

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 368 of 58

The cross-reference listing shows every symbol defined in your program, as well as where it is defined, and
where it is referenced.

The reference entries indicate whether the symbol is modified or not. This information can be very useful in
debugging. If a particular variable has the wrong value, you can easily determine the instructions that modify
that variable.

To modify program, and to determine a free register to use for calculation, Unreferenced Symbols listing can
be used.

Listings (cont’d)

Unit: Creating a Complete Program Topic: Assembling and Linking the Program

Concepts

Continued…

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 369 of 58

The linkage editor also produces listings, which can be valuable. In the case of the example of temperature,
four separately assembled modules were written and then combined with the linkage editor. To determine
where the four modules are located, in relation to the beginning of the whole machine language program, the
module map will help.

The example here shows a section of the module.

Listings (cont’d)

Unit: Creating a Complete Program

SECTION CLASS ------------SOURCE -----------

OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

0 MAIN CSECT 110 SYSLIN 01 **NULL**

110 GETINPUT CSECT 190 SYSLIN 01 **NULL**

2A0 SORTARR CSECT B8 SYSLIN 01 **NULL**

358 PRINT CSECT 4D0 SYSLIN 01 **NULL**

Topic: Assembling and Linking the Program

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 370 of 58

Messages describing syntax errors appear in the program listing, along with the statement error. In each case,
the error message follows the statement in error, and consists of an error number and an error description.
The listing for a version of GETINPUT, with some errors, is shown in the example.

Program Listings

Unit: Testing and Debugging

000006 18BD 30 LR R11,R13
000008 0000 0000 00000 31 LA R13,SAVE

00000C 50BO D004 00004 32 ST R11,4(,R13)
000010 50DO BOOB 00006 33 ST R13,8(,R11)
000038 4110 C0BE 00004 48 GET IN,REC

54 PK DWD,RECTEMP

000048 4F60 C172 00178 55 CVB R6, DWD
000058 4060 3002 00002 60 STH R6,2(,R3)
00005C 4130 3004 00004 61 LA R3,4(,R3)
000060 0000 62 BCTR R4,LOOP

000062 63 RTRN EQU *

ASMA044E *** ERROR *** Undefined symbol - SAVE

ASMA057E *** ERROR *** Undefined operation code - PK

ASMA029E *** ERROR *** Incorrect register or mask s pecification

Saves old save area
Points to new save area

Chain saves area

Gets the next temp
Converts the absolute

Value to fixed point
Stores in 2 nd half of array entry
Points to next array entry
Loops to process next entry

Topic: Finding Assembly Errors

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 371 of 58

Once the syntax errors have been removed from a program, you can start the process of testing and
debugging. In testing, you run the program using test data, which produces predictable output. When the
actual output produced by your program, differs from the expected values, you know there is a problem, and
must begin to debug the program.

In some cases, while testing the program, it does not run to completion and terminates with a program
exception. In such cases what needs to be determined is at which point in the program the error has occurred,
so that the problem can be corrected.

Often the information necessary to diagnose and correct the problem is present in the symptom dump, which
is part of the system log for the job.

Symptom Dump

Unit: Testing and Debugging

Continued…

Assemble
And
Link

Test
Data

Load
Module

Correct
Results

Incorrect
Results

Abnormal End
Program Exception

Source
Program

Topic: Finding Execution Errors

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 372 of 58

The example shows an excerpt from a symptom dump.

Symptom Dump (cont’d)

SYSTEM COMPLETION CODE=0c7 REASON CODE=00000007

TIME=14.18.14 SEQ=00138 CPU=0000 ASID=0015

PSW AT TIME OF ERROR 078D2000 0000693A ILC 4 INTC 07

ACTIVE LOAD MODULE ADDRESS=0000 67D8 OFFSET=00000162

NAME=GO

DATA AT PSW 00006934 – C1274F60 C17A9560 C126 4770

GPR 0-3 00000001 00006A14 00000040 00006874

GPR 4-7 00000018 00000000 009BBFF8 FD000000

GPR 8-11 009FD080 809DE628 00000000 0000682C

Unit: Testing and Debugging

Symptom Dump Output

Topic: Finding Execution Errors

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 373 of 58

Module Map

SECTION CLASS ---------SOURCE----------

OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

0 MAIN CSECT 110 SYSLIN 01 * *NULL**

110 GETINPUT CSECT 190 SYSLIN 01 **NULL**

2A0 SORTARR CSECT B8 SYSLIN 01 ** NULL**

358 PRINT CSECT 4DO SYSLIN 01 **NULL**

Unit: Testing and Debugging

After you view the symptom dump, it is important to take a look at the module map to determine which
module the error occurred in, and at what displacement.

The example of a module map, here, shows that the address 15E falls within GETINPUT. The displacement
of the failing instruction, relative to the beginning of GETINPUT, is 15E – 110 = 4E.

Continued…

Topic: Finding Execution Errors

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 374 of 58

Module Map (cont’d)

After viewing the module map, you then look at the listing of GETINPUT, to find what instruction failed. The
relevant portion of the listing is shown in the example.

Unit: Testing and Debugging

0002E 44 LOOP EQU *

00002E 4150 0018 00018 45 LA R5,24

000032 1B54 46 SR R5,R4

000034 4050 3000 00000 47 STH R5,0(,R3)

000038 4110 C0C6 000CC 4B GET IN,REC

000048 F273 C17A C127 00180 0012D 54 PACK DWD,RECTE MP

00004E 4F60 C17A 00180 55 CVB R6,DWD

000052 9560 C126 0012C 56 CLI RECSIGN,C’-’

000056 4770 CO5B 0005E 57 BNE LOOPING

00005A 4C60 C182 00188 58 MH R6,=H’-1’

Calculates entry number

Places in first half of array entry

Gets the next temp

Converts the absolute value to a
fixed point

Is it negative?

No

Yes- change the sign

Topic: Finding Execution Errors

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 375 of 58

Batch Debugging

In some cases, it is possible that the symptom
dump would not contain enough information to
determine the root cause of the problem.

In such cases, the program can be re-run with a
SYSUDUMP DD statement, in order to produce a
full user dump.

Unit: Testing and Debugging

Continued…

LOAD
MODULE

TEXT DATA

USER
DUMP

User Dump:

JCL SPECIFIES
//SYSUDUMP DO….

Topic: Finding Execution Errors

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 376 of 58

Batch Debugging (cont’d)

If the program does run to completion, but
produces incorrect results, the following methods
for debugging can be applied:

• The code for logic errors should be
checked and additional print statements
should be included to display
intermediate results.

• Areas of storage, or register contents or
system control blocks should be dumped
at specific points in the program. The
system macro SNAP is used to produce
a storage dump, and then continue
execution. The system macro ABEND is
used to produce a dump and terminate
execution.

Unit: Testing and Debugging

Debugging Techniques:

• Check Program Logic

• Addition Print Statements

• Dump Registers, Storage
and Continue (SNAP)

• Dump Registers, Storage
and Terminate (ABEND)

Topic: Finding Execution Errors

Concepts

OS/390 Assembler Programming Introduction

© Copyright IBM Corp., 2000, 2004. All rights reserved. Page 377 of 58

Interactive Debugging

A very powerful interactive debugging facility is provided by the IBM Interactive Debug Facility (IDF).

You compile and link the program with IDF included, and then run IDF in the TSO/E environment. IDF allows
you to control the execution of your program, and interactively examine register and storage contents.

You can single step through your program, executing one instruction at a time. You can set break points, so
that your program runs until it reaches a specific address, and then pause. You can monitor specified
variables to ensure that only certain ranges of values are assigned.

Unit: Testing and Debugging Topic: Finding Execution Errors

Concepts

