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A celebrated theorem of Turán asserts that every graph on n vertices with more than r − 1
2r n2

edges contains a copy of a complete graph Kr+1. In this paper we consider the following

more general question. Let G be a Kr+1-free graph of order n and let α be a constant,

0 < α � 1. How dense can every induced subgraph of G on αn vertices be? We prove the

following local density extension of Turán’s theorem.

For every integer r � 2 there exists a constant cr < 1 such that, if cr � α � 1 and every

αn vertices of G span more than

r − 1

2r
(2α − 1)n2

edges, then G contains a copy of Kr+1. This result is clearly best possible and answers a

question of Erdős, Faudree, Rousseau and Schelp [5].

In addition, we prove that the only Kr+1-free graph of order n, in which every αn

vertices span at least r − 1
2r (2α − 1)n2 edges, is a Turán graph. We also obtain the local

density version of the Erdős–Stone theorem.

1. Introduction

Extremal problems are at the heart of modern graph theory. These problems have attracted

a lot of attention during the last half century (e.g., see [1] for a survey.) One of the central

problems in extremal graph theory can be described as follows. Given a forbidden graph

H , determine ex(n,H), the maximal number of edges in a graph on n vertices that does

† Supported in part by NSF grants DMS-0106589, CCR-9987845 and by the State of New Jersey.
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not contain H as a subgraph. In the case when H is Kr+1, a complete graph of order

r + 1, the value ex(n,Kr+1) was determined in 1941 by Turán. His celebrated theorem

asserts that every graph on n vertices with more than r − 1
2r

n2 edges contains a copy of a

Kr+1. Let Tr(n) denote a complete r-partite graph on n vertices with class sizes as equal

as possible (usually called a Turán graph). More precisely, Turán proved that Tr(n) is the

only extremal Kr+1-free graph of order n, i.e., it is the only graph of order n and of size

ex(n,Kr+1) that contains no copy of Kr+1.

In this paper we consider the following more general question. Let G be a Kr+1-free

graph of order n and let α be a constant, 0 < α � 1. Suppose that every αn vertices

of G span at least βn2 edges. How large can the function β(α) be? This problem was

raised by Erdős, Faudree, Rousseau and Schelp in [5]. They conjectured that, in the case

when r = 2, β is determined by a family of extremal triangle-free graphs. In particular,

when α � 17/30 they suggested that the complete bipartite graph with equal sides has the

greatest local density, which is β = 2α− 1
4

. They proved that indeed this value of β is best

possible for a certain range of α. Later, their result was extended by Krivelevich [7], who

proved that this conjecture holds for α � 3
5
. For the values of α � 17/30 it appears that

there are graphs with higher local density than the Turán graph. In particular, Erdős and

his co-workers observed that the blow-up of a 5-cycle has this property. This led them to

a more general conjecture about the dependence of β on α (see, e.g., [5], [7], [2] for more

details and discussions).

Also in [5] Erdős, Faudree, Rousseau and Schelp posed the problem of determining the

best local density in Kr+1-free graphs for r > 2. They conjectured that for α sufficiently

close to 1 the r-partite Turán graph has the highest local density. It is easy to check that

for α � r − 1
r

every subset of Tr(n) of size αn contains at least r − 1
2r

(2α − 1)n2 edges. In

this paper we prove the conjecture of [5]. We also obtain a slightly stronger statement,

which extends the original result in [5] even in the triangle-free case, namely that

the Turán graph is the only extremal graph for this problem. Our main result is as

follows.

Theorem 1.1. Let r � 1 and let G be a Kr+1-free graph on n vertices. If 1 − 1
2r2

� α � 1,

then G contains a set of αn vertices spanning at most r − 1
2r

(2α − 1)n2 edges. Moreover, if G

is a Kr+1-free graph of order n in which every αn vertices span at least r − 1
2r

(2α − 1)n2 edges,

then G is the Turán graph.

This result can be also viewed as a modest first step towards a solution of a problem

of Chung and Graham [3]. They conjectured that for r � 3 the Turán graph has the best

local density even for α as low as 1/2.

Another fundamental result in extremal graph theory is the Erdős–Stone theorem

[4]. They proved that, if the density of a graph G is slightly larger than that of the

r-partite Turán graph, then G not only contains a clique of size r + 1 but also any fixed

graph of chromatic number r + 1. More precisely, let Kr+1(t) denote a complete (r + 1)-

partite graph in which each class has size t. Then Erdős and Stone proved the following

result.
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Theorem 1.2. For all fixed positive integers r and t, we have

ex(n,Kr+1(t)) =

(
r − 1

2r
+ o(1)

)
n2.

The following corollary follows immediately from this theorem.

Corollary 1.3. Let H be a fixed graph with chromatic number χ(H) = p � 2. Then

ex(n,H) =

(
p − 2

2(p − 1)
+ o(1)

)
n2.

Using our main theorem together with Szemerédi’s Regularity Lemma, we can deduce

the following result about edge distribution in graphs with any fixed forbidden subgraph.

This theorem is the natural local density generalization of the Erdős–Stone theorem.

Theorem 1.4. Let r � 2, t � 1 and let G be a graph on n vertices not containing Kr+1(t)

as a subgraph. If 1 − 1
2r2

� α � 1, then G has a subset of αn vertices containing at most

( r − 1
2r

(2α − 1) + o(1))n2 edges.

Corollary 1.5. Let H be a fixed graph with chromatic number χ(H) = p � 2 and let 1 −
1

2(p− 1)2
� α � 1. If G is a graph on n vertices not containing H as a subgraph, then G has

a subset of αn vertices containing at most ( p− 2
2(p− 1)

(2α − 1) + o(1))n2 edges.

The rest of this paper is organized as follows. In the next section we prove Theorem 1.1

in the simplest case r = 3, so as to illustrate the main idea of the proof, and also to get a

better lower bound on α than the one guaranteed by this theorem. In Section 3 we prove

our main result and also show that the Turán graph is the only extremal graph for the

local density problem. Next, in Section 4 we use Szemerédi’s Regularity Lemma to prove

the local density version of the Erdős–Stone theorem. The final section contains some

concluding remarks and open problems.

Throughout the paper we omit all floor and ceiling signs whenever these are not

crucial, to simplify the presentation. We also want to present the following observation

that justifies this, even without assuming that n is sufficiently large. Let H be a Kr+1-free

graph of order k such that every �αk� vertices of H span at least �βk2� + 1 edges. Let

G be a graph obtained from H by substituting for every vertex i an independent set Vi

of size n/k, and for every edge (i, j) ∈ E(H) connecting the sets Vi and Vj by a complete

bipartite graph. By definition G is also a Kr+1-free graph and has order n. Consider a set

S of �αn� vertices of G which spans the minimal number of edges. It is easy to see that

S either contains or is disjoint from sets Vi for all but at most one index i. Otherwise

there are two classes Vi and Vj such that 0 < |S ∩ Vi| � |S ∩ Vj | < n/k. Then, by deleting

any vertex of S from Vi and adding a new vertex to S from Vj , we clearly decrease the

number of edges spanned by S . Therefore S contains �αk� sets Vi, so it spans at least

(�βk2� + 1)(n/k)2 = β1n
2 edges, for some β1 > β. This shows that, in order to prove that

every Kr+1-free graph of order n contains �αn� vertices which span at most �βn2� edges, it

is sufficient to show that it contains such a set spanning at most �(β + o(1))n2� edges.
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Since all rounding errors can change the number of edges only by at most o(n2), we can

indeed ignore them. Also, by the above argument, we may and will assume that whenever

we write e(X) > βn2 we actually have e(X) > β1n
2 for some β1 > β.

We close this section with some conventions and notation. Let G = (V , E) be a graph

and let X and Y be two disjoint subsets of G. Then we let e(X,Y ) denote the number

of edges of G adjacent to exactly one vertex from X and one from Y . Similarly, E(X)

denotes the set of edges spanned by a subset X of G and e(X) stands for |E(X)|. Also

e(G) = |E(G)|. The neighbourhood N(v) of a vertex v is the set of vertices of G adjacent to

it. For a subset of vertices Y and a vertex v, we let dY (v) denote the number of neighbours

of v in the set Y . Finally, a function which tends to zero arbitrarily slowly with n is

denoted by o(1).

2. Main idea

In this section we illustrate the main idea that we are going to use for the general case by

presenting the proof for r = 3. This proof also gives a better lower bound on α than the

one guaranteed by Theorem 1.1. We obtain the following result.

Theorem 2.1. Let G be a K4-free graph on n vertices and let 0.8661 � α � 1. Then G

contains a subset of αn vertices spanning at most 2α− 1
3

n2 edges.

To prove this theorem we need a few technical lemmas. First we obtain an upper bound

on the number of edges spanned by a subset of G of size αn which has the following

special structure.

Lemma 2.2. Let H be a K4-free graph of order αn. Suppose also that the vertex set of H

is a union of three disjoint sets X, Y and Z such that X is an independent set and Y can

be covered by a set of disjoint triangles. Denote |X| = xn, |Y | = yn and |Z | = zn. Then

e(H)

n2
� 1

3
α2 − 1

12
(2x − z)2 +

e(Z)

n2
− 1

4
z2.

Proof. Let v be a vertex which does not belong to Y . Since H is K4-free, then it is easy to

see that v is adjacent to at most two vertices of any triangle in Y . Therefore dY (v) � 2
3
|Y |.

In addition we can apply Turán’s theorem to the K4-free subgraph induced by Y and

obtain e(Y ) � 1
3
|Y |2. Since, by definition, x + y + z = α, we finally conclude that

e(H)

n2
=

1

n2
(e(X) + e(Y ) + e(Z) + e(X,Y ) + e(Y ,Z) + e(X,Z))

� 1

3
y2 +

e(Z)

n2
+

2

3
xy +

2

3
zy + xz

=
1

3
(x + y + z)2 − 1

3
x2 − 1

3
z2 +

e(Z)

n2
+

1

3
xz

=
1

3
α2 − 1

12
(2x − z)2 +

e(Z)

n2
− 1

4
z2.

Next we need the following easy lower bound on the size of a maximum independent set

in a K4-free graph.
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Lemma 2.3. Let G be a K4-free graph with n vertices and m edges. Then it contains an

independent set of size at least 4m
n

− n.

Proof. Consider the sum

∑
(x,y)∈E(G)

d(x) + d(y) =
∑

x∈V (G)

d(x)2 � n

(∑
x∈V (G) d(x)

n

)2

=
4m2

n
.

Hence, there exists an edge (x, y) with d(x) + d(y) � 4m
n

. Since G is K4-free, then clearly

N(x) ∩ N(y) is an independent set of size at least 4m
n

− n.

Corollary 2.4. Let G be a K4-free graph of order n such that every αn vertices of G span

at least 2α− 1
3

n2 edges, and let 0.8661 < α � 1. Then G contains an independent set of size

at least 9
4
(1 − α)n.

Proof. Let m denote the number of edges of G. Let W be a random subset of vertices

of G of size αn. Then, for every edge e ∈ E(G), the probability that e ∈ E(W ) is at most

Pr(e ∈ E(W )) =

(
n− 2
αn− 2

)
(
n
αn

) =
αn(αn − 1)

n(n − 1)
� α2.

Therefore the expected value of e(W ) is at most α2m. Hence we conclude that there exists

a subset W of size αn which spans at most α2m edges. This implies that

m � e(W )

α2
� 2α − 1

3α2
n2.

Next, by Lemma 2.3 we have that G contains an independent set of size at least

4m

n
− n �

(
4
2α − 1

3α2
− 1

)
n.

Now some simple but tedious computations, which we omit here, show that 4( 2α− 1
3α2 ) − 1 �

9
4
(1 − α) for all α > 0.8661. This completes the proof.

Finally we need the following result proved by Krivelevich [7].

Proposition 2.5. Let G be a triangle-free graph on n vertices and let 3/5 � α � 1. Then G

contains a subset of αn vertices spanning at most 2α− 1
4

n2 edges.

Having finished all the necessary preparations, we are now ready to complete the proof

of our first result.

Proof of Theorem 2.1. We assume that there exists a K4-free graph G on n vertices

such that every αn vertices of G span strictly more than 2α− 1
3

n2 edges, and obtain a

contradiction.

By Corollary 2.4, G contains an independent set U of size 9
4
(1 − α). Let T be the largest

subset of G − U which can be covered by vertex-disjoint triangles. Denote |T |/n by t. Let
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S be the complement of U ∪ T and let s = |S |/n. Note that by definition the subgraph

induced by S is triangle-free, and that 9
4
(1 − α) + t + s = 1.

Let X1 be any subset of U of size 5
4
(1 − α)n, and let Y1 = T , Z1 = S . Consider the

subgraph H1 induced by the disjoint union of X1, Y1 and Z1. Then, by applying Lemma 2.2

to H1, we obtain

1

n2
e(H1) � 1

3
α2 − 1

12

(
5

2
(1 − α) − s

)2

+
e(S)

n2
− 1

4
s2 � 1

3
α2 − 1

12

(
5

2
(1 − α) − s

)2

,

where in the last inequality we applied Turán’s theorem to the triangle-free graph G[S]

to deduce e(S) � 1
4
s2. On the other hand, since the vertex set of H1 has size αn, we know

that 1
n2 e(H1) >

2α− 1
3

= 1
3
(α2 − (1 − α)2) so we obtain 1

12
( 5
2
(1 − α) − s)2 < 1

3
(1 − α)2, that is,

∣∣∣∣52(1 − α) − s

∣∣∣∣ < 2(1 − α). (2.1)

In particular, this implies s < 9
2
(1 − α).

Define the value of q to be q = (1 − α) −t
3

if t < (1 − α) and zero otherwise. Certainly

s � 3q, since otherwise U would be independent of size at least αn, which contradicts our

assumption about G. Let X2 be a subset of U of size
(

9
4
(1 − α) − q

)
n, let Z2 be a subset of

S of size (s − 2q)n and let Y2 be a subset obtained by deleting ( 1 − α
3

− q)n vertex-disjoint

triangles from T . Note that by definition |X2| + |Y2| + |Z2| = αn. As before, by applying

Lemma 2.2 to the graph H2 with the vertex set X2 ∪ Y2 ∪ Z2, we conclude that

1

n2
e(H2) � 1

3
α2 − 1

12

(
9

2
(1 − α) − 2q − s + 2q

)2

+
e(Z2)

n2
− 1

4
|Z2|2 � 1

3
α2 − 1

12

(
9

2
(1 − α)−s

)2

.

Again as before, we deduce 1
12

( 9
2
(1 − α) − s)2 < 1

3
(1 − α)2. This implies | 9

2
(1 − α) − s| <

2(1 − α), so that s > 5
2
(1 − α).

Next consider the triangle-free subgraph induced by the set S . Since

α1 =
s − (1 − α)

s
= 1 − (1 − α)

s
> 1 − 2

5
=

3

5
,

by Proposition 2.5 G[S] contains a subset Z3 of size (s − (1 − α))n such that

e(Z3) � 2α1 − 1

4
s2 =

s(s − 2(1 − α))

4
n2 =

1

4
((s − (1 − α))2 − (1 − α)2)n2.

Finally, let X3 = U and Y3 = T . Then, by applying Lemma 2.2 to the graph H3 with

the vertex set X3 ∪ Y3 ∪ Z3, we deduce

1

n2
e(H3) � 1

3
α2 − 1

12

(
11

2
(1 − α) − s

)2

+
e(Z3)

n2
− 1

4
(s − (1 − α))2

� 1

3
α2 − 1

12

(
11

2
(1 − α) − s

)2

− 1

4
(1 − α)2.



Local Density in Graphs with Forbidden Subgraphs 145

Again, since H3 has αn vertices it satisfies 1
n2 e(H3) >

1
3
(α2 − (1 − α)2). Hence

1

12

(
11

2
(1 − α) − s

)2

<
1

12
(1 − α)2.

Therefore ∣∣∣∣11

2
(1 − α) − s

∣∣∣∣ < (1 − α),

which implies that s > 9
2
(1 − α). This contradicts inequality (2.1) and completes the proof

of the theorem.

3. Edge distribution in Kr+1-free graphs

In this section we use the ideas of the proof for the case r= 3 to obtain our main result.

For the sake of clarity of presentation we will make no attempt to optimize our estimates.

At the end of this section we describe a recurrence relation that computes the best possible

bounds on α which can be obtained using our proof. We also compute these bounds for

a few small values of r.

To prove Theorem 1.1 we need a few technical lemmas. First we obtain an upper bound

on the number of edges spanned by a subset of size αn of a Kr+1-free graph, which has

the following special structure.

Lemma 3.1. Let r � 2 and let H be a Kr+1-free graph with the vertex set of H a union of

three disjoint sets X, Y and Z such that X is an independent set and Y can be covered by

a set of disjoint copies of Kr . Denote |X| = xn, |Y | = yn and |Z | = zn. Then

1

n2
e(H) � r − 1

2r
(x + y + z)2 − 1

2r(r − 1)
((r − 1)x − z)2 +

1

n2
e(Z) − r − 2

2(r − 1)
z2.

Proof. Let v be a vertex which does not belong to Y . Since H is Kr+1-free, then it is

easy to see that v is adjacent to at most r − 1 vertices of any copy of Kr in Y . Therefore

dY (v) � r − 1
r

|Y |. In addition we can apply Turán’s theorem to the Kr+1-free subgraph

induced by Y and obtain e(Y ) � r − 1
2r

|Y |2. So we conclude that

1

n2
e(H) =

1

n2
(e(X) + e(Y ) + e(Z) + e(X,Y ) + e(Y ,Z) + e(X,Z))

� r − 1

2r
y2 +

1

n2
e(Z) +

r − 1

r
xy +

r − 1

r
zy + xz

=
r − 1

2r
(x + y + z)2 − r − 1

2r
x2 − r − 1

2r
z2 +

1

n2
e(Z) +

1

r
xz

=
r − 1

2r
(x + y + z)2 − 1

2r(r − 1)
((r − 1)x − z)2 +

1

n2
e(Z) − r − 2

2(r − 1)
z2.

For a graph G and integer t, let Nt denote the number of copies of a complete graph

Kt contained in G. We need the following useful result, which was proved by Moon and

Moser [8].
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Proposition 3.2. For any graph G of order n and integer t � 2, the numbers Nt satisfy

Nt+1

Nt

� 1

t2 − 1

(
t2

Nt

Nt−1
− n

)
.

Using this recursion we obtain a lower bound on the size of a maximum independent

set in a Kr+1-free graph.

Lemma 3.3. Let r � 2 be an integer and let G be a Kr+1-free graph with n vertices and m

edges. Then it contains an independent set of size at least 2(r − 1)m
n

− (r − 2)n.

Proof. Let q � r be minimal such that G is Kq+1-free. Let Nt be the the number of copies

of the complete graph Kt contained in G. This is nonzero for t � q, in which range we

prove the following inequality by induction on t:

(t + 1)
Nt+1

Nt

� 2t
m

n
− (t − 1)n. (3.1)

For t = 1 this inequality follows immediately from the definition, since N1 = n and N2 = m.

Now suppose that

t
Nt

Nt−1
� 2(t − 1)

m

n
− (t − 2)n.

Then by Proposition 3.2 we obtain

(t + 1)
Nt+1

Nt

� t + 1

t2 − 1

(
t2

Nt

Nt−1
− n

)
� 1

t − 1

(
t

(
2(t − 1)

m

n
− (t − 2)n

)
− n

)

= 2t
m

n
− (t − 1)n.

Note that every complete subgraph of G of order q contains exactly q distinct copies

of Kq−1. Therefore, by (3.1) there exists a particular clique in G of order q − 1 which is

contained in at least

q
Nq

Nq−1
� 2(q − 1)

m

n
− (q − 2)n

distinct copies of Kq . Since G is a Kq+1-free graph, then the set of common neighbours of

the vertices in this clique forms an independent set of size at least 2(q − 1)m
n

− (q − 2)n.

Of course m < n2/2, so 2(q − 1)m
n

− (q − 2)n � 2(r − 1)m
n

− (r − 2)n. This completes the

proof of the lemma.

Corollary 3.4. Let r � 2 be an integer and let G be a Kr+1-free graph of order n such that

every αn vertices of G span at least r − 1
2r

(2α − 1)n2 edges, and let 1 − 1
2r2

� α � 1. Then G

contains an independent set of size at least (2r − 1)(1 − α)n.

Proof. Let m denote the number of edges of G. Arguing as in Corollary 2.4 we can

show that m is at least r − 1
2r

(
2α− 1
α2

)
n2. Therefore, by Lemma 3.3, G contains an independent
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set of size

2(r − 1)
m

n
− (r − 2)n �

(
(r − 1)2

r

(
2α − 1

α2

)
− (r − 2)

)
n.

So our conclusion is valid whenever

(r − 1)2

r

(
2α − 1

α2

)
− (r − 2) � (2r − 1)(1 − α).

Setting θ = 1
α

− 1, we can rewrite the latter inequality as

1 − (r − 1)2θ2 � r(2r − 1)θ

1 + θ
= r(2r − 1)

(
1 − 1

1 + θ

)
. (3.2)

By our assumption on α we have that θ � 1
2r2 − 1

. Hence

1 − (r − 1)2θ2 � 1 −
(

r − 1

2r2 − 1

)2

and
2r − 1

2r
� r(2r − 1)

(
1 − 1

1 + θ

)
.

So it suffices to show that

1 −
(

r − 1

2r2 − 1

)2

� 2r − 1

2r
= 1 − 1

2r
,

which can be easily verified.

Having finished all the necessary preparations, we are now ready to complete the proof

of our main result.

Proof of Theorem 1.1. To prove the first part of the theorem we use induction on r.

For r = 1 the statement of the theorem is trivially true. We assume that there exists a

Kr+1-free graph G on n vertices such that every αn vertices of G span strictly more than
r − 1
2r

(2α − 1)n2 edges, and obtain a contradiction.

By Corollary 3.4, G contains an independent set U of size (2r − 1)(1 − α)n. Let T be

the largest subset of G − U which can be covered by vertex-disjoint complete graphs of

size r. Denote |T |/n by t. Let S be the complement of U ∪ T and let s = |S |/n. Note that

by definition the subgraph induced by S is Kr-free, and that (2r − 1)(1 − α) + t + s = 1.

Let X1 be any subset of U of size (2r − 2)(1 − α)n, and let Y1 = T ,Z1 = S . Consider

the subgraph H1 induced by X1 ∪ Y1 ∪ Z1. Then, by applying Lemma 3.1 to H1, we obtain

1

n2
e(H1) � r − 1

2r
α2 − 1

2r(r − 1)
((r − 1)(2r − 2)(1 − α) − s)2 +

1

n2
e(S) − r − 2

2(r − 1)
s2

� r − 1

2r
α2 − 1

2r(r − 1)
((r − 1)(2r − 2)(1 − α) − s)2, (3.3)

where in the last inequality we applied Turán’s theorem to the Kr-free graph G[S] to deduce

that e(S) � r − 2
2(r − 1)

s2. On the other hand, since the vertex set of H1 has size αn, we know that
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1
n2 e(H1) >

r − 1
2r

(2α − 1) = r − 1
2r

(α2 − (1 − α)2) so we obtain 1
2r(r − 1)

(2(r − 1)2(1 − α) − s)2 <
r − 1
2r

(1 − α)2, that is,

|2(r − 1)2(1 − α) − s| < (r − 1)(1 − α). (3.4)

In particular, this implies s < (r − 1)(2r − 1)(1 − α).

Define the value of q to be q = (1 − α) − t
r

if t < (1 − α) and zero otherwise. Certainly

s � rq, since otherwise U would be independent of size at least αn, which contradicts our

assumption about G. Let X2 be a subset of U of size ((2r − 1)(1 − α) − q)n, let Z2 be a

subset of S of size (s − (r − 1)q)n and let Y2 be a subset obtained by deleting ( 1 − α
r

− q)n

vertex-disjoint copies of Kr from T . Note that by definition |X2| + |Y2| + |Z2| = αn. As

before, by applying Lemma 3.1 to the graph H2 with the vertex set X2 ∪ Y2 ∪ Z2, we

conclude that

1

n2
e(H1) � r − 1

2r
α2 − ((r − 1)((2r − 1) − q)(1 − α) − s + (r − 1)q)2

2r(r − 1)

+
e(Z2)

n2
− r − 2

2(r − 1)
|Z2|2

� r − 1

2r
α2 − 1

2r(r − 1)
((r − 1)(2r − 1)(1 − α) − s)2.

Again as before, we deduce that 1
2r(r − 1)

((r − 1)(2r − 1)(1 − α) − s)2 < r − 1
2r

(1 − α)2. This

implies |(r − 1)(2r − 1)t − s| < (r − 1)(1 − α), so that s > 2(r − 1)2(1 − α).

Next consider the Kr-free subgraph induced by the set S . Since

α1 =
s − (1 − α)

s
= 1 − (1 − α)

s
> 1 − 1

2(r − 1)2
, (3.5)

by the induction hypothesis G[S] contains a subset Z3 of size (s − (1 − α))n such that

e(Z3) � r − 2

2(r − 1)
(2α1 − 1)s2 =

r − 2

2(r − 1)
((s − (1 − α))2 − (1 − α)2).

Finally, let X3 = U and Y3 = T . Then, by applying Lemma 3.1 to the graph H3 induced

by X3 ∪ Y3 ∪ Z3, we deduce

1

n2
e(H3) � r − 1

2r
α2 − (((r − 1)(2r − 1) + 1)(1 − α) − s)2

2r(r − 1)

+
e(Z3)

n2
− r − 2

2(r − 1)
(s − (1 − α))2

� r − 1

2r
α2 − (((r − 1)(2r − 1) + 1)(1 − α) − s)2

2r(r − 1)
− r − 2

2(r − 1)
(1 − α)2.

Again, since H3 has αn vertices it satisfies 1
n2 e(H3) >

r − 1
2r

(α2 − (1 − α)2). Hence

1

2r(r − 1)
(((r − 1)(2r − 1) + 1)(1 − α) − s)2 <

1

2r(r − 1)
(1 − α)2.

Therefore

|((r − 1)(2r − 1) + 1)(1 − α) − s| < (1 − α), (3.6)
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which implies that s > (r − 1)(2r − 1)(1 − α). This contradicts inequality (3.4) and com-

pletes the proof of the first part of the theorem.

Next we show that the Turán graph is the unique extremal graph for the local density

problem. First of all we consider the conditions under which equality holds in Lemma 3.1.

From the equality case of Turán’s theorem we know that Y must be a Turán graph and

contain r − 1
2r

y2n2 edges. We must also have as many cross-edges as possible, that is,

e(X,Y ) =
r − 1

r
xyn2, e(Y ,Z) =

r − 1

r
yzn2, e(X,Z) = xzn2.

Now suppose that G is a Kr+1-free graph on n vertices such that every αn set spans

at least r − 1
2r

(2α − 1)n2 edges. Partition the vertices of G into a disjoint union of sets U,

T and S as in the proof of the first part of the theorem. Then it is easy to see that we

can avoid a contradiction only if the inequalities (3.4) and (3.6) hold as equalities. This

implies that |S | = (r − 1)|U|.
Note that H1 was formed by deleting (1 − α)n vertices from U to form X1, and taking

Y1 = T , Z1 = S . By the above discussion, we obtain a contradicting inequality in (3.3)

unless G[T ] is a Turán graph with r − 1
2r

t2n2 edges and G[S] is a Turán graph with r − 2
2(r − 1)

s2n2

edges. We must also have

e(X1, S) = |X1| |S |, e(X1, T ) =
r − 1

r
|X1| |T |, e(S, T ) =

r − 1

r
|S | |T |.

All this should be valid for every subset X1 of U of size |U| − (1 − α)n. Therefore, by

choosing X1 uniformly at random we obtain that the expected value

E(e(X1, S) + e(X1, T )) =
|X1|
|U| (e(U, S) + e(U,T )) = |X1| |S | +

r − 1

r
|X1| |T |.

This implies that e(U, S) + e(U,T ) = |U| |S | + r − 1
r

|U| |T |. Now, similar computations to

those in the proof of Lemma 3.1 show that

e(G) =
r − 1

2r
(|U| + |S | + |T |)2 − 1

2r(r − 1)
((r − 1)|U| − |S |)2

+ e(S) − r − 2

2(r − 1)
|S |2 =

r − 1

2r
n2.

This completes the proof of the theorem, since the only Kr+1-free graph of order n with
r − 1
2r

n2 edges is a Turán graph.

Let us now examine more carefully the first part of the proof to work out the best

range of α given by our method. Suppose we want to prove that, if cr � α � 1, then any

Kr+1-free graph of order n contains a set of αn vertices spanning at most r − 1
2r

(2α− 1)n2

edges. We choose U to be an independent set of size kr(1 − α)n, for some kr . From (3.2)

we see that we need to choose cr such that, if α � cr , then θ = 1
α

− 1 satisfies

1 − (r − 1)2θ2 � rkrθ

1 + θ
.
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From this choice of U we follow the proof to deduce that s > (r − 1)(kr − 1)(1 − α). Then

(3.5) becomes

α1 = 1 − 1 − α

s
> 1 − 1

(r − 1)(kr − 1)
.

Therefore, for the application of the inductive hypothesis to be valid we need

cr−1 � 1 − 1

(r − 1)(kr − 1)
.

This implies that our proof works for cr , satisfying the following recursion.

• c2 = 3
5
.

• For r � 3, let kr = 1
(r − 1)(1 − cr−1)

+ 1 and let θr > 0 be maximal such that

1 − (r − 1)2θ2
r � rkr

θr

1 + θr
.

Then cr = 1
1 + θr

.

We conclude this section by presenting the first few values of cr , which can be computed

from the above recursion: c3 = 0.8661, c4 = 0.9318, c5 = 0.9585, c6 = 0.972.

4. Local density version of the Erdős–Stone theorem

In this short section we show how to use Theorem 1.1 to deduce a similar statement about

edge distribution in graphs with any fixed forbidden subgraph. This implies the local

density version of the Erdős–Stone theorem. Our proof uses Szemerédi’s Regularity

Lemma and we refer the interested reader to the excellent survey by Komlós and

Simonovits [6], which discusses various applications of this powerful tool.

We start with a few definitions, most of which follow [6]. Let G = (V , E) be a graph,

and let A and B be two disjoint subsets of V (G). If A and B are non-empty, define the

density of edges between A and B by

d(A,B) =
e(A,B)

|A| |B| .

For ε > 0 the pair (A,B) is called ε-regular if, for every X ⊂ A and Y ⊂ B satisfying

|X| > ε|A| and |Y | > ε|B|, we have

|d(X,Y ) − d(A,B)| < ε.

An equitable partition of a set V is a partition of V into pairwise disjoint classes

V1, . . . , Vk of almost equal size, that is, ||Vi| − |Vj || � 1 for all i, j. An equitable partition

of the set of vertices V of G into the classes V1, . . . , Vk is called ε-regular if |Vi| � ε|V |
for every i and all but at most εk2 of the pairs (Vi, Vj) are ε-regular. The above partition

is called totally ε-regular if all the pairs (Vi, Vj) are ε-regular. The following celebrated

lemma was proved by Szemerédi in [9].

Lemma 4.1. For every ε > 0 there is an integer M(ε), such that every graph of order n >

M(ε) has an ε-regular partition into k classes, where k � M(ε).
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In order to apply the Regularity Lemma we need to show the existence of a complete

multipartite subgraph in graphs with a totally ε-regular partition. This is established in

the following well-known lemma: see, e.g., [6].

Lemma 4.2. For every δ > 0 and integers m and t there exist an 0 < ε = ε(δ, t, m) and

n0 = n0(δ, t, m) with the following property. If G is a graph of order n > n0 and (V1, . . . , Vm)

is a totally ε-regular partition of vertices of G such that d(Vi, Vj) � δ for all i < j, then G

contains a complete m-partite subgraph Km(t).

Proof of Theorem 1.4. Let r and t be fixed positive integers and let G be a graph of order

n not containing a copy of Kr+1(t). Suppose δ > 0 and let ε = min(δ, ε(δ, t, r + 1)), where

ε(δ, t, r + 1) is defined in the previous statement. Then, by Lemma 4.1, for sufficiently large

n there exists an ε-regular partition (V1, . . . , Vk) of vertices of G.

Consider a new graph G′ on the vertices {1, . . . , k} in which (i, j) is an edge if and only

if (Vi, Vj) is an ε-regular pair with density at least δ. We claim that G′ contains no clique

of size r + 1. Indeed, any such clique in G′ corresponds to r + 1 parts in the partition of

G such that any pair of them is ε-regular and has density at least δ. This contradicts our

assumption on G, since by Lemma 4.2 the union of these parts will contain a copy of the

complete (r + 1)-partite graph Kr+1(t).

Next, by applying Theorem 1.1 to graph G′, we deduce that it contains a subset W ′ of

size �αk� that spans at most r − 1
2r

(2α − 1)k2 edges of G′. Then W =
⋃

i∈W ′ Vi is a subset of

G of size at least ( n
k

− 1)�αk� > αn − 2n
k
> αn − 2δn which contains at most r − 1

2r
(2α − 1)k2

ε-regular pairs with density at least δ. These pairs span at most r − 1
2r

(2α − 1)n2 edges. Note

also that the total number of edges in G that lie within classes of the partition, or that

belong to a non-regular pair, or that join a pair of classes of density less than δ is at

most n2/k + εn2 + δn2 � 3δn2. Therefore W spans at most
(
r − 1
2r

(2α − 1) + 3δ
)
n2 edges.

Complete it arbitrarily to a subset of G size αn. Clearly, the new set spans at most

(
r − 1

2r
(2α − 1) + 3δ

)
n2 + 2δn2 =

(
r − 1

2r
(2α − 1) + 5δ

)
n2

edges. This completes the proof of the theorem.

5. Concluding remarks

In this paper we have proved that, if G is a Kr+1-free graph on n vertices and 1 − 1
2r2

�
α � 1, then G contains a set of αn vertices spanning at most r − 1

2r
(2α − 1)n2 edges. The

value r − 1
2r

(2α − 1) given for the local density is best possible, as it is attained by the

corresponding Turán graph Tr(n). On the other hand, the range of α in which we make

our statement is relatively small. It would be very interesting to extend this range, even

if one could only prove the first part of our theorem, namely, without characterizing the

extremal graphs. As already mentioned in the introduction, the given formula describes

the local density of Tr(n) provided α � r − 1
r

, so it is natural to believe that the following

might be true.
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Conjecture 5.1. Let r � 3 and let G be a Kr+1-free graph on n vertices. If r − 1
r

� α � 1,

then G contains a set of αn vertices spanning at most r − 1
2r

(2α − 1)n2 edges.

Note that the above statement is not true if r = 2, by the example given earlier of the

blow-up of a 5-cycle. On the other hand for r � 3, Chung and Graham [3] made the even

more ambitious conjecture that the corresponding Turán graph should be extremal for the

problem of maximizing local density in Kr+1-free graphs for any α � 1/2. In particular,

for α = 1/2 they conjectured the following.

Conjecture 5.2. Let r � 3 and let G be a Kr+1-free graph of order n. Then G contains n/2

vertices which span at most r − 2
8r

n2 edges if r is even and at most (r − 1)2

8r2
n2 edges if r is odd.

By analogy with the triangle-free case, it is natural to try to disprove this by considering

the blow-up of an appropriate Ramsey graph. It is worth mentioning here that we have

checked the blow-ups of the graphs that give the values of two small Ramsey numbers,

R(4, 3) and R(4, 4), but that this construction fails to produce a counterexample to the

Chung–Graham conjecture. This may be taken as weak supporting evidence. Finally we

want to present an argument that gives a more compelling reason for there to be some

room for improvement in our result.

In the proof of Theorem 1.1, the first crucial step is to find a sufficiently large

independent set, which we deduce from a lower bound on the number of edges in

the graph G given by a simple averaging argument. But, as observed in [7], given this

independent set, we can iteratively improve our bound on the number of edges in G and

so find a bigger independent set as follows.

Suppose that we have a graph G on n vertices such that every αn set spans more than

βn2 edges, and we also have some independent set A of size γn, for some 1 − α � γ � α.

Let B denote the complement of A in G. Define d to be the density of edges between A

and B and let θ = e(B)/|B|2. Then it is easy to check

1

n2
e(G) = dγ(1 − γ) + θ(1 − γ)2.

Consider the two subsets obtained by taking all vertices of A and a random part of B, or

all vertices of B and random part of A so that the total number of vertices is αn. Using a

simple averaging argument we obtain the following inequalities:

dγ(α − γ) + θ(α − γ)2 > β,

d(1 − γ)(α + γ − 1) + θ(1 − γ)2 > β.

By taking the sum of the first inequality multiplied by (1 − γ)2

α(α− γ)
and the second inequality

multiplied by γ
α
, after some algebraic manipulation, we get

e(G) = (dγ(1 − γ) + θ(1 − γ)2)n2 >

(
1 − 2γ + γα

α(α − γ)

)
βn2.

Now suppose, for instance, we are trying to prove the result in the K4-free case, with

α slightly below 0.8661 (the threshold for finding an independent set of size 9
4
(1 − α)n).
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First we use the simple averaging argument to get a lower bound on the number of edges.

Then we apply Lemma 3.3 to find an independent set, and denote its size by γn. Next

we apply the above argument (with β = 2α− 1
3

) to get a better bound on the number of

edges. Then we again use Lemma 3.3 and repeat the procedure. A simple but tedious

computation with this iteration, which we omit, shows that in Theorem 2.1 it suffices to

take α � 0.861.

This gives a very minor improvement to the range, but it may also indicate that there

is considerable room for further improvement.
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