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Abstract. Many safety-critical systems deal with geometric objects. Reasoning
about the correctness of such systems is mandatory and requires the use of basic
definitions of geometry for the specification of these systems. Despite the intu-
itive meaning of such definitions, their formalisation is not at all straightforward:
In particular, degeneracies lead to situations where none of the Boolean truth val-
ues adequately defines a geometric primitive. Therefore, we use a three-valued
logic for the definition of geometric primitives to explicitly handle such degener-
ate cases. We have implemented a three-valued library of linear geometry in an
interactive theorem prover for higher order logic which allows us to specify and
verify entire algorithms of computational geometry.

1 Introduction

Many applications like motion planning in robotics or collision detection of autonomous
vehicles have to consider the positions of physical objects in their environment. For
most of these applications, it is sufficient to model the considered objects as polygons
(or polyhedra) in an Euclidian plane (or space). This way, these applications directly
rely on algorithms of computational geometry [6]. In particular, basic geometric primi-
tives are used to develop software systems for controlling the spatial behaviour of phys-
ical objects like autonomous vehicles.

Although these algorithms are not new, their use in upcoming safety-critical embed-
ded systems, used e.g. in automobiles, calls for a more rigorous treatment to guarantee
the correctness for all possible inputs. To this end, formal definitions of geometric ob-
jects and primitives are required to specify and verify fundamental algorithms of com-
putational geometry. At a first glance, the definition of geometric primitives appears to
be easy, since they can be depicted in a natural and intuitive way. However, even def-
initions of simple geometric primitives are not at all straightforward, since they have
to cover all possible cases: For example, what is the intersection point of two line seg-
ments, if both line segments are identical or share a common endpoint? Such degenerate
cases [6] make clear that consistent definitions, that have to hold for all algorithms, are
subtle. In fact, many algorithms only work under certain preconditions on the inputs as
e.g. that all input points are pairwise distinct, or that no three input points are collinear.

Even worse, we found that for some primitives, there is no ‘good’ definition at all.
For example, to define whether a point on the edge of a polygon belongs to the interior
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or not, leads to problems in one or the other algorithm. In our opinion, the best solution
is to make these degenerate cases explicit so that definitions and algorithms can directly
handle them in a way that is appropriate for the context algorithm. To this end, we
employ a three-valued logic to define geometric primitives. In the abovely mentioned
example, we can express that a point is inside, outside, or on the edge of a polygon.

Moreover, we propose the use of higher order logics and corresponding theorem
provers to consistently reason about the correctness of geometric algorithms. To this
end, we extended the HOL theorem prover [10] by a library on two-dimensional analytic
geometry that consists of three-valued geometric primitives. This library is not only
useful to reason more efficiently about algorithms using two-valued primitives, it may
also be viewed as the core of a software library for three-valued computational geometry
[2] that is sometimes more concise than the corresponding two-valued version.

Our work deviates from previous work on reasoning about geometric problems with
theorem provers in several ways: In particular, Wu’s work [18] on translating geometric
propositions to an algebraic form, i.e. equations between polynomials, is well-known.
Various researchers improved and finally implemented this approach. Several hundred
theorems about basic geometric objects like lines, triangles, and circles have been auto-
matically proven with these theorem provers [5]. However, this approach is limited to
reason about particular instances of geometric problems, but can not be used to reason
about algorithms to solve classes of geometric problems, which is our concern.

The work closest to ours is that of Pichardie and Bertot [15]: Based on the work
of Knuth [12], they formalised basic principles of convex hull algorithms. As in our
approach, the orientation primitive (see Section 3.3) plays a central role to gain a new
level of abstraction. In contrast to our work, they used two-valued logic to formalise
geometric primitives. As a consequence of this, they circumvent problems of degenerate
cases by modifying the orientation primitive or perturbing the input data. Furthermore,
their scope is restricted to convex hull algorithms.

In this paper, we focus on the formalisation of two-dimensional, linear objects like
lines, segments and polygons using three-valued geometric primitives. Due to lack of
space, we only focus on the definition of the three-valued geometric primitives and
show how degenerate cases are handled with appropriate definitions. Detailed defini-
tions, in particular, the code for the HOL library, as well as further case studies like
the verification of the Cohen-Sutherland clipping algorithm [9], are available on our
website.

This paper is organised as follows: Section 2 describes the formalisation of analytic
geometry and discusses the problem of degenerate cases in computational geometry.
Section 3 presents our three-valued logic and its use for specifying geometric properties
and primitives. Section 4 shows corresponding proof techniques and illustrates them
with the help of a small example. Finally, Section 5 draws some conclusions.

2 Prerequisites

In mathematics, geometry is usually formalised in the vector space R
n. However, real

computers use floating point arithmetic of a limited precision, so that rounding errors
appear as further problems. To circumvent these problems, we use rational numbers of
arbitrary precision. The use of rational numbers is motivated by the observation that
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most algorithms only deal with linear objects like lines and polygons, so that all op-
erations can be performed on rational numbers. As the HOL system does not directly
provide rational numbers, we formalised them on our own.

2.1 Formalisation of Basic Analytic Geometry

Since we investigate problems of two-dimensional geometry, a vector is given by an
ordered pair of rationals (rat#rat), encapsulated in a new type vec.

Definitions. For this type, we make the following definitions: 0 denotes the zero vector,
and ux and uy denote the unit vectors. The components of a vector v can be accessed
by xv and yv , respectively. A vector can be mirrored, rotated and multiplied by a scalar.
A pair of vectors can be added and subtracted.

vec mir def �def mir(v1) = (−xv1 ; −yv1 )
vec orth def �def orth(v1) = ( yv1 ; −xv1 )

vec scale def �def r1 · v1 = ( r1 · xv1 ; r1 · yv1 )
vec add def �def v1 + v2 = ( xv1 + xv2 ; yv1 + yv2 )
vec sub def �def v1 − v2 = ( xv1 − xv2 ; yv1 − yv2 )

Multiplication of vectors is not uniquely defined: In addition to the dot product, the
cross product is well-known. For the two-dimensional case, it does not exist per se, but
a related product that is sometimes called perp dot product does exist: This is the dot
product where the first vector is replaced by the perpendicular vector. With its help, the
linear dependency of two vectors is easily defined.

sprod def �def v1 ◦ v2 = xv1 · xv2 + yv1 · yv2

cprod def �def v1 × v2 = xv1 · yv2 − yv1 · xv2

lindep def �def lindep(v1, v2) = (v1 × v2 = 0)

Theorems. The vectors vec form a vector space over the rational numbers rat. As
consequence of this, various arithmetic laws can be derived. For example, the cross
product has the following properties (inter alia):

CPROD RDISTRIB � (v1 + v2) × v3 = (v1 × v3) + (v2 × v3)
CPROD RSUM � v1 × (v1 + v2) = v1 × v2

Clearly, our library also includes important theorems of linear algebra like the two-
dimensional case of Cramer’s rule for the solution of a system of linear equations.

VEC CRAMERS RULE � ¬(v1 × v2 = 0) → ((v0 = r1 · v1 + r2 · v2) =
(r1 = (v0 × v2)/(v1 × v2)) ∧ (r2 = (v1 × v0)/(v1 × v2)) )

We have also proved that the linear dependency relation is an equivalence relation and
that it commutes with various vector operations.

2.2 Degenerate Cases

Most algorithms of computational geometry are designed for the ‘general case’: De-
pending on the algorithm, several preconditions are assumed, e.g. no points coincide,
given lines are not parallel, or that no three lines intersect in a common point. Thus,
so-called degenerate cases pose a well-known problem to algorithms in computational
geometry [7, 14].
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(a) (b) (c) (d) (e) (f)

Fig. 1. Cases of the parity algorithm

As an example, consider the parity algorithm, which determines whether a point p is
inside or outside of a polygon P : It counts the intersections of an arbitrary ray starting
in p with edges of the polygon P . If the number of intersections is odd, p is inside;
otherwise p is outside P . Figure 1 shows the possible cases, where the ray is drawn
with a dotted line and some edges of polygon P are drawn with straight lines: (a) and
(b) show simple cases without any problems. (c) to (f) show degenerate cases where
either a vertex or an edge of the polygon is on the ray. To make the parity algorithm
work correctly, we have to define some of the cases as intersections: cases (c) and (e)
are intersections, whereas cases (d) and (f) are not.

Degenerate cases like the above mentioned ones require a substantial amount of
additional effort. Since there are numerous degenerate cases, it is not recommended to
directly address them in the algorithms as special cases. Instead, some other methods
have been proposed that we briefly discuss in the remainder of this section.

Symbolic Perturbations. A popular method to handle degenerate cases is the sym-
bolic perturbation of degenerate inputs [7], which resolves degeneracies by simply hid-
ing them (black box method). Intuitively, each geometric coordinate is replaced with
a symbolically perturbed coordinate, given by a polynomial of an infinitesimal small
number ε. Substitution of the symbolically perturbed coordinates in a primitive ex-
pression results in a polynomial in the variable ε with coefficients determined by the
original geometric coordinates. The sign of the expression is given by the sign of the
first nonzero coefficient, where coefficients are taken in increasing order of powers of ε.
This resolves all degeneracies of the considered primitive. Programs that use this tech-
nique tend to be smaller and more robust: the tedious treatment of many special cases
is replaced by a single consistent perturbation scheme.

While this method is certainly a useful tool for the implementation of geometric
algorithms, existing perturbation schemes have shown not to be as applicable as desired
[4]. First, symbolic perturbations give the programmer a rather unsatisfactory choice:
either to find an approximation of the original problem, or to find a precise solution of
an approximation of the original problem. In some applications, both choices might be
inappropriate, and a post-processing step is then required that determines the exact solu-
tion of the original problem. Besides its negative impact on the runtime, the complexity
of the solution can be significantly increased. Second, symbolic perturbations need to
be worked out in detail, a task that may be very complex. This has been done only for a
few geometric primitives. Finally, objects that are constructed by the algorithm (e.g. in-
tersection points) are often forbidden in the computation, because their perturbation
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function depends on the construction of the object and is much more complicated than
the one for a primitive object.

Explicit Treatment of Degeneracies. The explicit treatment of degeneracies suffers
from the enormous number of cases. As an example, consider the intersection of two
line segments: In general position, two segments either do not intersect or intersect at
a point interior to both segments. Two intersecting segments in special position may
overlap, share a common endpoint or have one segment endpoint interior to the other
segment – and each case exists in various slightly different variations. Hence, it is ob-
vious that a systematic analysis is indispensable.

As another example, consider the problem to check whether a point is on the edge,
inside, or outside a polygon. Assume that the points on the edge are considered to be
outside the polygon (i.e. polygons are ‘open’ point sets). However, if we calculate the
difference of two polygons by a set difference, the result is possibly a polygon that con-
tains points on its edge. There are two ways to solve the problem: The first one is to
modify the definition of the difference. The second one is not to decide whether points
on the edge are inside or outside, and therefore using an undetermined, third value for
these points. This naturally motivates the use of a three-valued logic that we explain
in the following section. Three-valued logic allows us to describe geometric properties
and algorithms more precisely and more compactly without enumerating many tedious
cases. Note that although these cases do not disappear, three-valued logic makes it pos-
sible to handle them in a systematic and concise way.

3 Using Three-Valued Logics in Analytic Geometry

Classical mathematical logic is bivalent, i.e. there are two possible truth values: true
and false. The law of the excluded middle is one of the foundations of the classical
two-valued logic: A proposition P is either true or false, and there is no other choice.

In the early 1920s, the Polish philosopher and logician Jan Lukasiewicz dealt with
philosophical problems like Aristotle’s paradox of the sea battle. He pointed out that
these problems can be solved by introducing a third value. In the following, a lot of
mathematicians engaged in this domain of logics, among them Stephen C. Kleene. In
the late 1930s, he introduced his three-valued logics for the analysis of partial recur-
sive primitives [11, 1]. Within his work, the third truth value modeled situations where
expressions are undefined.

Today, many-valued logics have found many applications in computer science. For
example, they are applied to solve problems of database systems, artificial intelligence,
simulation of hardware circuits, [8, 13], and program analysis [16, 17].

3.1 Three-Valued Logic Operators

Reconsider the example of the point in polygon at the end of Section 2.2. The area of
a polygon is described by a function that maps each point of the plane to one of the
three truth values: true (T) is assigned to all points inside, false (F) to all outside, while
the points on the edge are assigned U (which is interpreted as ‘borderline’ or generally,
degenerate case).
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¬̈
F T
U U
T F

∧̈ F U T

F F F F
U F U U
T F U T

∨̈ F U T

F F U T
U U U T
T T T T

Fig. 2. Truth tables of basic logical operators

→̈ F U T

F T T T
U U U T
T F U T

↔̈ F U T

F T U F
U U U U
T F U T

⊕̈ F U T

F F U T
U U U U
T T U F

∗̈ F U T

F F F F
U F U T
T F T T

Fig. 3. Truth tables of →̈ , ↔̈ , txor and ∗̈

These considerations give rise to the definitions of the basic three-valued connec-
tives shown in Figure 2: The negation ¬̈ interchanges the inside and the outside of a
polygon, and all points of the edge remain on the edge. The conjunction ∧̈ represents
the intersection of two polygons P1 and P2: Points that are both in polygon P1 and in
polygon P2 belong to the intersection. Points that are either outside P1 or P2 are not part
of the intersection. Finally, points that are located on the edge of one polygon and not
outside the other, are on the edge of the intersection. The disjunction ∨̈ can be derived
analogously. Hence, the operators ¬̈, ∧̈ and ∨̈ correspond to the basic connectives of
Kleene’s three-valued logic [11].

Definitions. Starting from these definitions, we introduce further operators: implication
→̈ , equivalence ↔̈ , exclusive-or ⊕̈ and a modified conjuction ∗̈ . Figure 3 gives their
truth tables. While →̈ , ↔̈ and ⊕̈ are defined with the help of the basic operators, ∗̈
(whose meaning will be explained in Section 3.3) is defined by its truth table.

imp3 def �def t1 →̈ t2 = ¬̈t1 ∨̈ t2
equ3 def �def t1 ↔̈ t2 = t1 ∧̈ t2 ∨̈ ¬t1 ∧̈ ¬t2
xor3 def �def t1 ⊕̈ t2 = ¬t1 ∧̈ t2 ∨̈ t1 ∧̈ ¬t2

We extend the theory by existential and universal quantification. To this end, we recall
the disjunctive interpretation of ∃ and the conjunctive interpretation of ∀ (also known
as substitution interpretation for finite universes) that defines ∃x.P (x) =

∨
x∈Dx

P (x)
and ∀x.P (x) =

∧
x∈Dx

P (x), respectively. For our HOL theory, we chose the follow-
ing, more feasible definition, which corresponds to the previous one:

exists3 def �def ∃̈P = if (∃x.P (x) = T) thenT else
( if (∀x.P (x) = F) thenF elseU)

forall3 def �def ∀̈P = if (∀x.P (x) = T) thenT else
( if (∃x.P (x) = F) thenF elseU)

A closer inspection of the truth tables of the basic connectives ¬̈, ∧̈ , and ∨̈ reveals
that these operations imply a natural ordering by the degree of truth: F < U < T. In the
context of this ordering, ¬̈ just reverses the values, ∧̈ chooses the least one of its two
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�̈ F U T

F U T T
U F U T
T F F U

�̈ F U T

F U F F
U T U F
T T T U

�̈ F U T

F U F U
U T U T
T U F U

�̈ F U T

F U T U
U F U F
T U T U

Fig. 4. Truth tables of �̈, �̈, �̈ and �̈

≤ F U T

F T T T
U F T T
T F F T

≥ F U T

F T F F
U T T F
T T T T

� F U T

F T T T
U T T F
T T F T

Fig. 5. Truth tables of ≤, ≥ and �

operands and ∨̈ analogously the greatest one. Moreover, existential quantification ∃̈x
computes the maximum of a function P : Dx → T, whereas universal quantification
∀̈x computes the minimum. Hence, we define a relation �̈ : T × T → T that compares
two truth values (see Figure 4). Consistently with the other operators, it will return U
if both arguments are identical. The relation �̈ is obtained by swapping the operands.
Besides this ordering, there is yet another natural ordering which is given by the amount
of knowledge: U < F and U < T. Figure 4 gives the truth tables of �̈ and �̈.

Integrating Two-Valued and Three-Valued Propositions. Introducing three-valued for-
mulas into a two-valued environment like HOL poses the problem of integrating both
logics. First, how are two-valued terms embedded into three-valued formulas? This di-
rection is rather simple; the definition of the required embedding operator �̈ : B → T

is straightforward: true is mapped onto T, and false is mapped onto F. Second, how
are three-valued formulas transformed to the Boolean domain? This depends on the
proposition: In some situations, T should be the only designated truth value; in other
cases, it suffices that a proposition P is ‘at least U’. Although, this can be expressed by
¬(P = F), we introduce two new relations ≤ and ≥ to improve the readability. By their
help, all relevant cases (P = F, P ≤ U, P ≥ U, P = T) can be described concisely
(see Figure 5).

3.2 Geometric Objects

The definitions on vectors as given in Section 2.1 are the basis of the formalisation of
geometric objects. Vectors are the basic objects of analytic geometry, which are used
to define all other objects. With the exception of points (that are represented by their
position vectors and thus, are equivalent to vectors), all geometric objects are formed
by sets of points that are the solution of a proposition. For example, a line given by two
(different) points p and q, consists of all points (x; y) that are a solution of the following
equation:

line : ∃λ. (x; y) = (xp; yp) + λ · (xq − xp; yq − yp)
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Analogously, a square with the vertices (0; 0), (1; 0), (1; 1) and (0; 1) is defined by the
following inequations:

square : 0 < x ∧ x < 1 ∧ 0 < y ∧ y < 1

Using classical logic, all characteristic propositions are two-valued (as above). Thus, a
point is either a solution or not, i.e. it is either part of the object or not. In contrast, we
use three-valued propositions to explicitly express degenerate points. These degenerate
points are related with the edges and endpoints of objects: Inequations describe two-
dimensional objects and degenerates points are located on the edge of the object, i.e. at
the transition between the interior and the exterior of an object. Equations generally
describe one-dimensional objects with special cases located at the ‘end’ of these objects.
In both cases, the degeneracies are an effect of inequations, which can be seen as the
actual source of degeneracies.

Hence, we introduce three-valued inequations between rational numbers. In the case
where the left hand side is equal to the right hand side, the validity of the inequation is
undefined:

les3 def �def r1 ≺ r2 = if (r1 < r2) thenT else
( if (r2 < r1) thenF elseU)

The relation ≺ has the following properties:

RAT LES3 REF � (r1 ≺ r1) = U
RAT LES3 ANTISYM � ¬̈(r2 ≺ r1) = (r1 ≺ r2)

RAT LES3 TRANS � (r1 ≺ r2) ∗̈ (r2 ≺ r3) � (r1 ≺ r3)
Using this relation, we define in the following other geometric objects. We thereby focus
on two-dimensional linear objects, i.e. lines, rays, segments and rectangles. Circles,
curves, and objects of higher dimensions are not considered, since they are not relevant
for most applications. Nevertheless, the principles that are presented in the following
can be applied to them, too.

Lines, Rays and Segments. In analytic geometry, a line is usually defined by its para-
metric equation (see first equation in the previous section). To convert the classic def-
inition of a line to a three-valued one, all two-valued operators are exchanged by their
three-valued counterparts:

line : ∃̈λ. (x; y) = (xp; yp) + λ · (xq − xp; yq − yp)

For a line l, there is no difference between the two-valued and three-valued case: l
contains all points (x; y) that are a solution of the traditional, two-valued equation. A
ray and a line segment can be specified similarly: For the ray, we add the condition that
λ must be positive, and for a line segment, λ must be greater than 0 and less than 1.
With these restrictions, the starting points of these objects are degenerate points.

ray : ∃̈λ. (x; y) = (xp; yp) + λ · (xq − xp; yq − yp) ∧̈ (0 ≺ λ)
segment : ∃̈λ.(x; y) = (xp; yp) + λ · (xq − xp; yq − yp) ∧̈ (0 ≺ λ) ∧̈ (λ ≺ 1)

HOL Theory of Lines. In our HOL theory, lines, rays, and line segments are rep-
resented by the same type line. A line is represented by a pair of different vectors,
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which represent the points in the parametric equation. We use the constructor
−−−−→
(v1, v2)

that converts two vectors v1 and v2 to a line (a new data type). After the construction of

a line � =
−−−−→
(v1, v2), the points v1 and v2 used for the construction of the line, can still

be accessed by the following functions: beg(
−−−−→
(v1, v2)) := v1 and end(

−−−−→
(v1, v2)) := v2.

The following functions define the point sets of a line, a ray or a segment. They
correspond to the definitions of the previous paragraph.

on line def �def

onLine(�, v) = ∃̈λ. v = beg(�) + λ · (end(�) − beg(�))
on ray def �def

onRay(�, v) = ∃̈λ. v = beg(�) + λ · (end(�) − beg(�)) ∧̈ (0 ≺ λ)
on seg def �def

onSeg(�, v) = ∃̈λ. v = beg(�) + λ · (end(�) − beg(�)) ∧̈ (0 ≺ λ) ∧̈ (λ ≺ 1)

3.3 Geometric Primitives

Most geometric algorithms rely on a small number of geometric primitives. Among
them, there are primitives that take some input and classify it as one of a constant
number of possible cases, as e.g.:

– Position of two points. A point p is left from a point q iff χleft(p, q) := xq −xp > 0.
Analogously, point p is below q iff χbelow(p, q) := yq − yp > 0.

– Orientation of three points. The points p, q and r define a left turn iff

χlturn(p, q, r) :=

∣
∣
∣
∣
∣
∣

xp yp 1
xq yq 1
xr yr 1

∣
∣
∣
∣
∣
∣
> 0 (1)

Degeneracies with respect to such a primitive P are inputs x that cause the characteristic
function to become zero χP (x) = 0. Following the approach presented in Section 3,
the result U is returned in these cases.

Three-Valued Primitives. To define the primitives, we use the three-valued less-than
relation ≺ of the previous section. Since all primitives of the previous section compare
their result with zero, we additionally introduce the following predicate:

rat pos def �def pos(r) = 0 ≺ r

With their help, primitives for determining whether one point is on the left or below of
another point are defined as follows:

left def �def left(v1, v2) = pos(xv2 − xv1 )
below def �def below(v1, v2) = pos(yv2 − yv1)

Note that these primitives are three-valued. The following theorems prove some sort of
reflexivity, antisymmetry and transitivity laws.

LEFT REF � left(v1, v1) = U
LEFT ASYM � left(v1, v2) = ¬̈left(v2, v1)

LEFT TRANS � left(v1, v2) ∗̈ left(v2, v3) � left(v1, v3)
LEFT TRANS makes use of the connectives ∗̈ and � , which usually appear together
in a proposition. They allow a succinct description of the following cases:
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– If both left(v1, v2) = T and left(v2, v3) = T, then left(v1, v3) = T.
– If left(v1, v2) = T and left(v2, v3) = U or vice versa, then left(v1, v3) = T.
– If left(v1, v2) = U and left(v2, v3) = U, then left(v1, v3) = U.
– If left(v1, v2) = F or left(v2, v3) = F, then nothing is said about left(v1, v3).

The orientation primitives can be defined analogously:

lturn def �def lturn(v1, v2, v3) = pos((v2 − v1) × (v3 − v2))
rturn def �def rturn(v1, v2, v3) = lturn(v3, v2, v1)

Again, various properties are proven for the orientation primitive:

LTURN REF � lturn(v1, v1, v2) = U
LTURN SYM � lturn(v1, v2, v3) = lturn(v2, v3, v1)

LTURN ASYM � lturn(v1, v2, v3) = ¬̈lturn(v2, v1, v3)

LTURN TRIAN �
lturn(v1, v2, v4) ∗̈ lturn(v2, v3, v4) ∗̈ lturn(v3, v1, v4) � lturn(v1, v2, v3)

LTURN TRANS � (lturn(v1, v2, v3) ∧̈ lturn(v1, v2, v4) ∧̈ lturn(v1, v2, v5) ≥ U) →
lturn(v1, v3, v4) ∗̈ lturn(v1, v4, v5) � lturn(v1, v3, v5)

LTURN MOD1 � (onRay(
−−−−→
(v2, v3), v4) = T) → lturn(v1, v2, v3) = lturn(v1, v2, v4)

LTURN MOD2 � (onRay(
−−−−→
(v4, v3), v2) = T) → lturn(v1, v2, v4) = lturn(v1, v3, v4)

These theorems are three-valued reformulations of the ones that can be found in [15].
The first three theorems (LTURN REF, LTURN SYM and LTURN ASYM) state that a
sequence in which a point appears at least twice is a degenerate case. Moreover, a
sequence can be rotated without changing the orientation, and two points can be inter-
changed with negating the orientation of the sequence. LTURN TRIAN describes the
situation depicted in Figure 6 (a): If a point is on the positive side of three pairwise con-
nected segments, they form a triangle with positive orientation. LTURN TRANS proves
the transitivity of the left-turn primitive under the condition that the three points v3, v4

and v5 lie on the positive side of a segment from v1 to v2 (see Figure 6 (b)). The last

v1

v2

v3

v4

(a) (b)

v3

v4

v5

v2v1

v2

v3

v4

v1

v2

v3

v4

v1

(c) (d)

Fig. 6. Properties of left orientation primitive
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two theorems (Figure 6 (c) and (d)) are used in [15] to handle degenerate cases. Ac-
tually, they are not needed in our approach, since LTURN TRIAN already covers these
cases. This illustrates the advantages of our approach: We always address general and
degenerate cases at the same time, which makes the description succinct and readable.
The same holds for later implementations that are made with three-valued data types.

4 Proof Techniques

In the previous section, we presented a way to specify geometric properties and algo-
rithms with the help of three-valued logic. If a geometric algorithm is verified and all
decisions of the algorithm depend on three-valued primitives, it can be analysed system-
atically. The following section presents theorems, conversions, and tactics to simplify
this task.

4.1 Three-Valued Logic

Ternary Algebra. The system 〈T, ∨̈ , ∧̈ , ¬̈, F, T, U〉 is a ternary algebra [3]: In addi-
tion to the laws of commutativity, associativity, distributivity, absorption and de Morgan
as known from a Boolean algebra, the following theorems can be used for the transfor-
mation of three-valued terms:

CONJ TERNARY � a ∧̈ ¬̈a ∧̈U = a ∧̈ ¬̈a
DISJ TERNARY � a ∨̈ ¬̈a ∨̈U = a ∨̈ ¬̈a

Variations of Two-Valued Tactics. For interactive proofs, the theory offers several
tactics that are adapted from the two-valued domain.

– LOG3_GEN_TAC strips the outermost universal quantifier from the conclusion of a
goal. When applied to A �? ∀̈x. P , it reduces the goal to A �? P [x′/x] where x′

is a variant of x chosen to avoid clashing with any variables free in the assumption
list of the goal. This tactic reduces both ∀̈x. P (x) = T and ∃̈x. P (x) = F, since
both express universal goals.

– LOG3_EXISTS_TAC reduces an existentially quantified goal to one involving a spe-
cific witness. When applied to a term u and a goal ∃̈x. P , LOG3_EXISTS_TAC
reduces the goal to P [u/x] (substituting u for all free instances of x in P , with
variable renaming if necessary to avoid free variable capture).

– LOG3_DISCH_TAC moves the antecedent of a (three-valued) implicative goal into
the assumptions.

– LOG3_CONJ_TAC reduces a conjunctive goal to two separate subgoals. When ap-
plied to a goal A �? t1 ∧̈ t2, the tactic reduces it to the two subgoals corresponding
to each conjunct separately.

– LOG3_EQ_TAC reduces a goal of equivalence of three-valued terms to forward and
backward implication. When applied to a goal A �? t1 ↔̈ t2, the tactic EQ_TAC

returns the subgoals A �? t1 →̈ t2 and A �? t2 →̈ t1.
– Given a term u, LOG3_CASES_TAC applied to a goal produces three subgoals, one

with u = T as an assumption, one with u = U, and one with u = F. A simple and
very effective tactic to automatically prove simple theorems about the three-valued
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logic is LOG3_EXPLORE_TAC: It performs a case distinction on all free variables of
the type T and then uses the simplifier of the theory.

Reduction to Two-Valued Terms. A powerful tactic to prove goals specified in three-
valued logic is the transformation to two-valued terms with a subsequent application
of the traditional tactics for two-valued goals. For this purpose, a number of rewrite
rules are provided that split up a three-valued proposition into positive atomic sub-
proposition of the form P = c, P ≤ c or P ≥ c (where c ∈ {F, U, T}) connected
by two-valued operators. The complete reduction step is implemented by the tactic
LOG3_CALC_TAC and involves the following steps:

– Elimination of non-constant expressions on the right hand side of equations and
inequations:
LOG3 CASES EQ � (a = F) ∧ (b = F) ∨ (a = U) ∧ (b = U)∨

(a = T) ∧ (b = T) = (a = b)
LOG3 CASES LEQ � (a = F) ∧ (b = F) ∨ a ≤ U ∧ (b = U) ∨ (b = T) = a ≤ b
LOG3 CASES GEQ � (b = F) ∨ a ≥ U ∧ (b = U) ∨ (a = T) ∧ (b = T) = a ≥ b

In order to eliminate non-constant expressions on the right hand side, these rules
must be applied from the right to the left. Of course, unconditional rewriting with
these rules does not terminate.

– Elimination of proposition of the form P = U: As the following theorems only
consider the cases P = F, P = T, P =≤ U and P =≥ U, rewriting (from right to
left) with the following theorem eliminates propositions of the form P = U.
LOG3 LEQ GEQ UU � a ≤ U ∧ a ≥ U = (a = U)

– Elimination of depending connectives: By rewriting with the definitions of →̈ , ↔̈ ,
⊕̈ and ∃̈, all terms only consist of basic connectives.

– Elimination of basic connectives: All basic three-valued connectives can be reduced
to two-valued connectives by the rewriting with theorems of the following form:
LOG3 NOT CALC � ((¬̈t = F) = (t = T)) ∧ ((¬̈t = T) = (t = F))∧

(¬̈t ≤ U = t ≥ U) ∧ (¬̈t ≥ U = t ≤ U)
LOG3 AND CALC � (a ∧̈ b = F) = (a = F) ∨ (b = F))∧

(a ∧̈ b = T) = (a = T) ∧ (b = T))∧
(a ∧̈ b) ≤ U = a ≤ U ∨ b ≤ U)∧
(a ∧̈ b) ≥ U = a ≥ U ∧ b ≥ U

LOG3 EXT CALC � ((�̈ a = F) = ¬a) ∧ ((�̈ a = T) = a)∧
(�̈ a ≤ U = ¬a) ∧ �̈ a ≥ U = a

LOG3 FORALL CALC � ((∀̈x. P (x) = F) = ∃b. P (b) = F)∧
((∀̈x.P (x) = T) = ∀b. P (b) = T)∧
((∀̈x.P (x) ≤ U) = ∃b. P (b) ≤ U)∧
(∀̈x.P (x) ≥ U) = ∀b. P (b) ≥ U

– Elimination of negative terms: All two-valued negations in front of subterms can
be eliminated, leaving better understandable expressions.
LOG3 NOT2 CALC � (¬(a = F) = a ≥ U) ∧ (¬(a = T) = a ≤ U)∧

(¬(a = U) = (a = F) ∨ (a = T))∧
(¬(a ≤ U) = (a = T)) ∧ ¬(a ≥ U) = (a = F)

LOG3 ABS NOT � (�̈¬a) = ¬̈(�̈ a)



Using Three-Valued Logic to Specify and Verify Algorithms 417

4.2 Vectors and Rational Numbers

Conversions and tactics that calculate vector and rational number expressions are pro-
vided. VEC_CALCTERM_TAC applies the calculation rules to a term, VEC_CALC_TAC to
all terms of the type Q

2. With the help of these tactics and the two theorems VEC_EQ
and RAT_EQ, the equality of two vectors is reduced to the equalities between integers,
which can be solved by the integer decision procedures of the HOL system. In this way,
a lot of simple theorems can be automatically proven.

4.3 Example

We illustrate our approach by the convex hull algorithm presented in [6]. It divides the
computation of the convex hull into two parts: the upper part and the lower part of the
hull (see Figure 7 (a)). In this section, we focus on the construction of the lower part.

upper hull

lower hull

(a) (b)

v1

v2

v3

v4 (c)

Fig. 7. Computation of the convex hull

Formalisation. The algorithm takes a list of points L, which is sorted in lexicographic
order (denoted as lexSorted(L)), i.e. points are first sorted by their x-coordinates and if
the x-coordinates should be the same, then the y-coordinates determines the ordering.
The points are iteratively added to the lower part of the convex hull. After each addition,
it is checked whether the last three points make a left turn. If this is not the case, the
middle point is deleted. These steps are repeated until the last three points make a
left turn, or there are only two points left (the leftmost point and the added point).
Figure 7 (b) illustrates this procedure. Formally, the construction of the lower hull can
be described by the following functions1:

normalise lower �def (normLow([ ]) = [ ])∧
(normLow([e1]) = [e1])∧
(normLow([e1; e2]) = [e1; e2])∧
(normLow((e1 :: e2 :: e3 :: L)) =

if lturn(e1, e2, e3) = T then e1 :: e2 :: e3 :: L
else normLow((e1 :: e3 :: L)))

hull lower �def (hullLow([ ]) = [ ])∧
(hullLow(e :: L) = normLow(e :: hullLow(L)))

1 [ ] denotes the empty list, [e1; e2] a list containing the two elements e1 and e2, and e :: L
denotes the concatenation of a new leftmost element e to an existing list L.
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If L has at least three elements, normLow(L) deletes the second element if the first three
elements should not form a left turn, and hullLow applies this function to all sublists of
a list L.

Specification. A sequence of points is part of the convex hull if for two consecutive
points, all other points lie on the left hand side of the line passing those points. We
define the corresponding predicate lconvex recursively: A sequence of no elements or
one element is always convex. Each additional point that is added must lie on the left of
all former edges of the constructed convex hull (lpoint), and all points must lie on the
left side of the edge that is created by the insertion of the new point (ledge).

left edge �def (ledge(e1, e2, [ ]))∧
(ledge(e1, e2, e :: L) = (lturn(e, e1, e2) = T) ∧ ledge(e1, e2,L))

left point �def (lpoint(e, [ ]))∧
(lpoint(e, [e1]))∧
(lpoint(e, e1 :: e2 :: t) =

(lturn(e, e2, e1) = T) ∧ lpoint(e, e2 :: L))
left convex �def (lconvex([ ]))∧

(lconvex([e1]))∧
(lconvex(e1 :: e2 :: L) =

ledge(e1, e2,L) ∧ lpoint(e1, e2 :: L) ∧ lconvex(e2 :: L))

Verification. The verification is done in several steps. First, by applying the definitions,
it is proven that every sublist of three points in the result make a left turn.

left chain �def (lchain([ ]))∧
(lchain([e1]))∧
(lchain([e1; e2]))∧
(lchain(e1 :: e2 :: e3 :: L) =

(lturn(e1, e2, e3) = T) ∧ lchain(e2 :: e3 :: L))
LEFT CHAIN HULL LOWER � lchain(L0) ⇒ lchain(hullLow(L0)L1)

Then, under the condition of a lexicographic ordering a kind of transitivity (see Figure 7
(c)) is derived. To prove this, the lexicographic conditions are translated to left turn
conditions before the transitivity of the left-turn predicate LTURN TRANS is used. With
the help of this lemma, an induction results the desired theorem CVX LOWER.

CVX TRANS LOWER � (lturn(v1, v2, v3) = T) ∧ (lturn(v2, v3, v4) = T)∧
(v1 ≺lex v2 = T) ∧ (v2 ≺lex v3 = T) ∧ (v3 ≺lex v4 = T)
⇒ (lturn(v1, v3, v4) = T)

CVX LOWER � lexSorted(L) ∧ lchain(L) ⇒ lconvex(L)

Note that in the proofs, we do not have to address the degenerate cases explicitely.
We exploit that theorems like LTURN TRANS subsume many cases. Thus, the correct-
ness of the algorithm is guaranteed for all cases: in particular for the situation that two
subsequent input points have the same y-coordinate or there are collinear points in the
input set.
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5 Conclusions

In this paper, we addressed the problem of specifying and verifying algorithms of com-
putational geometry. Starting from applications like motion planning or collision detec-
tion, we formalised basic geometric objects and primitives used in analytic geometry.
The main contribution of this paper is to consistently use three-valued logic for this pur-
pose. To this end, we defined a three-valued logic in the theorem prover HOL and used it
for the formalisation of geometric primitives in the presence of degenerate cases. Using
the HOL theorem prover, we proved numerous theorems and provided various tactics
for automating parts of proofs. In particular, we use efficient tactics to translate three-
valued goals to two-valued ones. In this way, conventional tactics and proof tools can
be used for automated reasoning.

We evaluated our approach by small examples. They all show that our approach is
very suitable: The specifications are both precise and compact; the integrated consid-
eration of degenerate cases with the help of three-valued logic makes both algorithms
and proofs simpler and clearer. At the same time, all advantages of traditional proof
techniques are preserved due to the possible reduction to two-valued expressions.

Our next and more ambitious verification project is the development of a formally
proven map overlay algorithm [6] that is suited for applications in safety-critical em-
bedded systems. For this algorithm, some more foundations are required, as e.g. an
appropriate formalisation of plane graphs [19].
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