We will give an abbreviated discussion of modes in step-index fiber in order to quickly determine the conditions for a single propagating spatial mode.

For details, refer to the following two references, which are on four-hour reserve at the Engineering Library.

- K. Iizuka, *Elements of Photonics, Volume II: For Fiber and Integrated Optics*, Wiley, 2002, Section 11.2. This treatment derives modes without assuming weak guidance, and obtains conventional modes, from which LP modes are formed.

Electromagnetism background and notation

Macroscopic Maxwell’s equations (in the absence of charge and current)

\[
\nabla \times E = \frac{\partial B}{\partial t} \quad \nabla \times H = \frac{\partial D}{\partial t}
\]

\[
\nabla \cdot D = 0 \quad \nabla \cdot B = 0
\]

Constitutive relations for nonmagnetic media

\[
D = \varepsilon_0 E + P
\]

\[
B = \mu_0 H
\]

Boundary conditions at interfaces between media (in the absence of charge and current)

- Normal \(D \) and \(B \):

\[
(D_2 - D_1) \cdot \hat{n}_{21} = 0 \quad (B_2 - B_1) \cdot \hat{n}_{21} = 0
\]

- Tangential \(E \) and \(H \):

\[
(E_2 - E_1) \times \hat{n}_{21} = 0 \quad (H_2 - H_1) \times \hat{n}_{21} = 0
\]

Definition of Fourier transform and inverse Fourier transform

\[
E(r, \omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{E}(r, \omega) e^{j\omega t} d\omega
\]

\[
\tilde{E}(r, \omega) = \int_{-\infty}^{\infty} E(r, t) e^{-j\omega t} dt
\]

- We will use similar definitions for all scalar and vector functions of time/frequency.
We will sometimes omit the tilde (−) over the frequency-domain function when confusion is unlikely to arise.

Dielectric susceptibility relating \(P \) to \(E \) (in a linear, isotropic medium)

\[
P(r,t) = \varepsilon_0 \int_{-\infty}^{\infty} \chi(r,t,t') E(r,t') dt'
\]

\[
P(r,\omega) = \varepsilon_0 \tilde{\chi}(r,\omega) \cdot \tilde{E}(r,\omega)
\]

Dielectric constant

\[
\varepsilon(r,\omega) = \varepsilon_0 \left[1 + \tilde{\chi}(r,\omega) \right]
\]

Refractive index

\[
\varepsilon(r,\omega) = \left[n(r,\omega) + i \frac{c}{2\omega} \alpha(r,\omega) \right]^2
\]

- \(n(r,\omega) \) real refractive index
- \(\alpha(r,\omega) \) real absorption coefficient
- \(n(r,\omega) + i \frac{c}{2\omega} \alpha(r,\omega) \) complex refractive index

Wave equations in step-index optical fibers

- In computing the modes, we will:
 - Ignore nonlinear effects.
 - Ignore absorption, i.e., let \(\varepsilon(r,\omega) \to n^2(r,\omega) \)
 - Assume the refractive index is constant in space, except at boundaries between media, where boundary conditions are applied.
 - Drop the ~ over \(\tilde{E}(r,\omega) \) and \(\tilde{H}(r,\omega) \).
- Assume a monochromatic wave at frequency \(\omega \).
 Define the free-space wavenumber \(k_0 = \frac{\omega}{c} = \frac{2\pi}{\lambda} \).
- From Maxwell’s equations, we can derive the wave equations (see Agrawal Section 2.2):
 \[
 \nabla^2 E(r,\omega) + k_0^2 n^2(\omega) E(r,\omega) = 0
 \]
 \[
 \nabla^2 H(r,\omega) + k_0^2 n^2(\omega) H(r,\omega) = 0
 \]
- Note that although \(E(r,\omega) \) and \(H(r,\omega) \) solve the same wave equation, they are different functions of \(r \).

Modes in optical fiber

- There exist both guided modes and radiation modes. We study guided modes only.
• Modes are solutions of the wave equation subject to appropriate boundary conditions. The field distributions \(E(r, \omega) \) and \(H(r, \omega) \) in a mode do not change as the mode propagates along the \(z \) direction, except for an overall multiplicative factor of the form \(e^{i\beta(\omega)z} \).
• \(\beta(\omega) \) is called the \textit{propagation constant} of a mode.
• Different modes propagate with different values of the propagation constant \(\beta(\omega) \), except for degeneracies that may occur. A set of modes having identical (degenerate) \(\beta(\omega) \) forms a \textit{mode group}.
• For each forward-propagating mode \((+\beta)\), there exists a backward-propagating mode \((-\beta)\).
• The set of guided modes form an orthonormal set:
\[
\int_{\text{fiber cross section}} \text{Re}\left(E_i \times H_j^* \right) \cdot dA = \delta_{ij} \frac{\beta}{|\beta|}.
\]
• The radiation modes also form an orthogonal set, and have a similar orthogonality relationship.
• The set of guided and radiation modes form a complete set, which can be used to expand an arbitrary field distribution. Note that the guided modes have a discrete spectrum of \(\beta \), while radiation modes have a continuous spectrum of \(\beta \). Assuming a monochromatic field and suppressing the frequency dependence, we can expand an arbitrary \(E(r) \) as:
\[
E(r) = \sum_{i \text{ guided}} A_i E_i(r) + \int A(\beta) E(r, \beta) d\beta.
\]

Modes in step-index fiber

Approach
• Initially, we do not assume the \textit{weak guidance condition} \(\Delta << 1 \). Thus we find the \textit{conventional modes}: \(TE, TM, HE, EH \).
• Later, we assume weak guidance \((\Delta << 1)\) and form linear combinations of the conventional modes to obtain \textit{linearly polarized modes} (LP modes).

Derivation
• Use cylindrical coordinates \((\rho, \phi, z)\)
• We need to solve the wave equation for six components: \(E_\rho, E_\phi, E_z \) and \(H_\rho, H_\phi, H_z \).
 We will solve the wave equation for the two components: \(E_z \) and \(H_z \), and then use the four Maxwell’s equations to find the remaining four components: \(E_\rho, E_\phi \) and \(H_\rho, H_\phi \).
• The wave equation for \(E_z \) is:
\[
\frac{\partial^2 E_z}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial E_z}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 E_z}{\partial \phi^2} + \frac{\partial^2 E_z}{\partial z^2} + n^2 k_0^2 E_z = 0.
\]
• The refractive index is
\[
n = \begin{cases} n_1 & \rho \leq a \\ n_2 & \rho > a \end{cases}
\]
• We use the technique of separation of variables to convert this partial differential equation into a set of three ordinary differential equations.
 • The solution is written:
 \[E_z(\rho, \phi, z) = F(\rho)\Phi(\phi)Z(z) \]
 • We define separation constants \(\beta^2 \) and \(m^2 \), which permits us to write:
 \[\frac{d^2 Z}{dz^2} + \beta^2 Z = 0 \]
 \[\frac{d^2 \Phi}{d\phi^2} + m^2 \Phi = 0 \]
 \[\frac{d^2 F}{d\rho^2} + \frac{1}{\rho} \frac{dF}{d\rho} + \left(n^2 k_0^2 - \frac{m^2}{\rho^2} \right) F = 0 \]
 • The \(z \) and \(\phi \) solutions are of the form:
 \[Z(z) = e^{i\beta z} \]
 \[\Phi(\phi) = e^{im\phi} \]
\(\beta \) is the propagation constant, a real number
\(m \) is an integer
• \(F(\rho) \) satisfies Bessel’s equation. Define:
 \[p^2 = n_1^2 k_0^2 - \beta^2 \]
 \[q^2 = \beta^2 - n_2^2 k_0^2 \]
(1)
We require \(F(\rho) \) to be finite everywhere and to decay to 0 as \(\rho \to \infty \). Hence:
\[F(\rho) = \begin{cases}
 J_m(p\rho) & \rho \leq a \\
 K_m(q\rho) & \rho > a
\end{cases} \]
\(J_m(\cdot) \): Bessel function of order \(m \) (analogous to sinusoid in cylindrical coordinates)
\(K_m(\cdot) \): modified Bessel function of order \(m \) (analogous to decaying exponential in cyl. coordinates.)
• We write the overall solution for E_z as:

$$E_z(\rho, \phi, z) = \begin{cases} AJ_m(pp)e^{\imath \mu \phi} e^{\imath \beta z} & \rho \leq a \\ CK_m(qp)e^{\imath \mu \phi} e^{\imath \beta z} & \rho > a \end{cases}$$

• Similarly, we write the overall solution for H_z as:

$$H_z(\rho, \phi, z) = \begin{cases} BJ_m(pp)e^{\imath \mu \phi} e^{\imath \beta z} & \rho \leq a \\ DK_m(qp)e^{\imath \mu \phi} e^{\imath \beta z} & \rho > a \end{cases}$$

• Using the four Maxwell’s equations, we obtain the other four components E_ϕ, E_ρ and H_ρ, H_ϕ. In the core, we obtain:

$$E_\rho = \frac{i}{p^2} \left(\beta \frac{\partial E_z}{\partial \rho} + \mu_0 \frac{\omega \partial H_z}{\partial \phi} \right)$$

$$E_\phi = \frac{i}{p^2} \left(\beta \frac{\partial E_z}{\partial \phi} - \mu_0 \omega \frac{\partial H_z}{\partial \rho} \right)$$

$$H_\rho = \frac{i}{p^2} \left(\beta \frac{\partial H_z}{\partial \rho} - \varepsilon_0 n^2 \omega \frac{\partial E_z}{\partial \phi} \right)$$

$$H_\phi = \frac{i}{p^2} \left(\beta \frac{\partial H_z}{\partial \phi} + \varepsilon_0 n^2 \omega \frac{\partial E_z}{\partial \rho} \right)$$

Similar equations can be obtained in the cladding region after replacing p^2 by q^2.

• We have expressed the fields E and H in the core and cladding in terms of four unknown constants A, B, C, D.

• We impose the boundary conditions that the tangential components of E and H be continuous at the core-cladding interface, i.e., E_z, H_z, E_ϕ, H_ϕ are continuous at $\rho = a$.

• We obtain a set of four homogeneous equations to be satisfied by A, B, C, D. Requiring the determinant of the matrix of coefficients to vanish, we obtain the characteristic equation:

$$\begin{vmatrix} J_m'(pa) + K_m'(qa) \frac{K_m'(qa)}{pa J_m(pa)} \frac{K_m'(qa)}{pa J_m(pa)} & J_m'(qa) \frac{K_m'(qa)}{pa J_m(pa)} + n_2^2 \frac{J_m'(pa)}{n_1^2 \frac{pa K_m(pa)}{qa K_m(qa)}} \end{vmatrix} = m^2 \begin{vmatrix} 1 \frac{1}{(pa)^2} + \frac{1}{(qa)^2} \frac{1}{(pa)^2} + \frac{n_2^2}{n_1^2} \frac{1}{(qa)^2} \end{vmatrix} \label{2}$$

• Only values of pa and qa that satisfy the characteristic equation will satisfy the boundary conditions. Since pa and qa are two unknowns, we require one more equation to relate pa and qa. We combine the definitions of p and q given in (1) to obtain:

$$v^2 = (pa)^2 + (qa)^2 \label{3},$$

where we have defined

$$v = k_0 a \sqrt{n_1^2 - n_2^2}.$$
• The V number is a parameter describing the fiber, and which governs the number of propagating modes.
• As V increases, the fiber supports more propagating modes. In step-index fiber, as $V \to \infty$, the number of propagating modes per polarization is of the order of $\frac{2V^2}{\pi^2}$.
• V increases for:
 - large k_0 (large ω, small λ)
 - large Δ
 - large a

How to find the modes for a particular fiber

1. Given k_0, a, n_1, n_2, find V.

2. For each $m = 0, 1, 2, 3, \ldots$ solve (2) and (3) simultaneously to find the allowed values of pa and qa, thus determining the spatial dependence of the fields.

For a given value of m, there can exist multiple solutions, which are enumerated as $n = 1, 2, 3, \ldots$

For a given value of V, there exist solutions up to some maximum values of (m, n) (propagating modes), beyond which no solutions exist (cutoff modes).

3. For each mode (m, n) found in step 2, substitute p or q in (1) to find the propagation constant β_{mn}.

Classification of modes

- $m = 0$
 - Correspond to meridional rays.
 - (E_ρ, E_ϕ, E_z) and (H_ρ, H_ϕ, H_z) are independent of ϕ.
 - The modes are: TE_{0n} ($E_z = 0$)
 - TM_{0n} ($H_z = 0$)

- $m = 1, 2, 3, \ldots$
 - Correspond to skew rays.
 - (E_ρ, E_ϕ, E_z) and (H_ρ, H_ϕ, H_z) depend on ϕ.
 - The modes are: HE_{mn} (H_z dominates over E_z)
 - EH_{mn} (E_z dominates over H_z)

- $m = 0$
 - The right-hand side of (2) vanishes.
 - Note that $J_0() = -J_1()$, $K_0() = -K_1()$.
 - Hence, (2) can be satisfied if either one of two equations is satisfied:
\[
\frac{J_1(pa)}{paJ_0(pa)} + \frac{K_1(qa)}{qaK_0(qa)} = 0 \quad \text{corresponding to } TE_{0n} \text{ modes}
\]
\[
\frac{J_1(pa)}{paJ_0(pa)} + \frac{n_2^2}{n_1^2} \frac{K_1(qa)}{qaK_0(qa)} = 0 \quad \text{corresponding to } TM_{0n} \text{ modes}
\]

- For arbitrary values of \(qa\), the \(TE_{0n}\) and \(TM_{0n}\) solutions yield different curves in the \(pa-qa\) plane.
- The \(TE_{0n}\) and \(TM_{0n}\) solutions have the same asymptotes for \(qa \to 0\), \(qa \to \infty\).

<table>
<thead>
<tr>
<th>Asymptotic Limit</th>
<th>Condition for (TE_{0n}) and (TM_{0n})</th>
<th>Values of (pa) Corresponding to (n = 1, 2, 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(qa \to 0)</td>
<td>(J_0(pa) = 0)</td>
<td>(pa = 2.4, 5.5, 8.7, \ldots)</td>
</tr>
<tr>
<td>(qa \to \infty)</td>
<td>(J_1(pa) = 0)</td>
<td>(pa = 3.8, 7.0, 10.0, \ldots)</td>
</tr>
</tbody>
</table>

- \(m = 1, 2, 3, \ldots\)
 - This case is much more complicated to solve.
 - Assume weak guidance, i.e., \(\Delta \ll 1\) or \(\frac{n_2}{n_1} \approx 1\). Hence, (2) can be rewritten:
 \[
 \frac{J'_m(pa)}{paJ_m(pa)} + \frac{K'_m(qa)}{qaK_m(qa)} = \pm m \left[\frac{1}{(pa)^2} + \frac{1}{(qa)^2} \right]
 \]
 - This equation has two different sets of solutions:
 \(+m\) corresponding to \(EH_{mn}\) modes
 \(-m\) corresponding to \(HE_{mn}\) modes
 - It can be shown that under the weak guidance condition, the \(HE_{m+1,n}\) and \(EH_{m-1,n}\) modes have identical characteristic equations, and thus identical values of the propagation constant \(\beta\).
 - It can be shown that in the asymptotic limits \(qa \to 0\) and \(qa \to \infty\), the following conditions on \(pa\) can be established.

<table>
<thead>
<tr>
<th>Asymptotic Limit</th>
<th>Condition for (HE_{mn})</th>
<th>Condition for (EH_{mn})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m = 1)</td>
<td>(J_1(pa) = 0) including (pa = 0)</td>
<td>(J_m(pa) = 0) excluding (pa = 0)</td>
</tr>
<tr>
<td>(m \geq 2)</td>
<td>(J_m(pa) = 0) excluding (pa = 0)</td>
<td>(J_m(pa) = 0)</td>
</tr>
<tr>
<td>(qa \to 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(qa \to \infty)</td>
<td>(J_{m-1}(pa) = 0)</td>
<td>(J_{m+1}(pa) = 0)</td>
</tr>
</tbody>
</table>
Graphical solution of (2) and (3) in the pa-qa plane

- A plot of (3) is simply a circle of radius V.
- A plot of (2) involves many curves, corresponding to different values of (m,n).

$$(pa)^2 + (qa)^2 = V^2$$

for larger V. Four modes propagate.

$$(pa)^2 + (qa)^2 = V^2$$

for small V. Only HE_{11} propagates.

- Note that for $V < 2.405$, only the HE_{11} mode can propagate.

Behavior of a mode near cutoff

- Recall that in the cladding:
 $$F(q) = K_m(q) \quad \rho > a.$$
- One can show that:
 $$K_m(q) \approx \frac{\pi}{2q\rho} \cdot \exp(-q\rho) \quad q\rho >> a.$$
- As a mode approaches cutoff
 $$q \to 0,$$
 and exponential decay does not occur in the cladding.
Effective index of a mode

- Definition

\[\tilde{n} = \frac{\beta}{k_0} = c \frac{\beta}{\omega} \]

- For each propagating mode:

\[n_2 < \tilde{n} < n_1 \]

and as a mode approaches cutoff:

\[\tilde{n} \to n_2. \]

Normalized propagation constant of a mode

- Definition

\[b = \frac{\tilde{n} - n_2}{n_1 - n_2} \]

- For each propagating mode:

\[0 < b < 1 \]

and as a mode approaches cutoff:

\[b \to 0. \]

Linearly polarized modes

- LP modes are valid under the weak guidance condition \(\Delta \ll 1 \), which is satisfied by almost all glass fibers.

- Certain sets of conventional modes (TE, TM, HE, EH) have nearly identical \(\beta \) (equivalently, nearly identical \(\tilde{n} \) or \(b \)), and are said to form a (conventional) mode group.

- We can form linear combinations of the conventional modes within a group to form LP modes. A group of LP modes having nearly identical \(\beta \) is said to form an (LP) mode group.
• For each LP mode:

\[E_z \approx 0, \; H_z \approx 0 \]

• For each LP mode, there are two orthogonal polarization modes that have identical \(\beta \) (ignoring birefringence or polarization-mode dispersion):

\[E \approx E_x \hat{x}, \; H \approx H_y \hat{y} \]

\[E \approx E_y \hat{y}, \; H \approx H_x \hat{x} \]

• In each of the two polarization modes

\[E_x(\rho, \phi), \; H_y(\rho, \phi) \text{ have the same dependence on } (\rho, \phi) \]

\[E_y(\rho, \phi), \; H_x(\rho, \phi) \text{ have the same dependence on } (\rho, \phi) \]

• An LP mode corresponds to launching light from a linearly polarized source, such as a laser diode.
<table>
<thead>
<tr>
<th>LP Mode Group</th>
<th>Conventional Modes in LP Mode Group</th>
<th>Conventional Modes in LP Mode</th>
<th>Field Lines of LP Mode</th>
<th>Intensity of LP Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP_{01}</td>
<td>HE_{11}</td>
<td>HE_{11}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP_{11}</td>
<td>HE_{21}, TE_{01}</td>
<td>HE_{21}, TE_{01}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HE_{21}, TM_{01}</td>
<td>HE_{21}, TM_{01}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HE_{21}, TM_{01}</td>
<td>HE_{21}, TM_{01}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Single-mode step-index fiber

- We mainly discuss single-mode step-index fiber hereafter.
- For $V < 2.405$, a step-index fiber supports only one mode: $HE_{11} = LP_{01}$ (in each of two orthogonal polarizations).
- We usually design the fiber so that V is not much smaller than 2.405, so that the mode remains fairly well confined to the core.
- Example: standard telecommunications single-mode fibers
 - $n_1 = 1.45$
 - $\Delta = 3 \times 10^{-3}$
 - $a = 4 \, \mu m$

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>V</th>
<th>Approximate Confinement Factor Γ of Fundamental Mode</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1175</td>
<td>> 2.405</td>
<td>> 0.84</td>
<td>Multi-mode</td>
</tr>
<tr>
<td>1175</td>
<td>2.405</td>
<td>0.84</td>
<td>Single-mode</td>
</tr>
<tr>
<td>1300</td>
<td>2.171</td>
<td>0.78</td>
<td>Single-mode</td>
</tr>
<tr>
<td>1550</td>
<td>1.821</td>
<td>0.63</td>
<td>Single-mode</td>
</tr>
</tbody>
</table>

Fundamental mode in single-mode step-index fiber

- The x- and y-polarized $HE_{11} = LP_{01}$ modes have electric fields given respectively by:
 \[
 E_x = E_{0x} \cdot \left(\frac{J_0(pa)}{K_0(qa)}\right) \cdot e^{j\beta z} \quad \rho \leq a
 \]
 \[
 E_y = E_{0y} \cdot \left(\frac{J_0(pa)}{K_0(qa)}\right) \cdot e^{j\beta z} \quad \rho > a
 \]
 Note that E_x or E_y is independent of ϕ.
- Since the HE_{11} mode has $m = 1$, it is a skew mode. In either the x or y polarization, E_m, E_ϕ do depend on ϕ. For the x- and y-polarized $HE_{11} = LP_{01}$ modes, these components are given respectively by:
 \[
 E_\rho = E_{0x} \cdot \cos(\phi) \cdot \left(\frac{J_0(pa)}{K_0(qa)}\right) \cdot e^{j\beta z} \quad \rho \leq a
 \]
 \[
 E_\phi = E_{0x} \cdot \sin(\phi) \cdot \left(\frac{J_0(pa)}{K_0(qa)}\right) \cdot e^{j\beta z} \quad \rho > a
 \]
 \[
 E_\rho = E_{0y} \cdot \sin(\phi) \cdot \left(\frac{J_0(pa)}{K_0(qa)}\right) \cdot e^{j\beta z} \quad \rho \leq a
 \]
 \[
 E_\phi = E_{0y} \cdot \cos(\phi) \cdot \left(\frac{J_0(pa)}{K_0(qa)}\right) \cdot e^{j\beta z} \quad \rho > a
 \]
- The z component, E_z, is much smaller than E_x or E_y, and its radial dependence is given in terms of $J_1(pp)$ or $K_1(qp)$.

Approximate Confinement Factor Γ of Fundamental Mode

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>V</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1175</td>
<td>> 2.405</td>
<td>Multi-mode</td>
</tr>
<tr>
<td>1175</td>
<td>2.405</td>
<td>Single-mode</td>
</tr>
<tr>
<td>1300</td>
<td>2.171</td>
<td>Single-mode</td>
</tr>
<tr>
<td>1550</td>
<td>1.821</td>
<td>Single-mode</td>
</tr>
</tbody>
</table>
Gaussian approximation of fundamental mode

- It is common practice to approximate the $HE_{11} = LP_{01}$ mode by a Gaussian function. The x- and y-polarized modes are approximated respectively as:

$$E_x \approx A_x \cdot \exp \left(-\frac{\rho^2}{w^2} \right) \cdot e^{j\beta z} \quad \forall \rho$$

$$E_y \approx A_y \cdot \exp \left(-\frac{\rho^2}{w^2} \right) \cdot e^{j\beta z} \quad \forall \rho$$

The parameter w is called the spot size or field radius. The figure below shows the best-fit value of w as a function of V, and shows how well the Gaussian approximation fits the mode at $V = 2.4$.

Mode confinement factor: Γ is the fraction of the energy of a mode confined in the core.

- For example, for an LP mode polarized along the x direction:

$$\Gamma = \frac{P_{\text{core}}}{P_{\text{total}}} = \frac{\frac{a}{0} |E_x|^2 \rho d\rho}{\frac{\infty}{0} |E_x|^2 \rho d\rho}.$$

- In the Gaussian approximation of the fundamental mode:

$$\Gamma = 1 - \exp \left(-\frac{2a^2}{w^2} \right).$$

Approximate values of the mode confinement factor for standard telecommunications fiber are given in the table on the previous page.