
Hinting Refactorings
to Reduce Object
Creation In Java
Dries Buytaert∗, Kristof Beyls∗, Koen
De Bosschere∗

∗ ELIS, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

ABSTRACT

In this paper, we study refactorings that reduce the number of objects created in Java programs.
More specifically, we present a tool that automatically identifies the locations in Java applications
where such refactorings are useful. Initial experiments show that the refactorings can result in
significant savings in terms of memory usage and execution time.

KEYWORDS: program analysis, software refactoring, program optimization, performance debug-
ging, object-oriented programming, garbage collection, Java

1 Introduction and Motivation

It has long been observed that many objects in languages with garbage collection have a
short life-time [Hirz02, Lieb83, Stef94]. In other words, many objects become unreachable
and garbage shortly after they have been created. In this paper, we investigate if we can
prevent these short-lived objects from being created in the first place. We conjecture that
most of these objects are created merely to communicate data from one location in the pro-
gram to another. When there is a short time between the object’s creation and its last use,
we expect that a simple program refactoring might be possible to establish the communi-
cation between the two program locations without creating an object. Here, we understand
refactoring to mean “changing the internal structure of the software, without changing its
functionality” [Fowl00]. Whereas most refactorings focus on optimizing the design of the
software, we focus on reducing the rate at which it creates new objects.

By reducing the number of allocated objects, less garbage is created. This results in less
work for the garbage collector and a better temporal locality, potentially leading to signifi-
cant speedups. Furthermore, in a number of cases, time-consuming code executed in object
constructors can be avoided, leading to further speedups.

This paper presents a tool which helps to automatically find the locations in the source
code where many short-lived objects are created, the locations where they are used for the
last time, and the methods between which these objects are communicated. By intelligently

1E-mail: {Dries.Buytaert,Kristof.Beyls,Koen.DeBosschere}@elis.UGent.be



clustering all the objects observed during a profiling run, our tool groups together objects
that can be optimized by the same refactoring. The main contributions of this paper are:

• A novel way to model the locations where objects are created, where they are used for
the last time and the methods that communicate these objects.

• A simple clustering method based on that model. Each cluster corresponds to many
objects created at run-time that can likely be eliminated by the same refactoring.

• We used our tool to optimize a number of programs from well-known benchmark
suites. The optimizations typically require less than an hour of programmer effort,
which is measured as the total time required to analyze the output of our tool, under-
stand the source code constructs responsible for generating many short-lived objects,
coming up with a suitable refactoring, and applying the required source code changes.
In most cases, only a limited number of code lines need to be changed, without break-
ing the object-oriented design of the program. After refactoring, between 1.5 and 14
times fewer bytes are allocated, resulting in speedups between about 1.1 and 15.

In Section 2, the model of program execution is introduced. Section 3 presents how our
tool measures the model data at run-time, and how it displays the measured results to the
user. Section 4 discusses the results of using the tool, followed by concluding remarks.

2 Program Model

main

Nearest Common 
Ancestor (NCA)

...

... ...

Allocate 
object

Last use 
of object

Allocation site Last use site

Figure 1: Allocation and last-use in
a dynamic call-graph tree of a pro-
gram. Every rectangle represents one
method invocation at run-time. The
lines connect the calling and the called
methods.

Programs typically generate millions of objects. Our
tool aims at grouping these millions of objects into a
few categories, such that each category can be opti-
mized by a single refactoring. To make such catego-
rization feasible, program execution is modeled as
presented below.

Definitions In Java, an object is created by using
the keyword new. The method in which an object
is created is called the object’s allocation site. Like-
wise, the method where the object’s address or any
of its fields is last used, is called the last use site.
The Nearest Common Ancestor Method (NCA) is
the nearest common ancestor of the allocation site
and the last use site in the dynamic call tree of the
program, see Figure 1. �

Pinpointing the nearest common ancestor method
is interesting, since it is the method with the small-
est run-time scope where the object does not es-
cape. As a result, the memory occupied by the object
can be reused in different invocations of the NCA,
e.g. by allocating the object in the stack frame of the
NCA. When the NCA method finishes, the object



TriangleObj.Check()

Vector.Dot(Vector)

Allocation site = NCA

Last use site

Vector.GetZ()

TriangleObj.Check()

Vector.Dot(x,y,z)

Allocation site = NCA

Last use site

(a) (c)

(b)
Type Objects Short-lived Overlap Immutable Size
Vector 1065903 (18%) yes no yes 51 MB (17%)

Figure 2: Example output for _227_mtrt . (a) displays a cluster creating many short-lived
objects. (b) shows the additional information recorded by our tool. The objects don’t overlap,
so at most one object is live at any given time. Objects of type Vector contain three double
fields: x , y and z . We eliminated the objects by storing these three fields as local variables
in the method Check() . We added a method Dot(x,y,z) to class Vector that performs
the same computation as Dot(Vector) , and call that method instead, which eliminates the
need for creating a Vector object.

memory is automatically freed by adjusting the stack pointer, and hence there’s no garbage
collection overhead. Another possibility is to use a software cache that recycles objects on
the heap between different invocations of the NCA.

Our tool groups objects according to the tuple (NCA, allocation site, last use site), since
these objects need to communicate data from one given allocation site, to a specific last use
site, via the indicated NCA function. As such, we expect that optimizations might change
code in any of these three methods.

3 Finding Useful Refactorings

To gather the profile information, the Jikes Research Virtual Machine (RVM) was modified to
capture the following data for each object: (i) class type, (ii) size in bytes, (iii) allocation site,
(iv) last use site, (v) time of allocation, (vi) time of last use, (vi) number of read operations,
and (vii) number of write operations. This data is collected during program execution and
stored in a database when the object is garbage collected.

To determine whether an optimization opportunity exists, the data is analyzed and quan-
tified. First, the objects are clustered by the tuple (NCA, allocation site, last use site), as dis-
cussed in Section 2. Second, the clusters are sorted according to the number of bytes the
objects in the cluster occupy. As such, the programmer can focus his efforts on the clusters
which generate most garbage collection overhead.

After our tool identifies where to look for optimizations, it provides hints as how to opti-
mize a particular cluster of objects. To assist the programmer in identifying viable refactor-
ings, our tool presents additional information for each of the clusters: (i) whether the objects



Application Refactoring Programmer time Lines changed
ps Eliminate exception < 1

2
hour 22

health Introduce software cache < 1 hour 81
Communicate data through parameters_227_mtrt
instead of through object

< 1 hour 125

Memory usage

0

0.2

0.4

0.6

0.8

1

1.2

ps health _227_mtrt

Re
la

tiv
e 

m
em

or
y 

us
ag

e

Jikes RVM before Jikes RVM after

Execution time

0

0.2

0.4

0.6

0.8

1

1.2

ps health _227_mtrt

Re
la

tiv
e 

ex
ec

ut
io

n 
tim

e

Sun VM before Sun VM after
Jikes RVM before Jikes RVM after

(a) (b)

Figure 3: The results obtained by applying our tool to ps , health and _227_mtrt .

are long- or short-lived, (ii) whether the lifetime of the objects overlap with other objects in
the cluster, (iii) whether they are immutable, (iv) their accumulated size, etc. An example is
given in Figure 2, graphically showing the (NCA, allocation site, last use site) of one cluster
in the mtrt program.

For example, objects whose lifetime never overlap are best eliminated using stack alloca-
tion or by refactoring the program’s control flow. On the other hand, when there are many
objects with overlapping lifetime, stack allocation is not an option. Instead, if many of these
overlapping objects are both identical and immutable, they can be unified and represented
by a single object, introducing the flyweight design pattern [Gamm96]. If they are not im-
mutable, a third kind of refactoring can be applied to introduce a software cache, so that the
heap space allocated by a previously allocated object that will never be used again, can be
recycled without invoking the garbage collector.

To estimate the savings of a refactoring, the number of bytes allocated by a cluster can be
used as a measure of the amount of garbage collection work saved.

4 Experimental Results

We used our tool to optimize a number of programs from well-known benchmark suites.
Due to space constraints, here we focus on three Java applications; ps (DaCapo benchmark
suite2), health (JOlden benchmark suite), and _227_mtrt (SPECjvm98 benchmark suite).
ps reads and interprets a PostScript file, health simulates a Columbian health care system,
and _227_mtrt is a multi-threaded raytracer.

2We used the beta050224 version of the DaCapo benchmark suite.



Figure 3 shows the memory and execution time savings normalized to the unmodified
application. Figure 3(a) shows the memory reduction in terms of the total amount of al-
located data. The reported numbers are the average of three runs. For ps , health and
_227_mtrt the total amount of allocated memory has been reduced respectively by 93%,
33% and 63%. Similarly, Figure 3(b) depicts the impact of the refactorings on the total exe-
cution time. Because execution times depend on the heap size, we ran the applications with
a range of heap sizes. The graphs show the average reduction in total execution time over
all runs. Using Sun’s production JVM, the execution time was reduced by 94% for ps , by
11% for health and by 11% for _227_mtrt . Using IBM’s research JVM, the reductions are
respectively 87%, 6% and -1%.

5 Conclusion and Future Work

We developed a tool that collects and clusters profile information to help the programmer
find useful refactorings. In three case studies, the tool was used to identify and eliminate
performance bottlenecks caused by creating many short-lived objects. Preliminary results
show significant savings in terms of memory usage and execution time.

In the future, we plan the following steps. First, the tool will be used to examine a large
set of programs, and distill a list of typical refactorings that are useful in reducing object
creation. Second, the tool will be extended to suggest which refactorings from the list can be
applied. Third, the potential profit of a proposed refactoring will be estimated by the tool,
both in execution time and memory usage. Finally, we’ll examine which refactorings could
be automatized and implemented in a JVM.

Acknowledgments
Dries Buytaert is supported by a grant from the Institute for the Promotion of Innovation
by Science and Technology in Flanders (IWT). Kristof Beyls is supported by research project
GOA-12051002.

References

[Fowl00] M. FOWLER. Refactoring: Improving the Design of Existing Code. Object Technol-
ogy Series. Addison-Wesley, 2000.

[Gamm96] E. GAMMA, R. HELM, R. JOHNSON, AND J. VLISSIDES. Design Patterns: Ele-
ments of Reusable Object-oriented Software. Addison Wesley, Reading, 1996.

[Hirz02] M. HIRZEL, J. HENKEL, A. DIWAN, AND M. HIND. Understanding the Con-
nectivity of Heap Objects. In International Symposium on Memory Management
(ISMM’02), pages 36–39. ACM, 2002.

[Lieb83] H. LIEBERMAN AND C. HEWITT. A real-time garbage collector based on the
lifetimes of objects. Commun. ACM, 26(6):419–429, 1983.

[Stef94] D. STEFANOVIC AND J. MOSS. Characterization of object behaviour in Stan-
dard ML of New Jersey. In LFP ’94: Proceedings of the 1994 ACM conference on
LISP and functional programming, pages 43–54. ACM, 1994.


	Introduction and Motivation
	Program Model
	Finding Useful Refactorings
	Experimental Results
	Conclusion and Future Work

