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Résumé — Éléments pour une modélisation géostatistique intégrée de réservoirs hétérogènes —
L’approche géostatistique pour la modélisation des réservoirs hétérogènes permet, d’une part, d’intégrer
l’ensemble des données de natures diverses et d’échelles différentes, et d’autre part, d’évaluer les
incertitudes par génération de multiples scénarios possibles. La conception d’un modèle géostatistique de
réservoir doit d’abord dépendre de l’environnement de dépôt géologique, ce qui permet de représenter les
hétérogénéités majeures qui contrôlent l’écoulement des fluides. Ensuite, les données quantitatives
provenant des carottes, des diagraphies, de la sismique, des tests de puits, etc., doivent être utilisées pour
l’inférence des paramètres structuraux du modèle. Enfin, le calage des réalisations du modèle aux
données hydrodynamiques permet d’augmenter davantage la fiabilité du modèle dans la prévision en
production. Cet article présente les éléments d’une méthodologie intégrée pour la modélisation des
réservoirs hétérogènes. Nous introduisons d’abord les modèles géostatistiques de base couramment
utilisés pour décrire les réservoirs hétérogènes, suivis par un bref aperçu sur l’inférence des paramètres
structuraux des modèles. Nous présentons ensuite une approche inverse basée sur la méthode de
déformation graduelle pour le calage d’historique.

Abstract — Elements for an Integrated Geostatistical Modeling of Heterogeneous Reservoirs — The
geostatistical approach for modeling heterogeneous reservoirs allows, on one hand, to integrate data of
various natures and scales, and on the other hand, to evaluate uncertainties by generating multiple
possible scenarios of the reservoir heterogeneity. Building a geostatistical reservoir model must account
for the geological depositional environment of the reservoir, so as to represent the major heterogeneities
that control fluid flow. The quantitative information from wells, seismic and well tests, etc., must be used
for the inference of the model structural parameters. Constraining model realizations to the
hydrodynamic data from production allows to further increase the model reliability for production
forecasts. This paper presents the elements of an integrated methodology for modeling heterogeneous
reservoirs. We first introduce the basic geostatistical models used to describe the heterogeneous
reservoirs. This is followed by an outline on the inference of the model structural parameters. Then, we
present an inverse approach based on the gradual deformation method for history matching.
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INTRODUCTION

A reservoir is a porous and permeable subsurface formation,
containing one or several fluids (water, gas and oil) under
pressure. No reservoir presents the same petrophysical
properties everywhere. When a reservoir containing hydro-
carbons is discovered, the knowledge on the spatial distri-
bution of petrophysical properties (porosity and permeability)
of the reservoir is of primary importance for optimizing its
development project.

First of all, we need to identify the depositional environ-
ment of the reservoir. One distinguishes two main types of
reservoirs: the clastic ones and the carbonate ones. The
clastic reservoirs are made primarily of hard and chemically
stable grains of quartz. They come from the destruction of
eruptive rocks such as granite, according to the traditional
cycle of erosion-transport-deposition. The depositional
environment of a clastic reservoir can also vary: from
continental aeolian sandstones to turbidites, while passing by
the fluviatile sandstones (braided channels or bars of
meander), the offshore bars, the beaches and the bars of
mouth. The carbonates are limestones and dolomites. They
are much less stable than quartz and very sensitive to
diagenesis: they can be dissolved and reprecipitated,
dolomitized, fractured under tectonic constraints. One knows,
for example, the limestones built by corals, in marine
environment. Each type of depositional environment presents
its own geometrical architecture. Outcrop studies help us to
distinguish between the various reservoir architectures and to
define geological rules for building reservoir models.

In complement with geological conceptual knowledge,
there are many tools of investigation to quantify, directly or
indirectly, the petrophysical properties of the reservoir. For
instance, we have well logs, rock samples, seismic reflection,
well seismic, repeated (4D) seismic, well tests, production
history, etc. The investigation domain (the scale), the
precision and the nature of the information obtained from
these tools are very different. For example, the well logs
provide lithological or petrophysical information at a
centimetric resolution along the wells, while the seismic
reflection provides a very dense cover of the horizontal
variation of the acoustic properties of the reservoir with a
decametric vertical resolution. The interpretation of a well
test can give an idea on the average permeability in the
vicinity of a well, whereas production data (pressure, water-
cut, etc.) are rather related to the large-scale (field-scale)
connectivity of the reservoir. There is often complementarity
between data obtained by different tools of investigation. It is
therefore important to integrate all these data in the reservoir
model.

The objective of reservoir modeling is to build digital
representations (models) of the reservoir in conformity with
the geological rules and constrained to all available quan-
titative information. Also, the investigation on a reservoir is

carried out throughout the life of the reservoir from its
discovery to the end of its production. We must be able to
progressively update a reservoir model with the acquisition
of new data. Updating a reservoir model by the integration of
more and more available data should make it closer and
closer to the reality. However, reality is never completely
accessible and there is always a degree of uncertainty,
whatever the development stage of a reservoir field. It is thus
necessary to build multiple representative models that cover
all possible scenarios of the reservoir. In general, the
reservoir modeling must:
– take into account the geological environment of deposition;
– integrate in a geologically consistent way the entire

quantitative information;
– allow the progressive updating to account for new data;
– represent all possible scenarios of the reservoir.

In such context, the probabilistic approach appears to be
the most appropriate choice for reservoir modeling. There are
already a large number of geostatistical models and methods
that provide the potentiality to represent the various depo-
sitional environments and to integrate the various types of
data. In addition, the nature of the probabilistic approach
makes it possible to build multiple representations of the
reservoir for the evaluation of uncertainties on production
forecasts.

This paper presents the elements of an integrated meth-
odology for modeling heterogeneous reservoirs. We first
introduce the basic geostatistical models used to describe the
heterogeneous reservoirs. This is followed by an outline
on the inference of the model structural parameters. Then,
we present an inverse approach based on the gradual
deformation method for history matching.

1 GEOLOGICAL MODELING

The diversity of the geological environments justifies the
utility of various types of stochastic models. According to
their methods of construction, we can distinguish three types
of models:
– pixel-based models (e.g., models generated by multi-

Gaussian simulations);
– object-based models (e.g., the Boolean model);
– process-based (or genetic) models (model based on the

sedimentary processes).

The geological modeling of a heterogeneous reservoir is
often decomposed into several steps and implies several
basic models.

1.1 Continuous Gaussian Simulations

Let Y(x) (x ∈ D) be a stationary multi-Gaussian random
function of order 2. Given that Y(x) has zero mean and unit
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variance, we define a random function Z(x) (x ∈ D) by the
following nondecreasing transformation of Y(x):

(1)

where G is the cumulative distribution function of the
standard Gaussian variable, and F the cumulative distribution
function of Z(x). One often utilizes Z(x) for modeling
physical properties in field D. In general, the nondecreasing
function F–1 {G[·]} is expanded in terms of Hermitian
polynomials and the expansion coefficients are determined
from the empirical cumulative distribution function of Z(x)
(e.g., Lantuéjoul and Rivoirard, 1984).

For some commonly used random function models, the
transformation function F–1 {G[·]} can have a simple form.
If for instance, Z(x) follows a lognormal distribution, we
have then:

(2)

where m and σ are respectively the mean and the standard
deviation of ln[Z(x)]. Another example is the truncated
Gaussian random function (Matheron et al., 1987) that will
be presented more in detail in Section 1.2.

The covariance of Y(x) is determined by that of Z(x), and
the simulation of Z(x) turns to be that of Y(x). Several
methods are available for simulating Gaussian random
functions on a regular or irregular grid.

The matrix decomposition method is based on the
Cholesky decomposition of the covariance matrix of the
multi-Gaussian vector. This method is rigorous but limited to
small simulation grid (the number of nodes of the grid of
simulation should not exceed a thousand to generate a
realization in a reasonable time). Conditioning to well data
can be performed simultaneously with the generation of
realizations.

Rather than a simulation method, the turning band method
(Matheron, 1973) is a stereological device designed to reduce
a multidimensional simulation into 1D ones. 1D simulations
are generated on lines uniformly spaced in 2-3D. These 1D
simulations are then projected onto the grid nodes and
averaged to generate higher dimensional realizations. An
attractive feature of the turning band method is that 1D
simulations can be projected onto all kinds of (regular or
irregular) grids (Blanc et al., 1998). Thus, it is possible to
modify the grid system without changing the realization of
the random function model.

Spectral methods (e.g., Chilès and Delfiner, 1999) are
based on the spectral decomposition of the covariance
function. The continuous spectral method does not require
the definition of a grid system before generating realizations,
while discrete spectral method is operational only on regular
grid system. Like the turning band method, spectral methods
provide nonconditional simulations.

The FFT moving average method (Le Ravalec et al.,
2000) combines the moving average method with the fast
Fourier transformation. It consists in performing the
convolution product of the moving average method in
Fourier space, and this makes the moving averaging
computationally easy and fast. This method can generate
efficiently large Gaussian realizations of any stationary
covariance function.

The sequential Gaussian simulation method (e.g., Deutsch
and Journel, 1992) is based on the fact that the conditional
law of a component of a Gaussian vector knowing the other
components remains Gaussian. It is thus possible to generate
a realization of a Gaussian vector component by component
one after the other. Conditioning to well data is carried out
simply by taking these data as the first generated values.
Moreover, although the sequential method is particularly
suited for simulating Gaussian vectors, it does not require, in
theory, the multi-Gaussien property. For example, we can use
the sequential algorithm to generate a lithological distribution
directly. We will reconsider this point in Section 1.3.

Strictly speaking, the probability field method (Froidevaux,
1993) is a device for conditioning a uniform simulation to
well data. In practice, a uniform simulation is often derived
from a Gaussian simulation that can be generated by any
Gaussian simulation algorithm.

Some simulation algorithms (e.g., matrix decomposition,
and sequential simulation) generate directly conditional
realizations, contrarily to some other algorithms (e.g., FFT
moving average method, turning bands). In the later case, a
conditioning step is necessary. This can be realized using
conditioning kriging (Journel and Huijbregts, 1978). The
principle is as follow.

Let ync(x) be a nonconditional realization of a multi-
Gaussian random function Y(x), y*(x) the kriging of Y(x) by
using the real data set (y(x1), y(x2), ..., y(xN)), and y*

nc(x) the
kriging of Y(x) with the simulated data set (ync(x1), ync(x2),
..., ync(xN)). Then yc(x), defined by:

(3)

is a conditional realization of Y(x).

1.2 Truncated Gaussian Simulations

The truncated Gaussian simulation method (Matheron et al.,
1987) is often used for describing the lithofacies distribution
in a reservoir field (Ravenne et al., 1987). Let Y(x) (x ∈ D)
be a standard Gaussian random function defined over the
field D, and I(x) (x ∈ D) an indicator random function
defined by truncating Y(x) at threshold s:

(4)I x Y x s
Y x s( ) ( )

( )= ≥
<


1
0

y x y x y x y xc nc nc( ) ( ) [ ( ) ( )]* *= + −

Z x m Y x( ) exp[ ( )]= + σ

Z x F G Y x( ) [ ( )]= { }−1
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If Y(x) is stationary, then I(x) is also stationary. It can be
used to simulate, for instance, the geometry of the spatial
distribution of a lithofacies in an oil reservoir. This method
can be easily extended to the case of several thresholds in
order to build models with several lithofacies (Matheron et
al., 1987). In the common practice of this method, each
lithofacies corresponds to an interval of the Gaussian
variable. The transitions are possible only between the
lithofacies whose intervals are contiguous. However, to
generate a lithological model with direct transition between
any two lithofacies, one can use disjoint intervals to define
the lithofacies.

Using regionalized thresholds (Beucher et al., 1993)
makes it possible to generate lithofacies models with regional
trend. Regionalized threshold functions are derived from
regionalized proportion functions of lithofacies. The pro-
portion of a lithofacies is defined over a given area (support)
that can vary from the well data support to the whole
reservoir field. Proportion functions are built by using well
data and seismic derived information (Moulière et al., 1997).
In the case where well test pressure data can be interpreted in
terms of permeability data, these data can also be used to
estimate lithofacies proportion functions (Hu et al., 1998).
The regionalized thresholds can also be a realization of
another Gaussian random function (Adler and Thovert,
1998). Figure 1 shows a nonstationary truncated Gaussian
simulation of the lithofacies distribution in a turbidite
reservoir (offshore Brazil).

Another possibility of enriching the method of truncated
Gaussian simulation consists in simultaneously truncating
several Gaussian random functions in the definition of
the lithofacies, which makes it possible to build extremely
varied lithological models (Galli et al., 1994; Le Loc’h and 

Figure 1

Truncated Gaussian simulation. Vertical cross section of a
reservoir model with four lithofacies represented by different
colors, offshore Brazil (after Souza, 1997; Reis, 2001).

Galli, 1997). Unlike the truncated mono-Gaussian case,
truncated pluri-Gaussian simulations do not necessarily im-
pose a sequence of transitions between different lithofacies.
Truncating a Gaussian simulation with another Gaussian
simulation, mentioned in the previous paragraph, is a par-
ticular example of pluri-Gaussian simulations.

In general, lithofacies indicators along wells can be
directly accounted for in truncated Gaussian simulations.
This is achieved first by generating truncated Gaussian
values along wells using the Gibbs sampler (Geman and
Geman, 1984; Freulon and de Fouquet, 1993) and then by
applying conditioning on the whole Gaussian field. In the
particular case where the proportion support is reduced to the
well data support, the conditioning to lithofacies indicator
data along wells is directly satisfied without the above step.
Note that in this particular case, the truncated Gaussian
method becomes equivalent to the probability field method
(Froidevaux, 1993) for simulating lithofacies. This is because
the local distributions involved in the probability field
method are equivalent to the local lithofacies proportions,
and in practice the probability field used for sampling local
distributions is obtained by transforming a Gaussian field
into a uniform field.

1.3 General Sequential Simulations

Let Z = (Z1, Z2, ..., ZN) be the N-dimensional random vector
of interest. Z is neither necessarily multi-Gaussian nor
necessarily associated with a stationary random function. The
sequential simulation approach reduces the problem of
generating an N-dimensional random vector into a series of N
univariate generation problems. The sequential simulation of
Z involves first the definition of an order according to which
the N elements of the vector Z are generated one after
another. Without loss of generality, we assume that the N
components Z1, Z2, ..., ZN are already arranged according to
the defined order and realizations of Z will be generated
sequentially from Z1 to ZN. For each element Zi = (i =1, 2, ...,
N), generating its realization requires the following
operations:
– build the distribution function of Zi conditioned to (Z1,

Z2, ..., Zi–1):

(5)

– draw a value for Zi from the distribution Fc(zi).

In geostatistical practice, the sequential simulation is
frequently used for generating realizations of multi-Gaussian
vectors and non-Gaussian indicator vectors. In the later case,
the conditional probability of the presence of a lithofacies is
estimated roughly by indicator kriging (Deutsch and Journel,
1992). 

In general, the major difficulty of a sequential simulation
lies in the determination of the conditional distributions
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Fc(zi) (i = 1, 2, ..., N). For the heterogeneous reserves of
complex structures, the approximation of these conditional
distributions by kriging based on the variogram is far from
being satisfactory. The use of the multi-point statistics
(Guardiano and Srivastava, 1993; Strebelle and Journel,
2000) makes it possible to capture more complex geological
structures compared to two point statistics (i.e., the
variogram). However, the inference of the multi-point
statistics is much more difficult and requires resorting to
training images. These images can be obtained from the
description of analogous outcrops or conceived by an object-
based approach or a genetic (process-based) approach. From
this point of view, the object-based approach, the process-
based approach and the approach of multi-point statistics are
complementary. We can regard the approach of multi-point
statistics as a way of conditioning the genetic models or the
object-based models.

1.4 Boolean Simulations

The Boolean model (Matheron, 1967; Stoyan et al., 1995)
belongs to the class of the object-based models. An object-
based model is an arrangement of a population of geo-
metrical objects in space. In reservoir engineering, they are
often used to describe meandering systems, fracture networks
and porous media at the granulometric scale, etc.

In the stationary Boolean model, the objects are distributed
in space according to a Poisson point process of constant
density. The forms of the objects and their sizes are inde-
pendent of their locations. Let A a random elementary object
(also called primary grain). The construction of a Boolean
model consists in generating independent elementary objects
Ai (i = 1, 2, ...) having the same statistical characteristics as the
object A and then implementing them at the points of a
Poisson point pattern. The union of these objects denoted X
constitutes a random set called Boolean model:

(6)

The probability for an objet B being in the complementary
of X is given by:

(7)

where |A ⊕ B
∨
| stands for the volume of A dilated by B

(Matheron, 1967) and θ the Poisson density. The Boolean
model is completely defined by the Formula (7) called its
distribution function. In particular, if object B is reduced to a
point, one obtains the “porosity” of the Boolean model:

(8)

That is the proportion of volume occupied by X
–

.
Using the algorithm based on the Markov iteration

(Lantuéjoul, 1997), one can simulate a Boolean model in the

field D under the condition that two subsets C1 and C0 of D
belongs respectively to the union of objects X and to its
complement X

–
.

The above basic Boolean model can be generalized by
combining the objects of different nature or/and by using a
regionalized Poisson density.

1.5 Random Genetic Simulations

Genetic modeling is based on the sedimentary process. The
parameters of the model of sedimentation are often uncertain
and can be represented by random variables or random
functions. This way of modeling the geological formations is
called the random genetic approach. It has the advantage of
being able to better describe the complex geological
formations than an approach only based on random functions
or random sets. Jacod and Joathon (1971) are among the
pioneers of using a random genetic approach to describe the
geometry of a sedimentary formation. Since then, a lot of
work was devoted to this approach for the modeling of the
geological phenomena. Hu et al. (1994) developed a
methodology to simulate internal geometrical architecture of
deltaic depositional system. Figure 2 shows an example of the
random genetic simulation of the Roda sand body X (Spain).
More recently, Lopez, Galli and Cojan (2001) proposed a
method to build a meandering channel system. The major
problem of the genetic approach is the respect of the data
observed at wells. That limited the application of this type of
method to real cases. A solution to this problem probably lies
in the approach of the multi-point statistics. We can use non-
conditional random genetic simulations as training images for
the inference of the conditional probabilities, then to generate
conditional realizations by sequential simulation.

Figure 2

Random genetic simulation. Vertical cross section of the
internal geometry of the Roda sand body X, Spain (after Hu
et al., 1994).
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1.6 Model Conception

Until here, we presented some basic stochastic models and
the algorithms of their simulation. A geological formation is
in general a very complex medium and can be difficultly
modeled by only one basic model. The geological modeling
of a heterogeneous reservoir often composes several major
steps and implies several basic models. We first define
geological units between which the depositional environment
changes. The change of the depositional environment is often
associated with large variations of petrophysical properties.
Then, in each geological unit, a lithological modeling is
performed. This step implies the categorical models such as
the truncated Gaussian model, the model generated by
sequential indicator simulation, the Boolean model or the
genetic models. The choice of a basic model depends on the
geological depositional environment. Finally, inside each
lithofacies, one builds a petrophysical model by using
continuous simulations. The main reason for separating the
geological unit modeling in two steps is that it is in general
easier to introduce geological knowledge into a lithological
model than in a petrophysical model.

Note that the choice and the reliability of a model also
depend on the stage in the life of a reservoir. For example, the
genetic models or the object-based models are particularly
suited for the description of a reservoir at the stage of its
appreciation. At this stage, we have few wells and we need to
resort more to the geological concepts to build a realistic
model. While the pixel-based models make it possible to
model spatial variability on smaller scale when we have much
more quantitative information at the stage of its development.

Lastly, a reservoir model must be sufficiently flexible to
be able to be progressively updated during the acquisition of
new data throughout the life of a reservoir. This imposes the
choice of the simulation algorithms allowing the local
deformations.

2 PARAMETER INFERENCE

Before generating realizations of a stochastic model, it is
necessary to infer the structural parameters of the model. The
means, the variances and the variograms are among the
structural parameters usually used in practice. They constitute
the two first moments of a random function model. In par-
ticular, a multi-Gaussian random function is entirely defined
by its two first moments. The choice and the fitting of a
variogram (structural analysis) were treated in several refer-
ence books of geostatistics (Journel and Huijbregts, 1978;
Chilès and Delfiner, 1999). There are also literatures devoted
to the estimation of the Poisson density of a Boolean model
(Schmitt, 1991; Lantuéjoul and Schmitt, 1991; Schmitt and
Beucher, 1997; Benito, 2003). The use of higher order mo-
ments remains still uncommon in practice because of the

difficulty of their inference, except for work by Guardiano
and Srivastava (1993) and by Strebelle and Journel (2000)
who use multi-point statistics for modeling complexe geo-
logical architectures (see also Section 1.3). The inference of
the structural parameters is a crucial step of reservoir model-
ing because a geologically realistic model with false structural
parameters will not be valid for production forecasts. It is thus
necessary, as of this step, to integrate a maximum of available
information. In this section, we consider the estimation of
lithofacies proportions to illustrate the use of well, seismic and
well-test information for parameter inference.

2.1 Estimation of Lithofacies Proportions

The lithofacies proportions constitute the moments of order 1
of a lithological model. In truncated Gaussian simulations,
the lithofacies proportions determine the thresholds of
truncation of the Gaussian random function. In sequential
indicator simulations, one estimates the probabilities of
presence of the lithofacies at each node of the simulation
grid. These probabilities of presence can be interpreted as the
lithofacies proportions of a set of realizations on the point
support. In Boolean simulations, the lithofacies proportions
are related to the form and the density of objects. When the
object shape and the law of the object size are given, the
object density is entirely determined by the lithological
proportions. The estimation of the proportions (or proba-
bilities of presence) of the lithofacies is then crucial for
the construction of a lithological model. The capacity of
prediction of a lithofacies model strongly depends on the
accuracy of the estimated proportions (or probabilities of
presence) of the lithofacies.

In general, the lithological distribution of an oil reservoir
varies in a nonstationary way. For estimating proportion
functions, we have lithological data at wells. Description in
lithofacies along the wells is discretized according to litholo-
gical variability and the resolution of logs (from a few
centimeters to a few decimeters in general). At any point xα
of the discretization, one defines the indicator function of
lithofacies n:

(9)

The covariance Cn (h) of each indicator function is
inferred from well data or other sources of information (e.g.,
analogous outcrop data). In the case of few wells, it is
necessary to resort to other sources of information (seismic,
well tests, etc.) for the estimation of lithofacies proportions.

2.2 Contribution of Seismic Information

Seismic information concerns the acoustic properties of the
subsurface formation averaged over a support much larger
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than that of well data. These acoustic properties are in
general correlated with the lithology of the formation.
Contrary to well data, seismic data are abundant in terms of
the number of seismic traces and thus provide a dense
coverage in the horizontal plane. However, the vertical
resolution of seismic data is still very limited compared to the
thickness of a reservoir. One can only expect to extract, from
seismic data, a horizontal trend of the lithological variation of
the formation on a thickness much larger than the step of
discretization along the wells.

The seismic data can be a set of seismic attributes derived
from seismic traces. The seismic attributes, in their initial
forms (amplitude, coefficient of reflection, acoustic imped-
ance, etc.), can be difficultly used directly to estimate the
proportions of lithofacies because of their different nature
from the lithological proportions and their often weak
individual correlation with lithological properties. It is thus
advisable to first extract, from several seismic attributes,
synthetic lithological or petrophysical information (proba-
bility of presence of a lithofacies at a seismic pixel,
proportion of a lithofacies on a given thickness, average
porosity on a given thickness, etc.). Then, this synthetic
information is used as constraints or auxiliary data for
estimating lithifacies proportions (well data being used as
principal information).

The extraction of synthetic geological information (e.g.,
lithological proportions, petrophysical properties) averaged
over a vertical interval is the objective of the quantitative
statistical calibration of seismic data (Fournier and Derain,
1995). This calibration consists in establishing a statistical
relation between the seismic attributes (s1, s2, ..., sp) in the
vicinities of the wells and the geological properties g1, g2, ...,
gq known at wells and averaged over the vertical interval
defined according to the seismic resolution.

(10)

This relation will be used to estimate the geological
properties (their estimated values with their confidence
intervals) from each seismic trace (for which geological
information is not known). The Relation (10) can integrate
simple relations between the seismic and geological
parameters and their spatial relations (via the cokriging) as
well. The reliability of the Relation (10) depends on the
number of pairs wells-traces used in calibration.

Most statistical methods of calibration assume that the
points on which calibration is based come from a
homogeneous population. This assumption must be validated
before applying the method. A way of carrying out this
validation consists in first applying the qualitative calibration
of the seismic data. This is to study the correspondences
between seismic facies, defined by the morphology of the
traces in the level of the studied reservoir, and the geological
lithofacies. That makes it possible to divide the reservoir field

into several geologically different subfields. Then, one
applies quantitative calibration separately in each subfield.

Whatever the calibration method used, one obtains only
an average geological information on the interval defined
according to the vertical resolution of the seismic data.
However, this information is very dense laterally and should
contribute to the estimation of the geological properties
between often very distant wells. Several forms of kriging
for estimating the lithological proportions under seismic
constraint are proposed in Moulière et al., (1997).

2.3 Contribution of Well Test Information

Well-tests are commonly used to investigate reservoir
dynamic behaviors around wells. A well test consists in
imposing some flow rate impulse in the reservoir (e.g. start
production, change production rate, stop production, etc.) and
measuring the pressure responses. These pressure data inform
indirectly average flow behavior around wells and can thus
contribute to the estimation of the lithological proportions
around the wells. The interpretation of the pressure response
as a function of time and its derivative often makes it possible
to determine an apparent permeability in the investigation
area of a well test. For each well test, one can derive an
apparent permeability Kwt in a known investigation area V. A
power-averaging formula can be adopted to relate Kwt to the
absolute permeabilities of the lithofacies.

(11)

where Kn stands for the absolute permeability of lithofacies n
and Pn(V) its proportion in V. The exponent ω is to be
calibrated for each well test (Alabert, 1989; Nœtinger,
1993).

Like seismic data, well test data are average information
on support much larger than that of lithological data at wells.
If we adopt the Relation (11), the problem is then to estimate
the lithofacies proportions under constraints on their
(weighted) average. The iterative method under aggregation
constraints was proposed to solve this problem (Hu et al.,
1998). This method consists in minimizing the sum of
the estimation variances of the additive quantities under
constraint acting on their linear combination. Haas and
Nœtinger (1997) propose another method based on
cokriging.

3 HISTORY MATCHING

Once a stochastic model is defined and the structural
parameters determined, one could generate multiple realiza-
tions. These realizations need to be calibrated to hydro-
dynamic data, because a realization, inconsistent with the
production history, will certainly not credible for production

K V P V Kwt n
n

n
ω ω( ) ( )= ∑
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forecasts. The calibration of a stochastic model to the
hydrodynamic data can be formulated as an optimization
problem. First, one defines an objective function that
measures the difference between the data observed in the
reservoir field and the corresponding responses calculated on
a realization of the stochastic model. Then, one modifies this
initial realization until the objective function becomes small
enough. The efficiency of a calibration procedure depends
greatly on the way the realizations of the stochastic model are
deformed. Also, experience shows that a calibration to the
production, without accounting for geological knowledge,
does not lead to a predictive model. Thus, a calibration
method should have the following characteristics: 
– Preservation of the spatial variability/continuity of the

stochastic model.
– Reduction of the number of parameters to optimize.
– Regularity of the objective function with respect to the

parameters to optimize.
– Coverage of the whole solution space.

3.1 Review on Different Calibration Methods

Several calibration methods have been proposed in literature.
Swapping the values at two arbitrary points of a realization or
deforming a realization by genetic operations (e.g., Sen et al.,
1992) violates the spatial continuity of the stochastic model.
The use of these algorithms requires including a covariance
term in the objective function, resulting in a very tedious
optimization. Instead, changing the value at an arbitrary point
of a realization, by drawing from its conditional distribution
or by independent drawing followed with a convolution,
preserves the covariance of the stochastic model. These
algorithms are used in a Markov chain Monte-Carlo
approach for conditional simulation (e.g., Hegstad et al.,
1994; Oliver et al., 1997). However the objective function is
either insensitive or discontinuous to this local discontinuous
deformation. Consequently, although the covariance is
preserved, optimizing such an objective function can still be
extremely slow in the context of constraining large models
to dynamic data. The pilot point method proposed by
de Marsily et al. (1984) consists in first modifying the values
at certain pilot points of a realization by accounting for the
sensitivities of the objective function with respect to the
values at these points. The modifications at the pilot points
are then propagated to the whole realization by using
conditioning kriging. The efficiency of this method comes
from the reduction of calibration parameters and the use of a
gradient based optimization algorithm. Nevertheless,
deterministic modifications of the values at the pilot points,
dictated by an optimization algorithm, may deteriorate the
spatial structure of a realization, although in practice this can
be limited by setting a minimal distance between the pilot
points and a confidence interval of the values at these points
(RamaRao et al., 1995). Note also the method proposed by

Srivastava (1994) for “visualizing uncertainty” of a stochastic
model. This method consists in first generating a realization
in a field larger than the reservoir field. Then by moving the
reservoir field in the larger field, one obtains a series of
correlated realizations of the stochastic model. If we use this
method in an optimization procedure for calibrating a
reservoir model to nonlinear data, it is in general necessary to
generate a complete realization in a field much larger than
the reservoir field so as to obtain a satisfactory solution
realization. This limits the applicability of the method when
dealing with large reservoir models.

The gradual deformation method makes it possible to
modify progressively realizations of multi-Gaussian stochas-
tic models while preserving their space variability/continuity
(Hu, 2000). This method consists in building a stochastic
process whose state space is the ensemble of realizations of a
stochastic model. In particular, we propose to build realiza-
tion chains by combining independent Gaussian realizations.
This method is then coupled with an optimization algorithm
for calibrating realizations of a stochastic model to hydro-
dynamic data. In what follows, we present the gradual
deformation method in the multi-Gaussian framework and
some of its extensions: structural gradual deformation, local
or regionalized gradual deformation. We also introduce the
generalization of this method to any type of stochastic model.

3.2 Gradual Deformation Method

Let Y(t) be a stochastic process whose state space is the
ensemble of realizations of the spatial random function Y. For
each time t, Y(t) is a Gaussian random function defined in
field D. In general, the axis time of the spatio-temporal
random function Y(t) does not have any physical signifi-
cation. Yet, its introduction in the stochastic model allows us
to create dependent transition from one realization to another.

There are many ways of building a spatio-temporal
random function Y(t). A convenient way of building a spatio-
temporal random function Y(t) consists in combining two
independent standard Gaussian random functions Y1 and Y2
with identical covariance:

(12)

It is straightforward to show that, for each t, Y(t) has zero
mean because that Y1 and Y2 have zero mean and that Y(t)
shares the covariance of Y1 and Y2 due to their independence.
cost t and sin t are simply variance normalization coefficients.
Furthermore, for each t, Y(t) is a Gaussian random function
due to the fact that it is a linear combination of Gaussian
random functions. Given two independent realizations y1 and
y2 of Y1 and Y2, we get a continuous chain of realizations y(t).
Hence by applying the Transformation (1), we obtain a
continuous chain of realizations z(t) of the random function
Z. The basic idea of the gradual deformation method is to
calibrate z(t) to hydrodynamic data by fitting parameter t.

Y t Y t Y t( ) cos sin= +1 2
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Figure 3 shows a chain of realizations of a Gaussian random
function with a Gaussian variogram.

Although, throughout this paper, we assume that the
random function Y is stationary of order 2, the deformation
algorithm summarized by Equation (12) remains valid when
Y is only intrinsically stationary (Matheron, 1971). As a
matter of fact, if Y1 and Y2 are two independent intrinsic
random functions with identical variogram, Y(t) defined by
Equation (12) is an intrinsic random function for each t, and
it shares the variogram of Y1 and Y2. However, the extension
to non-Gaussian-related models is not straightforward,
simply because, in general, linear combination of inde-
pendent non-Gaussian random functions will not preserve
the non-Gaussian distribution, although the variogram is
preserved.

Linear data like point values or arithmetic mean values of
Y can be directly accounted for in the spatio-temporal model
Y(t) by using conditioning kriging. We insist here that the
conditioning kriging is always applied to the stochastic
process Y(t) but never to the independent random function Y1
and Y2. In the following, we keep in mind that the linear data
are directly integrated in the model using conditioning
kriging, and we focus only on the problem of calibration to
nonlinear hydrodynamic data.

3.3 Iterative Calibration Procedure

Let f obs = (f1
obs

, f2
obs

, ..., fp
obs) be the vector of the nonlinear

data observed in the physical field and f = (f1, f2, ..., fp) the
corresponding vector of the responses of the stochastic model
Z. For a given realization z of Z, the values of f1, f2, ..., fp are
often obtained through numerical simulations. For instance,
if z represents a permeability field, f1, f2, ..., fp may represent n
pressure data which are generally obtained using numerical
fluid flow simulation. The problem of constraining the
stochastic model Z by the observations consists in generating
a realization of Z which reduces an objective function to a
low-enough level. We define the objective function as the
sum of the weighted quadratic errors of the model responses
with respect to the observations on the physical field:

(13)

where ωi denotes the weight attributed to response fi. The
fi (i = 1, 2, ..., p) are functions of the vector z, so is the
objective function J. We have then a multivariate opti-
mization problem.

Denote by N the number of components of the vector z.
N is often a huge number (104 ∼ 107). Therefore, it is highly
tedious to optimize the objective function directly with
respect to the vector z. Moreover, in the frame of stochastic
optimization, the vector z cannot be arbitrary and it must be a
realization of the stochastic model Z. In order of overcome
these difficulties, it is convenient to transform Z to a
Gaussian random function Y and then to apply the gradual
deformation algorithm on Y. Starting with an initial
realization y0 of Y and another realization u1 of Y independent
of y0, we build a continuous chain of realizations y1(t) by
using Equation (12). Then we minimize the objective
function J with respect to parameter t. In this way, the
N dimensional optimization problem is reduced to a one-
dimensional one, and moreover the optimized vector y1(topt)
is actually a realization of Y.

However, the above optimization might not reduce the
objective function to a low-enough level. It is then necessary
to repeat the above procedure with a new realization chain
y2(t) built by combining y1(topt) and another independent
realization u2 of Y. More generally, the following iterative
optimization procedure can be used. At iteration n, the
continuous chain of realizations yn(t) is written:

(14)

where yn–1 is the optimized realization at iteration n – 1, and
where un (n = 1, 2, ...) are a series of independent realizations
of Y and they are also independent of the initial realization y0.
Then by minimizing the objective function with respect to
parameter t, we get a new realization yn(topt) which improves
(or at least maintains) the calibration to the nonlinear data.
This iterative procedure is stopped when a satisfactory
calibration is reached. We note that, at each iteration, the
objective function J depends only on parameter t. Therefore,

y t y t u tn n n( ) cos sin= +−1
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Figure 3

Global gradual deformation. Chain of realizations of a Gaussian random function with a Gaussian variogram (after Roggero and Hu, 1998).
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we deal always with a one-dimensional optimization
problem. Note also that, due to the mutual independence of
un (n = 1, 2, ...), the solution space can be reached when n
becomes large enough and therefore the procedure converges
always to a global minimum (i.e., a calibrated realization).

There are several efficient classic algorithms for
minimizing the objective function J (e.g., Press et al., 1992).
If J is differentiable with respect to t, then gradient based
algorithms can be used. These algorithms require the
computation of the derivative of the objective function with
respect to t. This can be performed using the finite difference
method which requires solving the forward problem twice for
each t. If the sensitivity coefficients (i.e., the derivatives of
the model responses fi (i = 1, 2, ..., p) with respect to the
components zj (j = 1, 2, ..., N) of the model vector z) are
available, the derivative of the objective function with respect
to t is then derived from:

(15)

There is an extensive literature devoted to the computation
of the sensitivity coefficients ∂fi / ∂zj (e.g., Sun, 1994).
yj (j = 1, 2, ..., N) stand for the components of the Gaussian
vector y. dyj / dt can be easily derived from Equation (14),
although a conditioning kriging term must be included when
linear data are involved. dzj / dyj are simply the derivatives of
the Transformation function (1). In some cases, for instance
when z is a truncated Gaussian model defined by Equa-
tion (4), dzj / dyj does not exist. This makes the objective
function nondifferentiable with respect to t. Consequently,
gradient based optimization algorithms cannot be directly
applied and we must turn to algorithms for nondifferentiable
optimization problems. For instance, the golden section
search method can be used for the above one-dimensional
optimization problem. For multivariate optimization, the
simplex method can be used (Press et al., 1992).

Lastly, instead of using two independent realizations, it is
possible to create a multidimensional process of realizations
by using several independent realizations. Examples of
calibration to production data by using the combination of

multiple realizations are presented in Roggero and Hu
(1998). Note that increasing the number of realizations in
each iteration allows reducing the number of iterations in the
calibration procedure. However, within each iteration, the
search for an optimal combination is more expensive. Thus a
compromise that depends on each application is required.
The above approach was successfully applied to an mature
oil field in the Brazilian offshore (Reis, 2001; Feraille et al.,
2003).

3.4 Structural Gradual Deformation

In many cases, there is not enough data to accurately infer the
structural parameters of a stochastic model (e.g., its mean,
variance, covariance function, etc.). These structural param-
eters are often given in terms of intervals or a priori
distributions. If the values of these structural parameters are
biased, it will be desperate to find a realization calibrated to
nonlinear data. Therefore these structural parameters must
also be considered as fitting parameters. This involves the
deformation of a stochastic model with respect to its
structural parameters. Most stochastic simulation algorithms
require at least the specification of the covariance before
generating realizations. In order to deform a realization while
modifying simultaneously its structural parameters, it is
necessary to use a stochastic simulation algorithm that
separates the generation of random numbers and the
imposition of a structure.

Denote by X a standard Gaussian white noise and L the
covariance operator, then:

Y = L[X] (16)

is a Gaussian field with the imposed covariance. In this form,
it is clear that we can gradually deform the Gaussian white
noise X by using the above method and modify at the same
time the covariance function. That is:

(17)

where U and V are two independent standard Gaussian white
noises. Figure 4 shows three realizations with the same
Gaussian white noise but with different variogram ranges.

Y L t L X t L U t V t( , ) [ ( )] [ cos sin ]= = +

dJ

dt

dz

dy

dy

dt
f f

f

z
j

jj

N
j

i
i

p

i i
obs i

j

= ∑ ∑ −
= =1 1

ω ∂
∂

( )

150

Figure 4

Structural gradual deformation. Three Gaussian realizations with the same random seed but with different variogram ranges.
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There exist several simulation algorithms that separate the
generation of random numbers and the imposition of a
covariance function. The method based on the Cholesky
decomposition of the covariance matrix is such a method, but
limited to small simulations (say less than 1000 nodes). For
large simulations, we can resort to the FFT moving average
method (Le Ravalec et al., 2000).

All parameters of the covariance function, including
ranges and directions of anisotropy, etc., are contained in the
covariance operator L. As for the covariance type, instead of
choosing somewhat arbitrarily a conventional covariance
(exponential, spherical or Gaussian covariance), it is conve-
nient to use the stable covariance family:

(18)

that exhibits distinct behaviors at origin depending on
parameter α (α ∈ (0.2)). For instance, α = 1 corresponds to
the exponential covariance and α = 2 corresponds to the
Gaussian covariance. When α varies continuously from 1
to 2, we get a continuous chain of realizations whose
covariance evolves continuously from the exponential model
to the Gaussian model. Consequently, by coupling with an
inverse procedure, one may identify the local smoothness
(inaccessible from distant point data) of a physical field.
Examples of calibrating structural parameters to production
data are presented in Le Ravalec-Dupin et al. (2001).

3.5 Local Gradual Deformation

When the observations are scatted in different zones of the
studied field, the calibration using global deformation may be
inefficient, because improving the fitting in one zone may
deteriorate the fitting in another zone. This led us to consider
the gradual deformation zone by zone. Consider a partition of
the field into n zones. Let X be a Gaussian white noise in the
whole field and X1, X2, ..., Xn the partition of X in the n zones.
As X1, X2, ..., Xn are mutually independent, it is then possible

to perform their gradual deformation individually. By
applying the covariance operator L on these independent
white noises, we obtain a consistent correlated model Y:

(19)

where t = (t1, t2, ..., tn) and where Ui and Vi for i = 1, 2, …, n
are mutually independent Gaussian white noises. For a given
set of realizations of Ui and Vi, we solve an optimization
problem of n parameters t1, t2, ..., tn to obtain a realization
which improves (or at least maintains) the calibration to the
data. This procedure can be iterated until a satisfactory
calibration is reached.

The idea of local (or regionalized) deformation is inspired
by the traditional practice of zonation for history matching in
petroleum engineering and for model calibration in sub-
surface hydrology. The traditional zonation method consists
in dividing the whole reservoir field in several zones and
performing data calibration separately in each zone. This
practice does not guaranty the spatial continuity of the
reservoir model between zones. However, instead of directly
changing the model property like the traditional method, the
local deformation method proposed in this paper intervenes
in the underlying Gaussian white noise of the reservoir
model. Then by applying the covariance operator on the
modified Gaussian white noise, the spatial continuity of the
stochastic model is preserved. Consequently, this avoids the
drawback of the traditional method. Another attractive
feature of the local deformation method is its applicability to
the updating of an existing reservoir model when new data
are available. For instance, when a new well is drilled, only a
limited zone around the well need to be updated to fit the
new data, while preserving the other parts of the existing
model. Figure 5 shows an example of local deformation of
a Gaussian simulation. Examples of local calibration to
production data are presented in Reis (2001) and in Le
Ravalec-Dupin et al. (2001).
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Local gradual deformation. Two Gaussian simulations that are different only around the small window.
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3.6 Generalization to Non-Gaussian Simulations

The gradual deformation algorithm characterized by Equa-
tion (12) cannot be directly extended to non-Gaussian-related
models, simply because, in general, linear combination of
independent non-Gaussian random functions will not pre-
serve the non-Gaussian distribution, although the variogram
is preserved. For instance, a linear combination of two
independent uniform variables does not follow the uniform
distribution but a triangular distribution.

However, from the computing point of view, any
stochastic simulation procedure can be regarded as an
operation that transforms a series of pseudo uniform numbers
(generated by a pseudo random number generator) into a set
of numbers of interest that are distributed according to the
required distribution. On the other hand, uniform numbers
can be transformed to Gaussian numbers by the relation:

(20)

where G is the standard Gaussian cumulative distribution
function, and where U is uniform variable between 0 and 1.
Therefore in principle, the gradual deformation algorithm for
Gaussian models can be used to deform gradually any kind
of stochastic models. In particular, we have applied the above
principle to general sequential simulations (Hu et al., 2001)
and to Boolean simulations (Hu, 2003). Figure 6 shows an
example of gradual migration of objects of a Boolean
simulation. We observe in this example the progressive
destruction of a flow path (in red color) in the upper part of
the field and the progressive construction of a flow path in
the lower part of the field.

CONCLUSIONS

Modeling heterogeneous reservoirs requires resorting to a
probabilistic approach, which allows, on one hand, to
integrate data of various natures and scales and on the other
hand, to evaluate uncertainties by generating multiple
possible scenarios of the reservoir heterogeneity. Building a
stochastic reservoir model must account for the geological
depositional environment of the reservoir, so as to represent
the major heterogeneities that control fluid flow. The

quantitative information from wells, seismic and well test,
etc. must be used for the inference of the model structural
parameters. Constraining model realizations to the hydro-
dynamic data from production allows to further increase the
model reliability for production forecasts.

Several geostatistical models are available. The Gaussian-
related models or more generally pixel-based models have
the advantage of being more easily constrained by quan-
titative measurements. But they are often geologically poor.
On the contrary, the object-based models and the process-
based (or genetic) models allow to better account for
geological concepts but their constraint to quantitative
measurements is more difficult.

The object-based models can be regarded as a com-
promise between the models based on the random functions
and the models based on the geological depositional
processes. In the object-based Boolean model, for instance,
the locations of objects are defined according to a Poisson
point process that is a purely mathematical concept, while the
shape of objects can have a geological sense. The Boolean
model is of great interest when geological objects can be
clearly defined like in fault and fracture networks, vacuolar
media, meandering channel systems, etc. There is an
algorithm for conditioning Boolean simulations to litho-
logical data. Their calibration to production data can be
performed by the migration and deformation of objects based
on the gradual deformation method.

The process-based (genetic) models mimic geological
processes of deposition and thus allow better representing
reservoirs geological architecture. The real applicability of
these models will depend on their flexibility to be constrained
not only to hydrodynamic measurements (well tests, pro-
duction history) but also to static data (lithological description
along wells, seismic maps, etc.). One possibility lies in the
statistical pattern recognition or more particularly in the
multi-point statistics (Strebelle and Journel, 2000). Genetic
simulations can provide nonconditional realizations that can
be used as training images for the inference of pattern
statistics or multi-point statistics. From these statistics, it is
possible to regenerate realizations by sequential simulation.
Conditioning sequential simulations to lithological data is
immediate. For the calibration to hydrodynamic data, one can

Y G U= −1( )
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Figure 6

Gradual deformation of a Boolean simulation. Chain of realizations of a Boolean model with elliptic objects (in white).
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use the gradual deformation method that is perfectly
compatible with the algorithm of sequential simulation.

The hydrodynamic calibration of a reservoir model
is formulated as an optimization problem. Optimizing a
stochastic model defined on a large grid requires reparam-
eterizing the model, on the one hand to reduce the number of
parameters to be optimized and on the other hand to preserve
the spatial structure of the model. The gradual deformation is
a parameterization method that satisfies both of these
requirements. This method can be used not only for the
global deformation but also for the local deformation of a
reservoir model. This allows for progressive updating of the
model during the life of a field. Because of uncertainties in
model structural parameters, there is also the possibility to
consider them as fitting parameters. Moreover, the gradual
deformation method is not limited to Gaussian-related
models. Different forms of gradual deformation can be
integrated in an iterative optimization procedure to constrain
any type of stochastic simulations to hydrodynamic data.
Examples from synthetic and real case studies show the
applicability of the approach. Methods for further accel-
eration of the above calibration procedure are proposed in Hu
and Le Ravalec-Dupin (2003) and in Schaaf et al. (2003).

Another way to accelerate the calibration procedure
consists in reducing the time of fluid flow simulation for each
realization. That can be done either by upscaling the fine
geological model or by using a fast alternative flow
simulator. Work of Mezghani and Roggero (2001), Schaaf et
al. (2002) are devoted to the integration of an upscaling step
into the procedure for calibrating fine scale models, while
Le Ravalec-Dupin and Fenwick (2002), Caers (2003) explore
the use of an alternate simulator based on streamlines in the
procedure of calibration.

Updating a stochastic reservoir model by the integration of
more and more available data reduces the distance of the
model from the reality. But the real reservoir architecture is
never accessible completely and there is always a degree of
uncertainty. In this paper, we focused on obtaining a con-
strained model realization from a nonconstrained realization.
The iteration of the same procedure using other non-
constrained realizations generates other constrained real-
izations of the stochastic reservoir model. All these constraint
realizations are coherent with our conception of the
geological environment of deposition and with all the
available quantitative measurements. Our principal concern
was to preserve the model spatial structure inferred from
physical measurements. These constrained realizations are to
be used to optimize the field development and production
project while evaluating associated uncertainties. Never-
theless, one can wonder whether these constrained real-
izations, even in a sufficient number, are representative of
all possible constrained realizations (or the a posteriori
distribution in the Bayesian terminology (Tarantola, 1987))
of the adopted reservoir model. Le Ravalec-Dupin et al.

(2000) carry out a preliminary investigation on this question.
Research is in progress to further clarify this question.

Nevertheless, even if one can generate a set of repre-
sentative realizations of the constrained stochastic model, one
does not necessarily control all uncertain aspects in the
process of reservoir characterization. The quantification of
uncertainties is always within the framework of an adopted
stochastic reservoir model. However, the choice of a model is
often somewhat subjective and therefore uncertain. We
believe the uncertainty on the choice of a model is partially
accounted for by the fact that we can calibrate the structural
parameters of the adopted model. In addition, we can also
consider several types of plausible models. We thus increase
the reliability of the production forecast. But from practical
as well as conceptual points of view, no one can claim to
cover all uncertain aspects. There is thus always a degree of
doubt. “Doubt is not a pleasant condition, but certainty is a
ridiculous one” (Voltaire).
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