20th Anniversary

Nav, VII, CICAS-V, and Beyond: Understanding Driver Behavior has Just Begun

Christopher Nowakowski

California PATH

California PATH Human Factors Workshop October 23rd and 24th, 2006

The Evolution of Driving

Attribute	Then	Now
Top Speed	Model T	Typical
	45 mph	120 - 200 mph
Control	Manual	Power Assist
	(Brute Force)	(Active, ABS, DSC)
Comfort	Open Carriage	Driver Cockpit
Complexity	???	4 M miles or roads
	8000 vehicles	237 M vehicles
Distractions	Radio	Too many to list
Information	What you can see	Verge of infinite

Information Displays: The Good, the Bad, and the Ugly

Helps the Driver

- Relevant
- Timely
- Easy to perceive
- Easy to understand
- Easy to find

Hurts the Driver

- Irrelevant or ambiguous
- Poorly timed
 - Interrupts
 - Distracts
 - Information overload
- Difficult to perceive
- Difficult to understand
- Difficult to find

History of Navigation Research

- 104 1980s: Paper Maps
- 1980s: Electronic Maps (ETAK Navigator)
 - Are electronic maps better/worse than paper?
 - Is route-guidance an enhancement or requirement?
- Early 1990's: Route Guidance (Ali Scout)
- Mid 1990's: Modern GPS Navigation (PathMaster)
 - Are they safe to use while driving?
 - Screen design, font size, input method
 - Driver Errors
- Today: All major automakers have Nav systems
 - Real-Time Traffic Information
 - Voice Interfaces

Transportation Benefits

If drivers know where they are going...

- Reduced travel time (less time lost) / congestion
- Confidence/Ability to reroute around traffic even if unfamiliar with an area
- Less time scanning for navigation related signs = more time scanning for hazards
- Less erratic behavior
- Lower driver workload

Ambiguous/Poorly Timed Information

Video Of Driver Using Prototype Navigation System

- Some information is not always better
- Easily fixed with HF studies

Poor Usability Safety Consequences

- Missed Turns / Wrong Turns
- Longer eyes-off-the-road time
- Increased distraction
 - Fixation on the system rather than the road
- Increased driver workload
- Abrupt or unsafe maneuvers
 - Abrupt lane change
 - Hard braking
 - Erratic maneuvers (is it here?)

Technology & Information

Technology Advancement	New Information to Drivers
GPS & Mapping	Position & Route Guidance
EdMap (Enhanced Maps)	Speed Monitoring, RDW, CSW
Radar, Lidar, Ultrasonic, Video	FCW, RDW, SOD/SCA
Eye Tracking	Drowsy Driver / Distracted Driver
V2V & V2I Communications (DSRC)	All of the above plus Intersection collision avoidance Real-time traffic conditions Stopped traffic ahead Weather conditions & hazards ???

Communication Revolution

Vehicle Infrastructure Integration

- California VII Testbed
- 40+ Roadside Units
- Intersections/Freeways
- Application Partnerships
 - Safety
 - ATIS

CICAS-V

- Using VII RSE
- In-Veh RLR Warning
- Future intersection warnings

Future HF Challenges

- 1. Designing optimal information conveyance
 - Content
 - Modality (auditory/visual/haptic & roadside vs. in-veh)
 - Timing
- 2. Integration of warnings (15+ warnings discussed)
 - Prioritization
 - Discrimination
- 3. Integration of vehicle- and infrastructure-based warnings
 - Compatibility
 - Content
 - Timing
 - Trust

Summary

- The task of driving is evolving
- The quantity of information that can be provided to drivers is increasing with technology
- Poor usability can easily negate any positive effects of providing better information to drivers
- Further increases in safety will only come from understanding drivers
 - Easy or common sense solutions have been applied
 - Crash causation is complex
 - Solutions to one problem ⇒ cause another

