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University of Economics, Department of Mathematics, Prague, Czech Republic.

Abstract. The aim of this article is to present a short outline of early Indian
mathematics. I mean to summarize the results and contributions of Indian
mathematics which were made in the period from the first civilization in Indian
subcontinent to the 5th century AD when classical era of Indian mathematics began.

Indus valley civilization

The first use of mathematics in the Indian subcontinent was in the Indus valley and dates
as far back as 3000 BC [Wheeler]. The earliest known urban Indian culture was at Harappa in
the Punjab and at Mohenjodaro near the Indus River. Excavations at Mohenjodaro, Harappa
and the surrounding area of the Indus River discovered evidence of the use of basic mathematics.
The mathematics used by the early Harappan civilization had mostly practical intent and was
concerned with weights and measuring scales. Excavations present knowledge of basic geometry.

This culture also produced artistic designs. On carvings there is evidence that these people
could draw concentric and intersecting circles and triangles. The further using of circles in the
Harappan decorative design can be found at the pictures of bullock carts, the wheels of which
had perhaps a metallic band wrapped round the rim. It clearly points to the knowledge of the
ratio of the length of the circumference of the circle and its diameter, and thus of the value of π.

The Harappans adopted a uniform system of weights and measures [O’Connor, Robertson].
Detail analysis discovered that weights corresponding to ratios of 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10,
20, 50, 100, 200, and 500 were used. The existence of a graduated system of accurately marked
weights shows the development of trade and commerce in Harappan society.

Some appliances for the measurement of length were discovered. Also a remarkably accurate
decimal ruler known as the Mohenjodaro ruler is very interesting. Its subdivision has a maximum
error of just 0.005 inches at a length of 1.32 inches. The length have been named the Indus
inch. Another scale was discovered when a bronze rod was found which was marked in lengths
of 0.367 inches. The accuracy with which these scales are marked is certainly surprising. And
100 units of this measure is 36.7 inches which is the measure of a stride. Measurements of the
ruins of buildings which have been excavated show that these units of length were accurately
used by the Harappans in construction.

Vedic period

Aryan tribes from the North of Indian subcontinent invaded and destroyed the Harappan
culture around 2000 BC. They founded the Vedic religion. And thanks their works we gain the
first literary evidence of Indian culture including mathematics. The word Vedic comes from the
collections of sacred texts known as Vedas. Mathematics and astronomy first appear in Vedic
works during the 2nd millennium BC.

The word ganita first appears in Vedic works. The term literally means the science of
calculation. It is basically the Indian equivalent of the word mathematics.

The mathematical parts of Vedic works show the surprising development of mathemat-
ics. We can find the description of geometric shapes (including triangles, rectangles, squares,
trapezia and circles), the solution of the problem of equivalence of area, squaring the circle and
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vice-versa, early forms of the Pythagoras’ theorem, estimations for π etc.
Sacrificial rites were the main feature of the Vedic religion. There was a ritual which took

place at an altar where food, also sometimes animals, were sacrificed. The Sulbasutras are
vedic works which give rules for the construction of fire altars. If the ritual sacrifice should be
successful then the altar had to conform to very precise measurements. There were two types
of sacrificial rites, one being a large public gathering while the other was a small family affair.
Different types of altars were necessary for the two different types of ceremony.

Certainly the Sulbasutras do not contain any proofs of the rules which they describe. Some
of the rules, such as the method of constructing a square of area equal to a given rectangle, are
exact. Others, such as constructing a square of area equal to a given circle, are approximations.

The most important mathematical manuscripts are the Baudhayana Sulbasutra written
about 800 BC, the Apastamba Sulbasutra written about 600 BC, the Manava Sulbasutra written
about 750 BC and the Katyayana Sulbasutra written about 200 BC.

The Sulbasutras are really construction manuals for geometric shapes such as squares,
circles, rectangles, etc. The first result which was clearly known to the authors is the Pythagoras’
theorem [Juškevič]. The Baudhayana Sulbasutra gives only a special case of the theorem:

The rope which is stretched across the diagonal of a square produces an area double
the size of the original square.

The Katyayana Sulbasutra however, gives a more general version:

The rope which is stretched along the length of the diagonal of a rectangle produces
an area which the vertical and horizontal sides make together.

The Pythagoras’ theorem is used frequently and there are many examples of Pythagorean
triples in the Sulbasutras. For example (5, 12, 13), (12, 16, 20), (8, 15, 17), (15, 20, 25), (12,
35, 37), (15, 36, 39).

The construction of the square equal in area to two given unequal squares is also based on
the Pythagoras’ theorem ((AB)2 + (AS)2 = (BS)2).

Separate a parallel band of the width of the smaller square from the bigger square.
The rope which is stretched diagonally across the band unites both (the squares).

The problem of making a square whose area is equal to a difference of two given squares is
solved similarly. (The Pythagoras’ theorem (SP )2 − (SA)2 = (AP )2 is used.)

The next construction is to find a square equal in area to a given rectangle.
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Figure 1. The square equal in area to the sum of two squares (left), the square equal in area to the
difference of two squares (right).
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Figure 2. The square equal in area to the given rectangle.

The rectangle ABCD is given. Let E be marked on AD so that AE = AB. Then complete
the square ABFE. Now bisect ED at H and divide the rectangle EFCD into two equal rectangles
with the line HG. Now move the rectangle HGCD to the position FBIK. Complete the square
AILH. The required square is equal in area to the difference of the squares AILH and FKLG.
Now rotate IL about I so that it touches BG at R, then IL = IR. Now draw RP parallel to GL
such that P is on IL. Then IP is the side of required square equal to the given rectangle ABCD.

If we denote |AB| = a and |BC| = b, the following identity is used
(

b+a

2

)2

−
(

b−a

2

)2

= ab.

All Sulbasutras contain a method explaining how to square the circle. It is an approximate
method based on constructing a square of side 13

15
times the diameter of the given circle. The

result corresponds to π = 4(13

15
)2 = 676

225

.
= 3.00444. It is not a very good approximation and

certainly not as good as that one known earlier to the Babylonians.
Many different values of π appear in the Sulbasutras, even several different ones used in one

text. It is not surprising because the authors thought in terms of approximate constructions,
not in terms of exact constructions with π. A given approximate construction implied some
value of π.

The Sulbasutras also examine the opposite problem of finding a circle equal in area to the
given square. The following construction appears.

Given a square ABCD find the centre S. Rotate SA to the position SP such that SP is
perpendicular to the side AB. The point O is the midpoint of the side AB. Let Q be the point
on PO such that OQ is one third of OP. The required circle has centre S and radius SQ.

If we denote a the side of the square ABCD, then the diameter of required circle is

d =
(

1 +
√

2−1

3

)

a and the corresponding value of π is π
.
= 3.088.
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Figure 3. The circle equal in area to the given square.
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The most remarkable result of the mathematics of the Sulbasutras is a close approxima-
tion to

√
2. Both the Apastamba Sulbasutra and the Katyayana Sulbasutra give the following

[O’Connor, Robertson]:

Increase a unit length by its third and this third by its own fourth less the thirty-fourth
part of that fourth.

Now this gives
√

2 = 1 + 1

3
+ 1

3·4
− 1

3·4·34
= 577

408

.
= 1.414215686.

Compare the correct value
√

2
.
= 1.414213562 to see that the Apastamba Sulbasutra has

the answer correct to five decimal places. (The Babylonians used the value
√

2
.
= 1.414212963

in the 2nd millennium BC [Bečvář et al.]).
An early method for calculating square roots can be found in some Sulbasutras [O’Connor,

Robertson. The method involves repeated application of the formula
√

Q =
√

(A2 + b)
.
= A+ b

2A
,

where A,Q ∈ N and A2 < Q < (A + 1)2.
Advanced numerical calculations required the correct number expression. The definite

appearance of decimal symbols for numerals and a place value system is contained in the Vedic
mathematics.

Jainism

The Vedic religion with its sacrificial rites began to be replaced by other religions. One of
these was Jainism, a religion and philosophy which was founded in India around the 6th century
BC. The Jaina religion became the prominent religion in the Indian subcontinent and gave rise
to Jaina mathematics. The main Jaina works on mathematics date from around 300 BC to 400
AD.

There are several significant Jaina works including the Surya Prajinapti and several Sutras
There is also evidence of individual mathematicians including Bhadrabahu (possibly lived around
300 BC) and Umaswati (possibly lived around 150 BC). Umaswati is known as a great writer on
Jaina metaphysics but he also wrote a work Tattwarthadhigama-Sutra Bhashya which contains
mathematics. Amongs the mathematical results are mensuration formulas which include a
circumference of a circle, an area of a circle, a diameter, a chord, a height of the segment.
Knowledge of solution to quadratic equations is shown in these formulas.

The Jaina’s cosmological ideas influenced mathematics in many ways. The Jainas were
fascinated with large numbers, their cosmology contained a time period of 2588years . Calcula-
tions with great numbers led to the decimal place value system of numeration and arithmetic
developed according to it. The Jaina works refer to a very large number of names giving the po-
sitions in the numeral system. The Jainas required very large numbers for their measurements
of space and time. The introduction of such large numbers was the impulse to the conception
of infinity. Numbers were classified as enumerable, unenumerable and infinite. Infinity itself
was of five kinds: infinite in one direction, infinite in two directions, infinite in area, infinite
everywhere, infinite perpetually.

Jaina works contain simple laws of indices.

The first square root multiplied by the second square root, or the cube of the second
square root.

Expressed in symbols it means (
√

a) · ( 4
√

a) = ( 4
√

a)
3
.

The notation of permutations and combinations has appeared in the Jaina works. The
Jaina name for the subject of permutations and combinations is vikalpa. Simple problems are
solved, such as the number of selections that can be made out of a given number of men and
women. Correct formulas for both permutations and combinations are found in Jaina works
(for n ∈ N)

C1(n) = n, C2(n) =
n(n − 1)

1 · 2 , C3(n) =
n(n − 1)(n − 2)

1 · 2 · 3 ,

10
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P1(n) = n, P2(n) = n(n − 1), P3(n) = n(n − 1)(n − 2).

The method of finding the number of combinations is called Meru Prastara and it is a
formation of an early Pascal triangle. The Meru Prastara rule is based on the following formula
Cr(n + 1) = Cr(n) + Cr−1(n). A commentator of the 10th century AD explained it as follows.

First draw a square. Below it, and starting from the middle of the low side, draw
two squares. Similarly, draw three squares below these, and so on. Write the number
1 in the middle of the top square and inside the first and last squares of each row.
Inside every other square, the number to be written is the sum of the numbers in the
two squares above it overlapping it.

1

1 1

1 1

1 1

1 1

2

3 3

4 46

Figure 4. The diagram Meru Prastara.

Bakhshali manuscript

The Bakhshali manuscript is an early mathematical work written on birch bark which was
discovered in the summer of 1881 near the village Bakhshali. The most probable date of its
origin ranges from 200 to 400 AD. The notation used have features not found in any other
document. Fractions are not dissimilar in notation to that used today, written with one number
below the other. No line appears between the numbers as we would write today, however.
Another unusual feature is the sign + placed after a number to indicate a negative. It is very
strange for us today to see our addition symbol being used for subtraction.

For instance 3

4
− 1

2
was written [Datta, Singh]:

3 1+
4 2

Equations are given with a large dot representing the unknown. A confusing aspect of
Indian mathematics is that this notation was also often used to denote zero, and sometimes
this same notation for both zero and the unknown are used in the same document. Here is an
example of an equation as it appears in the Bakhshali manuscript [Kaye].

• 5 yu mū • sa • 7+ mū •
1 1 1 1 1 1

Yu (yuta) means add, sa means and, mū (mūla) means root (square root). This is in our
notation

x + 5 = y2,

x − 7 = z2.
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The method of equalisation is used in many problem solving tasks which occur in the
manuscript. The problems concerning equalising wealth, position of two travellers, wages, and
purcheses by a number of merchants are included. These problems can all be reduced to solving
a linear equation with one unknown or to a system of n linear equations with n unknowns.
Some of these problems lead to indeterminate equations.

Another interesting piece of mathematics in the manuscript concerns calculating square
roots [O’Connor, Robertson].

In the case of a non-square number, subtract the nearest square number, divide the
remainder by twice this nearest square; half the square of this is divided by the sum of
the approximate root and the fraction. This is subtracted and will give the corrected
root.

This means that the following formula is used for A,Q ∈ N and A2 < Q < (A + 1)2

√

Q =
√

(A2 + b)
.
= A +

b

2A
− ( b

2A
)2

2(A + b

2A
)
.

The Bakhshali manuscript is a unique piece of work. The method of the commentary
follows a highly systematic order. It starts with the statement of rule followed by examples and
demonstration of the operation of the rule. Other Indian works were written in a poetic form
comprising of short statements of rules, and rarely included examples. This poetic form was
favoured because of the limited supplies of writing equipment available.

Conclusion

By about 500 AD the classical era of Indian mathematics began with the work of Aryabhata.
His work was both a summary of Jaina mathematics and the beginning of new era for astron-
omy and mathematics. Aryabhata headed a research centre for mathematics and astronomy
at Kusumapura. Another mathematical and astronomical centre was at Ujjain which grew up
around the same time as Kusumapura. The most important of mathematicians at this second
centre was Varahamihira who also made important contributions to astronomy and trigonom-
etry. The next scientist of major importance at the Ujjain school was Brahmagupta who lived
round the beginning of the 7th century AD. He made one of the most essential contributions to
the development of number systems with his remarkable contributions to negative numbers and
zero. He made other contributions to the understanding of integer solutions to indeterminate
equations and to interpolation formulas invented to aid the computation of sine tables. A con-
temporary of Brahmagupta who headed the research centre at Ujjain was Bhaskara I. Bhaskara
I was also a commentator on the mathematics of Aryabhata.
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