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Preface

This is a working draft of a book on the foundations of programming lan-
guages. The central organizing principle of the book is that programming
language features may be seen as manifestations of an underlying type
structure that governs its syntax and semantics. The emphasis, therefore,
is on the concept of type, which codifies and organizes the computational
universe in much the same way that the concept of set may be seen as an
organizing principle for the mathematical universe. The purpose of this
book is to explain this remark.

Comments and suggestions are most welcome, and should be sent to
the author at rwh@cs.cmu.edu.
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Part I

Judgements and Rules





Chapter 1

Inductive Definitions

Inductive definitions are an indispensable tool in the study of program-
ming languages. In this chapter we will develop the basic framework of
inductive definitions, and give some examples of their use.

1.1 Objects and Judgements

We start with the notion of a judgement, or assertion, about one or more
objects of study. We shall make use of many forms of judgement, including
examples such as these:

n nat n is a natural number
n = n1 + n2 n is the sum of n1 and n2
a ast a is an abstract syntax tree
τ type τ is a type
e : τ expression e has type τ
e ⇓ v expression e has value v

A judgement states that one or more objects have a property or stand in
some relation to one another. The property or relation itself is called a judge-
ment form, and the judgement that an object or objects have that property
or stand in that relation is said to be an instance of that judgement form.
A judgement form is also called a predicate, and the objects constituting an
instance are its subjects.

We use the meta-variables J, K, and L to stand for an unspecified judge-
ment form, and write a J to assert that J holds of the object a. When it is not
important to stress the subject of the judgement, we sometimes abuse nota-
tion and write J stand for an unspecified instance of the judgement form J,
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relying on context to disambiguate. When discussing particular judgement
forms, we freely use prefix, infix, or mixfix notation, as illustrated by the
above examples, in order to enhance readability.

We shall be deliberately vague about the universe of objects that may be
involved in an inductive definition. As a rough-and-ready rule we permit
any objects that can be constructed from finitely many other such objects by
an effectively computable process. In particular, we shall assume that the
universe of objects is closed under tupling, the formation of finite n-tuples
of objects, written (a1, . . . , an), where the ai’s are objects. We shall also as-
sume that the universe of objects contains infinitely many distinct atoms,
also called names or symbols, and that it is closed under tagging of another
object with a name. Tupling permits us to express judgements about mul-
tiple objects, and tagging permits us to discriminate among collections of
objects.

1.2 Inference Rules

An inductive definition of judgement form, J, consists of a collection of
inference rules

a1 J . . . ak J
a J

, (1.1)

where a and each a1 . . . , ak are objects. The judgements above the horizon-
tal line are called the premises of the rule, and the judgement below the line
is called its conclusion. If a rule has no premises (that is, when k is zero), the
rule is called an axiom; otherwise it is called a proper rule.

An inference rule may be read as an implication stating that the premises
are sufficient for the conclusion: to show a J, it is enough to show a1 J, . . . ,
ak J. When k is zero, a rule states categorically that its conclusion holds,
independently of any assumptions. Bear in mind that there may be, in gen-
eral, many rules with the same conclusion, each specifying sufficient con-
ditions for the conclusion. Consequently, if the conclusion of a rule holds,
then it is not necessary that the premises hold, for it might have been de-
rived by another rule.

We say that a judgement form, J, is closed under an inference rule of
the form (1.1) iff a1 J, . . . , ak J imply a J. The judgement form inductively
defined by a set of rules of the form (1.1) is the strongest, or most restrictive,
judgement form, J, closed under those rules. That is, the rules are taken as
necessary, as well as sufficient, conditions for instances of that judgement to
be derivable according to the rules: a J holds if, and only if, there is some
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rule of the form (1.1) such that a1 J, . . . , ak J are all derivable according to
the rules.

The following rules constitute an inductive definition of the judgement
form nat.

zero nat (1.2a)

a nat
succ(a) nat

(1.2b)

According to this definition, the judgement a nat is holds exactly when
either a is zero, or a is succ(b) for some b such that b nat. In other words,
a nat holds iff a is a natural number.

Similarly, the following rules constitute an inductive definition of the
judgement form tree:

empty tree (1.3a)

a tree b tree
node(a, b) tree

(1.3b)

According to these rules the judgement a tree holds exactly when a is a bi-
nary tree, either the empty tree, empty, or a node, node(a, b), with children
a and b such that a tree and b tree.

The judgement a = b nat expresses equality of a nat and b nat. This
judgement form is inductively defined by the following rules:

zero = zero nat (1.4a)

a = b nat
succ(a) = succ(b) nat

(1.4b)

Similarly, the judgement a = b tree expresses equality of a tree and b tree.
This judgement form is inductively defined by these rules:

empty = empty tree (1.5a)

a1 = b1 tree a2 = b2 tree

node(a1, a2) = node(b1, b2) tree
(1.5b)

These examples make informal use of the concept of a rule scheme, which
specifies an infinite collection of rules by using meta-variables, here a and b,
to stand for arbitrary objects from the universe of discourse. An instance
of a rule scheme is a rule obtained by replacing the meta-variables by an
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object from the universe. We tacitly regard a rule scheme as standing for
the collection of its instances, relying on context to determine which are the
meta-variables of the scheme. (A more rigorous account of these informal
conventions is given in Chapter 4.)

1.3 Derivations

To show that an instance of an inductively defined judgement form holds,
it is enough to exhibit a derivation of it. A derivation of a judgement is
a composition of rules, starting with axioms and ending with that judge-
ment. A derivation has a natural tree structure arising from regarding the
derivations of the premises of the rule as children of a node representing
an instance of that rule. We usually depict such trees with the root (con-
clusion) at the bottom, and with the children of node representing a rule
instance drawn as premises of that rule. Thus, if

a1 J . . . ak J
a J (1.6)

is an inference rule and ∇1, . . . ,∇k are derivations of its premises, then

∇1 . . . ∇k
a J (1.7)

is a derivation of its conclusion. In particular, if k = 0, then the node has no
children, and is therefore a leaf of the derivation tree.

For example, here is a derivation of succ(succ(succ(zero))) nat ac-
cording to rules (1.2):

zero nat
succ(zero) nat

succ(succ(zero)) nat
succ(succ(succ(zero))) nat

.
(1.8)

Similarly, here is a derivation that node(node(empty, empty), empty) tree
according to rules (1.3):

empty tree empty tree

node(empty, empty) tree empty tree

node(node(empty, empty), empty) tree
.

(1.9)
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To show that a judgement is derivable we need only find a derivation
for it. There are two main methods for finding a derivation, called for-
ward chaining, or bottom-up construction, and backward chaining, or top-down
construction. Forward chaining starts with the axioms and works forward
towards the desired judgement, whereas backward chaining starts with the
desired judgement and works backwards towards the axioms.

More precisely, forward chaining search maintains a set of derivable
judgements, and continually extends this set by adding to it the conclusion
of any rule all of whose premises are in that set. Initially, the set is empty;
the process terminates when the desired judgement occurs in the set. As-
suming that all rules are considered at every stage, forward chaining will
eventually find a derivation of any derivable judgement, but it is impos-
sible (in general) to decide algorithmically when to stop extending the set
and conclude that the desired judgement is not derivable. We may go on
and on adding more judgements to the derivable set without ever achiev-
ing the intended goal. It is a matter of understanding the global properties
of the rules to determine that a given judgement is not derivable.

Forward chaining is undirected in the sense that it does not take ac-
count of the end goal when deciding how to proceed at each step. In
contrast, backward chaining is goal-directed. Backward chaining search
maintains a set of current goals, judgements whose derivations are to be
sought. Initially, this set consists solely of the judgement we wish to de-
rive. At each stage, we remove a judgement from the goal set, and consider
all rules whose conclusion is that judgement. For each such rule, we add
to the goal set the premises of that rule. The process terminates when the
goal set is empty, all goals having been achieved. As with forward chain-
ing, backward chaining will eventually find a derivation of any derivable
judgement, but there is no algorithmic method for determining in general
whether the current goal is derivable. Thus we may futilely add more and
more judgements to the goal set, never reaching a point at which all goals
have been satisfied.

1.4 Rule Induction

If we know that an inductively defined judgement is derivable, then we
know it can only be because there is some rule with that judgement as con-
clusion and such that each of its premises is derivable. Therefore, to show
that P(a) holds whenever a J, it is enough to show that for every rule of
the form (1.1) in the definition of J, we must show that P(a1), . . . , P(ak)
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8 1.5. ITERATED AND SIMULTANEOUS . . .

imply P(a). This is called the principle of rule induction, or induction on
derivations, for the judgement J. Notice that the assumptions correspond to
inductive hypotheses, and that the conclusion corresponds to the inductive
step. When a rule has no assumptions, there are no assumptions, so the
conclusion must be established outright—it is a base case of the induction.

The principle of rule induction determined by rule set (1.2) states that
to show P(a) whenever a nat, it is enough to establish these two facts:

1. P(zero).

2. P(succ(a)), assuming P(a).

This is just the familiar principle of mathematical induction, arising as a spe-
cial case of the general principle of rule induction.

Similarly, the principle of rule induction associated with the rules (1.3)
states that to show that a tree implies P(a), it is enough to show these two
facts:

1. P(empty).

2. P(node(a, b)), assuming P(a) and P(b).

This is called the principle of tree induction, and is once again an instance of
rule induction.

As a simple example of the use of rule induction, let us prove that if
a tree, then a = a tree. We consider in turn the rules that may be used to
derive a tree:

Rule (1.3a) Applying Rule (1.5a) we obtain empty = empty tree.

Rule (1.3b) Assume that a = a tree and b = b tree. It follows immediately
from Rule (1.5b) that node(a, b) = node(a, b) tree.

1.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive defi-
nition builds on top of another. For example, the following rules, which
define the judgement a list stating that a is a list of natural numbers.

nil list (1.10a)

a nat b list
cons(a, b) list

(1.10b)
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The second rule refers to the judgement a nat defined earlier.
It is also possible to give a simultaneous inductive definition of several

judgements, J1, . . . , Jn, by a system of rules. The rules are considered to
define the judgement forms all at once, so that each rule may refer to any
of the judgements being defined. The general form of a rule is then

a1 Ji1 . . . ak Jik

a Ji
, (1.11)

where the premises involve a selection of the judgements being defined,
and the conclusion is one of them.

As with singly inductive definitions, a collection of such rules induc-
tively defines the strongest judgement forms J1, . . . , Jn that are closed under
these rules. This gives rise to a generalized form of rule induction, called
simultaneous rule induction, in which we may show that ai Pi whenever ai Ji
by showing that the properties P1, . . . , Pn are simultaneously closed under
each of the rules defining the judgement forms J1, . . . , Jn.

For example, consider the following rule set, which constitutes a simul-
taneous inductive definition of the judgement forms a even, stating that a is
an even natural number, and a odd, stating that a is an odd natural number:

zero even (1.12a)

a odd
succ(a) even

(1.12b)

a even
succ(a) odd (1.12c)

Simultaneous rule induction for this set of rules states that if we wish to
show P(a), whenever a even, and Q(a), whenever a odd, it is enough to
show

1. P(zero);

2. if Q(a), then P(succ(a));

3. if P(a), then Q(succ(a)).

These proof obligations are derived by considering the rules defining the
even and odd judgement forms.
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10 1.6. DEFINING FUNCTIONS BY RULES

1.6 Defining Functions by Rules

Another common use of inductive definitions is to define inductively its
graph, which we then prove is a function. For example, one way to de-
fine the addition function on natural numbers is to define inductively the
judgement sum(a, b, c), with the intended meaning that c is the sum of a
and b, as follows:

b nat
sum(zero, b, b) (1.13a)

sum(a, b, c)
sum(succ(a), b, succ(c))

(1.13b)

We then must show that c is uniquely determined as a function of a and b.
That is, we show that for every a nat and b nat, there exists a unique c nat such
that sum(a, b, c). This breaks down into two proof obligations:

1. (Existence) If a nat and b nat, then there exists c nat such that sum(a, b, c).

2. (Uniqueness) If a nat, b nat, c nat, c′ nat, sum(a, b, c), and sum(a, b, c′),
then c = c′ nat.

We give the proof of existence here, and leave the proof of uniqueness as an
exercise. We proceed by induction on the rules defining a nat. Let P(a) be
the proposition “if b nat then there exists c nat such that sum(a, b, c).” We
have two cases two consider:

Rule (1.2a) We are to show P(zero). Assuming b nat and taking c to be b,
we obtain sum(zero, b, c) by Rule (1.13a).

Rule (1.2b) Assuming P(a), we are to show P(succ(a)). We proceed by
an inner induction on the rules defining b nat, which in this case
amounts to a case analysis on the form of b.

Rule (1.2a) We are to show sum(succ(a), zero, c) for some c. By the
outer induction we know that sum(a, zero, c′) for some c′ nat,
so, taking c to be succ(c′), we obtain sum(succ(a), zero, c) by
Rule (1.13b).

Rule (1.2b) Assuming sum(succ(a), b, c′) for some c′ nat, show that
sum(succ(a), succ(b), c) for some c nat. By the outer induc-
tive hypothesis, there exists c′ nat such that sum(a, succ(b), c′),
hence by Rule (1.13b), sum(succ(a), succ(b), succ(c′)).
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As another example, the following rules define the height of a binary
tree, expressed as the judgement hgt(a, b). The definition uses an auxiliary
judgement, max(a, b, c), stating that c nat is the larger of a nat and b nat.

hgt(empty, zero) (1.14a)

hgt(a1, b1) hgt(a2, b2) max(b1, b2, b)
hgt(node(a1, a2), succ(b))

(1.14b)

It is easy to prove by tree induction that this judgement has mode (∀, ∃)
with inputs and outputs being binary trees.

The intended mode of a judgement is often indicated by the notation
we use to express it. For example, when giving an inductive definition
of a function, we often use equations to indicate the intended input and
output relationships. For example, we may re-state the inductive definition
of addition (1.13) using equations.

a nat
a + zero = a nat (1.15a)

a + b = c nat
a + succ(b) = succ(c) nat

(1.15b)

When using this notation we tacitly incur the obligation to prove that the
mode of the judgement is such that the object on the right-hand side of the
equations is determined as a function of those on the left. Having done so,
we abuse the notation by using the relation as function, writing just a + b
for the unique c such that a + b = c nat.

1.7 Exercises

1. Give an inductive definition of the judgement “∇ is a derivation of J”
for an arbitrary inductively defined judgement form J.

2. Give an inductive definition of the forward-chaining and backward-
chaining search strategies.
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Chapter 2

Hypothetical Judgements

A categorical judgement is an unconditional assertion about some object of
the universe. The inductively defined judgements given in Chapter 1 are
all categorical. In contrast, a hypothetical judgement is made on the basis of
one or more hypotheses, or assumptions, that entail a conclusion. We will con-
sider two forms of hypothetical judgement, the derivability judgement and
the admissibility judgement, which are both defined relative to some fixed
set of rules. These two forms of hypothetical judgement share a common
set of structural properties that characterize the concept of reasoning under
hypotheses.

2.1 Derivability

For a given set of rules defining a collection of categorical judgements, we
define the derivability judgement, written J ` K, where J and K are cate-
gorical judgements, to mean that we may derive the judgement K from the
extension of our rule set with J as a new axiom (i.e., a rule without premises
having J as conclusion). The assertion J is called the hypothesis, and K the
conclusion, of the hypothetical judgement.

The hypothetical judgement is naturally extended to permit K to be hy-
pothetical to obtain the iterated form

J1 ` J2 ` . . . Jn ` K, (2.1)

which we abbreviate to
J1, . . . , Jn ` K. (2.2)

We often use Γ to stand for a finite sequence of assertions, writing Γ ` K to
mean that K is derivable from the judgements Γ.
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There is a close correspondence between inference rules and derivabil-
ity judgements. Each inference rule defining a judgement form gives rise
to a valid derivability judgement. For if

J1 . . . Jn

J
(2.3)

is a primitive rule, then the judgement J1, . . . , Jn ` J is valid, since adding
the hypotheses as axioms enables us to apply the displayed rule to derive
the conclusion of that rule. Conversely, if J1, . . . , Jn ` J is valid, then there is
a derivation of J obtained by composing rules starting with the hypotheses
Ji as axioms. Equivalently, we say that the inference rule (2.3) is derivable iff
J1, . . . , Jn ` J. The derivation of J is essentially a compound inference rule
with the Ji’s as premises and J as conclusion.

For example, the derivability judgement

a nat ` succ(succ(a)) nat (2.4)

is valid according to Rules (1.2). For if we regard the premise a nat as a
new axiom, then we may derive succ(succ(a)) nat from it according to
those rules, as follows:

a nat
succ(a) nat

succ(succ(a)) nat

(2.5)

This derivation consists of a composition of Rules (1.2), starting with a nat
as an axiom and ending with succ(succ(a)) nat as conclusion. In other
words, the rule

a nat
succ(succ(a)) nat (2.6)

is derivable.
It is interesting to observe that the derivability of this rule is entirely

independent of the choice of the object a. In particular, we may choose a to
be some rubbish object, say junk, and observe that

junk nat ` succ(succ(junk)) nat (2.7)

is valid. For if we treat junk nat as a new axiom, then surely we can derive
succ(succ(junk)) nat by using the rules defining the natural numbers,
even though we cannot derive junk nat from these rules.

Because evidence for a derivability judgement consists of a derivation
from axioms, certain structural properties follow, independently of the rule
set under consideration.
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Reflexivity Every judgement is a consequence of itself: Γ, J ` J. The con-
clusion is justified because it is regarded as an axiom.

Weakening If Γ ` J, then Γ, K ` J. The derivation of J makes use of the
rules and the premises Γ, and is not affected by the (unexercised) op-
tion to use K as an axiom.

Exchange If Γ1, J1, J2, Γ2 ` J, then Γ1, J2, J1, Γ2 ` J. The relative ordering of
the axioms is immaterial.

Contraction If Γ, J, J ` K, then Γ, J ` K. Since we can use any assumption
any number of times, stating it more than once is the same as stating
it once.

Transitivity If Γ, K ` J and Γ ` K, then Γ ` J. If we replace an axiom by a
derivation of it, the result remains a derivation of its conclusion.

The weakening and exchange properties together imply that a finite se-
quence of hypotheses Γ may just as well be regarded as a finite set, since
set membership is not affected by duplication of elements or by the order
in which elemets are specified. In most cases we treat the hypotheses of an
iterated hypothetical judgement as a finite set, which amounts to the tacit
use of the exchange and contraction properties of the hypothetical judge-
ment.

Derivability is a relatively strong condition that is stable under exten-
sion of the set of rules defining a judgement. That is, if a rule is deriv-
able from one set of rules, it remains derivable from any extension of that
set of rules. The existence of a derivation depends only on what rules are
available, and not on which rules are absent. Another characterization of
derivability is explored in Exercise 1 on page 21.

2.2 Admissibility

The admissibility judgement, written J |= K, is a weaker form of hypothet-
ical judgement whose meaning is that K is derivable from the given set of
rules whenever J is derivable from the same set of rules. Equivalently, the
admissibility judgement is a simple conditional assertion stating that if J
is derivable from the rules, then so is K. As with derivability, we may iter-
ate the admissibility judgement, writing J1, . . . , Jn |= K to mean that if J1 is
derivable and . . . and Jn is derivable, then K is derivable. Equivalently, we
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say that the rule
J1 . . . Jn

J (2.8)

is admissible iff J1, . . . , Jn |= J.
For example, for an abritrary object a, the admissibility judgement

succ(a) nat |= a nat (2.9)

is valid with respect to Rules (1.2). This may be proved by rule induction,
for if succ(a) nat, then this can only be by virtue of Rule (1.2b). But then
the desired conclusion must hold, since it is the premise of the inference.
Equivalently, we may say that the rule

succ(a) nat
a nat (2.10)

is admissible.

Admissibility is, in general, strictly weaker than derivability: if J1, . . . , Jn `
J is valid, then so is J1, . . . , Jn |= J, but the converse need not be the case.
To see why the implication left to right holds, assume that J1, . . . , Jn ` J.
To show J1, . . . , Jn |= J, assume further that each Ji is derivable from the
original rules, which is to say that ` J1, . . . , ` Jn are all valid derivability
judgements with no hypotheses. But then by weakening and transitivity
it follows that ` K, which means that K is derivable in the original set of
rules. On the other hand, we have already seen that succ(a) nat |= a nat,
but

succ(a) nat 6` a nat. (2.11)

That is, there is no way to compose rules starting with succ(a) nat and
end up with a nat. To see this, take a = junk and observe that, even with
succ(junk) nat as a new axiom, there is no way to derive junk nat.

The admissibility judgement enjoys the same structural properties as
derivability.

Reflexivity If J is derivable from the original rules, then J is derivable from
the original rules: J |= J.

Weakening If J is derivable from the original rules assuming that each of
the judgements in Γ are derivable from these rules, then J must also be
derivable assuming that Γ and also K are derivable from the original
rules: if Γ |= J, then Γ, K |= J.
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2.3. DERIVABILITY JUDGEMENTS IN RULES 17

Exchange The order of assumptions in an iterated implication does not
matter.

Contraction Assuming the something twice is the same as assuming it
once.

Transitivity If Γ, K |= J and Γ |= K, then Γ |= J. If the assumption K is
used, then we may instead appeal to the assumed derivability of K.

As with derivability we often make tacit use of exchange and contraction
by stating the iterated form using finite sets, rather than sequences, of as-
sumptions.

In contrast to derivability, admissibility is not stable under expansion
of the rule set. For example, suppose we expanded Rules (1.2) with the
following (fanciful) rule:

succ(junk) nat (2.12)

But relative to this expanded rule set, succ(a) nat 6|= a nat, even though
it was valid with respect to the original. For if the premise were derived
using the additional rule, there would be no derivation of junk nat, so the
conclusion fails. In other words, admissibility is sensitive to which rules are
absent from, as well as to which rules are present in, an inductive definition.
At bottom a proof of admissibility amounts to an exhaustive analysis of
the possible ways of deriving the premises, showing in each case that the
conclusion is derivable.

Another way to compare derivability to admissibility is to note that
whereas an admissibility judgement may be vacuously true (because the hy-
pothesis is not derivable), a derivability judgement never holds vacuously
(because it adds the hypothesis to the rules as a new axiom). Thus, relative
to Rules (1.2), the admissibility judgement junk nat |= succ(junk) nat is
vacuously valid, because the hypothesis is not derivable according to those
rules (as may be seen by a simple rule induction). The corresponding deriv-
ability judgement junk nat ` succ(junk) nat is also valid, but not vacu-
ously so! Rather, the conclusion holds because we can apply Rule (1.2b) to
the hypothesis to obtain the conclusion.

2.3 Derivability Judgements in Rules

Inference rules, as defined in Chapter 1, are limited to categorical judge-
ments. It is often useful to extend the concept of a rule to permit derivabil-
ity judgements as a premise or the conclusion of a rule. To illustrate this,
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18 2.3. DERIVABILITY JUDGEMENTS IN RULES

let us consider the formalization of some elementary principles of logic us-
ing inference rules. We will consider the categorical judgment form φ true,
where φ is a proposition involving the familiar connectives such as con-
junction and implication.1

Suppose that φ has the form of a conjunction, φ1 ∧ φ2, of φ1 and φ2.
In this case to show that φ true, it is enough to show φ1 true and φ2 true.
Conversely, if we know φ true, then we know φ1 true and φ2 true. Thus we
have the following two rules for conjunction:

φ1 true φ2 true

φ1 ∧ φ2 true
(2.13a)

φ1 ∧ φ2 true

φ1 true
(2.13b)

φ1 ∧ φ2 true

φ2 true
(2.13c)

These rules fit into the framework of Chapter 1, and present no serious
challenges.

Now suppose that φ has the form of an implication, φ1 ⊃ φ2. To show
that φ true, we temporarily assume that φ1 true and deduce from this that
φ2 true. Conversely, if we know that φ1 ⊃ φ2 true, then we know that it is
possible to deduce φ2 true from φ1 true. This leads to the following two
rules:

φ1 true ` φ2 true

φ1 ⊃ φ2 true
(2.14a)

φ1 ⊃ φ2 true

φ1 true ` φ2 true
(2.14b)

These rules illustrate the use of derivability in both the premises and the
conclusion of a rule.

Allowing a derivability in the conclusion of a rule presents no serious
complications, since we may regard a rule of the form

J1 . . . Jn

K1, . . . , Km ` K (2.15)

as alternate notation for the rule
J1 . . . Jn K1 . . . Km

K , (2.16)
1For a more thorough account of the rules of logic and how they relate to programming

languages, please see Chapters 29 and 30.
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2.4. GENERALIZED RULES 19

which expresses the same thing, namely that we may derive K from deriva-
tions of J1, . . . , Jn, K1, . . . , Km. Thus, Rule (2.14b) may be written instead in
the form

φ1 ⊃ φ2 true φ1 true

φ2 true
(2.17)

Rule (2.14a) makes use of a derivability judgement in its premise. How
are we to make sense of this? Reading the premise as a derivability judge-
ment, the rule states that if we are able to derive φ2 true in the exten-
sion of the “current” rule set with the axiom φ1 true, then we may derive
φ1 ⊃ φ2 true in the “current” rule set. The “current” rule set contains the
original rules, augmented by any additional axioms that have been added
during the deduction. For example, if φ2 is itself an implication, then a
derivation of its truth would further extend the rule set with the antecedent
of the implication in order to deduce the consequent.

This captures the right intuition, but there is a technical snag lurking
in the notation. The semantics of the derivability judgement given in Sec-
tion 2.1 on page 13 is defined for a previously given inductive definition,
whereas we wish to consider rules such as Rule (2.14a) as part of the defini-
tion itself. To account for this we must generalize the concept of a rule.

2.4 Generalized Rules

To justify the use of the derivability judgements in the premise of a rule,
we will reduce the general case, which admits this possibility, to the special
case considered in Chapter 1, which does not. Suppose we have a collection
of generalized rules of the form

Γ1 ` J1 . . . Γn ` Jn

J
. (2.18)

The hypotheses Γi are the local hypotheses of the ith premise of the infer-
ence. The meaning of such a rule is that J is derivable iff each of the Ji’s are
derivable from the extension of those rules with the local hypotheses Γi as
axioms.

To capture the idea of the “current” rule set, a generalized rule of the
form (2.18) is understood to apply in any extension of the rules with a set of
hypotheses, called the global, or ambient, hypotheses of the inference. This
may be made explicit by writing Rule (2.18) in the following form:

Γ Γ1 ` J1 . . . Γ Γn ` Jn

Γ ` J
, (2.19)

JUNE 26, 2007 DRAFT 5:05PM



20 2.4. GENERALIZED RULES

The global hypotheses, Γ, may be chosen arbitrarily to reflect any exten-
sions to the rule set that may be in effect at the point of application of the
rule. The conclusion is stated relative to global hypotheses, Γ, which are
further augmented by the local hypotheses in the derivation of each of the
premises of the rule.

By making the global and local hypotheses explicit we enable an alter-
nate reading of a collection of generalized rules as a simultaneous inductive
definition of an infinite family of judgements indexed by finite hypothesis
sets. That is, we regard the judgement Γ ` J as the “Γth instance” of an
infinite family of judgements indexed by hypothesis sets. From this point
of view the generalized rule (2.19) is not generalized at all, but is rather
just an ordinary inference rule defining a Γ-indexed family of categorical
judgements.

For this to capture the intended interpretation of a generalized rule, we
must ensure that the members of the family “fit together” properly so that
Γ ` J behaves like a hypothetical judgement. That is, we must ensure that
the family obey the structural properties of a hypothetical judgement stated
in Section 2.1 on page 13. This may be achieved by implicitly including the
following structural rules along with any set of generalized rules.

Γ, J ` J (2.20a)

Γ ` J
Γ, K ` J

(2.20b)

Γ1, J2, J2, Γ2 ` J
Γ1, J1, J2, Γ2 ` J

(2.20c)

Γ, J, J ` K
Γ, J ` K

(2.20d)

Γ ` K Γ, K ` J
Γ ` J

(2.20e)

In practice we avoid the need to include Rules (2.20c) and (2.20d) by treat-
ing Γ as a finite set of hypotheses. Moreover, by stating the rules in explicit
form (2.19), we also ensure that Rule (2.20b) is admissible. This leaves only
the structural rules (2.20a), which we include as part of a generalized in-
ductive definition, and (2.20e), which we usually prove to be admissible.

The principle of rule induction extends to generalized inductive defini-
tions as well. To state the induction principle it is necessary to make explicit

5:05PM DRAFT JUNE 26, 2007



2.5. EXERCISES 21

the subjects of the judgements in a generalized rule:

Γ Γ1 ` a1 J1 . . . Γ Γn ` an Jn

Γ ` a J
. (2.21)

Let PΓ be a family of predicates indexed by hypothesis sets Γ. To show that
PΓ(a) whenever Γ ` a J, it is enough to satisfy these requirements:

1. To satisfy the (implied) structural rule of reflexivity, we require that
PΓ,a J(a). That is, if a J is a hypothesis in Γ, then we must have PΓ(a).

2. To satisfy a rule of the form (2.21), it is enough to show that PΓ(a)
whenever PΓ Γ1(a1), . . . , PΓ Γn(an).

These requirements presume that the structural rules, other than reflexivity,
are admissible. If not, we must also show that the family, P, is closed under
each of the inadmissible structural rules.

2.5 Exercises

1. Define Γ′ ` Γ to mean that Γ′ ` Ji for each Ji in Γ. Show that Γ ` J iff
whenever Γ′ ` Γ, it follows that Γ′ ` J. For the implication right-to-
left, take Γ′ = Γ. For the implication left-to-right, repeatedly appeal
to transitivity to obtain the desired conclusion.

2. Show that it is possible to make sense of admissibility judgements in
the conclusions (only!) of inference rules by an analysis reminiscent
of that used to justify derivability judgements in the conclusion. Hint:
make use of the interpretation of generalized rules as a simultaneous
inductive definition of a family of judgement forms described in Sec-
tion 2.3 on page 17.
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Chapter 3

Syntactic Objects

We will make use of two sorts of objects for representing syntax, strings
and abstract syntax trees. Strings provide a convenient linear representation
useful primarily for human interaction, but are not suitable for manipula-
tion and analysis. Abstract syntax trees expose the hierarchical structure of
syntax, and are much more suitable than strings for analysis and mecha-
nization.

3.1 Strings

An alphabet is a (finite or infinite) collection of symbols. An alphabet is spec-
ified by a set of judgements of the form c1 sym, . . . , cn sym, which we col-
lectively designate by Σ. The judgement s str is inductively defined by the
following rules:

ε str (3.1a)

c sym s str
c · s str

(3.1b)

Thus a string is essentially a list of characters, with the null string being
the empty list.

This definition makes use of the judgement c sym, which specifies the
alphabet over which the strings are defined. To specify the alphabet, we
consider hypothetical judgements of the form

c1 sym, . . . , cn sym ` s str,

which we abbreviate by writing Σ ` s str. We shall have occasion to work
with strings over various alphabets, usually leaving the precise specifica-
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tion of the symbols implicit. We use the judgement c char to state that c
is a character of some unspecified standard alphabet, such as the ASCII or
Unicode character set, and write s strchar to state that s is a string of symbols
c such that c char.

When specialized to Rules (3.1), the principle of rule induction states
that to show P(s) holds whenever s str, it is enough to show

1. P(ε), and

2. if P(s) and c sym, then P(c · s).

This is sometimes called the principle of string induction. It is essentially
equivalent to induction over the length of a string, except that there is no
need to define the length of a string in order to use it.

The following rules constitute an inductive definition of the judgement
s1 ˆ s2 = s str, stating that s is the result of concatenating the strings s1 and
s2.

ε ˆ s = s str (3.2a)

s1 ˆ s2 = s str

(c · s1) ˆ s2 = c · s str
(3.2b)

It is easy to prove by string induction on the first argument that this judge-
ment has mode (∀, ∀, ∃!). Thus, it determines a total function of its first two
arguments.

Strings are usually written as juxtapositions of characters, writing just
abcd for the four-letter string a · (b · (c · (d · ε))). Concatentation is also
written as juxtaposition, and individual characters are often identified with
the corresponding unit-length string. This means that abcd can be thought
of in many ways, for example as the concatenations ab cd, a bcd, or abc d, or
even ε abcd or abcd ε, as may be convenient in a given situation.

3.2 Names

Names arise frequently in the study of programming languages. They
are used as variables, as labels of fields in data structures, as targets of
branches, and so forth. The “spelling” of a name is of no intrinsic signifi-
cance, but serves only to distinguish one name from another. Consequently,
we shall treat names as atoms, abstracting away any structure other than
their identity. We assume given a judgement x name that holds for infinitely
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many objects x, and a judgement x # y, where x name and y name, stating
that x and y are distinct names. We further assume that names are distin-
guishable from all other forms of syntactic object, so that there is no ambi-
guity in their use.

The judgement [x↔y]z = z′ name, which swaps names x with y and
leaves all other names fixed, is inductively defined by the following rules.

[x↔y]x = y name (3.3a)

[x↔y]y = x name (3.3b)

x # z name y # z name

[x↔y]z = z name
(3.3c)

This judgement has mode (∀, ∀, ∀, ∃!), which means that the fourth argu-
ment is determined as a function of the first three.

3.3 Abtract Syntax Trees

An abstract syntax tree, or ast, is an ordered tree whose nodes are labelled
an operator. Each operator is assigned an arity, which determines the num-
ber of children of any node labelled with that operator. The assignment of
arities to operators is specified by an operator signature, Ω, which is a finite
set of judgements of the form ar(o1) = n1, . . . , ar(ok) = nk, where n nat,
oi name for each 1 ≤ i ≤ k, and oi # oj whenever i 6= j.

For a given operator signature, Ω, the judgement a ast is inductively
defined by the following rule:

ar(o) = n
a1 ast . . . an ast

o(a1, . . . , an) ast

(3.4a)

When Ω ` ar(o) = zero, this rule has no premises, and hence a node
labelled with o is a leaf of the abstract syntax tree.

3.3.1 Variables and Substitution

We shall frequently consider ast’s involving occurrences of one or more
variables standing for a fixed, but unspecified, ast. Variables are represented
by names, and are given meaning by substitution. To avoid confusion, we
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assume that variable names are disjoint from operator names. The hypo-
thetical judgment

x1 ast, . . . , xn ast ` a ast, (3.5)

where x1, . . . , xn are pairwise distinct names, states that a is an ast possibly
involving the variables x1, . . . , xn. A set of hypotheses of this form is some-
times called a variable context; the meta-variable X stands for an arbitrary
(possibly empty) variable context. We write x # X to indicate that x # xi for
each xi such that X ` xi ast.

Substitution is defined by the judgement [a/x]b = c, which states that c
is the result of substituting the ast a for all occurrences of the name x in b.
This judgement is inductively defined by the following rules:

[a/x]x = a (3.6a)

x # y
[a/x]y = y

(3.6b)

[a/x]b1 = c1 . . . [a/x]bn = cn

[a/x]o(b1, . . . , bn) = o(c1, . . . , cn)
(3.6c)

3.3.2 Structural Induction

Structural induction is the principle of rule induction applied to Rules (3.4)
for any fixed operator signature Ω. Specifically, to show P(a) whenever
a ast, it is enough to show that, for each operator o such that Ω ` ar(o) = n,
if P(a1), . . . , P(an), then P(o(a1, . . . , an)). The base cases of the induction
correspond to the operators o for which Ω ` ar(o) = zero.

Structural induction extends naturally to abstract syntax trees with vari-
ables by parameterizing with respect to the variable context, X . Specifi-
cally, to show that PX (a) whenever X ` a ast, it is enough to show the
following:

1. PX (x) whenever X ` x ast.

2. whenever Ω ` ar(o) = n, if PX (a1), . . . , PX (an), then PX (o(a1 . . . , an)).

The subscript X on the property P serves only to indicate that we are con-
sidering the property only for ast’s over the variables declared in X .

As an example, we may prove by structural induction that the substitu-
tion judgement has mode (∀, ∀, ∀, ∃!) over abstract syntax trees and names.
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Theorem 3.1. If X , x ast ` a ast, where x # X , and X ` b ast, then there exists
a unique c such that X ` c ast and [a/x]b = c.

Proof. We show that if X , x ast ` b ast, then whenever X ` a ast, there
exists a unique c such that X ` c ast and [a/x]b = c.

We have two cases to consider, the first of which decomposes into two
sub-cases.

1. Names y such that X , x ast ` y ast:

(a) If y = x, then by Rule (3.6a) we have [a/x]x = a, and no other
rule applies.

(b) If y # x, then by Rule (3.6b) we have [a/x]y = y, and no other
rule applies.

2. Operators o such that Ω ` ar(o) = n: suppose that for each 1 ≤ i ≤ n
there exists a unique ci such that [a/x]ai = ci. Then by Rule (3.6c) we
may take c = o(c1, . . . , cn), and no other rule applies.

Since c is determined by a, x, and b, we often write [a/x]b for the unique
c such that [a/x]b = c.

3.4 Abstract Binding Trees

Abstract syntax trees express the hierarchical structure of syntax, providing
the foundation for the very useful principle of proof by structural induc-
tion. Another commonality among languages is the concept of binding a
name within a scope, the range of significance of the binding. Abstract bind-
ing trees, or abt’s, extend abstract syntax trees with an additional construct,
called an abstractor, for binding one or more names in another abt.

To support operators that bind variables in certain argument positions,
we generalize the arities introduced in Section 3.3 on page 25. Instead of
being simply a number, the arity of an operator is now a finite sequence of
natural numbers, one per argument position of the operator, specifying the
valence of that argument. The valence of an argument is, in turn, a natu-
ral number specifying the number of names bound in that argument. This
generalizes the system of arities in Section 3.3 on page 25 in that the arity
(0, 0, . . . , 0) of length k is the arity of a k-argument operator binding no vari-
ables in any argument position. A signature is a finite set of judgements of
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the form ar(o) = (n1, . . . , nk), where o name, specifying the arity of operator
o. We assume that no operator name is assigned more than one arity in a
given signature.

The definition of abstract binding trees is given by a set of generalized
rules involving hypothetical judgements of the form X ` a abtn, where
n nat and X is a variable context. This judgement states that a is an abt
of valence n possibly involving the variables declared in X . The variable
context, X , has the form x1 abt0, . . . , xn abt0 in which xi name for each
1 ≤ i ≤ n and xi # xj whenever i 6= j.

X , x abt0 ` x abt0 (3.7a)

ar(o) = (n1, . . . , nk)
X ` a1 abtn1 . . . X ` ak abtnk

X ` o(a1, . . . , ak) abt0

(3.7b)

x # X X , x abt0 ` a abtn

X ` x.a abtn+1
(3.7c)

If an abt has valence n, then it has the form x1.x2.. . . xn.a, where a is
not an abstractor and no variable is declared more than once. We usually
abbreviate this to just x1, . . . , xn.a, omitting the prefix entirely when n is
zero. We sometimes write a abt to mean a abt0.

Lemma 3.2. There is at most one n such that X ` a abtn, and if X ` a abtn,
then there is a least X0 ⊆ X such that X0 ` a abtn.

3.4.1 Structural Induction

The principle of structural induction introduced in Section 3.3 on page 25
extends to abstract binding trees. Let Pn

X be a family of predicates indexed
by a variable context, X , and a valence, n. To show that Pn

X (a) whenever
X ` a abtn, it is enough to show the following facts:

1. P0
X ,x abt0(x).

2. For each operator, o, of arity (m1, . . . , mk), if Pm1
X (a1) and . . . and Pmk

X (ak),
then P0

X (o(a1, . . . , ak)).

3. For some and any x name such that x # X , if Pn
X ,x abt0(a), then Pn+1

X (x.a).
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The last clause requires that the bound variable, x, be chosen “fresh” in the
sense of being apart from the active variables, X , and, moreover, that the
proof be independent of the exact choice of x, provided that it satisfies this
freshness condition.

3.4.2 Apartness and Name Swapping

The relation of a variable, x lying apart from an abt, a, is fundamental. In-
formally, this judgement means that the abt a does not involve the variable
x except possibly as a bound variable. The apartness judgement, x # a abtn,
is inductively defined by the following rules.

x # y name

x # y abt0 (3.8a)

x # a1 abtn1 . . . x # ak abtnk

x # o(a1, . . . , ak) abt0 (3.8b)

x # x.a abtn+1 (3.8c)

x # y name x # a abtn

x # y.a abtn+1 (3.8d)

We say that a variable, x, lies within, or is free in, an abt, a, written x ∈
a abt, iff it is not the case that x # a abt. We leave as an exercise to give an
inductive definition of this judgement.

The result, a′, of swapping one variable, x, for another, y, within an abt,
a, written [x↔y]a = a′ abt is also inductively defined.

[x↔y]z = z′ name

[x↔y]z = z′ abt0 (3.9a)

[x↔y]a1 = a′1 abtn1 . . . [x↔y]ak = a′k abtnk

[x↔y]o(a1, . . . , ak) = o(a′1, . . . , a′k) abt0 (3.9b)

[x↔y]z = z′ name [x↔y]a = a′ abtn

[x↔y]z.a = z′.a′ abtn+1 (3.9c)

It is easy to check that a′ is determined uniquely by x, y, and a, and hence
defines a function of the latter three arguments.
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3.4.3 Renaming of Bound Variables

A chief characteristic of a binding operator is that the choice of bound vari-
ables does not matter. This is captured by treating as equivalent any two
abt’s that differ only in the choice of bound variables, but are otherwise
identical. This relation is called, for historical reasons, α-equivalence.

X , x abt0 ` x =α x abt0 (3.10a)

X ` a1 =α b1 abtn1 . . . X ` ak =α bk abtnk

X ` o(a1, . . . , ak) =α o(b1, . . . , bk) abt0 (3.10b)

x # X X , x abt0 ` a =α b abtn

X ` x.a =α x.b abtn+1
(3.10c)

x # y name y # X X , y abt0 ` [x↔y]a =α b abtn

X ` x.a =α y.b abtn+1
(3.10d)

We write X ` a =α b for X ` a =α b abtn for some (unique, if it exists)
n nat. Further, we write just a =α b to mean X ` a =α b, where X is the
least variable context covering a and b.

There are many characterizations of α-equivalence.

Theorem 3.3. The following rules of α-equivalence are derivable relative to the set
of rules (3.10).

x # y name y # X
X ` x.a =α y.[x↔y]a abtn+1 (3.11a)

x # z name y # z name z # X X , z abt0 ` [x↔z]a =α [y↔z]b abtn

X ` x.a =α y.b abtn+1

(3.11b)

Theorem 3.4. α-equivalence is reflexive, symmetric, and transitive.

3.4.4 Substitution

Substitution is the process of replacing all free occurrences of a variable, x,
in an abt, b, by another, a, which is written [a/x]b = c abtn.

X ` [a/x]x = a abt0 (3.12a)
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x # y name

X ` [a/x]y = y abt0 (3.12b)

X ` [a/x]b1 = c1 abtn1 . . . X ` [a/x]bk = ck abtnk

X ` [a/x]o(b1, . . . , bk) = o(c1, . . . , ck) abt0 (3.12c)

x # y name y # X X , y abt0 ` [a/x]b = c abtn

X ` [a/x]y.b = y.c abtn+1
(3.12d)

X ` b =α b′ abtn X ` [a/x]b′ = c abtn

X ` [a/x]b = c abtn (3.12e)

Rule (3.12e), which states that substitution respects α-equivalence, ensures
that the apartness conditions on Rule (3.12d) may be imposed without loss
of generality.

Theorem 3.5. 1. If X ` a abt0 and X , x abt0 ` b abtn, then there exists
X ` c abtn such that X ` [a/x]b = c abtn.

2. If X ` a abt0, X ` [a/x]b = c abtn and X ` [a/x]b = c′ abtn, then
X ` c =α c′ abtn.

As a notational convenience we often drop the variable context and va-
lence from the substitution judgement, writing just [a/x]b = c. Further-
more, in view of Theorem 3.5, we write [a/x]b for the unique (up to α-
equivalence) c such that [a/x]b = c. This makes sense provided that abt’s
are always identified up to α-equivalence.

3.5 Exercises

1. Give an inductive definition of the two-place judgement |s| = n str,
where s str and n nat, stating that a string s has length n, namely the
number of symbols occurring within it. Use the principle of string
induction to show that this judgement has mode (∀, ∃!), and hence
defines a function.

2. Give an inductive definition of equality of strings, and show that
string concatenation is associative. Specifically, define the judgement
s1 = s2 str, and show that if s1 ˆ s2 = s12 str, s12 ˆ s3 = s123 str, s1 ˆ s23 = s′123 str,
and s2 ˆ s2 = s23 str, then s123 = s′123 str.
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3. Give an inductive definition of simultaneous substitution of a sequence
of n ast’s for a sequence of n distinct variables within an ast, written
[a1, . . . , an/x1, . . . , xn]b = c. Show that c is uniquely determined, and
hence we may write [a1, . . . , an/x1, . . . , xn]b for the unique such c.

4. Suppose that let is an operator of arity (0, 1) and that plus is an op-
erator of arity (0, 0). Determine whether or not each of the following
α-equivalences are valid.

let(x, x.x) =α let(x, y.y) (3.13a)
let(y, x.x) =α let(y, y.y) (3.13b)
let(x, x.x) =α let(y, y.y) (3.13c)

let(x, x.plus(x, y)) =α let(x, z.plus(z, y)) (3.13d)
let(x, x.plus(x, y)) =α let(x, y.plus(y, y)) (3.13e)
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Chapter 4

General Judgements

The concept of a variable is central to all of mathematics, including the study
of programming languages. Informally, a variable stands for a fixed, but
unspecified, object drawn from the universe of discourse. In elementary
algebra variables range over real numbers, and when we write formulas
such as x2 + 2x + 1, we implicitly understand x to stand for an unspecified
real number. In the study of programming languages we make use of vari-
ables that range over a wide variety of objects, but the principle remains
the same: a variable stands for a fixed, but unspecified, element of the uni-
verse. Put in other terms, an expression involving a variable stands for any
of its possible instances obtained by replacing the variable with an object
from the universe.

To capture this more formally, we introduce the concept of the general,
or schematic, judgement form. This judgement makes sense whenever we
are considering judgements over a universe of objects for which we have a
notion of a variable and the notion of substitution of such an object for that
variable in another such object. The class of abstract syntax trees defined in
Chapter 3 is one example, as is the broader class of abstract binding trees.
The latter class admits the additional concept of α-equivalence, which we
shall require is respected by all of our judgement forms.

4.1 Generality

The general judgement may be defined over any class of syntactic objects
involving variables for which there is an associated substitution function.
For example, the class of abstract syntax trees defined in Chapter 3 admits
a general judgement, as will further enhancements to that class to be intro-
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duced later in the book. For the time being we will write a syn to indicate
that a is an object of a syntactic class supporting variable substitution.

A general judgement over has the form x syn | J, where x name and J is
a categorical judgement possibly involving the name x. This judgement as-
serts that [a/x]J holds whenever a syn. The general judgement is naturally
extended to the iterated form

x1 syn | · · · | xn syn | J, (4.1)

where xi name for each 1 ≤ i ≤ n, and xi # xj whenever i 6= j. The iterated
generality judgement is usually abbreviated to

x1 syn, . . . , xn syn | J. (4.2)

We let X range over finite sequences of hypotheses of the form xi syn
subject to the constraints just mentioned. Thus, if X is x1 syn, . . . , xn syn,
then the general judgement X ` J asserts that [a1, . . . , an/x1, . . . , xn]J holds
for every ai syn for each 1 ≤ i ≤ n.

To show that such a general judgement is derivable, it suffices to ex-
hibit a Evidence for the derivability of the general judgement consists of a
derivation scheme, ∇, involving x1, . . . , xn such that

[a1, . . . , an/x1, . . . , xn]∇

is a derivation of
[a1, . . . , an/x1, . . . , xn]J

for every choice of instantiating objects a1,. . . , an. Thus, a derivation scheme
is a uniform derivation of the conclusion that is insensitive to the choice of
objects xi.

The general judgement is often combined with the (derivability) hypo-
thetical judgement to obtain the hypothetico-general judgement

x1 syn, . . . , xm syn | J1, . . . , Jn ` J, (4.3)

where the variables x1, . . . , xn govern the hypotheses and the conclusion
of the hypothetical judgement. Expanding the notation, we see that this
judgement asserts that for every choice of objects ai syn for each 1 ≤ i ≤ m,
if the rule set is extended with the axioms [a1, . . . , am/x1, . . . , xm]Ji for each
1 ≤ i ≤ n, then [a1, . . . , am/x1, . . . , xm]J is also derivable.

For example, the following hypothetico-general judgement is derivable
relative to Rules (1.2):

x syn | x nat ` succ(succ(x)) nat.
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The derivability of this hypothetico-general judgement means that every
instance

a nat ` succ(succ(a)) nat

of the derivability judgement is valid according to Rules (1.2), which is
indeed the case. Evidence for this consists of the derivation scheme, ∇,

x nat
succ(x) nat

succ(succ(x)) nat
, (4.4)

which involves x as a parameter. Each instance of ∇ obtained by substi-
tuting an object a for x is a derivation of the corresponding instance of the
hypothetical judgement.

4.2 Structural Properties

The general judgement enjoys structural properties that are reminiscent of
those enjoyed by the hypothetical judgement:

Proliferation If X | J, then X , x syn | J.

Swapping If X1, x1 syn, x2 syn,X2 | J, then X1, x2 syn, x1 syn,X2 | J.

Duplication If X , x syn, x syn | J, then X , x syn | J.

Substitution If X , x syn | J, then X | [a/x]J, provided that X | a syn.

Proliferation of variables corresponds to weakening, and substitution cor-
responds to transitivity. By considering X to be a finite set of hypotheses,
we render implicit the principles of swapping and duplication, much as we
render implicit exchange and contraction of hypotheses.

Combining the structural properties of the hypothetical and general
judgements, we obtain the following set of structural rules governing the
hypothetico-general judgement.

X | Γ, J ` J (4.5a)

X | Γ ` K
X | Γ, J ` K

(4.5b)

X | Γ ` K X | Γ, K ` J
X | Γ ` J

(4.5c)
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X | Γ ` J x # X
X , x syn | Γ ` J

(4.5d)

X , x syn | Γ ` J X ` a syn

X | [a/x]Γ ` [a/x]J
(4.5e)

In most cases we drop explicit mention of the variables in a hypothetico-
general judgement. For example, we may write x nat ` succ(x) nat to
mean x syn | x nat ` succ(x) nat, relying on the choice of meta-variable
names to determine the intended variable declarations.

4.3 Generalized Rules

Inductive definitions may be further generalized to permit hypothetico-
general judgements in the premises and conclusions of rules. A generalized
rule in this sense has the form

X1 | Γ1 ` J1 . . . Xk | Γk ` Jk

J
. (4.6)

Each Xi declares the local variables, and each Γi specifies the local hypotheses,
of the inference.

A generalized rule applies relative to an arbitrary set of global variables,
X , and global hypotheses, Γ. This can be made explicit by stating a general-
ized rule in the following form:

X X1 | Γ Γ1 ` J1 . . . X Xk | Γ Γk ` Jk

X | Γ ` J
. (4.7)

The pair X | Γ is called the global context of the inference, and each pair Xi |
Γi is called the local context of the ith premise of the rule. Thus a generalized
rule states that J is derivable in the global context iff each of the premises
Ji is derivable in the extension of the global context by the local context of
that premise.

To avoid confusion, in Rule (4.7) we tacitly require that each local vari-
ables lie apart from the global variables; that is, we demand that Xi # X
for each 1 ≤ i ≤ n. In most cases the local variables are derived from
the bound variables in the subject of a judgement, and hence are of inter-
est only when working over the universe of abt’s. In such cases the local
apartness restrictions may always be met, provided that we insist that the
judgement form respect α-equivalence. This may be imposed by including
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the following rule in any generalized inductive definition over the class of
abt’s:

X | Γ ` a′ J X ` a =α a′

X | Γ ` a J
(4.8)

As in Chapter 2, we regard a generalized inductive definition as an or-
dinary inductive definition of an infinite family of categorical judgements
indexed by the context X | Γ. The premises of the rule may then be seen
as referring to various instances of this family, and the conclusion to one
such instance. To ensure that this family behaves like hypothetico-general
judgements, we must impose the combined structural rules given in Sec-
tion 4.2 on page 35. In principle each of these rules is implicitly included in
any generalized inductive definition, but in practice we arrange that most
of these rules are admissible, leaving only reflexivity to be handled explic-
itly. Weakening and proliferation are admissible because we have ensured
that a generalized rule is applicable in any context. Swapping and dupli-
cation, and exchange and contraction, are admissible because we treat the
variables and hypotheses as sets, rather than sequences. This leaves transi-
tivity and substitution to be proved admissible on a case-by-case basis.

The principle of rule induction associated with a generalized inductive
definition follows the same pattern as that given in Chapter 2. First, let us
re-state the generalized rule (4.7) in a form that makes the subjects of the
judgements explicit:

X X1 | Γ Γ1 ` a1 J1 . . . X Xk | Γ Γk ` ak Jk

X | Γ ` a J
. (4.9)

Let PX |Γ be a family of predicates indexed by contexts X | Γ. To show that
PX |Γ(a) holds whenever X | Γ ` a J, it is enough to establish the following
conditions:

1. Reflexivity: PX |Γ,a J(a).

2. Closure under rules: for each rule of the form (4.9), if PX X1|Γ Γ1
(a1),

and . . . and PX Xn|Γ Γn(an), then PX |Γ(a).

3. Renaming: if X ` a =α a′, then PX |Γ(a) iff PX |Γ(a′)

If any of the other structural rules are inadmissible, then they must be con-
sidered explicitly for the induction.

4.4 Exercises
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Chapter 5

Transition Systems

Transition systems are used to describe the execution behavior of programs
by defining an abstract computing device with a set, S, of states that are
related by a transition judgement, 7→. The transition judgement describes
how the state of the machine evolves during execution.

5.1 Transition Systems

An (ordinary) transition system is specified by the following judgements:

1. s state, asserting that s is a state of the transition system.

2. s final, where s state, asserting that s is a final state.

3. s initial, where, s state, asserting that s is an initial state.

4. s 7→ s′, where s state and s′ state, asserting that state s may transition
to state s′.

We require that if s final, then for no s′ do we have s 7→ s′. In general, a state
s for which there is no s′ ∈ S such that s 7→ s′ is said to be stuck. All final
states are stuck, but not all stuck states need be final!

A transition sequence is a sequence of states s0, . . . , sn such that s0 initial,
and si 7→ si+1 for every 0 ≤ i < n. A transition sequence is maximal iff sn 6 7→;
it is complete iff it is maximal and, in addition, sn final. Thus every complete
transition sequence is maximal, but maximal sequences are not necessarily
complete. A transition system is deterministic iff for every state s there exists
at most one state s′ such that s 7→ s′, otherwise it is non-deterministic.
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A labelled transition system over a set of labels, I, is a generalization of
a transition system in which the single transition judgement, s 7→ s′ is re-

placed by an I-indexed family of transition judgements, s i7−→ s′, where s
and s′ are states of the system. In typical situations the family of transition
relations is given by a simultaneous inductive definition in which each rule
may make reference to any member of the family.

It is often necessary to consider families of transition relations in which
there is a distinguished unlabelled transition, s 7→ s′, in addition to the
indexed transitions. It is sometimes convenient to regard this distinguished
transition as labelled by a special, anonymous label not otherwise in I. For
historical reasons this distinguished label is often designated by τ or ε, but
we will simply use an unadorned arrow. The unlabelled form is often called
a silent transition, in contrast to the labelled forms, which announce their
presence with a label.

5.2 Iterated Transition

Let s 7→ s′ be a transition judgement, whether drawn from an indexed set
of such judgements or not.

The reflexive, transitive closure of this judgement, written s 7→∗ s′, is in-
ductively defined by the following rules.

s 7→∗ s (5.1a)

s 7→ s′ s′ 7→∗ s′′

s 7→∗ s′′
(5.1b)

The principle of rule induction for these rules states that to show that
P(s, s′) holds whenever s 7→∗ s′, it is enough to show these two properties
of P:

1. P(s, s).

2. if s 7→ s′ and P(s′, s′′), then P(s, s′′).

The first requirement is to show that P is reflexive. The second is to show
that P is closed under head expansion, or converse evaluation. Using this prin-
ciple, it is easy to prove that 7→∗ is reflexive and transitive.

The n-times iterated transition judgement, s 7→n s′, where n ≥ 0, is in-
ductively defined by the following rules.

s 7→0 s (5.2a)
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s 7→ s′ s′ 7→n s′′

s 7→n+1 s′′
(5.2b)

Theorem 5.1. For all states s and s′, s 7→∗ s′ iff s 7→k s′ for some k ≥ 0.

Finally, we write ↓ s to indicate that there exists some s′ final such that
s 7→∗ s′.

5.3 Simulation and Bisimulation

A strong simulation between two transition systems 7→1 and 7→2 is given by
a binary relation, s1 S s2, between their respective states such that if s1 S s2,
then s1 7→1 s′1 implies s2 7→2 s′2 for some state s′2 such that s′1 S s′2. Two
states, s1 and s2, are strongly similar iff there is a strong simulation, S, such
that s1 S s2. Two transition systems are strongly similar iff each initial state
of the first is strongly similar to an initial state of the second. Finally, two
states are strongly bisimilar iff there is a single relation S such that both S
and its converse are simulations. Note that this is stronger than merely
requiring that there be simulations in both directions!

A strong simulation between two labelled transition systems over the
same set, I, of labels consists of a relation S between states such that for
each i ∈ I the relation S is a strong simulation between i7−→1 and i7−→2.

That is, if s1 S s2, then s1
i7−→1 s′1 implies that s2

i7−→2 s′2 for some s′2 such
that s′1 S s′2. In other words the simulation must preserve labels, and not just
transition.

The requirements for strong simulation are rather stringent: every step
in the first system must be mimicked by a similar step in the second, up
to the simulation relation in question. This means, in particular, that a se-
quence of steps in the first system can only be simulated by a sequence of
steps of the same length in the second—there is no possibility of perform-
ing “extra” work to achieve the simulation.

A weak simulation between transition systems is a binary relation be-
tween states such that if s1 S s2, then s1 7→1 s′1 implies that s2 7→∗2 s′2 for
some s′2 such that s′1 S s′2. That is, every step in the first may be matched
by zero or more steps in the second. A weak bisimulation is such that both
it and its converse are weak simulations. We say that states s1 and s2 are
weakly (bi)similar iff there is a weak (bi)simulation S such that s1 S s2.
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The corresponding notion of weak simulation for labelled transitions
involves the silent transition. The idea is that to weakly simulate the la-

belled transition s1
i7−→1 s′1, we do not wish to permit multiple labelled tran-

sitions between related states, but rather to permit any number of unlabelled
transitions to accompany the labelled transition. A relation between states
is a weak simulation iff it satisfies both of the following conditions whenever
s1 S s2:

1. If s1 7→1 s′1, then s2 7→∗2 s′2 for some s′2 such that s′1 S s′2.

2. If s1
i7−→1 s′1, then s2 7→∗2

i7−→2 7→∗2 s′2 for some s′2 such that s′1 S s′2.

That is, every silent transition must be mimicked by zero or more silent
transitions, and every labelled transition must be mimicked by a corre-
sponding labelled transition, preceded and followed by any number of
silent transitions. As before, a weak bisimulation is a relation between states
such that both it and its converse are weak simulations. Finally, two states
are weakly (bi)similar iff there is a weak (bi)simulation between them.

5.4 Exercises

1. Prove that S is a weak simulation for the ordinary transition system
7→ iff S is a strong simulation for 7→∗.

2. A similar result about labelled transition systems.
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Levels of Syntax





Chapter 6

Concrete Syntax

The concrete syntax of a language is a means of representing expressions as
strings that may be written on a page or entered using a keyboard. The
concrete syntax usually is designed to enhance readability and to eliminate
ambiguity. While there are good methods for eliminating ambiguity, im-
proving readability is, to a large extent, a matter of taste.

In this chapter we introduce the main methods for specifying concrete
syntax, using as an example an illustrative expression language, called
L{num str}, that supports elementary arithmetic on the natural numbers
and simple computations on strings. In addition, L{num str} includes a
construct for binding the value an expression to a variable within a speci-
fied scope.

6.1 Lexical Structure

The first phase of syntactic processing is to convert from a character-based
representation to a symbol-based representation of the input. This is called
lexical analysis, or lexing. The main idea is to aggregate characters into sym-
bols that serve as tokens for subsequent phases of analysis. For example,
the numeral 467 is written as a sequence of three consecutive characters,
one for each digit, but is regarded as a single token, namely the number 467.
Similarly, an identifier such as temp comprises four letters, but is treated as
a single symbol representing the entire word. Moreover, many character-
based representations include empty “white space” (spaces, tabs, newlines,
and, perhaps, comments) that are discarded by the lexical analyzer.1

1In some languages white space is significant, in which case it must be converted to
symbolic form for subsequent processing.
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The character representation of symbols is, in most cases, conveniently
described using regular expressions. The lexical structure of L{num str} is
specified as follows:

Item itm ::= kwd | id | num | str | spl
Keyword kwd ::= l · e · t · ε | b · e · ε | i · n · ε
Identifier id ::= ltr (ltr | dig)∗

Numeral num ::= dig dig∗

Literal str ::= qum (num | dig)∗qum
Special spl ::= + | * | @ | ( | ) | |
Letter ltr ::= a | b | . . .
Digit dig ::= 0 | 1 | . . .
Quote qum ::= "

A lexical item is either a keyword, an identifier, a numeral, a string literal,
or a special symbol. There are three keywords, specified as sequences of
characters, for emphasis. Identifiers start with a letter and may involve let-
ters or digits. Numerals are non-empty sequences of digits. String literals
are sequences of letters or digits surrounded by quotes. The special sym-
bols, letters, digits, and quote marks are as enumerated. (Observe that in
these latter classes we are tacitly identifying a character with the unit length
string consisting of that character.)

The job of the lexical analyzer is to translate a character string into a
token string using the above definitions as a guide. The input string is
scanned, ignoring white space, and translating lexical items into tokens,
which are specified by the following rules:

s str
ID[s] tok

(6.1a)

n nat
NUM[n] tok

(6.1b)

s str
STR[s] tok

(6.1c)

LET tok (6.1d)

BE tok (6.1e)

IN tok (6.1f)
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ADD tok (6.1g)

MUL tok (6.1h)

CAT tok (6.1i)

VB tok (6.1j)

LP tok (6.1k)

RP tok (6.1l)

Lexical analysis is inductively defined by the following judgement forms:

s itm←→ t tok Scan an item
s kwd←→ t tok Scan a keyword

s id←→ t tok Scan an identifier
s num←→ t tok Scan a number

s spl←→ t tok Scan a symbol

The definition of these forms makes use of some auxiliary judgements cor-
responding to the primitive concepts used in the definition of the lexical
structure of the language.

s kwd←→ t tok
s itm←→ t tok

(6.2a)

s id←→ t tok
s itm←→ t tok

(6.2b)

s num←→ t tok
s itm←→ t tok

(6.2c)

s str←→ t tok
s itm←→ t tok

(6.2d)

s spl←→ t tok

s itm←→ t tok
(6.2e)
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s = l · e · t · ε str
s kwd←→ LET tok

(6.2f)

s = b · e · ε str
s kwd←→ LET tok

(6.2g)

s = i · n · ε str
s kwd←→ LET tok

(6.2h)

s = s1 ˆ s2 str s1 ltr s2 lord

s id←→ ID[s] tok
(6.2i)

s = s1 ˆ s2 str s1 dig s2 dgs s num←→ n nat

s num←→ NUM[n] tok
(6.2j)

s = s1 ˆ s2 ˆ s3 str s1 qum s2 lord s2 qum

s str←→ STR[s2] tok
(6.2k)

s = + · ε str
s spl←→ ADD tok (6.2l)

s = * · ε str
s spl←→ MUL tok (6.2m)

s = @ · ε str
s spl←→ CAT tok

(6.2n)

s = ( · ε str
s spl←→ LP tok

(6.2o)

s = ) · ε str
s spl←→ RP tok

(6.2p)

s = | · ε str
s spl←→ VB tok

(6.2q)

We leave it to the reader to provide definitions of the remaining auxiliary
judgement forms.

Translation from a character string to a token string is defined by the
judgement s fil ←→ t tokstr, which is inductively defined by the following
rule:

s = s1 ˆ s2 ˆ s3 str s1 whs s2 itm←→ t tok s3 fil←→ ts tokstr

s fil←→ t · ts tokstr
(6.3a)

In words, the translation of a character string to a token string consists of
repeatedly skipping white space and translating a lexical item into a token,
which is then emitted to the output.
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6.2 Context-Free Grammars

The standard method for defining concrete syntax is by giving a context-free
grammar for the language. A grammar consists of three components:

1. The tokens, or terminals, over which the grammar is defined.

2. The syntactic classes, or non-terminals, which are disjoint from the ter-
minals.

3. The rules, or productions, which have the form A ::= α, where A is a
non-terminal and α is a string of terminals and non-terminals.

Each syntactic class is a collection of token strings. The rules determine
which strings belong to which syntactic classes.

When defining a grammar, we often abbreviate a set of productions,

A ::= α1

...
A ::= αn,

each with the same left-hand side, by the compound production

A ::= α1 | . . . | αn,

which specifies a set of alternatives for the syntactic class A.
A context-free grammar determines a simultaneous inductive defini-

tion of its syntactic classes. Specifically, we regard each non-terminal, A, as
a judgement form, s A, over strings of terminals. To each production of the
form

A ::= s1 A1 s2 . . . sn An sn+1 (6.4)

we associate an inference rule

s′1 A1 . . . s′n An

s1 s′1 s2 . . . sn s′n sn+1 A
. (6.5)

The collection of all such rules constitutes an inductive definition of the
syntactic classes of the grammar.

Recalling that juxtaposition of strings is short-hand for their concatena-
tion, we may re-write the preceding rule as follows:

s′1 A1 . . . s′n An s = s1 ˆ s′1 ˆ s2 ˆ . . . sn ˆ s′n ˆ sn+1

s A
. (6.6)
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This formulation makes clear that s A holds whenever s can be partitioned
as described so that s′i A for each 1 ≤ i ≤ n. Since string concatenation is
not invertible, the decomposition is not unique, and so there may be many
different ways in which the rule applies.

6.3 Grammatical Structure

The concrete syntax ofL{num str}may be specified by a context-free gram-
mar over the tokens defined in Section 6.1 on page 45. The grammar has
only one syntactic class, exp, which is defined by the following compound
production:

Expression exp ::= num | str | id | LP exp RP | exp ADD exp |
exp MUL exp | exp CAT exp | VB exp VB |
LET id BE exp IN exp

Number num ::= NUM[n] (n nat)
String str ::= STR[s] (s str)
Identifier id ::= ID[s] (s str)

This grammar makes use of some standard notational conventions to im-
prove readability: we identify a token with the corresponding unit-length
string, and we use juxtaposition to denote string concatenation.

Applying the interpretation of a grammar as an inductive definition,
we obtain the following rules:

n num
NUM[n] exp (6.7a)

s str
STR[s] exp (6.7b)

s str
ID[s] exp (6.7c)

s1 exp s2 exp
s1 ADD s2 exp (6.7d)

s1 exp s2 exp
s1 MUL s2 exp (6.7e)

s1 exp s2 exp
s1 CAT s2 exp (6.7f)
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s exp
VB s VB exp (6.7g)

s exp
LP s RP exp (6.7h)

s1 id s2 exp s3 exp
LET s1 BE s2 IN s3 exp

(6.7i)

s str
ID[s] id

(6.7j)

n nat
NUM[n] num

(6.7k)

To emphasize the role of string concatentation, we may rewrite Rule (6.7e)
as follows:

s = s1 MUL s2 str s1 exp s2 exp
s exp (6.8)

That is, s exp is derivable if s is the concatentation of s1, the multiplication
sign, and s2, where s1 exp and s2 exp.

6.4 Ambiguity

Apart from subjective matters of readability, a principal goal of concrete
syntax design is to eliminate ambiguity. The grammar of arithmetic expres-
sions given above is ambiguous in the sense that some token strings may be
thought of as arising in several different ways. More precisely, there are to-
ken strings s for which there is more than one derivation ending with s exp
according to Rules (6.7).

For example, consider the character string 1+2*3, which, after lexical
analysis, is translated to the token string

NUM[1] ADD NUM[2] MUL NUM[3].

Since string concatenation is associative, this token string can be thought of
as arising in several ways, including

NUM[1] ADD ∧NUM[2] MUL NUM[3]

and
NUM[1] ADD NUM[2]∧ MUL NUM[3],

where the caret indicates the concatenation point.
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One consequence of this observation is that the same token string may
be seen to be grammatical according to the rules given in Section 6.3 on
page 50 in two different ways. According to the first reading, the expres-
sion is principally an addition, with the first argument being a number, and
the second being a multiplication of two numbers. According to the second
reading, the expression is principally a multiplication, with the first argu-
ment being the addition of two numbers, and the second being a number.

Ambiguity is a purely syntactic property of grammars; it has nothing to
do with the “meaning” of a string. For example, the token string

NUM[1] ADD NUM[2] ADD NUM[3],

also admits two readings. It is immaterial that both readings have the same
meaning under the usual interpretation of arithmetic expressions. More-
over, nothing prevents us from interpreting the token ADD to mean “divi-
sion,” in which case the two readings would hardly coincide! Nothing in
the syntax itself precludes this interpretation, so we do not regard it as rel-
evant to whether the grammar is ambiguous.

To eliminate ambiguity the grammar of L{num str} given in Section 6.3
on page 50 must be re-structured to ensure that every grammatical string
has at most one derivation according to the rules of the grammar. The
main method for achieving this is to introduce precedence and associativ-
ity conventions that ensure there is only one reading of any token string.
Parenthesization may be used to override these conventions, so there is no
fundamental loss of expressive power in doing so.

Precedence relationships are introduced by layering the grammar by in-
troducing new syntactic classes.

Factor fct ::= num | str | id | LP exp RP
Term trm ::= fct | fct MUL trm | VB fct VB
Expression exp ::= trm | trm ADD exp | trm CAT exp
Program prg ::= exp | LET id BE trm IN prg

The effect of this grammar is to ensure that let has the lowest prece-
dence, addition and concatenation intermediate precedence, and multipli-
cation and length the highest precedence. Moreover, all forms are right-
associative. Different choices are possible, according to taste; this grammar
illustrates one way to resolve ambiguity.
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6.5 Informal Conventions

Throughout this book we will encounter many programming languages.
In order to write down examples, it is essential to give each one a concrete
syntax, and hence we must specify a lexical and grammatical structure for
each. To avoid getting bogged down in such syntactic details, we will em-
ploy a short-form grammatical specification that leaves implicit the lexical
structure, and ignores problems of ambiguity that must be solved in prac-
tice, but which can be safely glossed over in an informal development. In
addition, to avoid introducing names for the various syntactic categories,
the grammar is formulated using typical element notation, rather than stan-
dard grammar notation.

These conventions are best illustrated by example. Using the short-form
presentation, the concrete syntax of L{num str}may be defined as follows:

Expr e ::= n | "s" | s | e1+e2 | e1*e2 | e1^e2 | |e| | let x be e1 in e2

When using short-form grammar notation we leave it to the reader to de-
termine the intended lexical structure, to restructure the grammar to avoid
ambiguity, and to introduce grammatical classes for each of the typical el-
ements. Moreover, we usually tacitly include parenthesization to improve
readability and to resolve ambiguity in examples.

6.6 Exercises
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Chapter 7

Abstract Syntax

The concrete syntax of a language is concerned with the linear representa-
tion of the phrases of a language as strings of symbols—the form in which
we write them on paper, type them into a computer, and read them from
a page. The main goal of concrete syntax design is to enhance the read-
ability and writability of the language, based on subjective criteria such as
similarity to other languages, ease of editing using standard tools, and so
forth.

But languages are also the subjects of study, as well as the instruments
of expression. As such the concrete syntax of a language is just a nuisance.
When analyzing a language mathematically we are only interested in the
deep structure of its phrases, not their surface representation. The abstract
syntax of a language exposes the hierarchical and binding structure of the
language, and suppresses the linear notation used to write it on the page.

Parsing is the process of translation from concrete to abstract syntax. It
consists of analyzing the linear representation of a phrase in terms of the
grammar of the language and transforming it into an abstract syntax tree
or an abstract binding tree that reveals the deep structure of the phrase.
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7.1 Abstract Syntax Trees

The abstract syntax tree representation of L{num str} is specified by the
following assignment of arities to operators.

ar(num[n]) = 0 (n nat)
ar(str[s]) = 0 (s str)
ar(id[s]) = 0 (s str)
ar(plus) = 2

ar(times) = 2
ar(cat) = 2
ar(len) = 1
ar(let) = 3

Observe that identifiers are regarded as operators of arity 0, and that the
let construct is regarded as an operator with three arguments, the first of
which is expected to be an identifier (but this is not enforced).

Specializing the rules for abstract syntax trees to this signature, we ob-
tain the following inductive definition of the abstract syntax of arithmetic
expressions:

n nat
num[n] ast

(7.1a)

s str
str[s] ast

(7.1b)

s str
id[s] ast

(7.1c)

a1 ast a2 ast

plus(a1, a2) ast
(7.1d)

a1 ast a2 ast

times(a1, a2) ast
(7.1e)

a1 ast a2 ast

cat(a1, a2) ast
(7.1f)

a ast
len(a) ast

(7.1g)

s str a1 ast a2 ast

let(id[s], a1, a2) ast
(7.1h)
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Strictly speaking, the last rule is a specialization of the rule induced by the
arity assignment for let in which we demand that the first argument be an
identifier.

7.2 Parsing Into Abstract Syntax Trees

The process of translation from concrete to abstract syntax is called parsing.
We will define parsing as a judgement between the concrete and abstract
syntax of a language. This judgement will have the mode (∀, ∃≤1), which
states that the parser is a partial function of its input, being undefined for
ungrammatical token strings, but otherwise uniquely determining the ab-
stract syntax tree representation of each well-formed input.

The parsing judgements for L{num str} follow the unambiguous gram-
mar given in Chapter 6:

s prg←→ a ast Parse as a program
s exp←→ a ast Parse as an expression
s trm←→ a ast Parse as a term
s fct←→ a ast Parse as a factor

These judgements are inductively defined simultaneously by the following
rules:

n nat
NUM[n] fct←→ num[n] ast

(7.2a)

s str
STR[s] fct←→ str[s] ast

(7.2b)

s str
ID[s] fct←→ id[s] ast

(7.2c)

s exp←→ a ast

LP s RP fct←→ a ast
(7.2d)

s fct←→ a ast
s trm←→ a ast

(7.2e)

s1 fct←→ a1 ast s2 trm←→ a2 ast

s1 MUL s2 trm←→ times(a1, a2) ast
(7.2f)

s fct←→ a ast
VB s VB trm←→ len(a) ast

(7.2g)
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s trm←→ a ast
s exp←→ a ast (7.2h)

s1 trm←→ a1 ast s2 exp←→ a2 ast

s1 ADD s2 exp←→ plus(a1, a2) ast
(7.2i)

s1 trm←→ a1 ast s2 exp←→ a2 ast

s1 CAT s2 exp←→ cat(a1, a2) ast
(7.2j)

s exp←→ a ast
s prg←→ a ast

(7.2k)

s1 fct←→ id[s] ast s2 trm←→ a2 ast s3 prg←→ a3 ast

LET s1 BE s2 IN s3 prg←→ let(id[s], a2, a3) ast
(7.2l)

A successful parse implies that the token string must have been derived
according to the rules of the unambiguous grammar and that the result is a
well-formed abstract syntax tree.

Theorem 7.1. 1. If s fct←→ a ast, then s fct and a ast.

2. If s trm←→ a ast, then s trm and a ast.

3. If s exp←→ a ast, then s exp and a ast.

4. If s prg←→ a ast, then s prg and a ast.

Moreover, if a string is generated according to the rules of the grammar,
then it has a parse as an ast.

Theorem 7.2. 1. If s fct, then there is a unique a such that s fct←→ a ast.

2. If s trm, then there is a unique a such that s trm←→ a ast.

3. If s exp, then there is a unique a such that s exp←→ a ast.

4. If s prg, then there is a unique a such that s prg←→ a ast.
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7.3 Parsing Into Abstract Binding Trees

The representation of L{num str} using abstract syntax trees exposes the
hierarchical structure of the language, but does not manage the binding
and scope of variables in a let expression. In this section we revise the
parser given in Section 7.1 on page 56 to translate from token strings (as
before) to abstract binding trees to make explicit the binding and scope of
identifiers in a program.

The abstract binding tree representation of L{num str} is specified by
the following assignment of (generalized) arities to operators:

ar(num[n]) = ()
ar(str[s]) = ()

ar(plus) = (0, 0)
ar(times) = (0, 0)

ar(cat) = (0, 0)
ar(len) = (0)
ar(let) = (0, 1)

The arity of the operator let specifies that it takes two arguments, the sec-
ond of which is an abstractor of valence 1, meaning that it binds one vari-
able in the second argument position. Observe that identifiers are no longer
declared as operators; instead, identifiers are translated by the parser into
variables.

The revised parsing judgement, s prg ←→ a abt, between strings s and
abt’s a, is defined by a collection of rules similar to those given in Section 7.2
on page 57. These rules take the form of a generalized inductive definition
(see Chapter 2) in which the premises and conclusions of the rules involve
hypothetical judgments of the form

ID[s1] fct←→ x1 abt, . . . , ID[sn] fct←→ xn abt ` s prg←→ a abt,

where the xi’s are pairwise distinct variable names. The hypotheses of the
judgement dictate how identifiers are to be parsed as variables, for it fol-
lows from the reflexivity of the hypothetical judgement that

Γ, ID[s] fct←→ x abt ` ID[s] fct←→ x abt.

To maintain the association between identifiers and variables we must
ensure that when parsing a let expression we update the hypotheses to
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record the association between the bound identifier and a corresponding
variable:

Γ ` s1 exp←→ a1 abt Γ, ID[s] fct←→ x abt ` s2 prg←→ a2 abt

Γ ` LET ID[s] BE s1 IN s2 prg←→ let(a1, x.a2) abt
(7.3a)

We demand that the concrete syntax of a let expression specify an identi-
fier in the leading position, and update the hypotheses governing the pars-
ing of this identifier when parsing the body of the let.

This elegant formulation of parsing using hypothetical judgements and
generalized rules suffers from a shortcoming that must be rectified. What
happens if an inner let expression binds the same identifier as an outer
let expression? This will lead to the introduction of two hypotheses, say
ID[s] fct ←→ x1 abt and ID[s] fct ←→ x2 abt, for the same identifier,
destroying the unicity property of the parsing judgement! Each occurrence
of ID[s] may be parsed either as the variable x1 or as the variable x2, with
no means to control which is chosen at any point.

To rectify this we must resort to less elegant methods. Rather than use
hypotheses, we instead maintain an explicit symbol table to record the as-
sociation between identifiers and variables. We must define explicitly the
procedures for creating and extending symbol tables, and for looking up
an identifier in the symbol table to determine its associated variable. This
gives us the freedom to implement the usual shadowing policy for re-used
identifiers, according to which the most recent binding governs the associ-
ation of identifiers and variables.

The main change to the parsing judgement is that the hypothetical judge-
ment

Γ ` s prg←→ a abt

is reduced to the categorical judgement

s prg←→ a abt [σ],

where σ is a symbol table. (Analogous changes must be made to the other
parsing judgements.) The symbol table is now an argument to the judge-
ment form, rather than an implicit mechanism for performing inference
under hypotheses.

The rule for parsing let expressions is then formulated as follows:

s1 exp←→ a1 abt [σ] σ′ = σ[ID[s] 7→ x] s2 prg←→ a2 abt [σ′]
let ID[s] be s1 in s2 prg←→ let(a1, x.a2) abt [σ]

(7.4)
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This rule is quite similar to the hypothetical form, the difference being that
we must manage the symbol table explicitly. In particular, we must include
a rule for parsing identifiers, rather than relying on the reflexivity of the
hypothetical judgement to do it for us.

σ(ID[s]) = x
ID[s] id←→ x name [σ]

(7.5)

The premise of this rule states that σ maps the identifier ID[s] to the vari-
able x.

Symbol tables may be defined to be finite sequences of ordered pairs
of the form (ID[s], x), where ID[s] is an identifier and x is a variable
name. Using this representation it is straightforward to define the follow-
ing judgement forms:

σ symtab well-formed symbol table
σ′ = σ[ID[s] 7→ x] add new association

σ(ID[s]) = x lookup identifier

We leave the precise definitions of these judgements as an exercise for the
reader.

7.4 Informal Conventions

The abstract syntax of a language is often divided into several syntactic
categories, rather than consolidated into a single category of abstract syn-
tax. For example, in many languages it is natural to distinguish expressions
from types, with types permitted to occur in expressions, but expressions
not permitted to occur in types. Formally, this can be achieved by distin-
guishing two different signatures of operators, say Ωtype and Ωexpr, and
consider types to be abt’s over the former signature, and expressions to be
abt’s over the latter.

In practice we avoid such formal specifications implicit by abusing the
short-form grammar notation introduced in Chapter 6 to specify the ab-
stract binding structure of a language. This is best illustrated by example.
The abstract syntax of L{num str}may be specified as follows:

Type τ ::= nat | str
Expr e ::= x | num[n] | str[s] | plus(e1, e2) | times(e1, e2) |

cat(e1, e2) | len(e) | let(e1, x.e2)
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This specification is to be read as defining two judgements, τ type stating
that τ is a well-formed type, and e exp, stating that e is a well-formed ex-
pression. The grammar for types specifies two operators of arity (), namely
nat and str, and the grammar for expressions specifies two operators of
arity (), three of arity (0, 0), one of arity (0), and one of arity (0, 1). The
arities are implied by the given form of the typical element in the grammar.
For example, the typical element let(e1, x.e2) specifies that let is an ex-
pression operator of arity (0, 1). This is because it has two arguments, the
second of which is an abstractor of valence one.

Usually it is useful to introduce a more readable form of concrete syn-
tax for each form of abstract syntax. To avoid the complexities of a full
specification of the concrete syntax of a language, we instead give a chart
showing the correspondence between the abstract and concrete syntax. For
example, a concrete syntax for L{num str}may be (incompletely) specified
by the following chart:

Abstract Concrete
num[n] n
str[s] "s"

plus(e1, e2) e1+e2

times(e1, e2) e1*e2

cat(e1, e2) e1^e2

len(e) |e|
let(e1, x.e2) let x be e1 in e2

We occasionally make a further distinction between two forms of concrete
syntax, the implementation syntax, which is used in a computer implemen-
tation, and the blackboard syntax, which is used in handwritten contexts.

7.5 Exercises

1. Give an unambiguous grammar for numbers, and show how to parse
it.

2. Show that the parser may be “run backwards” to obtain an unparser,
or pretty printer. This means that you are to show that the parser has
mode (∃, ∀).

3. Implement symbol tables.
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Chapter 8

Static Semantics

The static semantics of a language consists of a collection of rules for impos-
ing constraints on the formation of programs, called a type system. Phrases
of the language are classified by types, which govern how they may be used
in combination with other phrases. Roughly speaking, the type of a phrase
predicts the form of its value, and a phrase is said to be well-typed if it is con-
structed consistently with these predictions. For example, the sum of two
expressions of numeric type is itself of numeric type, which expresses the
evident fact that the sum of type numbers is itself a number. On the other
hand, the sum of an expression of string type with any other expression is
ill-typed, expressing that addition is undefined on strings.

It is rather straightforward to formulate a type system for simple calculator-
like languages which do not involve variable binding. The task becomes
more interesting once variables are introduced, for then we must employ
hypothetico-general judgements to account for their types. The static se-
mantics of such languages takes the form of a generalized inductive defi-
nition, for which we must show that the structural rules are admissible (as
described in Chapter 4).

8.1 Static Semantics of L{num str}

The static semantics of L{num str} consists of a collection of rules for de-
riving judgements of the form e : τ, where e exp and τ type. The static
semantics is specified by a generalized inductive definition of the family of
judgements

X | Γ ` e : τ,
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where X is a variable context consisting of declarations of the form x exp,
where x is a variable name, and where Γ is a typing context, a finite set of
hypotheses of the form x : τ, one for each x declared in X .

X , x exp | Γ, x : τ ` x : τ (8.1a)

X | Γ ` str[s] : str (8.1b)

X | Γ ` num[n] : num (8.1c)

X | Γ ` e1 : num X | Γ ` e2 : num
X | Γ ` plus(e1, e2) : num

(8.1d)

X | Γ ` e1 : str X | Γ ` e2 : str
X | Γ ` cat(e1, e2) : str

(8.1e)

X | Γ ` e1 : τ1 X , x exp | Γ, x : τ1 ` e2 : τ2

X | Γ ` let(e1, x.e2) : τ2
(8.1f)

In practice we usually elide the variable context X since it can be deduced
from the typing context. In that case the foregoing rules would be written
as follows:

Γ, x : τ ` x : τ (8.2a)

Γ ` str[s] : str (8.2b)

Γ ` num[n] : num (8.2c)

Γ ` e1 : num Γ ` e2 : num
Γ ` plus(e1, e2) : num

(8.2d)

Γ ` e1 : str Γ ` e2 : str
Γ ` cat(e1, e2) : str

(8.2e)

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let(e1, x.e2) : τ2
(8.2f)
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8.2 Structural Properties

The rules defining the static semantics are chosen so as to make the struc-
tural rules given in Chapter 4 admissible. We combine the substitution and
transitivity properties into a single, simplified form in view of the fact that
if x is not declared in Γ, then [a/x]Γ = Γ.

Lemma 8.1 (Admissibility of Structural Rules). 1. If X | Γ ` e′ : τ′ and
x # X , then for any τ type, X , x exp | Γ, x : τ ` e′ : τ′.

2. If X , x exp | Γ, x : τ ` e′ : τ′ and X | Γ ` e : τ, then X | Γ ` [e/x]e′ : τ′.

Proof. 1. By induction on the derivation of X | Γ ` e′ : τ′. We will give
one case here, for rule (8.1f). We have that e′ = let(e1, z.e2), where
we may assume z is chosen such that z # X and z # x. By induction
we have

(a) X , x exp | Γ, x : τ ` e1 : τ1,

(b) X , x exp, z exp | Γ, x : τ, z : τ1 ` e2 : τ′,

from which the result follows by Rule (8.1f).

2. By induction on the derivation of X , x exp | Γ, x : τ ` e′ : τ′. We again
consider only rule (8.1f). As in the preceding case, e′ = let(e1, z.e2),
where z is chosen so that z # x, z # X , and z # e. We have by induction

(a) X | Γ ` [e/x]e1 : τ1,

(b) X , z exp | Γ, z : τ1 ` [e/x]e2 : τ′.

Since we have chosen z such that z # e, we have

[e/x]let(e1, z.e2) = let([e/x]e1, z.[e/x]e2).

It follows by Rule (8.1f) that X | Γ ` [e/x]let(e1, z.e2) : τ, as desired.

The typing rules are syntax-directed in the sense that there is exactly one
rule for each form of expression. Consequently, we obtain the following
inversion properties for typing, which state that the typing rules are neces-
sary, as well as sufficient, for each form of expression.

Lemma 8.2 (Inversion for Typing). Suppose that X | Γ ` e : τ.

1. if e = x, then X ` x exp and X | Γ ` x : τ.
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2. if e = num[n], then τ = num.

3. if e = str[s], then τ = str.

4. if e = plus(e1, e2) or e = times(e1, e2), then τ = num, X | Γ ` e1 : num,
and X | Γ ` e2 : num.

5. if e = cat(e1, e2), then τ = str, X | Γ ` e1 : str, and X | Γ ` e2 : str.

6. if e = len(e1), then τ = num and X | Γ ` e1 : str.

7. if e = let(e1, x.e2), then X | Γ ` e1 : τ1 for some τ1 type, and X , x exp |
Γ, x : τ1 ` e2 : τ.

Proof. These may all be proved by induction on the derivation of the typing
judgement X | Γ ` e : τ.

8.3 Exercises

1. Show that the expression e = plus(num[7], str[abc]) is ill-typed in
that there is no τ such that e : τ.
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Chapter 9

Dynamic Semantics

The dynamic semantics of a language specifies how programs are to be ex-
ecuted. One important method for specifying dynamic semantics is called
structural semantics, which consists of a collection of rules defining a transi-
tion system whose states are closed expressions. Contextual semantics may
be viewed as an alternative presentation of the structural semantics of a
language. Another important method for specifying dynamic semantics,
called evaluation semantics, is the subject of Chapter 11.

9.1 Structural Semantics of L{num str}

A structural semantics forL{num str} consists of a transition system whose
states are closed expressions. Every closed expression is an initial state. The
final states are the closed values, as defined by the following rules:

num[n] val (9.1a)

str[s] val (9.1b)

The transition judgement, e 7→ e′, is also inductively defined.

n1 + n2 = n nat

plus(num[n1], num[n2]) 7→ num[n] (9.2a)

e1 7→ e′1
plus(e1, e2) 7→ plus(e′1, e2)

(9.2b)
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e1 val e2 7→ e′2
plus(e1, e2) 7→ plus(e1, e′2)

(9.2c)

s1 ˆ s2 = s str

cat(str[s1], str[s2]) 7→ str[s]
(9.2d)

e1 7→ e′1
cat(e1, e2) 7→ cat(e′1, e2)

(9.2e)

e1 val e2 7→ e′2
cat(e1, e2) 7→ cat(e1, e′2)

(9.2f)

e1 val

let(e1, x.e2) 7→ [e1/x]e2
(9.2g)

e1 7→ e′1
let(e1, x.e2) 7→ let(e′1, x.e2)

(9.2h)

We have omitted rules for multiplication and computing the length of
a string, which follow a similar pattern. Rules (9.2a), (9.2d), and (9.2g)
are instruction transitions, since they correspond to the primitive steps of
evaluation. The remaining rules are search transitions that determine the
order in which instructions are executed.

When defined using structural semantics, a derivation sequence has a
“two-dimensional” structure, with the number of steps in the sequence be-
ing its “width” and the derivation tree for each step being its “depth.” For
example, consider the following evaluation sequence.

let(plus(num[1], num[2]), x.plus(plus(x, num[3]), num[4]))
7→ let(num[3], x.plus(plus(x, num[3]), num[4]))
7→ plus(plus(num[3], num[3]), num[4])
7→ plus(num[6], num[4])
7→ num[10]

Each step in this sequence of transitions is justified by a derivation accord-
ing to Rules (9.2). For example, the third transition in the preceding exam-
ple is justified by the following derivation:

plus(num[3], num[3]) 7→ num[6]
(9.2a)

plus(plus(num[3], num[3]), num[4]) 7→ plus(num[6], num[4])
(9.2b)

The other steps are similarly justified by a composition of rules.
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Since the transition judgement is inductively defined, we may reason
about it using rule induction. Specifically, to show that P(e, e′) holds when-
ever e 7→ e′, it is sufficient to show that P is closed under the rules defining
the transition judgement. For example, it is a simple matter to show by
rule induction that the transition judgement for evaluation of expressions
is deterministic: if e 7→ e′ and e 7→ e′′, then e′ is e′′.

9.2 Contextual Semantics of L{num str}
A variant of structural semantics, called contextual semantics, is sometimes
useful. There is no fundamental difference between the two approaches,
only a difference in the style of presentation. The main idea is to isolate
instruction steps as a special form of judgement, called instruction transi-
tion, and to formalize the process of locating the next instruction using a
device called an evaluation context. The judgement, e val, defining whether
an expression is a value, remains unchanged.

The instruction transition judgement, e1  e2, for L{num str} is de-
fined by the following rules, together with similar rules for multiplication
of numbers and the length of a string.

m + n = p nat

plus(num[m], num[n]) num[p] (9.3a)

s ˆ t = u str
cat(str[s], str[t]) str[u] (9.3b)

e1 val

let(e1, x.e2) [e1/x]e2
(9.3c)

The left-hand side of each instruction is called a redex, and the correspond-
ing right-hand side is called its contractum.

The judgement E ectxt determines the location of the next instruction
to execute in a larger expression. The position of the next instruction step
is specified by a “hole”, written ◦, into which the next instruction is placed,
as we shall detail shortly.

◦ ectxt (9.4a)

E1 ectxt

plus(E1, e2) ectxt
(9.4b)

e1 val E2 ectxt

plus(e1, E2) ectxt
(9.4c)
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E1 ectxt

cat(E1, e2) ectxt
(9.4d)

e1 val E2 ectxt

cat(e1, E2) ectxt
(9.4e)

E1 ectxt

let(E1, x.e2) ectxt
(9.4f)

The first rule for evaluation contexts specifies that the next instruction
may occur “here”, at the point of the occurrence of the hole. The remaining
rules correspond one-for-one to the search rules of the structural semantics.
For example, Rule (9.4c) states that in an expression plus(e1, e2), if the first
principal argument, e1, is a value, then the next instruction step, if any, lies
at or within the second principal argument, e2.

An evaluation context is to be thought of as a template that is instanti-
ated by replacing the hole with an instruction to be executed. The judge-
ment e′ = E{e} states that the expression e′ is the result of filling the hole
in the evaluation context E with the expression e. It is inductively defined
by the following rules:

e = ◦{e} (9.5a)

e1 = E1{e}
plus(e1, e2) = plus(E1, e2){e}

(9.5b)

e1 val e2 = E2{e}
plus(e1, e2) = plus(e1, E2){e}

(9.5c)

e1 = E1{e}
plus(e1, e2) = cat(E1, e2){e}

(9.5d)

e1 val e2 = E2{e}
plus(e1, e2) = cat(e1, E2){e}

(9.5e)

e1 = E1{e}
let(e1, x.e2) = let(E1, x.e2){e}

(9.5f)

There is one rule for each form of evaluation context. Filling the hole with
e results in e; otherwise we proceed inductively over the structure of the
evaluation context.
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Finally, the dynamic semantics for L{num str} is defined using contex-
tual semantics by a single rule:

e = E{e0} e0  e′0 e′ = E{e′0}
e 7→ e′

(9.6)

In words, a transition from e to e′ consists of (1) decomposing e into an
evaluation context and an instruction, (2) execution of that instruction, and
(3) replacing the instruction by the result of its execution in the same spot
within e to obtain e′.

The structural and contextual semantics define the same transition re-
lation. For the sake of the proof, let us write e 7→s e′ for the transition
relation defined by the structural semantics (Rules (9.2)), and e 7→c e′ for
the transition relation defined by the contextual semantics (Rules (9.6)).

Theorem 9.1. e 7→s e′ if, and only if, e 7→c e′.

Proof. From left to right, proceed by rule induction on Rules (9.2). It is
enough in each case to exhibit an evaluation context E such that e = E{e0},
e′ = E{e′0}, and e0  e′0. For example, for Rule (9.2a), take E = ◦, and
observe that e e′. For Rule (9.2b), we have by induction that there exists
an evaluation context E1 such that e1 = E1{e0}, e′1 = E1{e′0}, and e0  e′0.
Take E = plus(E1, e2), and observe that e = plus(E1, e2){e0} and e′ =
plus(E1, e2){e′0} with e0  e′0.

From right to left, observe that if e 7→c e′, then there exists an evaluation
context E such that e = E{e0}, e′ = E{e′0}, and e0  e′0. We prove by induc-
tion on Rules (9.5) that e 7→s e′. For example, for Rule (9.5a), e0 is e, e′0 is e′,
and e  e′. Hence e 7→s e′. For Rule (9.5b), we have that E = plus(E1, e2),
e1 = E1{e0}, e′1 = E1{e′0}, and e1 7→s e′1. Therefore e is plus(e1, e2), e′ is
plus(e′1, e2), and therefore by Rule (9.2b), e 7→s e′.

Since the two transition judgements coincide, contextual semantics may
be seen as an alternative way of presenting a structural semantics. It has
two advantages over structural semantics, one relatively superficial, one
rather less so. The superficial advantage stems from writing Rule (9.6) in
the simpler form

e0  e′0
E{e0} 7→ E{e′0}

. (9.7)

This formulation is simpler insofar as it leaves implicit the definition of
the decomposition of the left- and right-hand sides. The deeper advan-
tage, which we will exploit in Chapter 15, is that the transition judgement
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in contextual semantics applies only to closed expressions of a fixed type,
whereas in structural semantics transition is defined over expressions of
every type.

9.3 Exercises

1. Prove that if e 7→ e1 and e 7→ e2, then e1 =α e2.

2. Formulate a variation of L{num str} with both a by-name and a by-
value let construct.
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Chapter 10

Type Safety

Most contemporary programming languages are safe (or, type safe, or strongly
typed). Informally, this means that certain kinds of mismatches cannot arise
during execution. For example, type safety forL{num str} states that it will
never arise that a number is to be added to a string, or that two numbers
are to be concatenated, neither of which is meaningful.

In general type safety expresses the coherence between the static and
the dynamic semantics. The static semantics may be seen as predicting that
the value of an expression will have a certain form so that the dynamic se-
mantics of that expression is well-defined. Consequently, evaluation can-
not “get stuck” in a state for which no transition is possible, correspond-
ing in implementation terms to the absence of “illegal instruction” errors
at execution time. This is proved by showing that each step of transition
preserves typability and by showing that typable states are well-defined.
Consequently, evaluation can never “go off into the weeds,” and hence can
never encounter an illegal instruction.

More precisely, type safety for L{num str}may be stated as follows:

Theorem 10.1 (Type Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7→ e′.

The first part, called preservation, says that the steps of evaluation pre-
serve typing; the second, called progress, ensures that well-typed expres-
sions are either values or can be further evaluated. Safety is the conjunction
of preservation and progress.

We say that an expression, e, is stuck iff it is not a value, yet there is no
e′ such that e 7→ e′. It follows from the safety theorem that a stuck state is
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necessarily ill-typed. Or, putting it the other way around, that well-typed
states do not get stuck.

10.1 Preservation

The preservation theorem for L{num str} defined in Chapters 8 and 9 is
proved by rule induction on the transition system (rules (9.2)).

Theorem 10.2 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. We will consider two cases, leaving the rest to the reader. Consider
rule (9.2b),

e1 7→ e′1
plus(e1, e2) 7→ plus(e′1, e2)

.

Assume that plus(e1, e2) : τ. By inversion for typing, we have that τ =
num, e1 : num, and e2 : num. By induction we have that e′1 : num, and hence
plus(e′1, e2) : num. The case for concatenation is handled similarly.

Now consider rule (9.2g),

e1 val

let(e1, x.e2) 7→ [e1/x]e2
.

Assume that let(e1, x.e2) : τ2. By the inversion lemma 8.2 on page 67,
e1 : τ1 for some τ1 such that x : τ1 ` e2 : τ2. By the substitution lemma 8.1
on page 67 [e1/x]e2 : τ2, as desired.

The proof of preservation must proceed by rule induction on the rules
defining the transition judgement. It cannot, for example, proceed by in-
duction on the structure of e, for in most cases there is more than one tran-
sition rule for each expression form. Nor can it be proved by induction on
the typing rules, for in the case of the let rule, the context is enriched to
consider an open term, to which no dynamic semantics is assigned.

10.2 Progress

The progress theorem captures the idea that well-typed programs cannot
“get stuck”. The proof depends crucially on the following lemma, which
characterizes the values of each type.

Lemma 10.3 (Canonical Forms). If e val and e : τ, then
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1. If τ = num, then e = num[n] for some number n.

2. If τ = str, then e = str[s] for some string s.

Proof. By induction on rules (8.1) and (9.1).

Progress is proved by rule induction on rules (8.1) defining the static
semantics of the language.

Theorem 10.4 (Progress). If e : τ, then either e val, or there exists e′ such that
e 7→ e′.

Proof. The proof proceeds by induction on the typing derivation. We will
consider only one case, for rule (8.1d),

e1 : num e2 : num
plus(e1, e2) : num

,

where the context is empty because we are considering only closed terms.
By induction we have that either e1 val, or there exists e′1 such that

e1 7→ e′1. In the latter case it follows that plus(e1, e2) 7→ plus(e′1, e2), as
required. In the former we also have by induction that either e2 val, or there
exists e′2 such that e2 7→ e′2. In the latter case we have that plus(e1, e2) 7→
plus(e1, e′2), as required. In the former, we have, by the Canonical Forms
Lemma 10.3 on the facing page, e1 = num[n1] and e2 = num[n2], and hence

plus(num[n1], num[n2]) 7→ num[n1 + n2].

Since the typing rules for expressions are syntax-directed, the progress
theorem could equally well be proved by induction on the structure of e,
appealing to the inversion theorem at each step to characterize the types of
the parts of e. But this approach breaks down when the typing rules are not
syntax-directed, that is, when there may be more than one rule for a given
expression form. No difficulty arises if the proof proceeds by induction on
the typing rules.

Summing up, the combination of preservation and progress together
constitute the proof of safety. The progress theorem ensures that well-typed
expressions do not “get stuck” in an ill-defined state, and the preservation
theorem ensures that if a step is taken, the result remains well-typed (with
the same type). Thus the two parts work hand-in-hand to ensure that the
static and dynamic semantics are coherent, and that no ill-defined states
can ever be encountered while evaluating a well-typed expression.
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10.3 Run-Time Errors

Suppose that we wish to extend L{num str}with, say, a quotient operation
that is undefined for a zero divisor. The natural typing rule for quotients is
given by the following rule:

e1 : num e2 : num
div(e1, e2) : num

.

But the expression div(num[3], num[0]) is well-typed, yet stuck! We have
two options to correct this situation:

1. Enhance the type system, so that no well-typed program may divide
by zero.

2. Add dynamic checks, so that division by zero signals an error as the
outcome of evaluation.

Either option is, in principle, viable, but the most common approach is the
second. The first requires that the type checker prove that an expression be
non-zero before permitting it to be used in the denominator of a quotient.
It is difficult to do this without ruling out too many programs. For now we
consider the second option, which is widely used.

The general idea is to distinguish checked from unchecked errors. An
unchecked error is one that is ruled out by the type system. No run-time
checking is performed to ensure that such an error does not occur, because
the type system rules out the possibility of it arising. For example, the dy-
namic semantics need not check, when performing an addition, that its two
arguments are, in fact, numbers, as opposed to strings, because the type
system ensures that this is the case. On the other hand the dynamic seman-
tics for quotient must check for a zero divisor, because the type system does
not rule out the possibility.

Checked errors are modeled by adding to L{num str} a new construct,
error, which signals the occurrence of a checked error. The typing rule for
a checked error permits it to be regarded as having any type at all, because
it aborts evaluation, and hence cannot return to the calling context.

error : τ (10.1)

The dynamic semantics is augmented with rules that provoke a checked
error (such as division by zero), plus rules that propagate the error through
other language constructs.

div(v1, num[0]) 7→ error (10.2a)
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plus(error, e2) 7→ error (10.2b)

plus(v1, error) 7→ error (10.2c)

There are similar error propagation rules for the other constructs of the
language. Finally, we define e err to hold exactly when e = error.

The preservation theorem remains the same, and is proved similarly,
bearing in mind that error has any type we like. The statement (and proof)
of progress is modified to permit the possibility of a checked error as the
outcome of evaluation.

Theorem 10.5 (Progress With Error). If e : τ, then either e err, or e val, or there
exists e′ such that e 7→ e′.

Proof. The proof is by induction on typing, and proceeds similarly to the
proof given earlier, except that there are now three cases to consider at each
point in the proof.

10.4 Exercises

1. Complete the proof of preservation.

2. Complete the proof of progress.
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Chapter 11

Evaluation Semantics

In Chapter 9 we defined the dynamic semantics of L{num str} using the
method of structural semantics. This approach is useful as a foundation for
proving properties of a language, but other methods are often more appro-
priate for other purposes, such as writing user manuals. Another method,
called evaluation semantics, or ES, presents the dynamic semantics as a rela-
tion between a phrase and its value, without detailing how it is to be deter-
mined in a step-by-step manner. Two variants of evaluation semantics are
also considered, namely environment semantics, which delays substitution,
and cost semantics, which records the number of steps that are required to
evaluation an expression.

11.1 Evaluation Semantics

Another method for defining the dynamic semantics of L{num str}, called
evaluation semantics, consists of an inductive definition of the evaluation
judgement, e ⇓ v, specifying the value, v, of a closed expression, e.

num[n] ⇓ num[n] (11.1a)

str[s] ⇓ str[s] (11.1b)

e1 ⇓ num[n1] e2 ⇓ num[n2] n1 + n2 = n nat

plus(e1, e2) ⇓ num[n]
(11.1c)

e1 ⇓ str[s1] e2 ⇓ str[s2] s1 ˆ s2 = s str

cat(e1, e2) ⇓ str[s]
(11.1d)
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e1 ⇓ v1 [v1/x]e2 ⇓ v2

let(e1, x.e2) ⇓ v2
(11.1e)

The value of a let expression is determined by the value of its binding,
and the value of the corresponding substitution instance of its body. Since
the substitution instance is not a sub-expression of the let, the rules are not
syntax-directed.

Since the evaluation judgement is inductively defined, it has associated
with it a principle of proof by rule induction. Specifically, to show that the
property P(e, v) holds, it is enough to show that P is closed under the rules
defining the evaluation judgement. Specifically, our proof obligations are:

1. Show that P(num[n], num[n]).

2. Show that P(str[s], str[s]).

3. Show that P(plus(e1, e2), num[n]), assuming n1 + n2 = n nat, P(e1, num[n1])
and P(e2, num[n2]).

4. Show that P(cat(e1, e2), str[s]), assuming s1 ˆ s2 = s str, P(e1, str[s1])
and P(e2, str[s2]).

5. Show that P(let(e1, x.e2), v2), assuming P(e1, v1) and P([v1/x]e2, v2).

This induction principle is not the same as structural induction on e, be-
cause the evaluation rules are not syntax-directed.

It is possible to show by a straightforward rule induction on evaluation
that if e ⇓ v, then v val.

11.2 Relating Transition and Evaluation Semantics

We have given two different forms of dynamic semantics for L{num str}.
It is natural to ask whether they are equivalent, but to do so first requires
that we consider carefully what we mean by equivalence. The transition
semantics describes a step-by-step process of execution, whereas the eval-
uation semantics suppresses the intermediate states, focussing attention on
the initial and final states alone. This suggests that the appropriate cor-
respondence is between complete execution sequences in the transition se-
mantics and the evaluation judgement in the evaluation semantics. (We
will consider only numeric expressions, but analogous results hold also for
string-valued expressions.)

5:05PM DRAFT JUNE 26, 2007



11.3. ENVIRONMENT SEMANTICS 83

Theorem 11.1. For all closed expressions e and natural numbers n, e 7→∗ num[n]
iff e ⇓ num[n].

How might we prove such a theorem? We will consider each direction
separately. We consider the easier case first.

Lemma 11.2. If e ⇓ num[n], then e 7→∗ num[n].

Proof. By induction on the definition of the evaluation judgement. For ex-
ample, suppose that plus(e1, e2) ⇓ num[n] by the rule for evaluating addi-
tions. By induction we know that e1 7→∗ num[n1] and e2 7→∗ num[n2]. We
reason as follows:

plus(e1, e2) 7→∗ plus(num[n1], e2)
7→∗ plus(num[n1], num[n2])
7→ num[n1 + n2]

Therefore plus(e1, e2) 7→∗ num[n1 + n2], as required. The other cases are
handled similarly.

For the converse, recall from Chapter 5 the definitions of multi-step
evaluation and complete evaluation. Since num[n] ⇓ num[n], it suffices
to show that evaluation is closed under head expansion.

Lemma 11.3. If e 7→ e′ and e′ ⇓ num[n], then e ⇓ num[n].

Proof. By induction on the definition of the transition judgement. For ex-
ample, suppose that plus(e1, e2) 7→ plus(e′1, e2), where e1 7→ e′1. Suppose
further that plus(e′1, e2) ⇓ num[n], so that e′1 ⇓ num[n1], and e2 ⇓ num[n2]
and n1 + n2 = n nat. By induction e1 ⇓ num[n1], and hence plus(e1, e2) ⇓
num[n], as required.

11.3 Environment Semantics

Both the transition semantics and the evaluation semantics given earlier
rely on substitution to replace let-bound variables by their bindings dur-
ing evaluation. This approach maintains the invariant that only closed ex-
pressions are ever considered. However, in practice, we do not perform
substitution, but rather record the bindings of variables in some sort of
data structure. In this section we show how this can be elegantly modeled
using hypothetical judgements.

The basic idea is to consider hypotheses of the form x ⇓ v, where x is
a variable and v is a value, such that no two hypotheses govern the same
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variable. Let Θ range over finite sets of such hypotheses, which we call
an environment. We will consider judgements of the form X | Θ ` e ⇓ v,
where X is the finite set of variables appearing on the left of a hypothesis
in Θ. As usual, we will suppress explicit mention of the parameter set X ,
and simply write Θ ` e ⇓ v.

Θ, x ⇓ v ` x ⇓ v (11.2a)

Θ ` e1 ⇓ num[n1] Θ ` e2 ⇓ num[n2]

Θ ` plus(e1, e2) ⇓ num[n1 + n2]
(11.2b)

Θ ` e1 ⇓ str[s1] Θ ` e2 ⇓ str[s2]

Θ ` cat(e1, e2) ⇓ str[s1 ˆ s2]
(11.2c)

Θ ` e1 ⇓ v1 Θ, x ⇓ v1 ` e2 ⇓ v2

Θ ` let(e1, x.e2) ⇓ v2
(11.2d)

The variable rule is an instance of the reflexivity rule for hypothetical
judgements, and therefore need not be explicitly stated. We nevertheless
include it here for clarity. The let rule augments the environment with
a new assumption governing the bound variable (which, by α-conversion,
may be chosen to be distinct from any other variable currently in Θ to pre-
serve the invariant that no two assumptions govern the same variable).

The environment semantics is related to the evaluation semantics by the
following theorem:

Theorem 11.4. x1 ⇓ v1, . . . , xn ⇓ vn ` e ⇓ v iff [v1, . . . , vn/x1, . . . , xn]e ⇓ v.

Proof. The left to right direction is proved by induction on the rules defin-
ing the evaluation semantics, making use of the definition of substitution
and the definition of the evaluation semantics for closed expressions. The
converse is proved by induction on the structure of e, again making use of
the definition of substitution. Note that we must induct on e in order to
detect occurrences of variables xi in e, which are governed by a hypothesis
in the environment semantics.

11.4 Cost Semantics

A structural semantics provides a natural notion of time complexity for pro-
grams, namely the number of steps required to reach a final state. An evalu-
ation semantics, on the other hand, does not provide such a direct notion of
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complexity. Since the individual steps required to complete an evaluation
are suppressed, we cannot directly read off the number of steps required to
evaluate to a value. Instead we must augment the evaluation relation with
a cost measure, resulting in a cost semantics.

Evaluation judgements have the form e ⇓n v, with the meaning that e
evaluates to v in n steps.

num[n] ⇓0 num[n] (11.3a)

e1 ⇓k1 num[n1] e2 ⇓k2 num[n2]

plus(e1, e2) ⇓k1+k2+1 num[n1 + n2]
(11.3b)

str[s] ⇓0 str[s] (11.3c)

e1 ⇓k1 s1 e2 ⇓k2 s2

cat(e1, e2) ⇓k1+k2+1 str[s1 ˆ s2]
(11.3d)

e1 ⇓k1 v1 [v1/x]e2 ⇓k2 v2

let(e1, x.e2) ⇓k1+k2+1 v2
(11.3e)

Theorem 11.5. For any closed expression e and closed value v of the same type,
e ⇓k v iff e 7→k v.

Proof. From left to right proceed by rule induction on the definition of the
cost semantics. From right to left proceed by induction on k, with an inner
rule induction on the definition of the transition semantics.

11.5 Type Safety, Revisited

The type safety theorem for L{num str} (Theorem 10.1 on page 75) states
that a language is safe iff it satisfies both preservation and progress. This
formulation depends critically on the use of a transition system to specify
the dynamic semantics. But what if had instead specified the dynamic se-
mantics as an evaluation relation, instead of using a transition system? Can
we state and prove safety in such a setting?

The answer, unfortunately, is that we cannot. While there is an analogue
of the preservation property for an evaluation semantics, there is no clear
analogue of the progress property. Preservation may be stated as saying
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that if e ⇓ v and e : τ, then v : τ. This can be readily proved by induction
on the evaluation rules. But what is the analogue of progress? One might
be tempted to phrase progress as saying that if e : τ, then e ⇓ v for some
v. While this is property true for L{num str}, it demands much more than
just progress — it requires that every expression evaluate to a value. But
if L{num str} were extended to admit operations that may result in an er-
ror (as discussed in Section 10.3 on page 78), or to admit non-terminating
expressions, then this property would fail, even though progress would
remain valid for this language.

The standard work-around for this difficulty is to instrument the eval-
uation semantics with additional rules that explicitly check for expressions
that would be “stuck” according to a transition semantics, yielding a spe-
cial, ill-typed expression, wrong, in the case that these occur. If e ⇓ wrong,
then we say that the expression e goes wrong. We then prove preservation
for the augmented evaluation semantics, from which we may conclude that
well-typed expression do not go wrong. Before detailing this methodology, let
us point us two reasons why it is inadequate:

1. Which checks to include can only be determined by consideration of
the progress theorem for a transition semantics. If we neglect to check
for any, of the “stuck” states, then the safety property so obtained is
weaker than progress. In the limit if we omit all such checks, then no
safety guarantees are provided at all!

2. As the name implies, dynamic checks are performed at run-time. Yet
a dynamic check for a type error can never fail for a well-typed pro-
gram, only for an ill-typed program. Thus we are paying the over-
head of dynamic checking, even though it is unnecessary!

These shortcomings suggest that evaluation semantics is not a suitable ba-
sis for proving the safety of a programming language.

Nevertheless, let us detail for L{num str} what is involved in instru-
menting the evaluation semantics to support a proof of type safety. The
evaluation judgement takes the form e ⇓ a, where a is an answer, either
wrong, or ok(v) for some v such that v val.1 We define the judgement a : τ
to hold iff a = ok(v) with v : τ. Importantly, the answer wrong is ill-typed.2

1In the presence of checked errors such as division by zero, one would also include error
as a possible answer, distinct from wrong.

2But, as before, we would have error : τ, for any τ, if we were to include checked errors
in the language.
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We then prove preservation in the form that if e : τ and e ⇓ a, then a : τ.
This ensures, in particular, that a 6= wrong.

The instrumented evaluation rules for L{num str} are given as follows:

num[n] ⇓ ok(num[n]) (11.4a)

str[s] ⇓ ok(str[s]) (11.4b)

e1 ⇓ ok(num[n1]) e2 ⇓ ok(num[n2]) n1 + n2 = n nat

plus(e1, e2) ⇓ ok(num[n])
(11.4c)

e1 ⇓ ok(str[s1])

plus(e1, e2) ⇓ wrong
(11.4d)

e1 ⇓ ok(num[n1]) e2 ⇓ ok(str[s2])

plus(e1, e2) ⇓ wrong
(11.4e)

e1 ⇓ wrong

plus(e1, e2) ⇓ wrong
(11.4f)

e1 ⇓ num[n1] e2 ⇓ wrong

plus(e1, e2) ⇓ wrong
(11.4g)

e1 ⇓ ok(v1) [v1/x]e2 ⇓ a2

let(e1, x.e2) ⇓ a2
(11.4h)

e1 ⇓ wrong

let(e1, x.e2) ⇓ wrong
(11.4i)

(The other evaluation rules are omitted for the sake of concision.)
As should be evident, the instrumented semantics is rather verbose, re-

quiring explicit checks for stuck states that cannot arise in a well-typed
expression, and also propagating errors upwards from subexpressions.

11.6 Exercises

1. Prove that if e ⇓ v, then v val.

2. Prove that if e ⇓ v1 and e ⇓ v2, then v1 = v2.

3. Complete the proof of equivalence of evaluation and transition se-
mantics.
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4. Prove preservation for the instrumented evaluation semantics, and
conclude that well-typed programs cannot go wrong.

5. Is it possible to use environments in a structural semantics? What
difficulties do you encounter?
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Chapter 12

Types and Languages

The static and dynamic semantics of L{num str} illustrates several funda-
mental organizing principles of language design on which we shall rely
throughout this book. Chief among these is the central role of types in
programming languages. The informal concept of a language “feature”
is formally analyzed as a manifestation of type structure. For example, in
L{num str} the type nat comprises the numeric literals and the arithmetic
operations of addition and subtraction, and the type str comprises the
string literals and the string operations of concatenation and length. Thus
these types account for nearly all of the “features” of L{num str}, apart
from the generic concepts of variable binding and reference. These arise
from the structural properties of the hypothetico-general typing judgement,
and are not tied to any particular types.

The language L{num str} illustrates a number of important themes that
recur throughout the text. In this chapter we summarize the main concepts
that will be used throughout the remainder of the text.

12.1 Phase Distinction

The semantics of L{num str}maintains a phase distinction between the static
phase and the dynamic phase of processing. The static semantics, or typing
rules, impose constraints on the formation of programs that are sufficient to
ensure that the dynamic semantics, or evaluation rules, are well-behaved.
The static phase occurs prior to, and independently of, the dynamic phase.
The static phase may be seen as predicting the form of the value of an ex-
pression computed during the dynamic phase. For example, by assigning
the type nat to the addition of two expressions of the same type, the static
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semantics is predicting that the result of the sum will be a number. Con-
sequently, it can be used as the argument to multiplication, for example,
without fear of error.

The type safety theorem may be seen as stating that the predictions of
the static semantics are true of the dynamic semantics, for otherwise the
dynamic semantics would “get stuck.” A counterexample to safety is a call
for revision to either the static semantics—to ensure that the example is
barred from consideration—or the dynamic semantics—to ensure that the
error condition is checked at run-time. The purpose of proving safety is to
ensure the coherence of the static and dynamic semantics.

The phase distinction also manifests itself in the syntax of a language. In
most cases the syntax of types does not involve expressions, but the syntax
of expressions may well involve types. This is consistent with the idea that
the static phase of processing (type checking) usually occurs prior to exe-
cution, and hence is independent of it. Languages that do not respect the
phase distinction usually do not maintain a clear separation between types
and expressions, and consequently intermix some aspects of the dynamic
and static phases of processing.

12.2 Introduction and Elimination

The primitive operations associated with a type may generally be classified
as either introduction or elimination forms. The introduction operators deter-
mine the values of the type, and the elimnation operators determine the
instructions for computing with those values. For example in L{num str},
the introduction forms for the type nat are the numerals, and those for the
type str are the string literals. The elimination forms for the type nat are
addition and multiplication, and those for the type str are concatenation
and length.

The dynamic semantics of L{num str} is based on the inversion, or con-
servation, principle, which, roughly speaking, states that the elimination
forms are post-inverse to the introduction forms. This is a kind of con-
servation principle stating that what comes out of an elimination form is
determined by what goes into the creation of its arguments. For example,
in L{num str} the addition function is post-inverse to the numerals in the
sense that the dynamic semantics specifies that the value of an addition, a
numeral, is obtained from the values of its arguments, which must both be
numerals.

The type safety theorem may be seen as validating the inversion prin-
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ciple for the language. Returning to the addition example, the type preser-
vation theorem ensures that the values of the arguments of addition must
themselves be of type nat, and hence by the canonical forms theorem must
be numerals. This ensures that addition can make progress, yielding a nu-
meral, which is a value of type nat. Had the type safety theorem failed,
say by assigning the type nat to a string, then the addition function would
be required to be post-inverse to the introduction form for another type,
namely str, in violation of the inversion principle.

The inversion principle serves as a guide for deriving the dynamic se-
mantics of a language, but in most cases does not fully determine it. For
example, suppose that we added the conditional expression ifz(e, e1, e2)
to L{num str}, thought of as an elimination form for the type nat. The ex-
pression e of type nat is tested, resulting in e1, if e evaluates to zero, and in
e2, otherwise. The dynamic semantics of this construct must specify that e
is to be evaluated to determine how to proceed, but we do not wish to eval-
uate e1 or e2 in advance, only once the decision about e has been made. We
say that e is a major, or principal, argument of the conditional elimination
form, and that e1 and e2 are minor, or non-principal arguments. As a rule,
the major arguments of an elimination form must be evaluated, but the mi-
nor arguments need not be. In the case of L{num str} all arguments to the
arithmetic and string elimination forms are principal, and hence must be
evaluated before evaluation of the operation itself.

Another opportunity for discretion in the dynamic semantics in the
evaluation of the arguments of an introduction form. Suppose that we re-
place the numerals in L{num str} with two new primitives, z and s(e),
which represent zero and successor, respectively. These are both introduc-
tory forms of type nat, but this classification does not determine whether
s(e) should be considered a value regardless of the form of e, or only if e
is itself a value. If an argument to an introduction form is required to be a
value, then there is an associated search rule in the dynamic semantics to
evaluate that argument; the operator is said to be eager, or strict, in that po-
sition. If an argument to an introduction form is not required to be a value,
then the operator is said to be lazy, or non-strict, in that position. When
all arguments of all introduction forms are eager, then the language itself is
said to be eager, and similarly when all arguments of all introduction forms
are lazy, then the language itself is said to be lazy.

Finally, recall that the dynamic semantics of L{num str} is defined only
for closed expressions, i.e., those with no free variables. This implies that
we may never evaluate under the scope of a binder. For example, evaluation
of let(e1, x.e2) cannot require evaluation of e2 prior to execution of the
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let, since the variable x is bound within e2. The presence of the binder
sequentializes evaluation, requiring e1 to be fully evaluated and its value
bound to x before evaluaton of e2 commences.

12.3 Variables and Binding

The meaning of the hypothetico-general judgement

X , x exp | Γ, x : τ ` e′ : τ′

is that every instance of this judgement of the form

X | Γ ` [e/x]e′ : τ′

obtained by replacing the variable x by an expression e is valid, provided
that X | Γ ` e : τ.

However, if we examine the dynamic semantics of the only variable-
binding construct in L{num str}, we observe that variables are only ever
bound to (closed) values, and not to general expressions. This is a con-
sequence of the fact that the binding of a variable in a let expression is
evaluated before it is bound. Alternatively, we could simply substitute the
binding for the variable in the body:

let(e1, x.e2) 7→ [e1/x]e2,

with no restriction on e1. The difference is in the evaluation order: we may
choose whether variables stand for values or variables stand for computations.
If variables stand for values, then the language is said to be call-by-value;
otherwise, it is call-by-name.1

This distinction may be imposed in the static semantics by adding an
additional hypothesis governing each value variable, demanding that it be
bound only to a value:

X , x exp | Γ, x val, x : τ ` e′ : τ′

Now the possible substitutions for x are limited to those e exp such that
X | Γ ` e : τ and, moreover, X | Γ ` e val. Such hypotheses give rise to

1The justification for this terminology is unclear. The “call-by” part arises from the as-
sociation of variable declarations with function calls in many languages. Given this, the
phrase “call by value” makes good sense, but the origin of the phrase “call by name” for
the opposite case remains obscure.
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the concept of an open value, namely an expression, possibly involving free
variables, such that

x1 exp, . . . , xk exp | x1 val, . . . , xk val ` e val.

For example, in the extension of L{num str}with an eager successor oper-
ation, we have

x exp | x val ` s(s(x)) val.

There is no reason to consider only value variables or only computation
variables; we can mix-and-match as we see fit, adding a hypothesis x val to
constrain a variable to values. In most, but not all, cases the typing rules
are insensitive to whether a variable is limited to values or not. In such
situations we omit an explicit declaration of the value status of a variable.

12.4 Compositionality

The combined structural properties of substitution and transitivity for typ-
ing, which we repeat here for reference, captures an essential feature of a
type system, called compositionality, or modularity.

X | Γ ` e : τ X , x exp | Γ, x : τ ` e′ : τ′

X | Γ ` [e/x]e′ : τ′

This rule captures the essence of linking. The expression e′, with a free
variable x of type τ, represents a client of a separately compiled component,
e, which is referenced by the variable, x. The job of the linker is to combine
e with e′, by substitution for x, to obtain a complete compilation unit, albeit
one with further free references to other units to be linked later. The result
is composed from the shared component and the client, which gives rise to
the terminology.

It is important that the client, e′, is type checked independently of the
implementation of the shared component, e. All that is propagated from
the library to its clients is its type, and not the details of its implementation.
This means, in particular, that a revised implementation of the library can
be linked with the same client, without requiring any re-writing or other
modification to the client code, so long as the type, τ, remains the same.
This is the foundation for modular program development, the process of
decomposing a large program into separable parts whose interactions are
mediated by a specification, or type, that serves as a contract between the
client and the implementor. In other words, types provide the foundation for
modularity.
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12.5 Exercises
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Chapter 13

Functions

In L{num str} it is possible to express doubling of any given expression of
type nat, but it is not possible to express the concept of doubling in general.
For this we need functions, which capture patterns of computation that can
be instantiated to obtain specific computations. To pass from particular
instances of doubling, of the form e+e for some expression e, to the general
case, we replace occurrences of a fixed expression, e, by a variable, x, and
then mark that variable as subject to variation using λ-abstraction. Thus the
general pattern of doubling can be captured by the function

λ(x:nat. x+x).

The variable, x, is called the parameter of the function, and the expres-
sion x+x is its body. The parameter is bound by the λ-abstraction, and,
consequently, may be renamed freely in accordance with the rules of α-
equivalence. We may apply this function to any argument, e, of type nat to
obtain an instance of the doubling function for that choice of expression e
to be doubled.

To ensure type consistency the type of the parameter of the λ-abstraction
is given explicitly, and instances are restricted to arguments of that type.
The type of the result is arbitrary, since we are free to use the parameter,
x, in any way at all, provided only that it is type-correct. In general, the
type of a λ-abstraction has the form σ → τ, where σ is the domain type, the
type of its parameter, and τ is the range type, the type of its body. Thus,
d : nat→ nat, so that if e : nat, then p(e) : nat as well.

Since function types are themselves types, we have higher-order functions
with types such as

1. nat→ (nat→ nat),
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2. (nat→ nat)→ nat,

3. (nat→ nat)→ (nat→ nat).

These are, respectively,

1. the type of functions that assign a function on the natural numbers to
each natural number,

2. the type of functions that assign a natural number to each function on
the natural numbers,

3. the type of functions that assign a function on the natural numbers to
each function on the natural numbers.

It is a good exercise to think of mathematical functions with these types.
In this chapter we study the function type in isolation from other lan-

guage features using a language called L{→}. Not much can be done with
L{→} itself; its interest lies in its combination with other language features.
As a simple example it is a straightforward exercise to integrateL{→}with
L{num str} to obtain a simple language of arithmetic and string expres-
sions augmented with function definitions. In Chapters 14 and 15 we will
consider two different ways of defining a language with functions and nat-
ural numbers.

13.1 Syntax

The abstract syntax of the language L{→} is specified as follows:

Types τ ::= arr(τ1, τ2)
Expr’s e ::= x | lam[τ](x.e) | ap(e1, e2)

The concrete syntax conventions that we shall use for L{→} are summa-
rized in the following chart:

Abstract Syntax Concrete Syntax
arr(τ1, τ2) τ1 → τ2
lam[τ](x.e) λ(x:τ. e)
ap(e1, e2) e1(e2)

As we mentioned in the introduction to this chapter, the expression
λ(x:τ. e) is called a λ-abstraction. The variable x is the parameter of the

5:05PM DRAFT JUNE 26, 2007



13.2. STATIC SEMANTICS 99

abstraction, and e is its body. It represents the function mapping e0 : τ
to (the value of) [e0/x]e. The expression e1(e2) is called an application, with
function e1 and argument e2. If e1 evaluates to a λ-abstraction λ(x:τ. e), then
the application e1(e2) evaluates to the value of [e1/x]e2, the instance of the
body obtained by replacing the parameter by the argument.

The let expression, which was introduced in L{num str}, is definable
in L{→} by taking let[τ](e1, x.e2) to stand for the expression

ap(lam[τ](x.e2), e1). (13.1)

Thus, in the presence of functions, we do not need to treat this as a primi-
tive notion.

13.2 Static Semantics

The static semantics of L{→} is defined by a generalized inductive defini-
tion of judgements of the form Γ ` e : τ, where Γ is a finite set of assump-
tions of the form x : τ, where each x is a variable.

Γ, x : τ ` x : τ (13.2a)

Γ, x : τ1 ` e : τ2

Γ ` lam[τ1](x.e) : arr(τ1, τ2)
(13.2b)

Γ ` e1 : arr(τ2, τ) Γ ` e2 : τ2

Γ ` ap(e1, e2) : τ
(13.2c)

Lemma 13.1 (Inversion). Suppose that Γ ` e : τ.

1. If e = x, then Γ = Γ′, x : τ.

2. If e = lam[τ1](x.e), then τ = arr(τ1, τ2) and Γ, x : τ1 ` e : τ2.

3. If e = ap(e1, e2), then there exists τ2 such that Γ ` e1 : arr(τ2, τ) and
Γ ` e2 : τ2.

Proof. The proof proceeds by rule induction on the typing rules. Observe
that for each rule, exactly one case applies, and that the premises of the rule
in question provide the required result.

The structural property of substitution holds for the typing judgement
defined by the above rules.
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Lemma 13.2 (Substitution). If Γ, x : τ ` e′ : τ′, and Γ ` e : τ, then Γ `
[e/x]e′ : τ′.

Proof. By rule induction on the derivation of the first judgement.

13.3 Dynamic Semantics

The dynamic semantics of L{→} is given by a structural operational se-
mantics on closed expressions. The judgement e val, where e is a closed
expression, is inductively defined.

lam[τ](x.e) val (13.3a)

Observe that no restriction is placed on the form of e, the body of the
function.

There are two forms of dynamic semantics for functions, call-by-value
and call-by-name.1 Under call-by-value, the argument is evaluated before it is
passed to the function by substitution; under call-by-name, the argument is
passed in unevaluated form, deferring evaluation until it is actually needed.
This can save work in the case that the value is never required, but can
replicate work in the case that the value is required more than once. (See
Chapter 37 for further discussion.)

The call-by-value dynamic semantics is defined by the following rules:

e1 7→ e′1
ap(e1, e2) 7→ ap(e′1, e2)

(13.4a)

e1 val e2 7→ e′2
ap(e1, e2) 7→ ap(e1, e′2)

(13.4b)

e2 val

ap(lam[τ2](x.e1), e2) 7→ [e2/x]e1
(13.4c)

The call-by-name semantics is, instead, defined by the following rules:

e1 7→ e′1
ap(e1, e2) 7→ ap(e′1, e2)

(13.5a)

ap(lam[τ2](x.e1), e2) 7→ [e2/x]e1 (13.5b)

In contrast to Rule (13.4c) there is no requirement on Rule (13.5b) that the
argument be a value.

1The justification for the terminology is lost in the mists of time, but is so well-established
as to be unchangeable.
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13.4 Safety

Theorem 13.3 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. The proof is by induction on rules (13.4), which define the dynamic
semantics of the language.

Consider rule (13.4c),

e2 val

ap(lam[τ2](x.e1), e2) 7→ [e1/x]e2
.

Suppose that ap(lam[τ2](x.e1), e2) : τ1. By Lemma 13.1 on page 99 e2 : τ2
and x : τ2 ` e1 : τ1, so by Lemma 13.2 on the facing page [e2/x]e1 : τ1.

The other rules governing application are handled similarly.

Lemma 13.4 (Canonical Forms). If e val and e : arr(τ1, τ2), then e = lam[τ1](x.e2)

for some x and e2 such that x : τ1 ` e2 : τ2.

Proof. By induction on the typing rules, using the assumption e val.

Theorem 13.5 (Progress). If e : τ, then either e is a value, or there exists e′ such
that e 7→ e′.

Proof. The proof is by induction on rules (13.2). Note that since we consider
only closed terms, there are no hypotheses on typing derivations.

Consider rule (13.2c). By induction either e1 val or e1 7→ e′1. In the
latter case we have ap(e1, e2) 7→ ap(e′1, e2). Otherwise we have by in-
duction either e2 val or e2 7→ e′2. In the latter case we have ap(e1, e2) 7→
ap(e1, e′2) (bearing in mind e1 val). Otherwise, by Lemma 13.4, we have
e1 = lam[τ2](x.e) for some x and e. But then ap(e1, e2) 7→ [e2/x]e, again
bearing in mind that e2 val.

13.5 Evaluation Semantics

An inductive definition of the evaluation judgement e ⇓ v for L{→} is
given by the following rules:

lam[τ](x.e) ⇓ lam[τ](x.e) (13.6a)

e1 ⇓ lam[τ](x.e) e2 ⇓ v2 [v2/x]e ⇓ v
ap(e1, e2) ⇓ v

(13.6b)

It is easy to check that if e ⇓ v, then v val, and that if e val, then e ⇓ e.
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Theorem 13.6. 1. If e ⇓ v, then e 7→∗ v.

2. If e 7→∗ v, where v val, then e ⇓ v.

13.6 Environment Semantics

The environment semantics of Chapter 11 uses hypothetical judgements of
the form

x1 ⇓ v1, . . . , xn ⇓ vn ` e ⇓ v

stating that the expression e evaluates to the value v, under the assumption
that the variables xi evaluate to vi. Let us naı̈vely extend this semantics to
L{→} using the following rules for functions and applications:

Θ ` lam[τ](x.e) ⇓ lam[τ](x.e) (13.7a)

Θ ` e1 ⇓ lam[τ](x.e) Θ ` e2 ⇓ v2 Θ, x ⇓ v2 ` e ⇓ v x # Θ
Θ ` ap(e1, e2) ⇓ v

(13.7b)

When applying a function to an argument, the parameter of the function
is bound to the argument value for the duration of the evaluation of the
body. The requirement in Rule (13.7b) that the variable x lie apart from Θ
may always be met by choosing the bound variable of the function appro-
priately.

This semantics seems to make good sense, but, surprisingly, it is incor-
rect in that it does not agree with the substitution semantics. The reason is
that the use of hypotheses to record the bindings of free variables does not
work properly when the returned value of an evaluation can involve such
a free variable.

Consider the expression

e = ap(lam[nat](x.lam[nat](y.x)), num[3]).

According to Rules (13.6), the expression e evaluates to

lam[nat](y.num[3]),

as the reader may readily verify. Now, if we evaluate the expression

e′ = let(e, f.ap( f , num[4])),
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which involves e, using the same rules we obtain num[3]. The variable f is
bound to the value of e, so that the application of f to num[4] evaluates to
num[3].

But now consider the evaluation of e using the proposed environment
semantics, Rules (13.7). Its value is determined by evaluating the body of
the outer λ under the hypothesis x ⇓ num[3]. According to Rule (13.7a) this
evaluates to the open expression

lam[nat](y.x),

in which the variable x occurs free. So far so good, because we have as-
sumed that x ⇓ num[3]. However, if we now consider the evaluation of the
expression e′, we observe that the application ap( f , num[4]) is evaluated
under the hypothesis f ⇓ lam[nat](y.x), but without any assumption for
the variable x. This quickly leads to trouble, since to evaluate the applica-
tion of f to num[4], we assume y ⇓ num[4], and evaluate the body of the
inner λ-abstraction, namely x. But then evaluation gets stuck for lack of a
binding for x!

The difficulty is that the variable x occurring in the inner λ-abstraction
of e escapes its scope when it is returned as the value of the body of the outer
λ-abstraction. Consequently, the variable x is unbound in the hypothesis
list, which causes evaluation to get stuck whenever that variable is used.
In essence the stack-like behavior of hypotheses in evaluation judgements
does not cohere with the heap-like behavior of variables in a higher-order
language. If an expression such as e is to be assigned its proper meaning,
the bindings for the free variables in its value must be retained after the
call, something that cannot be done using the hypothetical judgement.

13.7 Closures

To give a proper semantics to variable binding using environment, we must
ensure that the free variables of a λ-abstraction are not dissociated from
their bindings in the environment. This is achieved by treating the envi-
ronment as an explicit substitution, a data structure that records what is to
be substituted for a variable without actually doing it. Only when the vari-
able is encountered do we replace it by its binding in the environment,
effectively delaying substitution as long as possible. To avoid the confu-
sions described in the preceding section, we attach the environment to a
λ-abstraction at the point where the abstraction is evaluated, resulting in a
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configuration of the form

clo[τ](E, x.e),

which is called a closure. The idea is that the environment “closes” the free
variables of the λ-abstraction by providing bindings for them. These are
the bindings that are used when the function body is evaluated, not those
in the ambient environment at the point of application.

To give a proper environment semantics for L{→} we introduce two
new syntactic categories, values and environments.

Values V ::= clo[τ](E, x.e)
Env’s E ::= • | E, x=V

In this setting a value is no longer a form of expression, but is instead drawn
from a syntactic category of its own. Furthermore, an environment is no
longer a set of assumptions in a hypothetical evaluation judgement, but is
now a data structure that can appear within a closure.

Correspondingly, the environment semantics sketched in the preceding
section is revised to employ the categorical judgement [E] e ⇓ V, which
states that the expression e, whose free variables are governed by the envi-
ronment E, evaluates to the value V. The evaluation rules for λ-abstraction
and application are formulated as follows:

[E] lam[τ](x.e) ⇓ clo[τ](E, x.e) (13.8a)

[E] e1 ⇓ clo[τ](E′, x.e) [E] e2 ⇓ V2 [E′, x=V2] e ⇓ V x # E′

[E] ap(e1, e2) ⇓ V
(13.8b)

Rule (13.8b) switches environments from the ambient environment, E, of the
application to the closure environment, E′, associated with the function. This
ensures that the free variables of the body are governed by the environment
in effect at the point where the function is created, not at the point where
the function is applied. In addition to these rules we also need a rule to
look up a variable in the environment to recover its binding:

E(x) = V
[E] x ⇓ V

(13.9)

We leave it as an exercise to define the judgement E(x) = V, which holds
iff x is bound to V in E.
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To state the equivalence of the environment and substitution semantics
it is necessary to introduce two auxiliary judgements. The first, V∗=v states
that the value V in the sense of the environment semantics corresponds to
the value v in the substitution semantics. It is defined by the following rule:

E[e]=e′

clo[τ](E, x.e)∗=lam[τ](x.e′)
(13.10)

The second, E[e]=e′, states that the result of substituting the expanded
value of E(x) for each variable x in e is the expression e′. It is defined by
the following rule:

E[e]=e′′ [V∗/x]e′′ = e′

(E, x ⇓ V)[e]=e′
(13.11)

It is easy to verify that the former judgement has mode (∀, ∃!) and that the
latter has mode (∀, ∀, ∃!).

Theorem 13.7 (Equivalence). [E] e ⇓ V iff E[e] ⇓ V∗.

13.8 Exercises

1. Complete the definition of the environment semantics for L{→}.

2. Prove the equivalence theorem.

3. Re-formulate the transition semantics for L{→} in terms of environ-
ments. What difficulties do you encounter? How might they be over-
come?

JUNE 26, 2007 DRAFT 5:05PM



106 13.8. EXERCISES

5:05PM DRAFT JUNE 26, 2007



Chapter 14

Gödel’s T

The language L{nat→}, better known as Gödel’s T, is the combination of
function types with the type of natural numbers. In contrast to L{num str},
which equips the naturals with some arbitrarily chosen arithmetic primi-
tives, the language L{nat→} provides a general mechanism, called prim-
itive recursion, for defining functions on the natural numbers. Primitive re-
cursion captures the essential inductive character of the natural numbers,
from which we may define a wide range of functions, including elementary
arithmetic.

A chief characteristic of L{nat→} is that it permits the definition only
of total functions, i.e., those that assign a value in the range type to every el-
ement of the domain type. This means that programs written in L{nat→}
may be considered to “come equipped” with their own termination proof,
in the form of typing annotations to ensure that it is well-typed. But only
certain forms of proof are codifiable in this manner, with the inevitable re-
sult that some well-defined total functions on the natural numbers cannot
be programmed in L{nat→}.

14.1 Static Semantics

The syntax of L{nat→} is given by the following grammar:

Type τ ::= nat | arr(τ1, τ2)
Expr e ::= z | s(e) | rec[τ](e, e0, x.y.e1) | lam[τ](x.e) |

ap(e1, e2)



108 14.1. STATIC SEMANTICS

We write n for the expression s(. . . s(z)), in which the successor is applied
n ≥ 0 times to zero. The expression

rec[τ](e, e0, x.y.e1)

is called primitive recursion. It represents the e-fold iteration of the transfor-
mation x, y.e1 starting from e0. The bound variable x represents the prede-
cessor and the bound variable y represents the result of the x-fold iteration.

Sometimes iteration, written iter[τ](e, e0, y.e1), is considered as an al-
ternative to primitive recursion. It has essentially the same meaning as
primitive recursion, except that only the result of the recursive call is bound
to y in e1, and no binding is made for the predecessor. Clearly iteration is
a special case of primitive recursion, since we can always ignore the pre-
decessor binding. Conversely, primitive recursion is definable from itera-
tion, provided that we have product types (Chapter 16) at our disposal. To
define primitive recursion from iteration we simultaneously compute the
predecessor while iterating the specified computation.

The following chart summarizes the concrete syntax conventions for
L{nat→}:

Abstract Syntax Concrete Syntax
arr(τ1, τ2) τ1 → τ2
lam[τ](x.e) λ(x:τ. e)
ap(e1, e2) e1(e2)
rec[τ](e, e0, x.y.e1) rec e {z⇒ e0 | s(x) with y⇒ e1}

The static semantics ofL{nat→} is given by the following typing rules:

Γ, x : nat ` x : nat (14.1a)

Γ ` z : nat (14.1b)

Γ ` e : nat
Γ ` s(e) : nat

(14.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat, y : τ ` e1 : τ

Γ ` rec[τ](e, e0, x.y.e1) : τ
(14.1d)

Γ, x : σ ` e : τ x # Γ
Γ ` lam[σ](x.e) : arr(σ, τ)

(14.1e)
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Γ ` e1 : arr(τ2, τ) Γ ` e2 : τ2

Γ ` ap(e1, e2) : τ
(14.1f)

As usual, admissibility of the structural rule of substitution is crucially
important.

Lemma 14.1. If Γ ` e : τ and Γ, x : τ ` e′ : τ′, then Γ ` [e/x]e′ : τ′.

14.2 Dynamic Semantics

We will adopt a lazy semantics for the successor operation, and a call-by-
name semantics for function applications. Variables range over computa-
tions, which are not necessarily values. These choices are not forced on
us, but are natural and convenient in a language in which (as we shall see)
every closed expression has a value.

The closed values of L{nat→} are determined by the following rules:

z val (14.2a)

s(e) val (14.2b)

lam[τ](x.e) val (14.2c)

The dynamic semantics of L{nat→} is given by the following rules:

e1 7→ e′1
ap(e1, e2) 7→ ap(e′1, e2)

(14.3a)

ap(lam[τ](x.e), e2) 7→ [e2/x]e (14.3b)

e 7→ e′

rec[τ](e, e0, x.y.e1) 7→ rec[τ](e′, e0, x.y.e1)
(14.3c)

rec[τ](z, e0, x.y.e1) 7→ e0 (14.3d)

rec[τ](s(e), e0, x.y.e1) 7→ [e, rec[τ](e, e0, x.y.e1)/x, y]e1 (14.3e)
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Rules (14.3d) and (14.3e) specify the behavior of the recursor on z and
s(e). In the former case the recursor evaluates e0, and in the latter case the
variable x is bound to e and the variable y is bound to a recursive call on e
before evaluating e1. In the case that e1 does not refer to y, the result of the
recursive call is not computed.

Theorem 14.2 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7→ e′ for some e′

14.3 Definability of Numeric Functions

A mathematical function f : N→N is definable inL{nat→} iff there exists
an expression e f of type nat→ nat such that for every n ∈N,

e f(m) ≡ f (m) : nat (14.4)

That is, the numeric function f : N → N is definable iff there is a expres-
sion e f of type nat → nat that accurately mimics the behavior of f on all
possible inputs.

But what do we mean by equivalence? We shall have much more to say
about this in Chapter 49, but for the time being we will assume given an
equivalence judgement Γ ` e1 ≡ e2 : τ, where Γ ` e1 : τ and Γ ` e2 : τ, with
the following properties:

1. It is a congruence, meaning that replacing a sub-expression of an ex-
pression by an equivalent sub-expression results in an equivalent ex-
pression.

2. It contains symbolic execution, meaning that all of the rules of the dy-
namic semantics are valid equivalences, even when the expressions
involved have free variables.

3. It is consistent in that m ≡ n iff m is n. That is, equivalence does not
equate distinct numerals.

We often omit the typing assumptions and the type of the expressions from
the equivalence judgement for the sake of concision.

For example, the successor function is obviously definable in L{nat→}
by the expression succ = λ(x:nat. s(x)). The doubling function, d(n) =
2× n, is definable by the expression

ed = λ(x:nat. rec x {z⇒ z | s(u) with v⇒ s(s(v))}).
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To see this, observe that ed(0) ≡ 0, and, assuming that ed(n) ≡ d(n), check
that

ed(n + 1) ≡ s(s(ed(n))) (14.5)

≡ s(s(2× n)) (14.6)

= 2× (n + 1) (14.7)

= d(n + 1) (14.8)

14.4 Ackermann’s Function

Consider the following function, called Ackermann’s function, which is de-
fined by the following equations:

A(0, n) = n + 1 (14.9)
A(m + 1, 0) = A(m, 1) (14.10)

A(m + 1, n + 1) = A(m, A(m + 1, n)) (14.11)

This function grows very quickly! For example, A(4, 2) = 265,536− 3, which
is often cited as being much larger than the number of atoms in the phys-
ical universe! Yet we can show that the Ackermann function is total by a
lexicographic induction on the pair of argument (m, n). On each recursive
call, either m decreases, or else m remains the same, and n decreases, so
inductively the recursive calls are well-defined, and hence so is A(m, n).

A primitive recursive function is a function of type nat → nat that is de-
fined using primitive recursion, but without using any higher order func-
tions. Ackermann’s function is defined so as to grow more quickly than
any primitive recursive function, and hence cannot itself be primitive re-
cursive. But if we permit ourselves to use higher-order functions, then we
may give a definition of Ackermann’s function using primitive recursion.
This is not a contradiction! Everything depends on whether we may use
higher-order functions in the definition. If we are permitted to do so, then
the Ackermann function may be defined using primitive recursion, other-
wise it cannot.

The key is to observe that A(m, n) iterates the function A(m,−) for n
times, starting with A(m, 1). As an auxiliary, let us define the higher-order
function

it : (nat→ nat)→ nat→ nat→ nat

to be the λ-abstraction

λ( f:nat→ nat. λ(n:nat. rec n {z⇒ id | s( ) with g⇒ f ◦ g})),
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where id = λ(x:nat. x) is the identity, and f ◦ g = λ(x:nat. f(g(x))) is
the composition of f and g. It is easy to check that

it( f)(n)(m) ≡ f (n)(m),

where the latter expression is the n-fold composition of f starting with m.
With this in hand we may define the Ackermann function

a : nat→ nat→ nat

to be the λ-abstraction

λ(m:nat. recm {z⇒ succ | s( ) with f ⇒ λ(n:nat. it( f)(n)( f(1)))}).

It is instructive to check that the following equivalences, which show
that the Ackermann function is definable, are valid:

a(0)(n) ≡ s(n) (14.12)

a(m + 1)(0) ≡ a(m)(1) (14.13)

a(m + 1)(n + 1) ≡ a(m)(a(s(m))(n)). (14.14)

14.5 Termination

We state without proof that every closed expression in L{nat→} evaluates
to a value.

Theorem 14.3. If e : τ, then there exists v val such that e 7→∗ v.

The proof of this theorem relies on a technique called logical relations, which
is employed in Chapter 49 to analyze equivalence of expressions.

It follows directly from Theorem 14.3 that all functions in L{nat→} are
total in the sense that if f : σ→ τ and e : σ, then f(e) evaluates to a value of
type τ. Using this, we can show that there are total functions on the natural
numbers that are not definable in the language.

First, it can be shown that there is a one-to-one correspondence between
the natural numbers, N, and closed expressions e of type nat → nat. If
e : nat→ nat, we write peq for the unique n ∈ N corresponding to e.
Using this, it is not hard to define (mathematically!) the function E : N →
N → N such that E(peq)(m) = n iff e(m) ≡ n. When given the numeric
code of an expression e : nat→ nat and an input n ∈ N, the function E
computes the numeric value of e(n). Theorem 14.3 on the preceding page,
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together with consistency of equivalence, ensures that E is indeed a well-
defined function.

Using E, we may define another mathematical function F : N → N

by the equation F(m) = E(m)(m), so that F(peq) = n iff e(peq) ≡ n. We
will show that the function F is not definable in L{nat→}. Suppose for a
contradiction that F were defined by the expression eF, which means that
eF(peq) ≡ e(peq). Let eD be the expression λ(x:nat. s(eF(x))). We then
have

eD(peDq) ≡ s(eF(peDq)) (14.15)

≡ s(eD(peDq)), (14.16)

which is a contradiction (why?).

14.6 Exercises
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Chapter 15

Plotkin’s PCF

The language L{nat⇀}, also known as Plotkin’s PCF, integrates functions
and natural numbers using general recursion, a means of defining self-referential
expressions. In contrast to L{nat→} expressions in L{nat⇀} may not
terminate when evaluated; consequently, functions are partial, rather than
total. The “broken arrow” notation for function types emphasizes this fact.
Compared to L{nat→}, the language L{nat⇀} moves the termination
proof from the expression itself to the mind of the programmer. The type
system no longer ensures termination, which permits a wider range of
functions to be defined in the system, but at the cost of admitting infinite
loops when the termination proof is either incorrect or absent.

We will consider two important variants of the language, an eager ver-
sion and a lazy version. In the eager version values of numeric type are
numerals, and a function is applied to the value of its argument. In the
lazy version values of numeric type need not be numerals, and a function
is applied to its argument in unevaluated form.

15.1 Static Semantics

The abstract binding syntax of PCF is given by the following grammar:

Type τ ::= nat | parr(τ1, τ2)
Expr e ::= x | z | s(e) | ifz(e, e0, x.e1) | lam[τ](x.e) |

ap(e1, e2) | fix[τ](x.e)

The expression fix[τ](x.e) is called general recursion; it is discussed in
more detail below.
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Concrete syntax conventions for PCF are given by the following chart:

Abstract Syntax Concrete Syntax
parr(τ1, τ2) τ1 ⇀ τ2
ifz(e, e0, x.e1) ifz e {z⇒ e0 | s(x)⇒ e1}
fix[τ](x.e) fix x:τ is e

The static semantics of L{nat⇀} is inductively defined by the follow-
ing rules:

Γ, x : τ ` x : τ (15.1a)

Γ ` z : nat (15.1b)

Γ ` e : nat
Γ ` s(e) : nat

(15.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat ` e1 : τ

Γ ` ifz(e, e0, x.e1) : τ
(15.1d)

Γ, x : τ1 ` e : τ2

Γ ` lam[τ1](x.e) : parr(τ1, τ2)
(15.1e)

Γ ` e1 : parr(τ2, τ) Γ ` e2 : τ2

Γ ` ap(e1, e2) : τ
(15.1f)

Γ, x : τ ` e : τ

Γ ` fix[τ](x.e) : τ
(15.1g)

Rule (15.1g) captures the self-referential nature of general recursion: we
assume that x : τ while checking that e : τ in order to determine whether
fix[τ](x.e) : τ.

The structural rules are admissible for the static semantics, including in
particular substitution.

Lemma 15.1. If Γ, x : τ ` e′ : τ′, Γ ` e : τ, then Γ ` [e/x]e′ : τ′.

15.2 Dynamic Semantics

The judgement e val determines which expressions are (closed) values. The
definition of this judgement varies according to whether we adopt an ea-
ger or lazy interpretation of L{nat⇀}. This judgement is defined by the
following rules:

z val (15.2a)
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{e val}
s(e) val

(15.2b)

lam[τ](x.e) val (15.2c)

The bracketed premise is to be omitted for the lazy variant, and included
for the eager variant.

The dynamic semantics of L{nat⇀} is defined by the following rules:{
e 7→ e′

s(e) 7→ s(e′)

}
(15.3a)

e 7→ e′

ifz(e, e0, x.e1) 7→ ifz(e′, e0, x.e1)
(15.3b)

ifz(z, e0, x.e1) 7→ e0 (15.3c)

ifz(s(e), e0, x.e1) 7→ [e/x]e1 (15.3d)

e1 7→ e′1
ap(e1, e2) 7→ ap(e′1, e2)

(15.3e)

{
e1 val e2 7→ e′2

ap(e1, e2) 7→ ap(e1, e′2)

}
(15.3f)

{e2 val}
ap(lam[τ](x.e), e2) 7→ [e2/x]e

(15.3g)

fix[τ](x.e) 7→ [fix[τ](x.e)/x]e (15.3h)

The bracketed rules and premises are to be omitted for the lazy variant,
and included for the eager variant of L{nat⇀}.

Rule (15.3h) implements self-reference by substituting the recursive ex-
pression itself for the variable x in its body. This is called unwinding the re-
cursion. Observe that the variable, x, in the expression fix[τ](x.e) ranges
over computations, and not just values.
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15.3 Recursive Functions and Primitive Recursion

One use of general recursion is to define recursive functions. A recursive
function has the form fun[τ1, τ2](x.y.e), where x is a variable standing
for the function itself, and y is its argument. The static semantics of L{⇀}
is obtained from that of L{→} by replacing the rule for λ-abstractions with
following generalization:

Γ, x : parr(τ1, τ2), y : τ1 ` e : τ2

Γ ` fun[τ1, τ2](x.y.e) : parr(τ1, τ2)
. (15.4)

A recursive function has type parr(τ1, τ2) if its body has type τ2 under the
assumption that the function itself has the type parr(τ1, τ2) and that the
argument has type τ1. Since the variable x stands for the function itself, we
assume that which we are trying to prove! This form of “circular” reason-
ing is typical of self-referential constructs such as recursive functions.

The dynamic semantics rule for applying a recursive function to an ar-
gument is given as follows:

{e1 val} e = fun[τ1, τ2](x.y.e′)
ap(e, e1) 7→ [e, e1/x, y]e′

(15.5)

At the call site the function itself is substituted for x, the name that it has
given itself, within its body.

Recursive functions are definable from non-recursive functions and gen-
eral recursion by taking fun[τ1, τ2](x.y.e) to stand for the expression

fix[parr(τ1, τ2)](x.lam[τ1](y.e)),

which is written in concrete syntax in the form

fix x:τ1 ⇀ τ2 isλ(y:τ1. e).

It is easy to check that the static and dynamic semantics of recursive func-
tions are derivable from this definition.

We may define primitive recursion from general recursion by taking
rec[τ](e, e0, x.y.e1) to stand for the expression ap(e′, e), where e′ is the
recursive function

fun[nat, τ]( f.u.ifz(u, e0, x.[ap( f , x)/y]e1)).

It is easy to check that the static and dynamic semantics of primitive recur-
sion are derivable in L{nat⇀} using this definition.
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15.4 Contextual Semantics

In the next section we will make essential use of a contextual semantics for
L{nat⇀}. Recall from Chapter 9 that a contextual semantics has only one
transition rule,

e = E{e0} e0  e′0 e′ = E{e′0}
e 7→c e′

(15.6)

This rule is defned in terms of the decomposition of an expression into an
evaluation context and a redex, which is then replaced by its contractum.

The instruction steps for L{nat⇀} are inductively defined by the fol-
lowing inference rules:

ifz(z, e0, x.e1) e0 (15.7a)

{e val}
ifz(s(e), e0, x.e1) [e/x]e1

(15.7b)

{e2 val}
ap(lam[τ2](x.e), e2) [e2/x]e

(15.7c)

fix[τ](x.e) [fix[τ](x.e)/x]e (15.7d)

The bracketed premises are to be omitted for the lazy variant, and in-
cluded for the eager variant.

The evaluation contexts are inductively defined by the following rules:

◦ ectxt (15.8a)

{
E ectxt

s(E) ectxt

}
(15.8b)

E ectxt
ifz(E , e0, x.e1) ectxt

(15.8c)

E1 ectxt

ap(E1, e2) ectxt
(15.8d)

{
e1 val E2 ectxt

ap(e1, E2) ectxt

}
(15.8e)

The bracketed rules are to be omitted for the lazy variant of the language.
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It is a straightforward exercise to define the judgement e = E{e0},
which states that the result of replacing the “hole” in E by e0 is e.

Let us write e 7→s e′ for the transition relation defined by the structural
operational semantics, and e 7→c e′ for the transition relation defined by the
contextual semantics.

Theorem 15.2. For any expression e : nat and any v val, e 7→∗s v iff e 7→∗c v

Proof. It suffices to that e 7→s e′ iff e 7→c e′, as in the proof of Theorem 9.1
on page 73.

15.5 Compactness

An important property of general recursion is called compactness, which,
roughly speaking, states that only finitely many unwindings of a recursive
expression are every necessary to complete the evaluation of a program.
While intuitively obvious (one cannot complete infinitely many recursive
calls in a finite computation), it is rather tricky to state and prove rigorously.
To get a feel for what is involved, we consider two motivating examples.

Consider the familiar factorial function, f , in L{nat⇀}:

fix f:nat⇀ nat isλ(x:nat. ifz x {z⇒ s(z) | s(x′)⇒ x* f(x′)}).

Obviously evaluation of f(n) requires n recursive calls to the function it-
self. This means that, for a given input, n, we may place a bound, k, on the
recursion that is sufficient to ensure termination of the computation. This
can be expressed formally using the k-bounded form of factorial, f (k), is
written

fixk f:nat⇀ nat isλ(x:nat. ifz x {z⇒ s(z) | s(x′)⇒ x* f(x′)}).

The superscript k limits the recursion to at most k unwindings, after which
the computation diverges. Thus, if f(n) terminates, then for some k ≥ 0
(in fact, k = n for this simple case), f (k)(n) also terminates.

One might expect something even stronger, namely that there is a bound
that ensures termination with the same value. But this is not always the
case! For example, consider the addition function, a, of type τ = nat⇀ (nat⇀ nat),
given by the expression

fix p:τ isλ(x:nat. ifz x {z⇒ id | s(x′)⇒ s ◦ (p(x′))}),
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where id = λ(y:nat. y) is the identity, e′ ◦ e = λ(x:τ. e′(e(x))) is compo-
sition, and s = λ(x:nat. s(x)) is the successor function. The application
a(m) terminates after three transitions, regardless of the value of m, result-
ing in a λ-abstraction. When m is positive, the result contains a residual
copy of a itself, which is applied to the predecessor of m as a recursive call.
The corresponding k-bounded version of a, written a(k), also terminates in
three steps, provided that k > 0. But the result in the case of a positive
argument, m, is a λ-abstraction that contains a residual copy of a(k−1), not
of a(k) or of a itself.

The proof of compactness is given in terms of the contextual semantics
given in Section 15.4 on page 119. This greatly simplifies the proof, because
contextual semantics permits us to restrict attention to transitions between
complete programs, whereas subsidiary deductions in structural semantics
must be defined for expressions of arbitrary type.

As a technical convenience we will enrich the syntax of L{nat⇀}with
bounded recursion, written fixk x:τ is e, where k ≥ 0. The static semantics is
the same as for general recursion, the parameter k playing no role in typing.
The dynamic semantics is defined by the following primitive instruction
rules:

fix0[τ](x.e) fix0[τ](x.e) (15.9a)

fixk+1[τ](x.e) [fixk[τ](x.e)/x]e (15.9b)

If k is positive, the recursive bound is decremented so that subsequent uses
of it will be limited to one fewer unrolling. If k reaches zero, the expression
steps to itself so that computation with it diverges with no result.

Let f (ω) = fix x:τ is ex be an arbitrarily chosen recursive expression
such that f (ω) : τ, and let f (k) = fixk x:τ is ex be the corresponding k-
bounded recursive expression, for which we also have f (k) : τ. Observe
that by inversion of the static semantics of recursive expressions, we have
x : τ ` ex : τ.

Lemma 15.3. If e1 6= y and e0 = [ f (ω)/y]e1  e′0, then e′0 = [ f (ω)/y]e′1 for
some e′1.

Proof. Immediate, by inspection of Rules (15.7).

Lemma 15.4. If [ f (k)/y]e ↓, then [ f (k+1)/y]e ↓.

Proof. It is enough to prove that if

[ f (k)/y]E{[ f (k)/y]e0} ↓,
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then
[ f (k+1)/y]E{[ f (k+1)/y]e0} ↓ .

Theorem 15.5 (Compactness). Suppose that y : τ ` e : τ′, where y # f (ω). If
[ f (ω)/y]e ↓, then there exists k ≥ 0 such that [ f (k)/y]e ↓.

Proof. If [ f (ω)/y]e val, then since e cannot be the variable y, it must itself
be a value, independently of whether y val. The result then follows imme-
diately, choosing k arbitrarily. Otherwise, suppose that [ f (ω)/y]e 7→c e′ ↓.
That is, [ f (ω)/y]e = E{e0}, e′ = E{e′0}, and e0  e′0. Therefore E has the
form [ f (ω)/y]E1 for some evaluation context E1, e0 = [ f (ω)/y]e1 for some
closed expression e1, and so e′ = [ f (ω)/y]E1{e′0}.

We proceed by case analysis on whether or not e1 is the distinguished
variable, y. If so, the instruction step under consideration is precisely the
unrolling of the distinguished recursive expression f (ω). Consequently,
e0 = f (ω), and, therefore, e′0 = [ f (ω)/x]ex, where we may assume with-
out loss of generality x # y. Now

[ f (ω)/y]E1{[ f (ω)/x]ex} = [ f (ω)/y](E1{[y/x]ex}),

and so by induction there exists k ≥ 0 such that

[ f (k)/y](E1{[y/x]ex}) = [ f (k)/y]E1{[y/x]ex}
= [ f (k)/y]E1{[ f (k)/x]ex} ↓ .

Hence, by Lemma 15.4 on the preceding page, noting that y # [ f (k)/x]ex,
and applying the dynamic semantics of bounded recursion, we have

[ f (k+1)/y](E1{y}) = [ f (k+1)/y]E1{ f (k+1)}
7→c [ f (k+1)/y]E1{[ f (k)/x]ex} ↓ .

This completes the proof for the case e1 = y.
Otherwise, it follows from Lemma 15.3 on the previous page that e′0 =

[ f (ω)/y]e′1 for some expression e′1. That is, we have

[ f (ω)/y](E1{e0}) = [ f (ω)/y]E1{[ f (ω)/y]e1}
7→c [ f (ω)/y]E1{[ f (ω)/y]e′1}
= [ f (ω)/y](E1{e′1}) ↓ .

5:05PM DRAFT JUNE 26, 2007



15.6. EXERCISES 123

Therefore, by induction, there exists k ≥ 0 such that

[ f (k)/y]E1{[ f (k)/y]e′1} = [ f (k)/y](E1{e′1}) ↓ .

It follows that

[ f (k)/y]E1{[ f (k)/y]e1} 7→c [ f (k)/y]E1{[ f (k)/y]e′1} ↓ .

15.6 Exercises
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Part V

Products and Sums





Chapter 16

Product Types

The binary product of two types consists of ordered pairs of values, one from
each type in the order specified. The associated eliminatory forms are pro-
jections, which select the first and second component of a pair. The nullary
product, or unit, type consists solely of the unique “null tuple” of no values,
and has no associated eliminatory form.

More generally, the general, or n-ary, product of n ≥ 0 types consists
of the ordered n-tuples of values, with the eliminatory forms being the jth
projection, where 0 ≤ j < n.

The labelled product, or record, type consists of labelled n-tuples in which
the components are labelled by names. The eliminatory forms access the
field of a specified name.

The object type is the type consists of records equipped with a name
for themselves to permit recursive self-reference. Such types are used to
model objects (in the sense of “object-oriented programming”), which per-
mit methods to refer to object in which they are contained.

16.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Type τ ::= unit | prod(τ1, τ2)
Expr e ::= triv | pair(e1, e2) | fst(e) | snd(e)
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The concrete syntax is summarized in the following chart:

Abstract Syntax Concrete Syntax
unit unit
triv 〈〉
prod(τ1, τ2) τ1 × τ2
pair(e1, e2) 〈e1, e2〉
fst(e) fst(e)
snd(e) snd(e)

The type prod(τ1, τ2) is sometimes called the binary product of the types τ1
and τ2, and the type unit is correspondingly called the nullary product (of
no types). We sometimes speak loosely of product types in such as way as
to cover both the binary and nullary cases. The introductory form for the
product type is called pairing, and its eliminatory forms are called projec-
tions. For the unit type the introductory form is called the unit element, or
null tuple. There is no eliminatory form, there being nothing to extract from
a null tuple!

The static semantics of product types is given by the following rules.

Γ ` triv : unit (16.1a)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` pair(e1, e2) : prod(τ1, τ2)
(16.1b)

Γ ` e : prod(τ1, τ2)

Γ ` fst(e) : τ1
(16.1c)

Γ ` e : prod(τ1, τ2)

Γ ` snd(e) : τ2
(16.1d)

The dynamic semantics of product types is specified by the following
rules:

triv val (16.2a)

{e1 val} {e2 val}
pair(e1, e2) val

(16.2b)

{ e1 7→ e′1
pair(e1, e2) 7→ pair(e′1, e2)

}
(16.2c)
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{
e1 val e2 7→ e′2

pair(e1, e2) 7→ pair(e1, e′2)

}
(16.2d)

e 7→ e′

fst(e) 7→ fst(e′)
(16.2e)

e 7→ e′

snd(e) 7→ snd(e′)
(16.2f)

{e1 val} {e2 val}
fst(pair(e1, e2)) 7→ e1

(16.2g)

{e1 val} {e2 val}
snd(pair(e1, e2)) 7→ e2

(16.2h)

The bracketed rules and premises are to be omitted for a lazy semantics,
and included for an eager semantics of pairing.

Theorem 16.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ then either e val or there exists e′ such that e 7→ e′.

16.2 Tuples

The syntax of tuple types is given by the following grammar:

Type τ ::= tpl(τ0, . . . , τn−1)
Expr e ::= tpl(e0, . . . , en−1) | prj[i](e)

The concrete syntax for tuples is given by the following chart:

Abstract Syntax Concrete Syntax
tpl(τ0, . . . , τn−1) 〈τ0, . . . , τn−1〉
tpl(e0, . . . , en−1) 〈e0, . . . , en−1〉
prj[i](e) e · i

Formally, this grammar is indexed by the size, n, of the general product
type under consideration. In addition the projections are indexed by a nat-
ural number constant, 0 ≤ i < n, indicating the position to select from the
n-tuple. The re-use of the operator tpl for both a type constructor and a
term constructor should cause no confusion, but formally there are two op-
erators of arity n, one for forming types, the other for forming expressions.
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We may either take these constructs as primitives, treating products as
special cases, or define these constructs in terms of products, as follows:

tpl(τ0, . . . , τn−1) =

{
unit if n = 0
prod(τ0, tpl(τ1, . . . , τn−1)) if n > 0

(16.3a)

tpl(e0, . . . , en−1) =

{
triv if n = 0
pair(e0, tpl(e1, . . . , en−1)) if n > 1

(16.3b)

prj[j](e) =

{
fst(e) if j = 0
prj[j− 1](snd(e)) if j > 0

(16.3c)

These definitions are a bit tricky. The definitions of the n-ary product type
and the n-tuple expression are defined for n > 0 in terms of their definition
for n− 1. Moreover, the projections are further parameterized by a constant
0 ≤ j < n indicating the position to project; these are defined for j > 0 in
terms of their definitions for j− 1.

We leave it to the reader to derive the static and dynamic semantics for
general product types implied by these definitions.

16.3 Labelled Products

Labelled product, or record, types are a useful generalization of product types
in which the components are accessed by name, rather than by position.
The benefits of this should be clear: one cannot be expected to remember
the meaning of the 7th component of a 13-tuple!

The syntax for records is quite similar to that for n-tuples:

Type τ ::= rcd[l1, . . . , ln](τ1, . . . , τn)
Expr e ::= rcd[l1, . . . , ln](e1, . . . , en) | prj[l](e)

We use the meta-variable l to range over labels, an infinite set of names
disjoint from variable names, which label the fields, or components, of the
tuple. The abstract syntax is defined so that to each choice of n ≥ 0 and
each sequence of labels l1, . . . , ln there is associated an n-argument type
constructor and an n-argument term constructor that attaches the label li
to the ith field of the tuple. Fields are accessed by name, using the familiar
dot notation to extract the value of a field with a specified label.

Since the fields of a record are accessed by name, it makes sense to iden-
tify two types that differ only in the order of their fields. Specifically, if π is

5:05PM DRAFT JUNE 26, 2007



16.3. LABELLED PRODUCTS 131

a permutation of { 1, . . . , n }, the we treat the record type rcd[l1, . . . , ln](τ1, . . . , τn)
as identical to the record type

rcd[lπ(1), . . . , lπ(n)](τπ(1), . . . , τπ(n)).

If we assume given a linear ordering, l ≤ l′, on labels, and then we may
choose the permutation π so that if i ≤ j, then lπ(i) ≤ lπ(j). This permu-
tation may then be regarded as determining a canonical representative of
each such equivalence class; two record types are equal iff they are the same
when their fields are re-ordered according to such a permutation π.

The correspondence between abstract and concrete syntax is given by
the following chart:

Abstract Syntax Concrete Syntax
rcd[l1, . . . , ln](τ1, . . . , τn) 〈l1 : τ1, . . . , ln : τn〉
rcd[l1, . . . , ln](e1, . . . , en) 〈l1 = e1, . . . , ln = en〉
prj[l](e) e · l

The static semantics of records is given by the following rules:

Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` rcd[l1, . . . , ln](e1, . . . , en) : rcd[l1, . . . , ln](τ1, . . . , τn)
(16.4a)

Γ ` e : rcd[l1, . . . , ln](τ1, . . . , τn)

Γ ` prj[li](e) : τi
(16.4b)

The dynamic semantics is specified by these rules:

{e1 val} . . . {en val}
rcd[l1, . . . , ln](e1, . . . , en) val

(16.5a)

{
e1 val . . . ei−1 val ei 7→ e′i e′i+1 = ei+1 . . . e′n = en

rcd[l1, . . . , ln](e1, . . . , en) 7→ rcd[l1, . . . , ln](e′1, . . . , e′n)

}
(16.5b)

e 7→ e′

prj[l](e) 7→ prj[l](e′)
(16.5c)

{e1 val} . . . {en val}
prj[li](rcd[l1, . . . , ln](e1, . . . , en)) 7→ ei

(16.5d)

The bracketed rules and premises are to be omitted for a lazy interpreta-
tion, and included for an eager interpretation.

Theorem 16.2 (Safety for Records). 1. If e : τ and e 7→ e′, then e : τ′.

2. If e : τ, then either e val or e 7→ e′ for some e′.
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16.4 Object Types

An object (in the sense of “object-oriented programming”) is a record of
functions, called methods, that may refer to one another by selection from a
variable standing for the object itself. This variables is often called this, or
self, for the obvious reason that when used within a record epression, it
refers to the object itself.

The abstract syntax of object types is given by the following grammar.

Type τ ::= obj[l1, . . . , ln](τ1, . . . , τn)
Expr e ::= prj[l](e) | obj[τ; l1, . . . , ln](x.e1, . . . , x.en)

The following chart summarizes the corresponding concrete syntax:

Abstract Syntax Concrete Syntax
obj[l1, . . . , ln](τ1, . . . , τn) obj〈l1 : τ1, . . . , ln : τn〉
prj[l](e) e · l
obj[τ; l1, . . . , ln](x.e1, . . . , x.en) obj x:τ is 〈l1 = e1, . . . , ln = en〉

In the object expression obj x:τ is 〈l1 = e1, . . . , ln = en〉 the variable x stands
for the object itself, and is bound in each of the sub-expressions e1, . . . , en.
The binding structure is clarified in the abstract syntax, in which there is
one bound variable for each component of the object.

The static semantics is a straightforward generalization of that of ordi-
nary (non-self-referential) records.

(τ = obj[l1, . . . , ln](τ1, . . . , τn))
Γ, x : τ ` e1 : τ1 . . . Γ, x : τ ` en : τn

Γ ` obj[τ; l1, . . . , ln](x.e1, . . . , x.en) : τ

(16.6a)

Γ ` e : obj[l1, . . . , ln](τ1, . . . , τn)

Γ ` prj[li](e) : τi
(16.6b)

Each field is type checked under the assumption that the variable, x, which
stands for the object itself, has the type of the entire object.

The dynamic semantics is defined to “unroll the recursion” when a field
is selected from the object.

obj[τ; l1, . . . , ln](x.e1, . . . , x.en) val (16.7a)

e 7→ e′

prj[l](e) 7→ prj[l](e′)
(16.7b)
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(e = obj[τ; l1, . . . , ln](x.e1, . . . , x.en))
prj[li](e) 7→ [e/x]ei

(16.7c)

The last rule ensures that the bound variable, x, stands for the object itself
whenever a field is projected from an object. There is no distinction be-
tween an eager and a lazy semantics for objects, because each of an object
lies within the scope of the bound variable standing for the object itself.

These rules suggest that objects may be viewed as self-referential records
obtained through the combination of record types and general recursion.
Specifically, we may regard the object expression

obj[τ; l1, . . . , ln](x.e1, . . . , x.en)

as standing for the recursive record expression

fix[τ](x.rcd[l1, . . . , ln](e1, . . . , en)).

The use of general recursion means that the representation of an object ex-
pression is not a value. In particular, the components of the object can be
computed at object creation time, and any of these computations might di-
verge when the object expression is evaluated. But when self-referential
records are used to represent objects, each of the components ei is a method
represented as an explicit λ-abstraction, which is, of course, a value. Con-
sequently, the fixed point operation evaluates in one step to a record of λ’s,
all of which are values.

16.5 Exercises

1. State and prove the canonical forms lemma for unit and product types.

2. Prove the safety theorem for unit and product types under either the.

3. State the static and dynamic semantics for general products implied
by the definitions given in Section 16.1 on page 127.

4. Functional update, concatenation, restriction, other record operations?

5. Define recursor from iterator using products.
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Chapter 17

Sum Types

Most data structures involve alternatives such as the distinction between a
leaf and an interior node in a tree, or a choice in the outermost form of a
piece of abstract syntax. Importantly, the choice determines the structure
of the value. For example, nodes have children, but leaves do not, and so
forth. These concepts are expressed by sum types, specifically the binary
sum, which offers a choice of two things, and the nullary sum, which offers
a choice of no things. These generalize to n-ary sums, a choice among n
things, and to labelled sums, in which the selection is governed by a label.

17.1 Binary and Nullary Sums

The abstract syntax of sums is given by the following grammar:

Type τ ::= void | sum(τ1, τ2)
Expr e ::= abort[τ](e) | inl[τ](e) | inr[τ](e) |

case[τ1, τ2](e, x1.e1, x2.e2)

The corresponding concrete syntax is summarized in the following chart:

Abstract Syntax Concrete Syntax
void void, ⊥
abort[τ](e) abortτ e
sum(τ1, τ2) τ1 + τ2
inl[τ](e) inlτ(e)
inr[τ](e) inrτ(e)
case[τ1, τ2](e, x1.e1, x2.e2) case e {inl(x1)⇒ e1 | inr(x2)⇒ e2}
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The type void is the nullary sum type, whose values are selected from a
choice of zero alternatives — there are no values of this type, and so no
introductory forms. The eliminatory form, abort[τ](e), aborts the com-
putation in the event that e evaluates to a value, which it cannot do. The
type τ = sum(τ1, τ2) is the binary sum. Its introductory forms have the form
inl[τ](e) or inl[τ](e), indicating which of the two possible choices by
tagging a value of the left or right summand as being a value of the sum
type. The eliminatory form performs a case analysis on the tag of a value,
decomposing it into its constituent parts.

The static semantics of sum types is given by the following rules.

Γ ` e : void
Γ ` abort[τ](e) : τ

(17.1a)

Γ ` e : τ1 τ = sum(τ1, τ2)

Γ ` inl[τ](e) : τ
(17.1b)

Γ ` e : τ2 τ = sum(τ1, τ2)

Γ ` inr[τ](e) : τ
(17.1c)

Γ ` e : sum(τ1, τ2) Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case[τ1, τ2](e, x1.e1, x2.e2) : τ
(17.1d)

Just as for the conditional expression considered in Chapter 13, both
branches of the case analysis must have the same type. Since the type ex-
presses a static “prediction” on the form of the value of an expression, and
since a value of sum type could evaluate to either form at run-time, we
must insist that both branches yield the same type.

The dynamic semantics of sums is given by the following rules:

{e val}
inl[τ](e) val

(17.2a)

{e val}
inl[τ](e) val

(17.2b)

{
e 7→ e′

inl[τ](e) 7→ inl[τ](e′)

}
(17.2c)

{
e 7→ e′

inr[τ](e) 7→ inr[τ](e′)

}
(17.2d)

e 7→ e′

case[τ1, τ2](e, x1.e1, x2.e2) 7→ case[τ1, τ2](e′, x1.e1, x2.e2)
(17.2e)
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{e val}
case[τ1, τ2](inl[τ](e), x1.e1, x2.e2) 7→ [e/x1]e1

(17.2f)

{e val}
case[τ1, τ2](inr[τ](e), x1.e1, x2.e2) 7→ [e/x2]e2

(17.2g)

The bracketed premises and rules are to be included for an eager seman-
tics, and excluded for a lazy semantics.

The coherence of the static and dynamic semantics is stated and proved
as usual.

Theorem 17.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7→ e′ for some e′.

One use of sum types is to define the Boolean type, which has the fol-
lowing syntax:

Type τ ::= bool
Expr e ::= tt | ff | if(e, e1, e2)

This type is definable in the presence of sums and nullary products accord-
ing to the following equations:

bool = sum(unit, unit) (17.3a)
tt = inl[bool](triv) (17.3b)
ff = inr[bool](triv) (17.3c)

if(e, e1, e2) = case[unit, unit](e, x1.e1, x2.e2) (17.3d)

The variables x1 and x2 are dummies, since their type, unit, determines
their value, triv, and, moreover, they do not occur freely in e1 or e2.

Another use of sums is to define the option types, which have the fol-
lowing syntax:

Type τ ::= opt(τ)
Expr e ::= null | just(e) | ifnull[τ](e, e1, x.e2)

The type opt(τ) represents the type of “optional” values of type τ. The
introductory forms are null, corresponding to “no value”, and just(e),
corresponding to a specified value of type τ. The elimination form dis-
criminates between the two possibilities.
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The option type is definable from sums and nullary products according
to the following equations:

opt(τ) = sum(unit, τ) (17.4a)
null = inl[opt(τ)](triv) (17.4b)

just(e) = inr[opt(τ)](e) (17.4c)
ifnull[τ](e, e1, x2.e2) = case[unit, τ](e, x1.e1, x2.e2) (17.4d)

We leave it to the reader to examine the static and dynamic semantics im-
plied by these definitions.

It is important to understand the difference between the types unit and
void, which are often confused. The type unit has exactly one element,
triv, whereas the type void has no elements at all. Consequently, if e :
unit, then if e evaluates to a value, it must be unit — in other words, e has
no interesting value (but it could diverge). On the other hand, if e : void,
then e must not return a value, because if it were to have a value, it would
have to be a value of type void, of which there are none. This shows that
the void type in Java and related languages is really the type unit, because
it indicates that an expression of that type has no interesting result, not that
it must not return!

17.2 Labelled Sums

Binary and nullary sums are sufficient to define generalized n-ary sums, in
a manner analogous to the definition of n-ary products from nullary and
binary products in Chapter 16. We leave the details of this derivation to
the reader, and concentrate instead on labelled sums, or labelled variants. La-
belled sums are a form of n-ary sum in which the alternatives are labelled
by names, rather than by positions.

The abstract syntax of labelled sums is given by the following grammar:

Type τ ::= var[l1, . . . , ln](τ1, . . . , τn)
Expr e ::= inj[τ; l](e) | case[τ1, . . . , τn; l1, . . . , ln](e, x1.e1, . . . , xn.en)

The corresponding concrete syntax is given by the following chart:

Abstract Syntax Concrete Syntax
var[l1, . . . , ln](τ1, . . . , τn) [l1 : τ1, . . . , ln : τn]
inj[τ; l](e) [l = e]τ

case[τ1, . . . , τn; l1, . . . , ln](e, x1.e1, . . . , xn.en)
case e {[l1=x1]⇒ e1 | . . . | [ln=xn]⇒ en}
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It is an awkwardness of the syntax that injections must be marked with
the sum type into which the injection is being made. This is to ensure that
every expression has a unique type, since we cannot recover the entire sum
type from the type of one of its variants.

The static semantics is given by the following rules:

τ = var[l1, . . . , ln](τ1, . . . , τn)

Γ ` e : τi

Γ ` inj[τ; li](e) : τ

(17.5a)

Γ ` e : var[l1, . . . , ln](τ1, . . . , τn)

Γ, x1 : τ1 ` e1 : τ . . . Γ, xn : τn ` en : τ

Γ ` case[τ1, . . . , τn; l1, . . . , ln](e, x1.e1, . . . , xn.en) : τ

(17.5b)

These rules are a straightforward generalization of those for binary sums
to permit an arbitrary number of labelled variants.

We leave as an exercise to formulate the dynamic semantics of labelled
sums and to prove this extension sound.

17.3 Exercises

1. Formulate general n-ary sums in terms of nullary and binary sums.

2. Explain why is makes little sense to consider self-referential sum types.
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Part VI

Recursive Types





Chapter 18

Inductive and Co-Inductive
Types

The inductive and the coinductive types are two important classes of recur-
sive types. Inductive types correspond to least, or initial, solutions of certain
type isomorphism equations, and coinductive types correspond to their
greatest, or final, solutions. Intuitively, inductive types are considered to
be the “smallest” types containing their introduction forms; the elimina-
tion form is then a form of recursion over the introduction forms. Dually,
coinductive types are considered to be the “greatest” types consistent with
their elimination forms; the introduction forms are a means of presenting
elements as required by the elimination forms.

The motivating example of an inductive type is the type of natural num-
bers. It is the least type containing the introductory forms z and s(e),
where e is again an introductory form. To compute with a number we de-
fine a recursive procedure that returns a specified value on z, and, for s(e),
returns a value defined in terms of the recursive call to itself on e. Other
examples of inductive types are strings, lists, trees, and any other type that
may be thought of as finitely generated from its introductory forms.

The motivating example of a coinductive type is the type of streams
of natural numbers. Every stream may be thought of as being in the pro-
cess of generation of pairs consisting of a natural number (its head) and
another stream (its tail). To create a stream we define a generator that,
when prompted, produces such a natural number and a co-recursive call
to the generator. Other examples of coinductive types include infinite reg-
ular trees, and the so-called lazy natural numbers, which include a “point
at infinity” consisting of an infinite stack of successors.
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We will consider inductive and coinductive types in a setting similar to
L{nat→}, in which all functions are total. The type nat is replaced by a
general inductive type constructor, written µi(t.τ), and we also consider
a coinductive type constructor, written µf(t.τ). The resulting language is
called L{µiµf→}.

18.1 Static Semantics

18.1.1 Types and Operators

The syntax of inductive and coinductive types involves type variables, which
are, of course, variables ranging over the class of types. The abstract syntax
of types is given by the following grammar:

Type τ ::= t | arr(τ1, τ2) | ind(t.τ) | coi(t.τ).

The concrete syntax conventions are summarized by the following chart:

Abstract Syntax Concrete Syntax
arr(τ1, τ2) τ1 → τ2
ind(t.τ) µi(t.τ)
coi(t.τ) µf(t.τ)

The subscripts on the inductive and coinductive types are intended to in-
dicate “initial” and “final”, respectively.

We will consider type formation judgements of the form

t1 type, . . . , tn type | τ type,

where t1, . . . , tn are type names. We let ∆ range over finite sets of hypothe-
ses of the form t type, where t name is a type name. The type formation
judgement is inductively defined by the following rules:

∆, t type | t type (18.1a)

∆ | τ1 type ∆ | τ2 type

∆ | arr(τ1, τ2) type
(18.1b)

∆, t type | τ type ∆ | t.τ pos

∆ | ind(t.τ) type
(18.1c)
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∆, t type | τ type ∆ | t.τ pos

∆ | coi(t.τ) type
(18.2)

The premises on Rules (18.1c) and (18.2) involve a judgement of the form
t.τ pos, which will be explained in Section 18.2 on the next page.

A type operator is an abstractor of the form t.τ such that t type | τ type.
Thus a type operator may be thought of as a type, τ, with a distinguished
free variable, t, possibly occurring in it. It follows from the meaning of
the hypothetical judgement that if t.τ is a well-formed type operator, and
σ type, then [σ/t]τ type. Thus, a type operator may also be thought of as a
mapping from types to types given by substitution.

As an example of a type operator, consider the abstractor t.unit + t,
which will be used in the definition of the natural numbers as an induc-
tive type. Other examples include t.unit + (nat× t), which underlies the
definition of the inductive type of lists of natural numbers, and t.nat× t,
which underlies the coinductive type of streams of natural numbers.

18.1.2 Expressions

The abstract syntax of expressions for inductive and coinductive types is
given by the following grammar:

Expr e ::= in[t.τ](e) | rec[t.τ](x.e, e′) |
out[t.τ](e) | gen[t.τ](x.e, e′)

The concrete syntax is summarized by the following chart:

Abstract Syntax Concrete Syntax
in[t.τ](e) int.τ(e)
rec[t.τ](x.e, e′) rect.τ(x.e, e′)
out[t.τ](e) outt.τ(e)
gen[t.τ](x.e, e′) gent.τ(x.e, e′)

There is a pleasing symmetry between inductive and coinductive types
that arises from the underlying duality of their semantics.

The static semantics for inductive and coinductive types is given by the
following typing rules:

Γ ` e : [ind(t.τ)/t]τ
Γ ` in[t.τ](e) : ind(t.τ)

(18.3a)
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Γ ` e′ : ind(t.τ) Γ, x : [ρ/t]τ ` e : ρ

Γ ` rec[t.τ](x.e, e′) : ρ
(18.3b)

Γ ` e : coi(t.τ)
Γ ` out[t.τ](e) : [coi(t.τ)/t]τ (18.3c)

Γ ` e′ : ρ Γ, x : ρ ` e : [ρ/t]τ
Γ ` gen[t.τ](x.e, e′) : coi(t.τ)

(18.3d)

The dynamic semantics of these constructs is given in terms of the ac-
tion of a positive type operator, which we now define.

18.2 Positive Type Operators

The formation of inductive and coinductive types is restricted to a special
class of type operators, called the positive type operators.1 These are type
operators of the form t.τ in which t is restricted so that its occurrences
within τ do not lie within the domain of a function type. The prototypical
example of a type operator that is not positive is the operator t.t→ t, in
which t occurs in both the domain and the range of a function type. On the
other hand, the type operator t.nat→ t is positive, as is t.u→ t, where
u type is some type variable other than t. Thus, the positivity restriction
applies only to the bound type variable of the abstractor, and not to any
other type variable.

The judgement ∆ | t.τ pos is inductively defined by the following rules:

∆ | t.t pos (18.4a)

∆ | τ type

∆ | t.τ pos
(18.4b)

∆ | τ1 type ∆ | t.τ2 pos

∆ | t.τ1 → τ2 pos
(18.4c)

∆, u type | t.τ pos

∆ | t.µi(u.τ) pos
(18.4d)

1These are, in fact, strictly positive type operators; there is a more permissive notion of
positive operator that we shall not consider here.
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∆, u type | t.τ pos

∆ | t.µf(u.τ) pos
(18.4e)

In the latter two rules we assume that u # t, which is always achievable
up to α-equivalence. Notice that in Rule (18.4c), the type variable t is not
permitted to occur in τ1, the domain type of the function type.

Positivity is preserved under substitution.

Lemma 18.1. If t.σ pos and t.τ pos, then t.[σ/u]τ pos.

The covariant action of a positive type operator t.τ consists of two parts,
an action on types and an action on abstractors. The action on types is given
by substitution: (t.τ)∗(σ) := [σ/t]τ. The action on abstractors

(t.τ)∗(x.e) = x′.e′

is defined by the following rules:

(t.t)∗(x.e) = x.e (18.5a)

(t.τ)∗(x.e) = x.x (18.5b)

(t.τ2)∗(x.e) = x2.e2

(t.τ1 → τ2)∗(x.e) = x′.λ(x1:τ1. [x′(x1)/x2]e2)
(18.5c)

(t.[µi(u.[σ′/t]τ)/u]τ)∗(x.e) = x′.e′

(t.µi(u.τ))∗(x.e) = y.recu.[σ/t]τ(x′.inu.[σ′/t]τ(e′), y)
(18.5d)

(t.[µf(u.[σ/t]τ)/u]τ)∗(x.e) = x′.e′

(t.µf(u.τ))∗(x.e) = y.genu.[σ′/t]τ(x′.[outu.[σ/t]τ(x′)/x′]e′, y)
(18.5e)

The covariant action on abstractors is type-consistent with its action on
types in the following sense.

Lemma 18.2. If x : σ ` e : σ′, then x′ : (t.τ)∗(σ) ` e′ : (t.τ)∗(σ′).
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18.3 Dynamic Semantics

The dynamic semantics of inductive and coinductive types is given in terms
of the covariant action of the associated type operator. Specifically, we take
the following axioms as the primitive steps of our semantics:

(t.τ)∗(x′.rect.τ(x.e, x′)) = x′′.e′′

rect.τ(x.e, int.τ(e′)) 7→ [[e′/x′′]e′′/x]e
(18.6a)

(t.τ)∗(x′.gent.τ(x.e, x′)) = x′′.e′′

outt.τ(gent.τ(x.e, e′)) 7→ [[e′/x]e/x′′]e′′
(18.6b)

The remaining rules of the dynamic semantics are specified as follows:

{e val}
int.τ(e) val

(18.7a)

{e′ val}
gent.τ(x.e, e′) val

(18.7b)

{
e 7→ e′

int.τ(e) 7→ int.τ(e′)

}
(18.7c)

e′ 7→ e′′

rect.τ(x.e, e′) 7→ rect.τ(x.e, e′′)
(18.7d)

e 7→ e′

outt.τ(e) 7→ outt.τ(e′)
(18.7e)

{
e′ 7→ e′′

gent.τ(x.e, e′) 7→ gent.τ(x.e, e′′)

}
(18.7f)

Lemma 18.3. If e : τ and e 7→ e′, then e′ : τ.

Lemma 18.4. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Although we shall not give a proof here, the language L{µiµf→} is
terminating, and all functions defined within it are total (defined for every
argument).

Theorem 18.5. If e : τ, then there exists v val such that e 7→∗ v.
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18.4 Fixed Point Properties

Inductive and coinductive types enjoy an important property that will play
a prominent role in Chapter 19, called a fixed point property, that character-
izes them as solutions to recursive type equations. Specifically, the induc-
tive type µi(t.τ) is isomorphic to its unrolling,

µi(t.τ) ∼= [µi(t.τ)/t]τ,

and, dually, the coinductive type is isomorphic to its unrolling,

µf(t.τ) ∼= [µf(t.τ)/t]τ

The isomorphism arises from the invertibility of int.τ(−) in the inductive
case and of outt.τ(−) in the coinductive case, with the required inverses
given as follows:

x.in−1
t.τ(x) = x.rect.τ((t.τ)∗(y.int.τ(y)), x) (18.8)

x.out−1
t.τ(x) = x.gent.τ((t.τ)∗(y.outt.τ(y)), x) (18.9)

(We are not yet in a position to prove that these are, respectively, inverses
to int.τ(−) and outt.τ(−), but see Chapter 49 for more on equational
reasoning.)

Thus, both the inductive and the coinductive type are solutions (in X)
to the type isomorphism

X ∼= [X/t]τ.

What distinguishes the two solutions, in general, is that the inductive type
is the initial, or least, solution, whereas the coinductive type is the final, or
greatest, solution to the isomorphism equation. This implies, in particular,
that there is an abstractor x.e such that

x : µi(t.τ) ` e : µf(t.τ),

but there is, in general, no such abstractor in the opposite direction.

18.5 Exercises

1. Extend the covariant action to nullary and binary products and sums.

2. Prove progress and preservation.
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3. Show that the required abstractor mapping the inductive to the coin-
ductive type associated with a type operator is given by the equation

x.gent.τ(y.in−1
t.τ(y), x).

Characterize the behavior of this term when x is replaced by an ele-
ment of the inductive type.
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Chapter 19

Recursive Types

Inductive and coinductive types provide solutions to type isomorphism
equations of the form

X ∼= [X/t]τ,

where t.τ is a positive type operator. For such operators the inductive type,
µi(t.τ) provides the least, or initial, solution to the isomorphism equation,
and the coinductive type µf(t.τ) provides the greatest, or final, solution to
it. They are therefore both fixed points (up to isomorphism) of the specified
type operator. For example, if N is the type operator t.unit + t, then µi(N)
is isomorphic to unit + µi(N), and µf(N) is isomorphic to unit + µf(N).

The restriction to positive type operators is essential if we are to pre-
serve termination. The language L{µiµf→} defined in Chapter 18 is a
natural generalization of L{nat→} in that all expressions terminate, and
functions remain total. In this chapter we relax the restriction to positive
operators, and permit formation of fixed points for arbitrary type opera-
tors. As we shall see below, this introduces non-termination and, indeed,
permits definition of general recursion for expressions of arbitrary type. It
is therefore best understood as a variant of L{nat⇀}, called L{µ⇀}, in
which the built-in type nat is replaced by the recursive type µ(t.τ).

19.1 Solving Type Equations

A recursive type has the form µ(t.τ), where t.τ is any type operator, with-
out restriction. It denotes the fixed point (up to isomorphism) of the given
type operator, and hence provides a solution to the isomorphism equation
X ∼= [X/t]τ. The isomorphism is witnessed by the terms fold(e) and
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unfold(e) that mediate between the recursive type, µ(t.τ), and its un-
rolling, [µ(t.τ)/t]τ In this sense the parameter, t, of the type operator is
self-referential in that it may be considered to stand for the recursive type
itself.

Recursive types are formalized by the following abstract syntax:

Type τ ::= t | rec(t.τ)
Expr e ::= fold[t.τ](e) | unfold(e)

The meta-variable t ranges over a class of type names, which serve as names
for types. The unrolling of rec(t.τ) is the type [rec(t.τ)/t]τ obtained by
substituting the recursive type for t in τ.

The introduction form, fold[t.τ](e), introduces a value of recursive
type in terms of an element of its unrolling, and the elimination form,
unfold(e), evaluates to a value of the unrolling from an element of the
recursive type. In implementation terms the operation fold[t.τ](e) may
be thought of as an abstract “pointer” to a value of the unrolled type, and
the operation unfold(e) “chases” the pointer to obtain that value from a
value of the corresponding rolled type.

The static semantics of this extension of L{→} consists of two forms of
judgement, τ type, and e : τ. The type formation judgement is inductively
defined by a set of rules for deriving general judgements of the form

∆ | τ type,

where ∆ is a finite set of assumptions of the form ti type for some type
variable ti.

∆, t type | t type (19.1a)

∆ | τ1 type ∆ | τ2 type

∆ | arr(τ1, τ2) type
(19.1b)

∆, t type | τ type

∆ | rec(t.τ) type
(19.1c)

Note that, in contrast to Chapter 18, there is no positivity restriction on the
formation of a recursive type.

Typing judgements have the form

∆ | Γ ` e : τ

5:05PM DRAFT JUNE 26, 2007



19.2. GENERAL RECURSION, REVISITED 153

where ∆ is as above, and Γ is, as usual, a finite set of typing assumptions of
the form xi : τi such that ∆ ` τi type for each 1 ≤ i ≤ n. The typing rules
for L{µ⇀} are as follows:

∆, t type ` τ type ∆ | Γ ` e : [rec(t.τ)/t]τ
∆ | Γ ` fold[t.τ](e) : rec(t.τ)

(19.2a)

∆ | Γ ` e : rec(t.τ)

∆ | Γ ` unfold(e) : [rec(t.τ)/t]τ
(19.2b)

These rules express an inverse relationship stating that a recursive type is
isomorphic to its unrolling, with the operations fold and unfold being the
witnesses to the isomorphism.

Operationally, this is expressed by the following dynamic semantics
rules:

{e val}
fold[t.τ](e) val

(19.3a)

{
e 7→ e′

fold[t.τ](e) 7→ fold[t.τ](e′)

}
(19.3b)

e 7→ e′

unfold(e) 7→ unfold(e′)
(19.3c)

{e val}
unfold(fold[t.τ](e)) 7→ e

(19.3d)

As usual, the bracketed rules and premises are to be omitted for a lazy
semantics, and included for an eager semantics.

It is straightforward to prove the safety of this extension to L{→}:

Theorem 19.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7→ e′.

19.2 General Recursion, Revisited

In Chapter 15 we introduced the concept of general recursion as a means
of defining self-referential expressions. In Chapter 13 we showed how to
use general recursion to implement recursive functions. Here we show that
general recursion is definable in L{µ⇀} using recursive types.
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The trick is to augment a self-referential expression with an implicit
argument that will always be bound to the expression itself, thereby effect-
ing the recursion. The way we will do this is to introduce a type of self-
referential computations yielding a value of type τ, which we will write
abstractly as self(τ) and concretely as τ self. To effect self-reference we
will arrange that τ self is isomorphic to τ self → τ, the argument repre-
senting the computation itself. This may, of course, be achieved by defining
τ self to be the recursive type µ(t.t→ τ).

We may then define fix x:τ is e of type τ to be unfold(e′)(e′), where

e′ = fold(λ(y:τ self. [unfold(y)(y)/x]e)).

Observe that

fix x:τ is e = unfold(e′)(e′)
7→∗ [unfold(e′)(e′)/x]e
= [fix x:τ is e/x]e,

which is sufficient to simulate self-reference. It is easy to check that the
derived static semantics is as expected for general recursion.

This example shows that adding recursive types has a global effect on
the type system — the meaning of every type is changed when recursive
types are admitted. For in the derivation just give, the type τ is arbitrary,
so that every type contains self-referential expressions. In particular, in the
presence of recursive types, there is a non-terminating expression of every
type, even if there were no such expressions in their absence. Thus recur-
sive types are a non-conservative extension in that they change the meaning
of types that were present before the extension, as well as adding new types
that were not present beforehand.

19.3 Exercises
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Chapter 20

Untyped Languages

It is customary to distinguish between typed and untyped languages, as
though they were incompatible alternatives. But we shall argue that well-
defined, or safe, type-free languages are, in fact, just a particular mode of
use of types. As we shall see, so-called untyped languages may be seen as
uni-typed languages.

20.1 Untyped λ-Calculus

The premier example of an untyped language is the (untyped) λ-calculus, a
very elegant language devised by Alonzo Church in the 1930’s. Its chief
characteristic is that the language consists of nothing but functions! Func-
tions take functions as arguments and yield functions as results, and all
data structures must be represented as functions. Surprisingly, this tiny
language is sufficiently powerful to express any computable function!

The abstract syntax of the untyped λ-calculus is given by the following
grammar:

λ-terms u ::= x | λ(x.u) | ap(u1, u2)

In concrete syntax these two forms are written λx. u and u1(u2). The for-
mer is called a λ-abstraction, and the latter application. The entire language
consists of these two constructs, plus variables that range over untyped
λ-terms.

The basic form of execution in the untyped λ-calculus is defined by the
following transition rules:

ap(λ(x.u1), u2) 7→ [u2/x]u1 (20.1a)
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u1 7→ u2

ap(u1, u2) 7→ ap(u′1, u2)
(20.1b)

In the λ-calculus literature this judgement is called head reduction. The first
rule is called β-reduction; it defines the meaning of function application in
terms of substitution. It is also possible to define a call-by-value variant of
head reduction by insisting that the β-reduction step apply only when the
argument is an explicit λ, and adding the following argument-evaluation
rule:

u2 7→ u′2
ap(λ(x.u1), u2) 7→ ap(λ(x.u1), u′2)

(20.2)

20.2 Expressiveness

Interest in the untyped λ-calculus stems from its surprising expressive power:
it is a Turing-complete language in the sense that it has the same capabil-
ity to expression computations on the natural numbers as does any other
known programming language. The Church-Turing Thesis states that any
conceivable notion of computable function on the natural numbers is equiv-
alent to the λ-calculus. This is certainly true for all known means of defining
computable functions on the natural numbers. The force of the Church-
Turing Thesis is that it postulates that all future notions of computation
will be equivalent in expressive power (measured by definability of func-
tions on the natural numbers) to the λ-calculus. The Church-Turing Thesis
is therefore a scientific law in the same sense as, say, Newton’s Law of Uni-
versal Gravitation makes a prediction about all future measurements of the
acceleration due to the gravitational field of a massive object.

We will sketch a proof that the untyped λ-calculus is as powerful as the
language PCF described in Chapter 15. The main idea is to show that the
PCF primitives for manipulating the natural numbers are definable in the
untyped λ-calculus. This means, in particular, that we must show that the
natural numbers are definable as λ-terms in such a way that case analysis,
which discriminates between zero and non-zero numbers, is definable. The
principal difficulty is with computing the predecessor of a number, which
requires a bit of cleverness. Finally, we show how to represent general
recursion, completing the proof.

The first task is to represent the natural numbers as certain λ-terms,
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called the Church numerals.

0 = λb. λs. b (20.3a)

n + 1 = λb. λs. s((n(b)(s))) (20.3b)

It follows that

n(u1)(u2) 7→∗ u2((. . . (u2(u1))))(,)

the n-fold application of u2 to u1. That is, n iterates its second argument
(the induction step) n times, starting with its first argument (the basis).

Using this definition it is not difficult to define the basic functions of
arithmetic. For example, successor, addition, and multiplication are de-
fined by the following untyped λ-terms:

succ = λx. λb. λs. s((x(b)(s))) (20.4)
plus = λx. λy. y(x)(succ) (20.5)

times = λx. λy. y(0)((plus(x))) (20.6)

It is easy to check that succ(n) 7→∗ n + 1, and that similar correctness con-
ditions hold for the representations of addition and multiplication.

We may readily define ifz(u, u0, u1) to be the application u(u0)((λx. u1)),
where x is chosen arbitrarily such that x # u1. We can use this to define
ifz(u, u0, x.u1), provided that we can compute the predecessor of a nat-
ural number. Doing so requires a bit of ingenuity. We wish to find a term
pred such that

pred(0) 7→∗ 0 (20.7)

pred(n + 1) 7→∗ n. (20.8)

To compute the predecessor using Church numerals, we must show how to
compute the result for n + 1 as a function of its value for n. At first glance
this seems straightforward—just take the successor—until we consider the
base case, in which we define the predecessor of 0 to be 0. This invalidates
the obvious strategy of taking successors at inductive steps, and necessi-
tates some other approach.

What to do? A useful intuition is to think of the computation in terms
of a pair of “shift registers” satisfying the invariant that on the nth iteration
the registers contain the predecessor of n and n itself, respectively. Given
the result for n, namely the pair (n− 1, n), we pass to the result for n + 1 by
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“shifting left” and “incrementing” to obtain (n, n + 1). For the base case,
we initialize the registers with (0, 0), reflecting the ad hoc condition that
the predecessor of zero be zero. Now to compute the predecessor of n we
compute the pair (n− 1, n) by this method, and return the first component.

To make this precise, we must first define a Church-style representation
of ordered pairs.

〈u1, u2〉 = λ f . f(u1)(u2) (20.9)
fst(u) = u((λx. λy. x)) (20.10)
snd(u) = u((λx. λy. y)) (20.11)

It is easy to check that under this encoding fst(〈u1, u2〉) 7→∗ u1, and sim-
ilarly for the second projection. We may now define the required term u
representing the predecessor:

u′p = λx. x(〈0, 0〉)(λy. 〈snd(y), s(snd(y))〉) (20.12)

up = λx. fst(u(x)) (20.13)

It is then easy to check that this gives us the required behavior.
This gives us all the apparatus of PCF, apart from general recursion.

But this is also definable using a fixed point combinator. There are many
choices of fixed point combinator, of which it is most convenient to use the
so-called Turing fixed point combinator,

Θ = θ(θ) (20.14)
θ = λ f . λx. x(( f( f)(x))) (20.15)

Observe that

Θ(u) = θ(θ)(u) (20.16)
7→∗ u((θ(θ)(u))) (20.17)
= u((Θ(u))) (20.18)

This provides the basis for general recursion, writing Θ((λx. u)) for self-
reference to u within u via the variable x.

20.3 Untyped Means Uni-Typed

The untyped λ-calculus may be faithfully embedded in the typed language
L{µ⇀}, enriched with recursive types. This means that every untyped λ-
term has a representation as an expression in L{µ⇀} in such a way that
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execution of the representation of a λ-term corresponds to execution of the
term itself. If the execution model of the λ-calculus is call-by-name, this
correspondence holds for the call-by-name variant of L{µ⇀}, and simi-
larly for call-by-value.

It is important to understand that this form of embedding is not a mat-
ter of writing an interpreter for the λ-calculus in L{µ⇀} (which we could
surely do), but rather a direct representation of untyped λ-terms as certain
typed expressions of L{µ⇀}. It is for this reason that we say that untyped
languages are just a special case of typed languages with recursive types.
Thus the supposed opposition between typed and untyped languages is
nothing of the kind. Rather, the issue is simply that recursive types greatly
increase the expressive power of typed languages, permitting styles of pro-
gramming that are otherwise impossible.

The key observation is that untyped really means uni-typed. That is, it is
not that the “untyped” λ-calculus has zero types, but rather that it has one
type! This type is the recursive type

D = rec(t.arr(t, t)).

A value of type D is of the form fold[D](e) where e is a value of type
arr(D, D) — a function whose domain and range are both D. Any such
function can be regarded as a value of type D by “rolling”, and any value of
type D can be turned into a function by “unrolling”. As usual, a recursive
type may be seen as a solution to a type isomorphism equation, which in
the present case is the equation

D ∼= arr(D, D).

This specifies that D is a type that is isomorphic to the space of functions
on D itself, something that is impossible in conventional set theory, but is
feasible in the computationally-based setting of the λ-calculus.

This isomorphism leads to the following embedding, u†, of u intoL{µ⇀}:

x† = x (20.19a)

λ(x.u)† = fold[D](lam[D](x.u†)) (20.19b)

ap(u1, u2)
† = ap(unfold(u†

1), u†
2) (20.19c)

Observe that the embedding of a λ-abstraction is a value, and that the
embedding of an application exposes the function being applied by un-
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rolling the recursive type. Consequently,

ap(λ(x.u1), u2)
† = ap(unfold(fold[D](lam[D](x.u†

1))), u†
2)

7→ ap(lam[D](x.u†
1), u†

2)

7→ [u†
2/x]u†

1

= ([u2/x]u1)†.

The last step, stating that the embedding commutes with substitution, is
easily proved by induction on the structure of u1. Thus β-reduction is faith-
fully implemented by evaluation of the embedded terms. It is also easy to
show that if u†

1 7→∗ v†
1, then ap(u1, u2)

† 7→∗ ap(v1, u2)
†. Consequently,

head reduction in the λ-calculus is faithfully implemented by evaluation in
L{µ⇀}.

20.4 Exercises
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Chapter 21

Dynamic Typing

We saw in Chapter 20 that an untyped language may be viewed as a uni-
typed language in which the so-called untyped terms are terms of a distin-
guished recursive type. In the case of the untyped λ-calculus this recursive
type has a particularly simple form, expressing that every term is isomor-
phic to a function. Consequently, no run-time errors can occur due to the
misuse of a value—the only elimination form is application, and its first ar-
gument can only be a function. Obviously this property breaks down once
more than one class of value is permitted into the language. For example, if
we add natural numbers as a primitive concept to the untyped λ-calculus
(i.e., rather than defining them via Church encodings), then it is possible
to incur a run-time error arising from attempting to apply a number to an
argument, or to add a function to a number.

One school of thought in language design is to turn this vice into a
virtue by embracing a model of computation that has multiple classes of
value of a single type. Such languages are said to be dynamically typed, in
supposed opposition to the statically typed languages we have studied thus
far. In this chapter we show that the supposed opposition between static
and dynamic languages is fallacious: dynamic typing is but a mode of use
of static typing, and, moreover, it is profitably seen as such. Dynamic typ-
ing can hardly be in opposition to that of which it is a special case!

21.1 Dynamically Typed PCF

To illustrate dynamic typing we formulate a dynamically typed version of
L{nat⇀}, called L{dyn}. The abstract syntax of L{dyn} is given by the
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following grammar:

Expr d ::= x | num(n) | succ(d) | ifz(d, d0, x.d1) |
fun(λ(x.d)) | ap(d1, d2) | fix(x.d) | error

The syntax is similar to that of L{nat⇀}, the chief difference being that
each value is tagged with its class, either num or fun. The notation n stands
for the nth numeral, n applications of successor to zero. Numerals are not
themselves forms of expression, but rather must be tagged with the class
num to be considered as expressions. Similarly, “bare” λ-abstractions (with
no type attached to the bound variable) of the form fun(λ(x.d)) are not
expressions, rather they must be tagged with the class fun to be consid-
ered as such. The expression error models checked errors in the manner
discussed in Section 10.3 on page 78.

The concrete syntax conventions for L{dyn} are summarized by the fol-
lowing chart. Apart from formatting, the concrete syntax avoids mention-
ing the class tags attached to values of the language.

Abstract Syntax Concrete Syntax
num(n) n
ifz(d, d0, x.d1) ifz d {z⇒ d0 | s(x)⇒ d1}
fun(λ(x.d)) λx. d
ap(d1, d2) d1(d2)
fix(x.d) fix x is d

The omission of class tags on values means that they must be inserted by
the parser on passage from concrete to abstract syntax. Unfortunately this
fosters the misunderstanding that the expressions of L{dyn} are exactly
the same as those of L{nat⇀}, but this is not the case. The class tags are
essential for the dynamic semantics ofL{dyn}, but are entirely unnecessary
for L{nat⇀}.

There is no static semantics for L{dyn}; every expression is eligible for
evaluation. However, the dynamic semantics must check for errors that
would never arise in a safe statically typed language. For example, function
application must ensure that its first argument is a function, signaling an
error in the case that it is not, and similarly the case analysis construct must
ensure that its first argument is a number, signaling an error if not. For
such checks to be possible at run-time, each value is explicitly tagged with
its class.

The a value judgement, d val, states that d is a fully evaluated (closed)
expression:

num(n) val (21.1a)
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fun(λ(x.d)) val (21.1b)

The judgement d err states that d represents a run-time error. It is de-
fined by the single rule

error err (21.2)

The dynamic semantics makes use of judgements that check the class of
a value, and recover the underlying λ-abstraction in the case of a function.

num(n) is num n (21.3a)

fun(λ(x.d)) is fun λ(x.d) (21.3b)

The second argument of each of these judgements has a special status—it
is not an expression of L{dyn}, but rather just a special piece of syntax used
internally to the transition rules given below.

We also will need the “negations” of the class-checking judgements in
order to detect run-time type errors.

num( ) isnt fun (21.4a)

fun( ) isnt num (21.4b)

We may now define the dynamic semantics of L{dyn} by the following
rules:

d 7→ d′

succ(d) 7→ succ(d′)
(21.5a)

d is num n
succ(d) 7→ num(s(n))

(21.5b)

d isnt num
succ(d) 7→ error

(21.5c)

d 7→ d′

ifz(d, d0, x.d1) 7→ ifz(d′, d0, x.d1)
(21.5d)

d is num z
ifz(d, d0, x.d1) 7→ d0

(21.5e)
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d is num s(n)
ifz(d, d0, x.d1) 7→ [num(n)/x]d1

(21.5f)

d isnt num
ifz(d, d0, x.d1) 7→ error

(21.5g)

d1 7→ d′1
ap(d1, d2) 7→ ap(d′1, d2)

(21.5h)

d1 val d2 7→ d′2
ap(d1, d2) 7→ ap(d1, d′2)

(21.5i)

d1 is fun λ(x.d) d2 val

ap(d1, d2) 7→ [d2/x]d
(21.5j)

d1 isnt fun

ap(d1, d2) 7→ error
(21.5k)

fix(x.d) 7→ [fix(x.d)/x]d (21.5l)

Note that in Rule (21.5f) the tagged numeral num(n) is bound to x to main-
tain the invariant that variables are bound to forms of expression.

Although it lacks a static semantics, the language L{dyn} nevertheless
is safe in the same sense as languages that do have a static semantics.

Theorem 21.1. For every d either d val, or d err, or there exists d′ such that
d 7→ d′.

The safety of L{dyn} is often promoted as an advantage of dynamic over
static typing: every parseable expression is capable of execution. But this
can also be seen as a disadvantage: errors that would be ruled out at compile
time by a static type system are not signalled until execution time.

21.2 Critique of Dynamic Typing

The dynamic semantics of L{dyn} exhibits considerable run-time overhead
compared to that of L{nat⇀}. Suppose that we define addition by the
L{dyn} expression

λx. (fix p isλy. ifz y {z⇒ x | s(y′)⇒ succ(p(y′))}).

By carefully examining the dynamics semantics, we may observe some of
the hidden costs of dynamic typing.
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First, observe that the body of the fixed point expression is a λ-abstraction,
which is tagged by the parser with class fun. The semantics of the fixed
point construct binds p to this (tagged) λ-abstraction, so the dynamic tag
check incurred by the recursive call is guaranteed to succeed. The check is
redundant, but there is no way within the language to avoid it.

Second, the result of applying the inner λ-abstraction is either x, the
parameter of the outer λ-abstraction, or the result of a recursive call. The
semantics of the successor operation ensures that the result of the recursive
call is tagged with class num, so the only way the tag check performed by
the successor operation could fail is if x is not bound to a number at the
initial call. In other words, it is a loop invariant that the result is of class
num, so there is no need for this check within the loop, only at the initial
call.

Third, the argument, y, to the inner λ-abstraction arises either at the
initial call, or as a result of a recursive call. But if the initial call binds y to
a number, then so must the recursive call, because the dynamic semantics
ensures that the predecessor of a number is also a number. Once again we
have an unnecessary dynamic check in the inner loop of the function, but
there is no way to avoid it.

Tag checking and creation is not free—storage is required for the tag it-
self, and the marking of a value with a tag takes time as well as space. While
the overhead is not asymptotically significant (it slows down the program
only by a constant factor), it is nevertheless non-negligible, and should be
eliminated whenever possible. But within L{dyn} itself there is no way to
avoid the overhead, because there are no “unchecked” operations in the
language—for these to be safe requires a static type system!

21.3 Hybrid Typing

Let us consider the language L{nat dyn⇀}, whose syntax extends that of
the language L{nat⇀} defined in Chapter 15 with the following addi-
tional constructs:

Type τ ::= dyn
Expr e ::= error | tag[t](e) | cast[t](e)
Tag t ::= num | fun

The type dyn represents the type of tagged values. Here we have only two
classes of data object, numbers and functions, and hence only two forms of
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tag. (In a richer language we would have more classes of data, and corre-
spondingly more forms of tags.)

The concrete syntax of these constructs is give by the following corre-
spondences:

Abstract Syntax Concrete Syntax
tag[t](e) t ! e
cast[t](e) e ? t

Observe that the cast operation takes as argument a tag, not a type. That
is, casting is concerned with an object’s class, which is indicated by a tag,
not with its type, which is always dyn.

The static semantics forL{nat dyn⇀} is the extension of that ofL{nat⇀}
with the following rules governing the type dyn.

Γ ` error : τ (21.6a)

Γ ` e : nat
Γ ` tag[num](e) : dyn (21.6b)

Γ ` e : parr(dyn, dyn)
Γ ` tag[fun](e) : dyn

(21.6c)

Γ ` e : dyn
Γ ` cast[num](e) : nat

(21.6d)

Γ ` e : dyn
Γ ` cast[fun](e) : parr(dyn, dyn)

(21.6e)

The static semantics ensures that tags are only applied to objects of the
appropriate type, num to natural numbers, and fun to functions defined
over tagged values.

The dynamic semantics ofL{nat dyn⇀} is given by the following rules:

e val
tag[t](e) val

(21.7a)

e 7→ e′

tag[t](e) 7→ tag[t](e′)
(21.7b)

e 7→ e′

cast[t](e) 7→ cast[t](e′)
(21.7c)

tag[t](e) val

cast[t](tag[t](e)) 7→ e
(21.7d)
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tag[t′](e) val t # t′

cast[t](tag[t′](e)) 7→ error
(21.7e)

Casting compares the tag of the object to the required tag, returning the
underlying object if these coincide, and signalling an error otherwise.

Lemma 21.2 (Canonical Forms). If e : dyn and e val, then e = tag[t](e′)
for some tag t and some e′ val. If t = num, then e′ : nat, and if t = fun, then
e′ : parr(dyn, dyn).

Theorem 21.3 (Safety). The language L{nat dyn⇀} is safe:

1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or e err, or e 7→ e′ for some e′.

21.4 Optimization of Dynamic Typing

The type dyn—whether primitive or derived—supports the smooth inte-
gration of dynamic with static typing. This means that we can take full ad-
vantage of the expressive power of static types whenever possible, while
permitting the flexibility of dynamic typing whenever desirable.

One application of the hybrid framework is that it permits the opti-
mization of dynamically typed programs by taking advantage of statically
evident typing constraints. Let us examine how this plays out in the case
of the addition function, which is rendered in L{nat dyn⇀} as follows:

fun !λ(x:dyn. fix p:dyn is fun !λ(y:dyn. ex,p,y)),

where ex,p,y of type dyn is the expression

ifz (y ? num) {z⇒ x | s(y′)⇒ num ! (s(((p ? fun)((num ! y′))) ? num))}.

This expression, which has type dyn, is essentially an explicit form of the
dynamically typed addition function given in Section 21.2 on page 166.
This formulation in L{nat dyn⇀}makes explicit the checking of class tags
that is implicit in L{dyn}.

One important consequence of embedding dynamic typing in a stati-
cally typed language is that it permits us to express optimizations that are
not expressible in a purely dynamic language. We will illustrate these by a
sequence of transformations on the addition function defined above.
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The first optimization is to note that the body of the fix expression is
an explicitly tagged function. This means that when the recursion is un-
wound, the variable p is bound to this value of type dyn. Consequently, the
check that p is tagged with class fun is redundant, and can be eliminated.
This is achieved by re-writing the function as follows:

fun !λ(x:dyn. fun ! fix p:dyn⇀ dyn isλ(y:dyn. e′x,p,y)),

where e′x,p,y is the expression

ifz (y ? num) {z⇒ x | s(y′)⇒ num ! (s((p((num ! y′))) ? num))}.

We have “hoisted” the function tag out of the loop, and suppressed the
cast inside the loop. Correspondingly, the type of p has changed from dyn
to dyn⇀ dyn, reflecting that the body is now a “bare function”, rather than
a tagged value of type dyn.

Next, observe that the parameter y of type dyn is cast to a number on
each iteration of the loop before it is tested for zero. Since this function
is recursive, the bindings of y arise in one of two ways, at the initial call
to the addition function, and on each recursive call. But the recursive call
is made on the predecessor of y, which is a true natural number that is
tagged with num at the call site, only to be removed by the tag check at
the conditional on the next iteration. This suggests that we hoist the check
on y outside of the loop, and avoid tagging the argument to the recursive
call. Doing so changes the type of the function, however, from dyn⇀ dyn to
nat⇀ dyn. Consequently, further changes are required to ensure that the
entire function remains well-typed.

Before doing so, let us make another observation. The result of the re-
cursive call is checked to ensure that it has class num, and, if it does, the
underlying value is incremented, and tagged with class num. If the result of
the recursive call came from an earlier use of this branch of the conditional,
then obviously the tag check is redundant, because we know that it must
have class num. But what if the result came from the other branch of the
conditional? In that case the function returns x, which need not be of class
num! However, one might reasonably insist that this is only a theoretical
possibility—after all, we are defining the addition function, and its argu-
ments might reasonably be restricted to numbers. This can be achieved
by replacing x by the cast x ? num, which checks that x is of class num, and
returns the underlying number.

Combining these optimizations we obtain the inner loop e′′x defined as
follows:

fix p:nat⇀ nat isλ(y:nat. ifz y {z⇒ x ? num | s(y′)⇒ s(p(y′))}).
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This function has type nat⇀ nat, and runs at full speed when applied to a
natural number—all checks have been hoisted out of the inner loop.

Returning to the definition of addition on arguments of type dyn, we
require a function of type dyn⇀ dyn, not one of type nat⇀ nat. This can
be achieved as follows:

fun !λ(x:dyn. fun !λ(y:dyn. num ! (e′′x(y ? num)))).

The innermost λ-abstraction converts the function e′′x from type nat⇀ nat
to type dyn⇀ dyn by composing it with a tag check that ensures that y is
a natural number at the initial call site, and applies a tag to the result to
restore it to type dyn.

21.5 Static “Versus” Dynamic Typing

There have been many attempts to explain the distinction between dynamic
and static typing, most of which are misleading or even incorrect. For ex-
ample, it is often said that static type systems associate types with variables,
but dynamic type systems associate types with values. This explanation
appears to stem from the absence of type information on λ-abstractions in
L{dyn}, and the tagging of values with their class. Part of the confusion
here is between classes and types—the class of a value (num or fun) is not
the same as its type. Another confusion is that static type disciplines as-
sign types to values just as surely as they do any other form of expression,
including variables.

Another common explanation of the difference is to say that dynamic
languages check types at run-time, whereas static languages check types at
compile-time. The latter statement is true, but tautologous, but the former
is simply incorrect. Dynamic languages perform run-time class checking, not
run-time type checking. In particular, application merely checks that its first
argument is tagged with fun; it does not type check the body of the func-
tion. Here again the purported contrast is largely a matter of terminology,
and not a fundamental semantic difference between the languages.

Another explanation asserts that data structures in a dynamic language
are heterogeneous, whereas in static languages they are homogeneous. To un-
derstand this explanation requires first that we consider how to add, say,
lists toL{dyn}. Briefly, one would add two constructs, nil and cons(d1, d2),
representing the empty list and a non-empty list with head d1 and tail d2,
respectively. Since each data value in L{dyn} is tagged with its class, the
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successive elements of the list might be of different classes. For example,
one might form the list

cons(s(z), cons(λx. x, nil)),

whose first element is a number, and whose second element is a function.
Such a list is said to be heterogeneous. By contrast static languages are
said to permit only homogeneous lists, precluding formation of such a data
structure. But this again is false, because in a hybrid language dynamic
values are simply static values of type dyn—so the above list is, in fact,
homogeneous after all! Again, the issue is largely a matter of terminology:
lists are type homogeneous, but may be class heterogeneous, even in a static
language.

21.6 Hybrid Typing Via Recursive Types

The type dyn codifies the use of dynamic typing within a static language. Its
introduction form attaches a tag to an object of the appropriate type, and its
elimination form is a (possibly undefined) casting operation. Rather than
treating dyn as primitive, we may derive it as a particular use of recursive
types, according to the following definitions:

dyn := µ(t.[num : nat, fun : t ⇀ t]) (21.8)
dyn′ := [num : nat, fun : dyn⇀ dyn] (21.9)

num ! e := fold([num = e]dyn′) (21.10)

fun ! e := fold([fun = e]dyn′) (21.11)

e ? num := case unfold(e) {[num=x]⇒ x | [fun=x]⇒ error} (21.12)
e ? fun := case unfold(e) {[num=x]⇒ error | [fun=x]⇒ x} (21.13)

One may readily check that the static and dynamic semantics for the type
dyn are derivable according to these definitions.

Tagging a value with its class is merely injection into a sum type, and
casting a value to a class is definable in terms of case analysis for labelled
sum types. Thus dynamically typed languages are really just a mode of use
of statically typed languages, provided that the type system is sufficiently
rich to include recursive sum types. Consequently, dynamic typing can
hardly be put into opposition to static typing, when it is in fact simply a
special case of it!
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Chapter 23

Polymorphism

The languages L{nat→} and L{nat⇀}, and their various extensions,
have the property that every expression has at most one type. In partic-
ular, a function has uniquely determined domain and range types. Conse-
quently, there is a distinct identity function for each type, idτ = λ(x:τ. x),
and a distinct composition function for each triple of types,

◦τ1,τ2,τ3 = λ( f:τ2 → τ3. λ(g:τ1 → τ2. λ(x:τ1. f(g(x))))).

And yet every identity function and every composition function “works
the same way”, regardless of the choice of types! It quickly gets tedious to
write the “same” program over and over, with the sole difference being the
types involved. It would clearly be advantageous to capture the underlying
computation once and for all, with specific instances arising by specifying
the types involved.

What is needed is a way to capture the pattern of a computation in
a way that is generic, or parametric, in the types involved. This is called
polymorphism.

23.1 Polymorphic λ-Calculus

The polymorphic λ-calculus, or L{→∀}, is a minimal functional language
that illustrates the core concepts of polymorphic typing, and permits us to
examine its surprising expressive power in isolation from other language
features. The abstract syntax of the polymorphic λ-calculus is given as fol-
lows:

Type τ ::= t | arr(τ1, τ2) | all(t.τ)
Expr e ::= x | lam[τ](x.e) | ap(e1, e2) | Lam(t.e) | App[τ](e)
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The meta-variable t ranges over a class of type names (also called type vari-
ables), and x ranges over a class of expression names (also called expression
variables). The type abstraction, Lam(t.e), defines a generic, or polymorphic,
function with type parameter t standing for an unpspecified type within
e. The type application, or instantiation, App[τ](e), applies a polymorphic
function to a specified type, which is then plugged in for the type parame-
ter to obtain the result. Polymorphic functions are classified by the universal
type, all(t.τ), that determines the type, τ, of the result as a function of the
argument, t.

In examples we use the following mathematical and concrete syntax for
these constructs:

Abstract Syntax Concrete Syntax
all(t.τ) ∀(t.τ)
Lam(t.e) Λ(t.e)
App[τ](e) e[τ]

The static semantics of L{→∀} consists of two categorical judgement
forms, τ type, stating that τ is a well-formed type, and e : τ, stating that e
is a well-formed expression of type τ. The definitions of these judgements
make use of judgements of the form

t1 type, . . . , tn type | τ type

and
t1 type, . . . , tn type | x1 : τ1, . . . , xk : τk ` e : τ.

As usual we suppress the variable set on the turnstile for the sake of clar-
ity. The meta-variable ∆ ranges over finite sets of type variable formation
hypotheses, and Γ ranges over finite sets of expression variable typing hy-
potheses.

The rules for type formation are as follows:

∆, t type | t type (23.1a)

∆ | τ1 type ∆ | τ2 type

∆ | arr(τ1, τ2) type
(23.1b)

∆, t type | τ type

∆ | all(t.τ) type
(23.1c)
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The rules for typing expressions are as follows:

∆, t type | Γ ` e : τ

∆ | Γ ` Lam(t.e) : all(t.τ)
(23.2a)

∆ | Γ ` e : all(t.τ′) ∆ ` τ type

∆ | Γ ` App[τ](e) : [τ/t]τ′
(23.2b)

As an example, the polymorphic composition function is written as fol-
lows:

Λ(t1.Λ(t2.Λ(t3.λ( f:t2 → t3. λ(g:t1 → t2. λ(x:t1. f(g(x)))))))).

This expression has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3)→ (t1 → t2)→ (t1 → t3)))).

Typing is closed under substitution of types for type variables and terms
for term variables.

Lemma 23.1 (Substitution). 1. If ∆, t type ` τ′ type and ∆ ` τ type, then
∆ ` [τ/t]τ′ type.

2. If ∆, t type | Γ ` e′ : τ′ and ∆ ` τ type, then ∆ | [τ/t]Γ ` [τ/t]e′ :
[τ/t]τ′.

3. If ∆ | Γ, x : τ ` e′ : τ′ and ∆ | Γ ` e : τ, then ∆ | Γ ` [e/x]e′ : τ′.

Notice that the second part of the lemma requires substitution into the
context, Γ, as well as into the term and its type, because the type variable t
may occur freely in any of these positions.

Dynamic Semantics

The dynamic semantics of L{→∀} is a simple extension of L{→}. We need
only add the following two rules to the structure semantics:

Lam(t.e) val (23.3a)

App[τ](Lam(t.e)) 7→ [τ/t]e (23.3b)

e 7→ e′

App[τ](e) 7→ App[τ](e′)
(23.3c)

It is then a simple matter to prove safety for this language, using by-now
familiar methods.
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Lemma 23.2 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1, τ2), then e = lam[τ1](x.e2) with x : τ1 ` e2 : τ2.

2. If τ = all(t.τ′), then e = Lam(t.e′) with t type ` e′ : τ′.

Theorem 23.3 (Preservation). If e : σ and e 7→ e′, then e′ : σ.

Theorem 23.4 (Progress). If e : σ, then either e val or there exists e′ such that
e 7→ e′.

23.2 Polymorphic Definability

Although we will not give a proof here, it is possible to show that every
well-typed expression in L{→∀} evaluates to a value — there is no pos-
sibility of writing an infinite loop. It might seem, at first glance, that this
is obviously the case, because there is, apparently, no form of iteration or
recursion available in the language. After all, the entire language consists
solely of function types and polymorphic types, and nothing else, not even
a base type!

Surprisingly, though, it is possible to define loops inL{→∀}, albeit ones
that always terminate. For example, it is possible to define within L{→∀}
a type of natural numbers whose elimination form is essentially the itera-
tor described in Chapter 14. More generally, any inductively defined type
may be represented in L{→∀} in such a way that its associated iterator is
definable as well.

Let us begin by showing that the type, nat, is definable in L{→∀}. This
means that we can fill in the following chart in such a way that the static
and dynamic semantics are preserved:

nat = . . .
z = . . .

s(e) = . . .
iter[τ](e0, e1, x.e2) = . . .

The key to understanding how this is achieved is to focus attention on the
iterator.

Recall that the typing rule for the iterator is as follows:

e0 : nat e1 : τ x : τ ` e2 : τ

iter[τ](e0, e1, x.e2) : τ
.
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Since the type τ is completely arbitrary, this means that if we have an iter-
ator, then it can be used to define a polymorphic function of type

nat→ ∀(t.t→ (t→ t)→ t).

This function, when applied to an argument n, yields a polymorphic func-
tion that, for any result type, t, if given the initial result for z, and if given
a function transforming the result for x into the result for s(x), then it re-
turns the result of iterating the transformer n times starting with the initial
result.

Since the only operation we can perform on a natural number is to it-
erate up to it in this manner, we may simply identify a natural number, n,
with the polymorphic iterate-up-to-n function just described. This means
that the chart sketched above may be completed as follows:

nat = ∀(t.t→ (t→ t)→ t)
z = Λ(t.λ(z:t. λ(s:t→ t. z)))

s(e) = Λ(t.λ(z:t. λ(s:t→ t. s(e[t](z)(s)))))
iter[τ](e0, e1, x.e2) = e0[τ](e1)(λ(x:t. e2))

It is a simple matter to check that the static semantics of these constructs
is correctly derived from these definitions. We turn, then, to the dynamic
semantics.

The number z iterates a given s zero times starting from z, which means
that it merely returns z. The successor, s(e), of e iterates s from z for e
iterations, then iterates s one more time, as required. Letting n stand for the
n-fold composition s(. . . s(z) . . .), and assuming a call-by-value semantics
for function application, we may show by induction on n that

n[τ]e1e2 7→∗ e2(. . . e2(e1) . . .).

That is, n is indeed the polymorphic iterator specialized to the number n.
Since we are identifying natural numbers with their associated itera-

tors, it follows that we should define the iterator from e0 to simply instan-
tiate and apply e0 to the result type, initial result, and result transformer
associated with the iterator. Observe that

z[τ](e1)(e2) 7→∗ e1

and that if
n[τ](e1)(e2) 7→∗ e,
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then
s(n)[τ](e1)(e2) 7→∗ e2(e).

Thus the dynamic semantics is correctly simulated by these definitions.
As an example, here is the addition function defined in terms of this

representation of natural numbers:

λ(x:nat. λ(y:nat. y[nat](x)(λ(x:nat. s(x))))).

Given x and y of type nat, this function iterates the successor function (de-
fined above) y times starting with x — that is, it computes the sum of x and
y.

Following a similar pattern of reasoning, we may define product and
sum types, and other, more general, recursive types. Here is a chart of the
type definitions:

unit = ∀(t.t→ t)
τ1 × τ2 = ∀(t.(τ1 → τ2 → t)→ t)
void = ∀(t.t)

τ1 + τ2 = ∀(t.(τ1 → t)→ (τ2 → t)→ t)
τ list = ∀(t.t→ (τ → t→ t)→ t)

We leave it as an exercise to define the introduction and elimination forms
for these types according to the same pattern as we did for natural num-
bers. Remember that the main idea is to represent each introduction form
as the elimination form applied to that introduction form.

23.3 Restricted Forms of Polymorphism

The remarkable expressive power of the language L{→∀} stems from the
ability to instantiate a polymorphic type with another polymorphic type.
For example, if we let τ be the type ∀(t.t→ t), and, assuming that e : τ, we
may apply e to its own type, obtaining the expression e[τ] of type τ → τ.
Written out in full, this is the type

(∀(t.t→ t))→ (∀(t.t→ t)),

which is obviously much “larger” than the type of e itself. In fact, this type
is “large enough” that we can go ahead and apply e[τ] to e again, obtaining
the expression e[τ](e), which is again of type τ — the very type of e!
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Contrast this behavior with the situation in L{→}, in which the type
of an application of a function is evidently “smaller” than the type of the
function itself. For if e : τ1 → τ2, and e1 : τ1, then we have e(e1) : τ2,
a smaller type than the type of e. For this reason L{→} is not powerful
enough to permit types such as the natural numbers to be defined in terms
of function spaces alone — such types have to be built in as primitives.

The source of the expressive power of L{→∀} is that it permits poly-
morphic types to be instantiated with other polymorphic types, so that we
may instantiate τ = ∀(t.t→ t) with itself to obtain a “larger” type as re-
sult. This property of L{→∀} is called impredicativity1, and we say that
L{→∀} permits impredicative (type) quantification.

The alternative, called predicative2 quantification, is to restrict the quan-
tifier to range only over un-quantified types. (For a formalization of this
fragment, please see Section 25.3 on page 201.) Under this restriction we
may, for example, instantiate the type τ given above with the type u → u
to obtain the type (u→ u) → (u→ u). This type is “larger” than τ in
one sense (it has more symbols), but is “smaller” in another sense (it has
fewer quantifiers). For this reason the predicative fragment of the language
is substantially less expressive than the impredicative part.

Prenex Fragment

An even more restricted form of polymorphism, called the prenex fragment,
further restricts polymorphism to occur only at the outermost level — not
only is quantification predicative, but quantifiers are not permitted to occur
within the arguments to any other type constructors. This restriction, called
prenex quantification, is imposed in ML for the sake of type inference. Type
inference permits the programmer to omit type information entirely from
expressions in the knowledge that the compiler can always reconstruct the
most general, or principal, type of an expression. We will not discuss type
inference here, but we will give a formulation of the prenex fragment of
L{→∀} because it plays such an important role in the design of ML.

The prenex fragment of L{→∀} is obtained by stratifying types into
two classes, the monotypes and the polytypes. The monotypes are those that
do not involve any quantification, and are thus eligible for instantiation of
polymorphic quantifiers. The polytypes include the monotypes, and also

1pronounced im-PRED-ic-a-tiv-it-y
2pronounced PRED-i-ca-tive
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permit quantification over monotypes to obtain another polytype.

Monotype τ ::= t | arr(τ1, τ2)
Polytype σ ::= τ | all(t.σ)

Base types, such as nat (as a primitive), or other type constructors, such
as sums and products, would be added to the language as monotypes. The
polytypes are always of the form

∀(t1.. . . ∀(tn.τ) . . .),

were τ is a monotype. We often abbreviate this to just ∀(t1, . . . , tn.τ).
The static semantics of this fragment of L{→∀} is given as follows.

∆ | Γ, x : τ1 ` e2 : τ2

∆ | Γ ` lam[τ1](x.e2) : arr(τ1, τ2)
(23.4a)

∆, t type | Γ ` e : σ

∆ | Γ ` Lam(t.e) : all(t.σ)
(23.4b)

∆ ` τ type ∆ | Γ ` e : all(t.σ)

∆ | Γ ` App[τ](e) : [τ/t]σ
(23.4c)

Expressions are classified by monotypes. We may generalize with respect
to any free type variable, and instantiate any quantified polytype. Since
every monotype is also a polytype, these rules “get started” by assigning a
monotype to an expression, then generalizing on its free type variables.

This type discipline may then be combined with the let construct to
obtain the core of the ML type system:

∆ | Γ ` e1 : σ1 ∆ | Γ, x : σ1 ` e2 : τ2

∆ | Γ ` let[σ1](e1, x.e2) : τ2
. (23.5)

Note that this rule requires that we consider hypotheses of the form x : σ,
which include those of the form x : τ as a special case. This corresponds to
the policy in ML that only variables can have polymorphic type — if you
wish to use a function polymorphically, you must bind it to a variable so
that it can be assigned a polytype. Each use of a variable must then be in-
stantiated to obtain a monotype so that it can appear in another expression.

The following expression exemplifies the ML type discipline in action.
The expression

let I:∀(t.t→ t) beΛ(t.λ(x:t. x)) in I[u→ u](I[u])
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has type u → u, where u is a free type variable. The ML type inference
mechanism permits us to suppress mention of types, writing only

let I beλx. x in I(I).

The type inference process fills in the missing type abstractions and type
applications in the most general way possible, with the result being as just
illustrated.

23.4 Exercises
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Chapter 24

Data Abstraction

Data abstraction is perhaps the most fundamental technique for structuring
programs. The fundamental idea of data abstraction is to separate a client
from the implementor of an abstraction by an interface. The interface forms a
“contract” between the client and implementor that specifies those proper-
ties of the abstraction on which the client may rely, and, correspondingly,
those properties that the implementor must satisfy. This ensures that the
client is insulated from the details of the implementation of an abstraction
so that the implementation can be modified, without changing the client’s
behavior, provided only that the interface remains the same. This property
is called representation independence for abstract types.

Data abstraction may be formalized by extending the language L{→∀}
with existential types. Interfaces are modelled as existential types that pro-
vide a collection of operations acting on an unspecified, or abstract, type.
Implementations are modelled as packages, the introductory form for exis-
tentials, and clients are modelled as uses of the corresponding elimination
form. It is remarkable that the programming concept of data abstraction is
modelled so naturally and directly by the logical concept of existential type
quantification.

Existential types are closely connected with universal types, and hence
are often treated together. The superficial reason is that both are forms
of type quantification, and hence both require the machinery of type vari-
ables. The deeper reason is that existentials are definable from universals —
surprisingly, data abstraction is actually just a form of polymorphism!



190 24.1. EXISTENTIAL TYPES

24.1 Existential Types

The syntax of L{→∀∃} is the extension of L{→∀} with the following con-
structs:

Types τ ::= some(t.τ)
Expr’s e ::= pack[t.τ; ρ](e) | open[t.τ](e1; t, x.e2)

The following chart shows the correspondence between concrete and ab-
stract syntax for these constructs.

Abstract Concrete
some(t.τ) ∃(t.τ)
pack[t.τ; ρ](e) pack ρ with e as ∃(t.τ)
open[t.τ](e1; t, x.e2) open e1 as t with x:τ in e2

The introductory form for the existential type σ = ∃(t.τ) is a package of
the form pack ρ with e as ∃(t.τ), where ρ is a type and e is an expression of
type [ρ/t]τ. The type ρ is called the representation type of the package, and
the expression e is called the implementation of the package. The elimina-
tory form for existentials is the expression open e1 as t with x:τ in e2, which
opens the package e1 for use within the client e2 by binding its representa-
tion type to t and its implementation to x for use within e2. Crucially, the
typing rules ensure that the client is type-correct independently of the ac-
tual representation type used by the implementor, so that it may be varied
without affecting the type correctness of the client.

The abstract syntax of the open construct specifies that the type variable,
t, and the expression variable, x, are bound within the client. They may be
renamed at will by α-equivalence without affecting the meaning of the con-
struct, provided, of course, that the names are chosen so as not to conflict
with any others that may be in scope. In other words the type, t, may be
thought of as a “new” type, one that is distinct from all other types, when
it is introduced. This is sometimes called generativity of abstract types: the
use of an abstract type by a client “generates” a “new” type within that
client. This behavior is simply a consequence of identifying terms up to
α-equivalence, and is not particularly tied to data abstraction.

24.1.1 Static Semantics

The static semantics of existential types is specified by rules defining when
an existential is well-formed, and by giving typing rules for the associated
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introductory and eliminatory forms.

∆, t type | τ type

∆ | some(t.τ) type
(24.1a)

∆ | ρ type ∆, t type | τ type ∆ | Γ ` e : [ρ/t]τ
∆ | Γ ` pack[t.τ; ρ](e) : some(t.τ)

(24.1b)

∆ | Γ ` e1 : some(t.τ) ∆, t type | Γ, x : τ ` e2 : τ2 ∆ | τ2 type

∆ | Γ ` open[t.τ](e1; t, x.e2) : τ2
(24.1c)

Rule (24.1c) is complex, so study it carefully! There are two important
things to notice:

1. The type of the client, τ2, must not involve the abstract type t. This
restriction prevents the client from attempting to export a value of the
abstract type outside of the scope of its definition.

2. The body of the client, e2, is type checked without knowledge of the
representation type, t. The client is, in effect, polymorphic in the type
variable t.

24.1.2 Dynamic Semantics

The dynamic semantics of existential types is specified as follows:

{e val}
pack[t.τ; ρ](e) val

(24.2a)

{
e 7→ e′

pack[t.τ; ρ](e) 7→ pack[t.τ; ρ](e′)

}
(24.2b)

e1 7→ e′1
open[t.τ](e1; t, x.e2) 7→ open[t.τ](e′1; t, x.e2)

(24.2c)

e val
open[t.τ](pack[t.τ; ρ](e); t, x.e2) 7→ [ρ, e/t, x]e2

(24.2d)

The bracketed premises and rules are to be omitted for a lazy semantics,
and included for an eager semantics.

Observe that there are no abstract types at run time! The representation
type is fully exposed to the client during evaluation. Data abstraction is a
compile-time discipline that imposes no run-time overhead.
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24.1.3 Safety

The safety of the extension is stated and proved as usual. The argument is
a simple extension of that used for L{→∀} to the new constructs.

Theorem 24.1 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Lemma 24.2 (Canonical Forms). If e : some(t.τ) and e val, then e = pack[t.τ; ρ](e′)
for some type ρ and some e′ val such that e′ : [ρ/t]τ.

Theorem 24.3 (Progress). If e : τ then either e val or there exists e′ such that
e 7→ e′.

24.2 Data Abstraction Via Existentials

To illustrate the use of existentials for data abstraction, we consider an ab-
stract type of (persistent) queues supporting three operations:

1. Formation of the empty queue.

2. Inserting an element at the tail of the queue.

3. Remove the head of the queue.

This is clearly a bare-bones interface, but is sufficient to illustrate the main
ideas of data abstraction. Queue elements may be taken to be of any type,
τ, of our choosing; we will not be specific about this choice, since nothing
depends on it.

The crucial property of this description is that nowhere do we specify
what queues actually are, only what we can do with them. This is captured
by the following existential type, ∃(t.σ), which serves as the interface of
the queue abstraction:1

∃(t.〈emp : t, ins : τ × t→ t, rem : t→ τ × t〉).

The representation type, t, of queues is abstract — all that is specified about
it is that it supports the operations emp, ins, and rem, with the specified
types.

An implementation of queues consists of a package specifying the rep-
resentation type, together with the implementation of the associated op-
erations in terms of that representation. Internally to the implementation,

1For the sake of illustration, we assume that type constructors such as products, records,
and lists are also available in the language.
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the representation of queues is known and relied upon by the operations.
Here is a very simple implementation, el , in which queues are represented
as lists:

pack τ list with 〈emp = nil, ins = ei, rem = er〉 as ∃(t.σ),

where
ei : τ × τ list→ τ list = λ(x:τ × τ list. e′i),

and
er : τ list→ τ × τ list = λ(x:τ list. e′r).

Here the expression e′i conses the first component of x, the element, onto the
second component of x, the queue. Correspondingly, the expression e′r re-
verses its argument, and returns the head element paired with the reversal
of the tail. These operations “know” that queues are represented as values
of type τ list, and are programmed accordingly.

It is also possible to give another implementation, ep, of the same inter-
face, ∃(t.σ), but in which queues are represented as pairs of lists, consist-
ing of the “back half” of the queue paired with the reversal of the “front
half”. This representation avoids the need for reversals on each call, and,
as a result, achieves amortized constant-time behavior:

pack τ list× τ list with 〈emp = 〈nil, nil〉, ins = ei, rem = er〉 as ∃(t.σ).

In this case ei has type

τ × (τ list× τ list)→ (τ list× τ list),

and er has type

(τ list× τ list)→ τ × (τ list× τ list).

These operations “know” that queues are represented as values of type

τ list× τ list,

and are implemented accordingly.
Clients of the queue abstraction are shielded from the implementation

details by the open construct. If e is any implementation of ∃(t.σ), then a
client of the abstraction has the form

open e as t with x:σ in e′ : τ′,
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where the type, τ′, of e′ does not involve the abstract type t. Within e′ the
variable x has type

〈emp : t, ins : τ × t→ t, rem : t→ τ × t〉,

in which t is unspecified — or, as is often said, held abstract.
Observe that only the type information specified in ∃(t.σ) is propa-

gated to the client, e′, and nothing more. Consequently, the open expression
above type checks properly regardless of whether e is el (the implementa-
tion of ∃(t.σ) in terms of lists) or ep (the implementation in terms of pairs
of lists), or, for that matter, any other implementation of the same inter-
face. This property is called representation independence, because the client is
guaranteed to be independent of the representation of the abstraction.

24.3 Definability of Existentials

Strictly speaking, it is not necessary to extendL{→∀}with existential types
in order to model data abstraction, because they are definable in terms of
universals! Before giving the details, let us consider why this should be
possible. The key is to observe that the client of an abstract type is polymor-
phic in the representation type. The typing rule for

open e as t with x:τ in e′ : τ′,

where e : ∃(t.τ), specifies that e′ : τ′ under the assumptions t type and
x : τ. In essence, the client is a polymorphic function of type

∀(t.τ → τ′),

where t may occur in τ (the type of the operations), but not in τ′ (the type
of the result).

This suggests the following encoding of existential types:

∃(t.σ) = ∀(t′.∀(t.σ→ t′)→ t′)
pack ρ with e as ∃(t.τ) = Λ(t′.λ(x:∀(t.τ → t′). x[ρ](e)))
open e as t with x:τ in e′ = e[τ′](Λ(t.λ(x:τ. e′)))

An existential is encoded as a polymorphic function taking the overall re-
sult type, t′, as argument, followed by a polymorphic function representing
the client with result type t′, and yielding a value of type t′ as overall re-
sult. Consequently, the open construct simply packages the client as such a
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polymorphic function, instantiates the existential at the result type, τ′, and
applies it to the polymorphic client. (The translation therefore depends
on knowing the overall result type, τ′, of the open construct.) Finally, a
package consisting of a representation type τ and an implementation e is a
polymorphic function that, when given the result type, t′, and the client, x,
instantiates x with τ and passes to it the implementation e.

It is then a straightforward exercise to show that this translation cor-
rectly reflects the static and dynamic semantics of existential types.

24.4 Exercises
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Chapter 25

Constructors and Kinds

In Chapters 23 and 24 we introduced the concept of a type variable, which
stands for a fixed, but unspecified type. These formed the foundation for
type quantification, both universal and existential, which forms the founda-
tion for polymorphism and data abstraction, respectively. When scaling to
more realistic languages, it quickly becomes apparent that type quantifica-
tion is not enough. For example, suppose we wish to introduce an abstract
type constructor, such as an abstract type τ set of sets of values of type τ?
Existential type quantification is not sufficient to express such an abstrac-
tion in general—only specific instances of it for specific choices of type τ,
exactly the sort of replication we sought to avoid by introducing type ab-
straction in the first place!

The solution is to generalize the framework to permit a richer class of
variables than just type variables, including (at least) type constructor vari-
ables, and variables ranging over tuples of types. This is achieved by en-
riching L{→∀∃} with constructors and kinds. Constructors are a form of
“static value” classified by kinds, just as expressions are “dynamic values”
classified by types. In this setting types arise as constructors of the kind of
types, and type constructors are constructors of so-called higher kind.

In this chapter we will present the basic infrastructure of constructors
and kinds in the language L{→∀κ, ∃κ} of universal and existential quan-
tification over higher kinds. Later we will see further applications and gen-
eralizations of the kind structure to model subtyping and type definitions.
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25.1 Syntax of Constructors and Kinds

The abstract syntax of L{→∀κ, ∃κ} is given by the following grammar:

Kind κ ::= Type | Prod(κ1, κ2) | Arr(κ1, κ2)
Cons c ::= t | arr | all[κ] | some[κ] | pair(c1, c2) | fst(c) |

snd(c) | lambda[κ](t.c) | app(c1, c2)
Type τ ::= c
Expr e ::= x | lam[τ](x.e) | ap(e1, e2) | Lam[κ](t.e) |

App[c](e) | pack[κ, c, c′](e) |
open[κ, c](e1, t, x.e2)

The corresponding concrete syntax is given by the following chart:

Abstract Syntax Concrete Syntax
Prod(κ1, κ2) κ1× κ2
Arr(κ1, κ2) κ1→ κ2
app(app(arr, c1), c2) c1→ c2
app(all[κ], lambda[κ](t.c)) ∀κ(λ(t::κ. c)) or ∀κ(t::κ.c)
app(some[κ], lambda[κ](t.c)) ∃κ(λ(t::κ. c)) or ∃κ(t::κ.c)
pair(c1, c2) 〈c1, c2〉
fst(c) fst(c)
snd(c) snd(c)
lambda[κ](t.c) λ(t::κ. c)
app(c1, c2) c1(c2)
Lam[κ](t.e) Λ(t::κ.e)
App[c](e) e[c]
pack[κ, c, c′](e) pack c′ with e as ∃κ(c)
open[κ, c](e1, t, x.e2) open e1 as t::κ with x:app(c, t) in e2

The abstract representations of arrow types and quantified types arises
from the interpretation of the function type constructor and the two quan-
tifiers as constants of higher kind, as will become clear shortly.

25.2 Static Semantics

The static semantics of L{→∀κ, ∃κ} consists of hypothetico-general judge-
ments of the following forms:

T | ∆ ` c :: κ c is a constructor of kind κ
T | ∆ ` c1 ≡ c2 :: κ c1 and c2 are equivalent constructors of kind κ
T | ∆ ` τ type synonymous with T | ∆ ` τ :: Type
T X | ∆ Γ ` e : τ e is an expression of type τ
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Here T stands for a finite set of constructor name declarations of the form
t cons, and X stands for a finite set of expression name declarations of the
form t exp. The hypotheses ∆ have the form t :: κ, where T ` t cons, and the
hypotheses Γ have the form x : τ where X ` x exp and T | ∆ ` τ type. As
usual, we omit explicit declaration of T and X , since they can be recovered
from the assumptions in ∆ and Γ, respectively.

The constructor formation judgement, ∆ ` c :: κ, is inductively defined
by the following rules:

∆, t :: κ ` t :: κ (25.1a)

∆ ` arr :: Arr(Type, Arr(Type, Type)) (25.1b)

∆ ` all[κ] :: Arr(Arr(κ, Type), Type) (25.1c)

∆ ` some[κ] :: Arr(Arr(κ, Type), Type) (25.1d)

∆ ` c1 :: κ1 ∆ ` c2 :: κ2

∆ ` pair(c1, c2) :: Prod(κ1, κ2)
(25.1e)

∆ ` c :: Prod(κ1, κ2)

∆ ` fst(c) :: κ1
(25.1f)

∆ ` c :: Prod(κ1, κ2)

∆ ` snd(c) :: κ2
(25.1g)

∆, t :: κ1 ` c2 :: κ2

∆ ` lambda[κ1](t.c2) :: Arr(κ1, κ2)
(25.1h)

∆ ` c1 :: Arr(κ2, κ) ∆ ` c2 :: κ2

∆ ` app(c1, c2) :: κ
(25.1i)

There is an evident correspondence between these rules and the rules
for functions and products given in Chapters 14 and 16, except that we
are working at the static level of constructors and kinds, rather than the
dynamic level of expressions and types.

Observe that the constants arr, all[κ], and some[κ] all have functional
kinds. The kind of arr is a curried function kind that specifies that the
function type constructor takes two types as arguments, yielding a type. It
could just as well have been specified in uncurried form to have the kind
Arr(Prod(Type, Type), Type), in which case it is to be applied to a pair of
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types, rather than successively applied to two types, to form a type. The
kind of the quantifiers, all[κ] and some[κ], namely Arr(Arr(κ, Type), Type),
specifies that the body of the quantifier is a function mapping construc-
tors of kind κ to types (i.e., constructors of kind Type). Instantiation of the
quantifiers is achieved by application, as we shall see in the typing rules
for expressions given below.

The equivalence judgement relating constructors (in particular, types)
expresses definitional equality of constructors. Roughly speaking, two con-
structors are definitionally equivalent iff they are considered to be identical
by virtue of their form and kind, and this may be seen immediately by in-
spection. For example, fst(〈c1, c2〉) and c1 are definitionally equivalent
(when they are well-formed), because we can see immediately that the first
component of an explicitly given pair is the left-hand side of that pair. The
typing relation is required to respect definitional equivalence in that defi-
nitionally equivalent types classify the same expressions.

Definitional equality of well-formed constructors is defined to be the
least congruence closed under the following rules:1

∆ ` pair(c1, c2) :: Prod(κ1, κ2)

∆ ` fst(pair(c1, c2)) ≡ c1 :: κ1
(25.2a)

∆ ` pair(c1, c2) :: Prod(κ1, κ2)

∆ ` snd(pair(c1, c2)) ≡ c2 :: κ2
(25.2b)

∆ ` c :: Prod(κ1, κ2)

∆ ` pair(fst(c), snd(c)) ≡ c :: Prod(κ1, κ2)
(25.2c)

∆, t :: κ1 ` c2 :: κ2 ∆ ` c2 :: κ2

∆ ` app(lambda[κ](t.c1), c2) ≡ [c2/t]c1 :: κ2
(25.2d)

∆ ` c2 :: Arr(κ1, κ2) t # ∆
∆ ` lambda[κ1](t.app(c2, t)) ≡ c2 :: Arr(κ1, κ2)

(25.2e)

The rules for typing expressions are a straightforward generalization of
those given in Chapters 23 and 24.

∆ Γ ` e : τ′ ∆ ` τ ≡ τ′ :: Type
∆ Γ ` e : τ

(25.3a)

1A congruence is an equivalence relation that is compatible with the introductory and
eliminatory constructors of the language, so that we may “replace equals by equals” any-
where within a constructor.
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∆ Γ, x : τ ` x : τ (25.3b)

∆ Γ, x : τ1 ` e2 : τ2

∆ Γ ` lam[τ1](x.e2) : app(app(arr, τ1), τ2)
(25.3c)

∆ Γ ` e1 : app(app(arr, τ2), τ) ∆ Γ ` e2 : τ2

∆ Γ ` ap(e1, e2) : τ
(25.3d)

∆, t :: κ Γ ` e : τ

∆ Γ ` Lam[κ](t.e) : app(all[κ], lambda[κ](t.τ))
(25.3e)

∆ Γ ` e : app(all[κ], c′) ∆ ` c :: κ

∆ Γ ` App[c](e) : app(c′, c)
(25.3f)

∆ ` c′ :: Arr(κ, Type) ∆ ` c :: κ ∆ Γ ` e : app(c′, c)
∆ Γ ` pack[κ, c′, c](e) : app(some[κ], c′)

(25.3g)

∆ Γ ` e1 : app(some[κ], c) ∆, t :: κ Γ, x : app(c, t) ` e2 : τ2 ∆ ` τ2 type

∆ Γ ` open[κ, c](e1, t, x.e2) : τ2
(25.3h)

25.3 Alternate Formulations

The formulation of L{→∀κ, ∃κ} identifies types with constructors of kind
Type. Consequently, constructors of kind Type have a dual role:

1. As static data values that may be passed as arguments to polymor-
phic functions or bound into packages of existential type.

2. As classifiers of dynamic data values according to the typing rules for
expressions.

The dual role of such constructors is apparent in our use of the meta-variables
c and τ for constructors of kind Type in the static semantics. These two roles
can be separated, and in some presentations are separated in a manner that
we shall now outline briefly.

The main idea is to make explicit the inclusion of types-as-constructors
into the collection of types-as-classifiers. This forces us to distinguish the
dual role of type constructors as functions acting on types-as-constructors
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and as combining forms for types-as-classifiers. Syntactically, this means
that the abstract syntax of constructors and types takes the following form:

Cons c ::= t | arr | all[κ] | some[κ] | pair(c1, c2) | fst(c) |
snd(c) | lambda[κ](t.c) | app(c1, c2)

Type τ ::= typ(c) | arr(τ1, τ2) | ∀κ(t::κ.τ) | ∃κ(t::κ.τ)

There is a certain redundancy in having a constructor and a type for each
construct, but we shall see shortly that the duplication is mitigated when
we restrict to the predicative fragment.

The two levels are linked by the following definitional equalities, stated
without explicit contexts for the sake of clarity:

typ(app(app(arr, c1), c2)) ≡ arr(typ(c1), typ(c2)) :: Type (25.4a)

typ(app(all[κ], c)) ≡ ∀κ(t::κ.typ(app(c, t))) :: Type (25.4b)

typ(app(some[κ], c)) ≡ ∃κ(t::κ.typ(app(c, t))) :: Type (25.4c)

One advantage of distinguishing constructors (of kind Type) from types
is that it facilitates formalization of the predicative fragment of L{→∀} de-
scribed informally in Chapter 23. According to this view, a constructor, c,
of kind Type may be thought of as a static representative of the type typ(c),
whose meaning is determined by the axioms of definitional equality. Thus,
every constructor of kind Type designates some type. However, not every
type need have a representative as such a constructor! In particular, the
predicative fragment of L{→∀} is obtained by simply omitting the con-
stants all[κ] and some[κ], which serve to provide representatives for the
quantified types. Without these, the kind Type excludes quantified types,
and hence type quantification becomes predicative. (Note, however, that
the prenex fragment is not as easily characterized in this manner, since it
requires restriction on the form of quantified types-as-classifiers, in addi-
tion to the predicative restriction on the meanings of the quantifiers.)

25.4 Exercises
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Part IX

Control Flow





Chapter 26

An Abstract Machine for
Control

The technique of specifying the dynamic semantics as a transition system is
very useful for theoretical purposes, such as proving type safety, but is too
high level to be directly usable in an implementation. One reason is that
the use of “search rules” requires the traversal and reconstruction of an ex-
pression in order to simplify one small part of it. In an implementation
we would prefer to use some mechanism to record “where we are” in the
expression so that we may “resume” from that point after a simplification.
This can be achieved by introducing an explicit mechanism, called a con-
trol stack, that keeps track of the context of an instruction step for just this
purpose. By making the control stack explicit the transition rules avoid the
need for any premises — every rule is an axiom! This is the formal expres-
sion of the informal idea that no traversals or reconstructions are required
to implement it.

By making the control stack explicit we move closer to an actual imple-
mentation of the language. As we expose more and more of the mecha-
nisms required in an implementation we get closer and closer to the phys-
ical machine. At each step along the way, starting with the structural se-
mantics and continuing down towards an assembly-level description, we
are working with a particular abstract, or virtual, machine. The closer we
get to the physical machine, the less “abstract” and the more “concrete”
it becomes. But there is no clear dividing line between the levels, rather
it is a matter of progressive exposure of implementation details. After all,
even machine instructions are implemented using gates, and gates are im-
plemented using transistors, and so on down to the level of fundamental
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physics.
Nevertheless, some abstract machines are more concrete than others,

and recently there has been a resurgence of interest in using them to pro-
vide a hardware-independent computing platform. The idea is to define a
low-enough level abstract machine such that (a) it is easily implementable
on typical hardware platforms, and (b) higher-level languages can be trans-
lated (compiled) to it. In this way it is hoped that most software can be
freed of dependence on specific hardware platforms.1 It is of paramount
importance that the abstract machine be precisely defined, for otherwise it
is not clear how to translate to it, nor is it clear how to implement it on a
given platform.

In this chapter we introduce an abstract machine, K{nat⇀}, for the
language L{nat⇀}. The purpose of this machine is to make control flow
explicit by introducing a control stack that maintains a record of the pend-
ing sub-computations of a computation. We then prove the equivalence of
K{nat⇀} with the structural operational semantics of L{nat⇀}.

26.1 Machine Definition

A state, s, ofK{nat⇀} consists of a control stack, k, and a closed expression,
e. States may take one of two forms:

1. An evaluation state of the form k . e corresponds to the evaluation of
a closed expression, e, relative to a control stack, k.

2. A return state of the form k / e, where e val, corresponds to the evalu-
ation of a stack, k, relative to a closed value, e.

As an aid to memory, note that the separator “points to” the focal entity
of the state, the expression in an evaluation state and the stack in a return
state.

The control stack represents the context of evaluation. It records the
“current location” of evaluation, the context into which the value of the
current expression is to be returned. Formally, a control stack is a list of
frames:

ε stack (26.1a)

f frame k stack

f ; k stack
(26.1b)

1This is much easier said than done; it remains an active area of research and develop-
ment.
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The definition of frame depends on the language we are evaluating. The
frames of K{nat⇀} are inductively defined by the following rules:

s(−) frame (26.2a)

ifz(−, e1, x.e2) frame (26.2b)

ap(−, e2) frame (26.2c)

ap(e1,−) frame (26.2d)

The frames correspond to rules with transition premises in the dynamic se-
mantics of L{nat⇀}. Thus, instead of relying on the structure of the tran-
sition derivation to maintain a record of pending computations, we make
an explicit record of them in the form of a frame on the control stack.

The transition judgement between states of theK{nat⇀} is inductively
defined by a set of inference rules. We begin with the rules for natural
numbers.

k . z 7→ k / z (26.3a)

k . s(e) 7→ s(−); k . e (26.3b)

s(−); k / e 7→ k / s(e) (26.3c)

To evaluate z we simply return it. To evaluate s(e), we push a frame on
the stack to record the pending successor, and evaluate e; when that returns
with e′, we return s(e′) to the stack.

Next, we consider the rules for case analysis.

k . ifz(e, e1, x.e2) 7→ ifz(−, e1, x.e2); k . e (26.4a)

ifz(−, e1, x.e2); k / z 7→ k . e1 (26.4b)

ifz(−, e1, x.e2); k / s(e) 7→ k / [e/x]e2 (26.4c)

First, the test expression is evaluated, recording the pending case analysis
on the stack. Once the value of the test expression has been determined,
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we branch to the appropriate arm of the conditional, substituting the pre-
decessor in the case of a positive number.

Finally, we consider the rules for functions and recursion.

k . lam[τ](x.e) 7→ k / lam[τ](x.e) (26.5a)

k . ap(e1, e2) 7→ ap(−, e2); k . e1 (26.5b)

e1 val

ap(−, e2); k / e1 7→ ap(e1,−); k . e2
(26.5c)

e2 val e1 = fun[τ1, τ2]( f.x.e)
ap(e1,−); k / e2 7→ k . [e1, e2/ f , x]e

(26.5d)

k . fix[τ](x.e) 7→ k . [fix[τ](x.e)/x]e (26.5e)

These rules ensure that the function is evaluated before the argument, ap-
plying the function when both have been evaluated. Note that evaluation
of general recursion requires no stack space! (But see Chapter 38 for more
on evaluation of general recursion.)

The initial and final states of theK{nat⇀} are defined by the following
rules:

ε . e initial (26.6a)

e val
ε / e final

(26.6b)

26.2 Safety

To define and prove safety for K{nat⇀} requires that we introduce a new
typing judgement, k : τ, stating that the stack k is well-formed and expects
a value of type τ. For a stack to be well-formed means that, when passed
a value of appropriate type, it safely transforms that value into an answer,
which is the final result of a program. The type τans is defined to be the type
of complete programs, which should be a type whose values are directly
observable. For L{nat⇀}we will take τans to be the type nat, but in richer
languages other choices are also possible.

Since control stacks represent the work remaining to complete a compu-
tation, the typing judgement for control stacks, k : τ, means that the stack
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k transforms a value of type τ into a value of type τans. This judgement is
inductively defined by the following rules:

ε : τans (26.7a)

k : τ′ f : τ ⇒ τ′

f ; k : τ
(26.7b)

This definition makes use of an auxiliary judgement, f : τ ⇒ τ′, stating
that a frame f transforms a value of type τ to a value of type τ′.

s(−) : nat⇒ nat (26.8a)

e1 : τ x : nat ` e2 : τ

ifz(−, e1, x.e2) : nat⇒ τ
(26.8b)

e2 : τ2
ap(−, e2) : arr(τ2, τ)⇒ τ

(26.8c)

e1 : arr(τ2, τ) e1 val

ap(e1,−) : τ2 ⇒ τ
(26.8d)

The two forms of K{nat⇀} state are well-formed provided that their
stack and expression components match.

k : τ e : τ
k . e ok

(26.9a)

k : τ e : τ e val
k / e ok

(26.9b)

We leave the proof of safety of K{nat⇀} as an exercise.

Theorem 26.1 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.
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26.3 Correctness of the Control Machine

It is natural to ask whether K{nat⇀} correctly implements L{nat⇀}. If
we evaluate a given expression, e, using K{nat⇀}, do we get the same
result as would be given by L{nat⇀}, and vice versa?

Answering this question decomposes into two propositions relatingK{nat⇀}
and L{nat⇀}:

Completeness If e 7→∗ e′, where e′ val, then ε . e 7→∗ ε / e′.

Soundness If ε . e 7→∗ ε / e′, then e 7→∗ e′ with e′ val.

Let us consider, in turn, what is involved in the proof of each part.
For completeness it is natural to consider a proof by induction on the

definition of multistep transtion, which reduces the theorem to the follow-
ing two results:

1. If e val, then ε . e 7→∗ ε / e.

2. If e 7→ e′, then, for every v val, if ε . e′ 7→∗ ε / v, then ε . e 7→∗ ε / v.

The first can be proved easily by induction on the structure of e. The second
requires an inductive analysis of the derivation of e 7→ e′, giving rise to two
complications that must be accounted for in the proof. The first complica-
tion is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1, e2), then the first step of the machine is

ε . ap(e1, e2) 7→ ap(−, e2); ε . e1,

and so we must consider evaluation of e1 on a non-empty stack.
A natural generalization is to prove that if e 7→ e′ and k . e′ 7→∗ k / v,

then k . e 7→∗ k / v. Consider again the case e = ap(e1, e2), e′ = ap(e′1, e2),
with e1 7→ e′1. We are given that k . ap(e′1, e2) 7→∗ k / v, and we are to
show that k . ap(e1, e2) 7→∗ k / v. It is easy to show that the first step of
the former derivation is

k . ap(e′1, e2) 7→ ap(−, e2); k . e′1.

We would like to apply induction to the derivation of e1 7→ e′1, but to do so
we must have a v1 such that e′1 7→∗ v1, which is not immediately at hand.

To push the proof through, we must consider the ultimate value of each
sub-expression, which is provided by the evaluation semantics described
in Chapter 11. Combining the foregoing observations leads leads to the
following lemma:
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Lemma 26.2. If e ⇓ v, then for every k stack, k . e 7→∗ k / v.

The desired result follows by the analogue of Theorem 11.1 on page 83
for L{nat⇀}, which states that e ⇓ v iff e 7→∗ v.

For the proof of soundness, it is awkward to reason inductively about
the multistep transition from ε . e 7→∗ ε / v, because the intervening steps
may involve alternations of evaluation and return states. Instead we regard
each K{nat⇀} machine state as encoding an expression, and show that
K{nat⇀} transitions are simulated by L{nat⇀} transitions under this
encoding.

Specifically, we define a judgement, s# e, stating that state s “unravels
to” expression e. It will turn out that for initial states, s = ε . e, and final
states, s = ε / e, we have s # e. Then we show that if s 7→∗ s′, where
s′ final, s # e, and s′ # e′, then e′ val and e 7→∗ e′. For this it is enough to
show the following two facts:

1. If s# e and s final, then e val.

2. If s 7→ s′, s# e, s′ # e′, and e′ 7→∗ v, where v val, then e 7→∗ v.

The first is quite simple, we need only observe that the unravelling of a
final state is a value. For the second, it is enough to show the following
lemma.

Lemma 26.3. If s 7→ s′, s# e, and s′ # e′, then e 7→∗ e′.

The remainder of this section is devoted to the proofs of these lemmas.

26.3.1 Completeness

Proof of Lemma 26.2. The proof is by induction on an evaluation semantics
for L{nat⇀}.

Consider the evaluation rule

e1 ⇓ lam[τ2](x.e) e2 ⇓ v2 [v2/x]e ⇓ v
ap(e1, e2) ⇓ v

(26.10)

For an arbitrary control stack, k, we are to show that k . ap(e1, e2) 7→∗
k / v. Applying each of the three inductive hypotheses in succession, inter-
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leaved with steps of the abstract machine, we obtain

k . ap(e1, e2) 7→ ap(−, e2); k . e1 (26.11)
7→∗ ap(−, e2); k / lam[τ2](x.e) (26.12)
7→ ap(lam[τ2](x.e),−); k . e2 (26.13)
7→∗ ap(lam[τ2](x.e),−); k / v2 (26.14)
7→ k . [v2/x]e (26.15)
7→∗ k / v. (26.16)

The other cases of the proof are handled similarly.

26.3.2 Soundness

The judgement s# e′, where s is either k . e or k / e, is defined in terms of
the auxiliary judgement k ./ e = e′ by the following rules:

k ./ e = e′

k . e# e′
(26.17a)

k ./ e = e′

k / e# e′
(26.17b)

In words, to unravel a state we wrap the stack around the expression. The
latter relation is inductively defined by the following rules:

ε ./ e = e (26.18a)

k ./ s(e) = e′

s(−); k ./ e = e′
(26.18b)

k ./ ifz(e1, e2, x.e3) = e′

ifz(−, e2, x.e3); k ./ e1 = e′
(26.18c)

k ./ ap(e1, e2) = e
ap(−, e2); k ./ e1 = e

(26.18d)

k ./ ap(e1, e2) = e
ap(e1,−); k ./ e2 = e

(26.18e)

These judgements both define total functions.

Lemma 26.4. The judgement s# e has mode (∀, ∃!), and the judgement k ./ e =
e′ has mode (∀, ∀, ∃!).
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That is, each state unravels to a unique expression, and the result of
wrapping a stack around an expression is uniquely determined. We are
therefore justified in writing k ./ e for the unique e′ such that k ./ e = e′.

The following lemma is crucial. It states that unravelling preserves the
transition relation.

Lemma 26.5. If e 7→ e′, k ./ e = d, k ./ e′ = d′, then d 7→ d′.

Proof. The proof is by rule induction on the transition e 7→ e′. The inductive
cases, in which the transition rule has a premise, follow easily by induction.
The base cases, in which the transition is an axiom, are proved by an induc-
tive analysis of the stack, k.

For an example of an inductive case, suppose that e = ap(e1, e2), e′ =
ap(e′1, e2), and e1 7→ e′1. We have k ./ e = d and k ./ e′ = d′. It follows from
Rules (26.18) that ap(−, e2); k ./ e1 = d and ap(−, e2); k ./ e′1 = d′. So by
induction d 7→ d′, as desired.

For an example of a base case, suppose that e = ap(lam[τ2](x.e), e2)
and e′ = [e2/x]e with e 7→ e′ directly. Assume that k ./ e = d and k ./ e′ = d′;
we are to show that d 7→ d′. We proceed by an inner induction on the
structure of k. If k = ε, the result follows immediately. Consider, say, the
stack k = ap(−, c2); k′. It follows from Rules (26.18) that k′ ./ ap(e, c2) = d
and k′ ./ ap(e′, c2) = d′. But by the SOS rules ap(e, c2) 7→ ap(e′, c2), so by
the inner inductive hypothesis we have d 7→ d′, as desired.

We are now in a position to complete the proof of Lemma 26.3 on page 211.

Proof of Lemma 26.3 on page 211. The proof is by case analysis on the transi-
tions of K{nat⇀}. In each case after unravelling the transition will corre-
spond to zero or one transitions of L{nat⇀}.

Suppose that s = k . s(e) and s′ = s(−) . e. Note that k ./ s(e) = e′

iff s(−); k ./ e = e′, from which the result follows immediately.
Suppose that s = ap(lam[τ](x.e1),−); k / e2 and s′ = k . [e2/x]e1.

Let e′ be such that ap(lam[τ](x.e1),−); k ./ e2 = e′ and let e′′ be such that
k ./ [e2/x]e1 = e′′. Observe that k ./ ap(lam[τ](x.e1), e2) = e′. The result
follows from Lemma 26.5.

26.4 Exercises
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Chapter 27

Exceptions

Exceptions effects a non-local transfer of control from the point at which
the exception is raised to a dynamically enclosing handler for that excep-
tion. This transfer interrupts the normal flow of control in a program in
response to unusual conditions. For example, exceptions can be used to
signal an error condition, or to indicate the need for special handling in
certain circumstances that arise only rarely. To be sure, one could use ex-
plicit conditionals to check for and process errors or unusual conditions,
but using exceptions is often more convenient, particularly since the trans-
fer to the handler is direct and immediate, rather than indirect via a series
of explicit checks. All too often explicit checks are omitted (by design or
neglect), whereas exceptions cannot be ignored.

27.1 Failures

To begin with let us consider a simple control mechanism, which permits
the evaluation of an expression to fail by passing control to the nearest en-
closing handler, which is said to catch the failure. Failures are a simplified
form of exception in which no value is associated with the failure. This
allows us to concentrate on the control flow aspects, and to treat the asso-
ciated value separately.

The following grammar describes an extension to L{→} to include fail-
ures:

Expr e ::= fail[τ] | catch(e1, e2)

The expression fail[τ] aborts the current evaluation. The expression
catch(e1, e2) evaluates e1. If it terminates normally, its value is returned; if
it fails, its value is the value of e2.
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The static semantics of failures is quite straightforward:

Γ ` fail[τ] : τ (27.1a)

Γ ` e1 : τ Γ ` e2 : τ

Γ ` catch(e1, e2) : τ
(27.1b)

Observe that a failure can have any type, because it never returns to the
site of the failure. Both clauses of a handler must have the same type, to
allow for either possible outcome of evaluation.

The dynamic semantics of failures uses a technique called stack unwind-
ing. Evaluation of a catch installs a handler on the control stack. Evalua-
tion of a fail unwinds the control stack by popping frames until it reaches
the nearest enclosing handler, to which control is passed. The handler is
evaluated in the context of the surrounding control stack, so that failures
within it propagate further up the stack.

This behavior is naturally specified using the abstract machineK{nat⇀}
from Chapter 26, because it makes the control stack explicit. We introduce
a new form of state, k J , which passes a failure to the stack, k, in search of
the nearest enclosing handler. A state of the form ε J is considered final,
rather than stuck; it corresponds to an “uncaught failure” making its way
to the topic of the stack.

The set of frames is extended with the following additional rule:

e2 exp

catch(−, e2) frame
(27.2)

The transition rules of K{nat⇀} are extended with the following addi-
tional rules:

k . fail[τ] 7→ k J (27.3a)

k . catch(e1, e2) 7→ catch(−, e2); k . e1 (27.3b)

catch(−, e2); k / v 7→ k / v (27.3c)

catch(−, e2); k J 7→ k . e2 (27.3d)

( f 6= catch(−, e2))
f ; k J 7→ k J

(27.3e)

5:05PM DRAFT JUNE 26, 2007



27.2. EXCEPTIONS 217

Evaluating fail[τ] propagates a failure up the stack. Evaluating catch(e1, e2)
consists of pushing the handler onto the control stack and evaluating e1. If
a value is propagated to the handler, the handler is removed and the value
continues to propagate upwards. If a failure is propagated to the handler,
the stored expression is evaluated with the handler removed from the con-
trol stack. All other frames propagate failures.

The definition of initial state remains the same as for K{nat⇀}, but we
change the definition of final state to include these two forms:

e val
ε / e final

(27.4a)

ε J final (27.4b)

The first of these is as before, corresponding to a normal result with the
specified value. The second is new, corresponding to an uncaught excep-
tion propagating through the entire program.

It is a straightforward exercise the extend the definition of stack typ-
ing given in Chapter 26 to account for the new forms of frame. Using this,
safety can be proved by standard means. Note, however, that the meaning
of the progress theorem is now significantly different: a well-typed pro-
gram does not get stuck . . . but it may well result in an uncaught failure!

Theorem 27.1 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

27.2 Exceptions

Let us now consider enhancing the simple failures mechanism of the pre-
ceding section with an exception mechanism that permits a value to be as-
sociated with the failure, which is then passed to the handler as part of the
control transfer. The syntax of exceptions is given by the following gram-
mar:

Expr e ::= raise[τ](e) | handle(e1, x.e2)

The argument to raise is evaluated to determine the value passed to the
handler. The expression handle(e1, x.e2) binds a variable, x, in the han-
dler, e2, to which the associated value of the exception is bound, should an
exception be raised during the execution of e1.
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The dynamic semantics of exceptions is a mild generalization of that
of failures given in Section 27.1 on page 215. The failure state, k J , is
extended to permit passing a value along with the failure, k J e, where
e val. Stack frames include these two forms:

raise[τ](−) frame (27.5a)

handle(−, x.e2) frame (27.5b)

The rules for evaluating exceptions are as follows:

k . raise[τ](e) 7→ raise[τ](−); k . e (27.6a)

raise[τ](−); k / e 7→ k J e (27.6b)

raise[τ](−); k J e 7→ k J e (27.6c)

k . handle(e1, x.e2) 7→ handle(−, x.e2); k . e1 (27.6d)

handle(−, x.e2); k / e 7→ k / e (27.6e)

handle(−, x.e2); k J e 7→ k . [e/x]e2 (27.6f)

( f 6= handle(−, x.e2))
f ; k J e 7→ k J e

(27.6g)

The static semantics of exceptions generalizes that of failures.

Γ ` e : τexn
Γ ` raise[τ](e) : τ

(27.7a)

Γ ` e1 : τ Γ, x : τexn ` e2 : τ

Γ ` handle(e1, x.e2) : τ
(27.7b)

These rules are parameterized by the type of values associated with ex-
ceptions, τexn. But what should be the type τexn?
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The first thing to observe is that all exceptions should be of the same
type, otherwise we cannot guarantee type safety. The reason is that a han-
dler might be invoked by any raise expression occurring during the exe-
cution of the expression that it guards. If different exceptions could have
different associated values, the handler could not predict (statically) what
type of value to expect, and hence could not dispatch on it without violat-
ing type safety.

Since the data associated with an exception is intended to indicate the
reason for the failure, it may seem reasonable to choose τexn to be a string
that describes the reason for the failure. For example, one might write

raise "Division by zero error."

to signal the obvious arithmetic fault, or

raise "File not found."

to indicate failure to open a specified file. While this might be reasonable
for exceptions that are not intended to be caught, it is quite unreasonable
for those that may be caught by an exception handler — it would have to
parse the associated string, according to some conventions, to determine
what happened and how to respond! Similar criticisms apply to choosing
τexn to be, say, nat, associating an “error number” with each form of failure,
and requiring the handler to dispatch on the number. This, too, is obviously
rather primitive and error-prone, and would not permit a natural means of
associating other, exception-specific data with the failure.

A much more reasonable choice would be to distinguish a labelled sum
type of the form

τexn = [div : unit, fnf : string, . . .].

Each variant of the sum specifies the type of data associated with that vari-
ant. The handler may perform a case analysis on the tag of the variant,
thereby recovering the underlying data value of the appropriate type. For
example,

try e1 ow x.case x {
div 〈〉 ⇒ ediv

| fnf s ⇒ efnf
| . . . }

This code closely resembles the exception mechanisms found in many lan-
guages.
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A significant complication remains. The type τexn must be specified on
a per-language basis to ensure that program fragments may be combined
sensibly with one another. But having to choose a single, fixed labelled
sum type to serve as the type of exceptions for all possible programs is
clearly absurd! Although certain low-level exceptions, such as division by
zero, might reasonably be included in any program, we expect in general
that the choice of exceptions is specific to the task at hand, and ought to be
chosen by the programmer. This is something of a dilemma, because we
must choose τexn once for all programs written in the language, yet we also
expect that programmers may declare their own exceptions.

The way out of this dilemma is to define τexn to be an extensible labelled
sum type, rather than a fixed labelled sum type. An extensible sum is one
that permits new tags to be created dynamically so that the collection of
possible tags on values of the type is not fixed statically, but only at run-
time. The concept of extensible sum has applications beyond their use as
the type of values associated with exceptions. We will discuss this type in
detail in Chapter 36.

27.3 Exercises
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Chapter 28

Continuations

The semantics of many control constructs (such as exceptions and co-routines)
can be expressed in terms of reified control stacks, a representation of a con-
trol stack as an ordinary value. This is achieved by allowing a stack to be
passed as a value within a program and to be restored at a later point, even if
control has long since returned past the point of reification. Reified control
stacks of this kind are called first-class continuations, where the qualifica-
tion “first class” stresses that they are ordinary values with an indefinite
lifetime that can be passed and returned at will in a computation. First-
class continuations never “expire”, and it is always sensible to reinstate a
continuation without compromising safety. Thus first-class continuations
support unlimited “time travel” — we can go back to a previous point in
the computation and then return to some point in its future, at will.

How is this achieved? The key to implementing first-class continua-
tions is to arrange that control stacks are persistent data structures, just like
any other data structure in ML that does not involve mutable references.
By a persistent data structure we mean one for which operations on it yield
a “new” version of the data structure without disturbing the old version.
For example, lists in ML are persistent in the sense that if we cons an ele-
ment to the front of a list we do not thereby destroy the original list, but
rather yield a new list with an additional element at the front, retaining the
possibility of using the old list for other purposes. In this sense persistent
data structures allow time travel — we can easily switch between several
versions of a data structure without regard to the temporal order in which
they were created. This is in sharp contrast to more familiar ephemeral data
structures for which operations such as insertion of an element irrevocably
mutate the data structure, preventing any form of time travel.
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Returning to the case in point, the standard implementation of a control
stack is as an ephemeral data structure, a pointer to a region of mutable
storage that is overwritten whenever we push a frame. This makes it im-
possible to maintain an “old” and a “new” copy of the control stack at the
same time, making time travel impossible. If, however, we represent the
control stack as a persistent data structure, then we can easily reify a con-
trol stack by simply binding it to a variable, and continue working. If we
wish we can easily return to that control stack by referring to the variable
that is bound to it. This is achieved in practice by representing the control
stack as a list of frames in the heap so that the persistence of lists can be
extended to control stacks. While we will not be specific about implemen-
tation strategies in this note, it should be born in mind when considering
the semantics outlined below.

Why are first-class continuations useful? Fundamentally, they are rep-
resentations of the control state of a computation at a given point in time.
Using first-class continuations we can “checkpoint” the control state of a
program, save it in a data structure, and return to it later. In fact this is
precisely what is necessary to implement threads (concurrently executing
programs) — the thread scheduler must be able to checkpoint a program
and save it for later execution, perhaps after a pending event occurs or an-
other thread yields the processor.

28.1 Informal Overview

We will extend L{→} with the type cont(τ) of continuations accepting
values of type τ. The introduction form for cont(τ) is letcc[τ](x.e),
which binds the current continuation (i.e., the current control stack) to the
variable x, and evaluates the expression e. The corresponding elimination
form is throw(e1, e2), which restores the value of e1 to the control stack that
is the value of e2.1

To illustrate the use of these primitives, consider the problem of mul-
tiplying the first n elements of an infinite sequence q of natural numbers,
where q is represented by a function of type nat → nat. If zero occurs
among the first n elements, we would like to effect an “early return” with
the value zero, rather than perform the remaining multiplications. This
problem can be solved using exceptions (we leave this as an exercise), but

1Close relatives of these primitives are available in SML/NJ in the following forms:
for letcc[τ](x.e), write SMLofNJ.Cont.callcc (fn x => e), and for throw(e1, e2), write
SMLofNJ.Cont.throw e2 e1.
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we will give a solution that uses continuations in order to help motivate
what follows.

Here is the solution without short-cutting, written using some conve-
nient concrete syntax conventions:

fun ms (q : nat -> nat, n : nat) is
case n {
zero ⇒ succ(zero) |
succ (m:nat) ⇒ times (q zero) (ms (q ◦ succ, m)) }

The recursive call composes q with the successor function to shift the se-
quence by one step.

Here is the version with short-cutting:

λ (q : nat -> nat, n : nat) in
letcc ret : nat cont in
let fun ms (q : nat -> nat, n : nat) be
case n {

zero ⇒ succ(zero) |
succ (m:nat) ⇒
case (q zero) {
zero => throw zero to ret |
succ(p:nat) => times (succ p) (ms (q ◦ succ) m) } }

in
ms q n

The letcc binds the return point of the function to the variable ret for use
within the main loop of the computation. If zero is encountered, control is
thrown to ret, effecting an early return with the value zero.

Let’s look at another example: given a continuation k of type τ cont and
a function f of type τ′ → τ, return a continuation k′ of type τ′ cont with
the following behavior: throwing a value v′ of type τ′ to k′ throws the value
f (v′) to k. This is called composition of a function with a continuation. We wish
to fill in the following template:

fun compose(f:τ′ → τ,k:τ cont):τ′ cont = ....

The first problem is to obtain the continuation we wish to return. The
second problem is how to return it. The continuation we seek is the one in
effect at the point of the ellipsis in the expression throw f(...) to k. This
is the continuation that, when given a value v′, applies f to it, and throws
the result to k. We can seize this continuation using letcc, writing
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throw f(letcc x:τ′ cont in ...) to k

At the point of the ellipsis the variable x is bound to the continuation we
wish to return. How can we return it? By using the same trick as we used
for short-circuiting evaluation above! We don’t want to actually throw a
value to this continuation (yet), instead we wish to abort it and return it as
the result. Here’s the final code:

fun compose (f:τ′ → τ, k:τ cont):τ′ cont =
letcc ret:τ′ cont cont in
throw (f (letcc r in throw r to ret)) to k

Notice that the type of ret is that of a continuation-expecting continuation!

28.2 Semantics of Continuations

We extend the language of L{→} expressions with these additional forms:

Type τ ::= cont(τ)
Expr e ::= letcc[τ](x.e) | throw(e1, e2) | cont(k)

The expression cont(k) is a reified control stack; they arise during evalua-
tion, but are not available as expressions to the programmer.

The static semantics of this extension is defined by the following rules:

Γ, x : cont(τ) ` e : τ

Γ ` letcc[τ](x.e) : τ
(28.1a)

Γ ` e1 : τ1 Γ ` e2 : cont(τ1)

Γ ` throw(e1, e2) : τ′
(28.1b)

The result type of a throw expression is arbitrary because it does not return
to the point of the call.

The static semantics of continuation values is given by the following
rule:

k : τ
Γ ` cont(k) : cont(τ)

(28.2)

A continuation value cont(k) has type cont(τ) exactly if it is a stack ac-
cepting values of type τ.

To define the dynamic semantics, we extend K{nat⇀} stacks with two
new forms of frame: e2 exp

throw(−, e2) frame
(28.3a)
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e1 val

throw(e1,−) frame
(28.3b)

Every reified control stack is a value:

k stack
cont(k) val

(28.4)

The transition rules for the continuation constructs are as follows:

k . letcc[τ](x.e) 7→ k . [cont(k)/x]e (28.5a)

throw(v,−); k / cont(k′) 7→ k′ / v (28.5b)

k . throw(e1, e2) 7→ throw(−, e2); k . e1 (28.5c)

e1 val

throw(−, e2); k / e1 7→ throw(e1,−); k . e2
(28.5d)

Evaluation of a letcc expression duplicates the control stack; evaluation
of a throw expression destroys the current control stack.

The safety of this extension of L{→} may be established by a simple
extension to the safety proof for K{nat⇀} given in Chapter 26.

We need only add typing rules for the two new forms of frame, which
are as follows:

e2 : cont(τ)

throw(−, e2) : τ ⇒ τ′
(28.6a)

e1 : τ e1 val

throw(e1,−) : cont(τ)⇒ τ′
(28.6b)

The rest of the definitions remain as in Chapter 26.

Lemma 28.1 (Canonical Forms). If e : cont(τ) and e val, then e = cont(k)
for some k such that k : τ.

Theorem 28.2 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.
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28.3 Exceptions from Continuations

The dynamic semantics of failures may be specified by a translation into a
language with continuations. The general idea is to pass the current excep-
tion handler, represented as a continuation of type τexn cont, as an implicit
argument to each expression. To raise an exception, we throw the exception
value to the current handler. To install a handler we must create a contin-
uation to serve as the new exception handler, which we then pass to the
protected computation. This handler must ensure that, when invoked, it
evaluates the handling code in the proper exception environment.

To make this a bit more precise, let us consider the translation of well-
typed expressions from the language L{nat⇀} enriched with exceptions
into the same language enriched with continuations. The general idea
is to translate an expression e : τ involving exceptions to an expression
e′ : τexn cont→ τ involving only continuations. To make this fully precise
requires a further translation of types, which we will suppress in this infor-
mal discussion so as to focus attention on the central ideas.

The translation of raise[τ](e) is the function

λ(h:τexn cont. throw e to h).

In words, to raise an exception, we throw the raised value to the current
exception handler.

The translation of try e1 ow x.e2 is the function of type τexn cont → τ
given by the λ-abstraction

λ(h:τexn cont. letcc r in let h′ be . . . in (e1(h′))), (28.7)

where the elided portion is the following expression:

letcc r′ in (let x be (letcc h′ in throw h′ to r′) in (throw e2(h) to r)).
(28.8)

When applied to the current exception handler, h, the expression (28.7)
binds r to the return continuation, binds h′ to a new exception handler, and
evaluates e1(h′). The continuation bound to h′ transfers control to e2 with
x bound to the raised value, in a manner to be described shortly. The ap-
plication of e1 to h′ ensures that if e1 raises an exception, it is passed to this
continuation. The binding of h′, which makes reference to the return con-
tinuation, r, is given by the expression (28.8). This code works by setting up
an inner return continuation, r′, then establishes the required continuation,
which is then thrown to r′, and hence bound to h′.
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The required continuation is the one which, when thrown an exception
value, binds that value to the variable x and evaluates e2 with the surround-
ing exception handler installed. This suggests that the continuation we seek
is described by the following expression template:

let x be . . . in (e2(h)), (28.9)

which can be returned to r′ by writing

let x be letcc k in throw k to r′ in (e2(h)), (28.10)

following the pattern we used to compose a continuation with a function.
However, this is not quite right! The difficulty is that the application e2(h)
must be evaluated as the overall result of the handler, which is accomplished
by throwing its value to the outer return continuation, r. This leads to the
expression (28.8).

28.4 Exercises

1. Study the short-circuit multiplication example carefully to be sure
you understand why it works!

2. Attempt to solve the problem of composing a continuation with a
function yourself, before reading the solution.

3. Simulate the evaluation of compose ( f, k) on the empty stack. Ob-
serve that the control stack substituted for x is

ap( f ,−); throw(−, k); ε

This stack is returned from compose. Next, simulate the behavior of
throwing a value v′ to this continuation. Observe that the stack is
reinstated and that v′ is passed to it.

4. Verify the type preservation theorem for the exception translation.
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Part X

Propositions and Types





Chapter 29

The Curry-Howard
Isomorphism

The Curry-Howard Isomorphism is a central organzing principle of type the-
ory. Roughly speaking, the Curry-Howard Isomorphism states that there
is a correspondence between propositions and types such that proofs corre-
spond to programs. To each proposition, φ, there is an associated type, τ,
such that to each proof p of φ, there is a corresponding expression e of type
τ. Among other things, this correspondence tells us that proofs have com-
putational content and that programs are a form of proof. It also suggests that
programming language features may be expected to give rise to concepts
of logic, and conversely that concepts from logic give rise to programming
language features. It is a remarkable fact that this correspondence, which
began as a rather modest observation about types and logics, has devel-
oped into a central principle of language design whose implications are
still being explored.

This informal discussion leaves open what we mean by proposition and
proof. The original isomorphism observed by Curry and Howard pertains
to a particular branch of logic called constructive logic, of which we will
have more to say in the next section. However, the observation has since
been extended to an impressive array of logics, all of which are, by virtue
of the correspondence, “constructive”, but which extend the interpretation
to richer notions of proposition and proof. Thus one might say that there
are many Curry-Howard Isomorphisms, of which the original is but one!

We will focus our attention on constructive propositional logic, which
involves a minimum of technical machinery to motivate and explain. We
will concentrate on the “big picture”, and make only glancing reference to



232 29.1. CONSTRUCTIVE LOGIC

the considerable technical details involved in fully working out the corre-
spondence between propositions and types.

29.1 Constructive Logic

29.1.1 Constructive Semantics

Constructive logic is concerned with two judgement forms, φ prop, stating
that φ expresses a proposition, and φ true, stating that φ is a true proposi-
tion. In constructive logic a proposition is a specification describing a problem
to be solved. The solution to the problem posed by a proposition is a proof. If a
proposition has a proof (i.e., it specifies a soluble problem), then the propo-
sition is said to be true. The characteristic feature of constructive logic is
that there is no other criterion of truth than the existence of a proof.

In a contructive setting the notion of falsity of a proposition is not prim-
itive. Rather, to say that a proposition is false is simply to say that the
assumption that it is true (i.e., that it has a proof) is contradictory. In other
words, for a proposition to be false, constructively, means that there is a
refutation of it, which consists of a proof that assuming it to be true is con-
tradictory. In this sense constructive logic is a logic of positive, or affirmative,
information — we must have explicit evidence in the form of a proof in order
to affirm the truth or falsity of a proposition.

One consequence is that a given proposition need not be either true or
false! While at first this might seem absurd (what else could it be, green?), a
moment’s reflection on the semantics of propositions reveals that this con-
sequence is quite natural. There are, and always will be, unsolved problems
that can be posed as propositions. For a problem to be unsolved means that
we are not in possession of a proof of it, nor do we have a refutation of it.
Therefore, in an affirmative sense, we cannot say that the proposition is ei-

ther true or false! As an example, the famous P ?= NP problem has neither
a proof nor a refutation at the time of this writing, so we cannot at present
affirm or deny its truth.

A proposition, φ, for which we possess either a proof or a refutation of
it is said to be decidable. Any proposition for which we have either a proof
or a refutation is, of course, decidable, because we have already “decided”
it by virtue of having that information! But we can also make general state-
ments about decidability of propositions. For example, if φ expresses an
inequality between natural numbers, then φ is decidable, because we can
always work out, for given natural numbers m and n, whether m ≤ n or
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m 6≤ n — we can either prove or refute the given inequality. Once we step
outside the realm of such immediately checkable conditions, it is not clear
whether a given proposition has a proof or a refutation. It’s a matter of
rolling up one’s sleeves and doing some work! And there’s no guarantee
of success! Life’s hard, but we muddle through somehow.

The judgements φ prop and φ true are basic, or categorical, judgements.
These are the building blocks of reason, but they are rarely of interest by
themselves. Rather, we are interested in the more general case of the hypo-
thetical judgement, or consequence relation, of the form

φ1 true, . . . , φn true ` φ true.

This judgement expresses that the proposition φ is true (i.e., has a proof),
under the assumptions that each of φ1, . . . , φn are also true (i.e., have proofs).
Of course, when n = 0 this is just the same as the categorical judgement
φ true. We let Γ range over finite sets of assumptions.

The hypothetical judgement satisfies the following structural properties,
which characterize what we mean by reasoning under hypotheses:

Γ, φ true ` φ true (29.1a)

Γ ` φ true Γ, φ true ` ψ true

Γ ` ψ true
(29.1b)

Γ ` ψ true

Γ, φ true ` ψ true
(29.1c)

Γ, φ true, φ true ` θ true

Γ, φ true ` θ true
(29.1d)

Γ, ψ true, φ true, Γ′ ` θ true

Γ, φ true, ψ true, Γ′ ` θ true
(29.1e)

The last two rules are implicit in that we regard Γ as a set of hypotheses,
so that two “copies” are as good as one, and the order of hypotheses does
not matter.

29.1.2 Propositional Logic

The connectives of propositional logic (truth, falsehood, conjunction, dis-
junction, implication, and negation) are given meaning by rules that deter-
mine (a) what constitutes a “direct” proof of a proposition formed from a
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given connective, and (b) how to exploit the existence of such a proof in
an “indirect” proof of another proposition. These are called the introduc-
tion and elimination rules for the connective. The principle of conservation
of proof states that these rules are inverse to one another — the elimination
rule cannot extract more information (in the form of a proof) than was put
into it by the introduction rule, and the introduction rules can be used to re-
construct a proof from the information extracted from it by the elimination
rules.

The abstract syntax of propositional logic is given by the following rules
for deriving judgements of the form φ prop.

true prop (29.2a)

false prop (29.2b)

φ prop ψ prop

and(φ, ψ) prop
(29.2c)

φ prop ψ prop

imp(φ, ψ) prop
(29.2d)

φ prop ψ prop

or(φ, ψ) prop
(29.2e)

The following table summarizes the concrete syntax of propositions:

Abstract Concrete
true >
false ⊥

and(φ, ψ) φ ∧ ψ
imp(φ, ψ) φ ⊃ ψ
or(φ, ψ) φ ∨ ψ

Truth Our first proposition is trivially true. No information goes into
proving it, and so no information can be obtained from it.

Γ ` > true (29.3a)

(no elimination rule)
(29.3b)

5:05PM DRAFT JUNE 26, 2007



29.1. CONSTRUCTIVE LOGIC 235

Conjunction Conjunction expresses the truth of both of its conjuncts.

Γ ` φ true Γ ` ψ true

Γ ` φ ∧ ψ true
(29.4a)

Γ ` φ ∧ ψ true

Γ ` φ true
(29.4b)

Γ ` φ ∧ ψ true

Γ ` ψ true
(29.4c)

Implication Implication states the truth of a proposition under an as-
sumption.

Γ, φ true ` ψ true

Γ ` φ ⊃ ψ true
(29.5a)

Γ ` φ ⊃ ψ true Γ ` φ true

Γ ` ψ true
(29.5b)

Falsehood Falsehood expresses the trivially false (refutable) proposition.

(no introduction rule)
(29.6a)

Γ ` ⊥ true
Γ ` φ true

(29.6b)

Disjunction Disjunction expresses the truth of either (or both) of two
propositions.

Γ ` φ true

Γ ` φ ∨ ψ true
(29.7a)

Γ ` ψ true

Γ ` φ ∨ ψ true
(29.7b)

Γ ` φ ∨ ψ true Γ, φ true ` θ true Γ, ψ true ` θ true

Γ ` θ true
(29.7c)
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29.1.3 Explicit Proofs

The key to the Curry-Howard Isomorphism is to make explict the forms of
proof. The categorical judgement φ true, which states that φ has a proof,
is replaced by the judgement p : φ, stating that p is a proof of φ. The hy-
pothetical judgement is modified correspondingly, with variables standing
for the presumed, but unknown, proofs:

x1 : φ1, . . . , xn : φn ` p : φ.

We again let Γ range over such hypothesis lists, subject to the restriction
that no variable occurs more than once.

The rules of constructive propositional logic may be restated using proof
terms as follows.

Γ ` true-i :> (29.8a)

Γ ` p : φ Γ ` q : ψ

Γ ` and-i(p, q) : φ ∧ ψ
(29.8b)

Γ ` p : φ ∧ ψ

Γ ` and-e-l(p) : φ
(29.8c)

Γ ` p : φ ∧ ψ

Γ ` and-e-r(p) : ψ
(29.8d)

Γ, x : φ ` p : ψ

Γ ` imp-i[φ](x.p) : φ ⊃ ψ
(29.8e)

Γ ` p : φ ⊃ ψ Γ ` q : φ

Γ ` imp-e(p, q) : ψ
(29.8f)

Γ ` p :⊥
Γ ` false-e[φ](p) : φ

(29.8g)

Γ ` p : φ

Γ ` or-i-l[ψ](p) : φ ∨ ψ
(29.8h)

Γ ` p : ψ

Γ ` or-i-r[φ](p) : φ ∨ ψ
(29.8i)

Γ ` p : φ ∨ ψ Γ, x : φ ` q : θ Γ, y : ψ ` r : θ

Γ ` or-e[φ, ψ](p, x.q, y.r) : θ
(29.8j)
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29.2 Propositions as Types

The Curry-Howard Isomorphism amounts to the observation that there is
a close correspondence between propositions and their proofs, on the one
hand, and types and their elements, on the other. The following chart sum-
marizes the correspondence between propositions, φ, and types, φ∗:

Proposition Type
> unit
⊥ void
φ ∧ ψ φ∗ × ψ∗

φ ⊃ ψ φ∗ → ψ∗

φ ∨ ψ φ∗ +ψ∗

The correspondence extends to proofs and programs as well:

Proof Program
true-i triv
false-e[φ](p) abort[φ∗](p∗)
and-i(p, q) pair(p∗, q∗)
and-e-l(p) fst(p∗)
and-e-r(p) snd(p∗)
imp-i[φ](x.p) lam[φ∗](x.p∗)
imp-e(p, q) ap(p∗, q∗)
or-i-l[ψ](p) inl[ψ∗](p∗)
or-i-r[φ](p) inr[φ∗](p∗)
or-e[φ, ψ](p, x.q, y.r) case[φ∗, ψ∗](p∗, x.q∗, y.r∗)

The translations above preserve and reflect formation and membership
when viewed as a translation into a typed language with unit, product,
void, sum, and function types.

Theorem 29.1 (Curry-Howard Isomorphism). 1. If φ prop, then φ∗ type

2. If Γ ` p : φ, then Γ∗ ` p∗ : φ∗.

The preceding theorem establishes a static correspondence between propo-
sitions and types and their associated proofs and programs. It also extends
to a dynamic correspondence, in which we see that the execution behavior
of programs arises from the cancellation of elimination and introduction
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rules in the following manner:

and-e-l(and-i(p, q)) 7→ p
and-e-r(and-i(p, q)) 7→ q

imp-e(imp-i[φ](x.q), p) 7→ [p/x]q
or-e[φ, ψ](or-i-l[ψ](p), x.q, y.r) 7→ [p/x]q
or-e[φ, ψ](or-i-r[φ](p), x.q, y.r) 7→ [p/y]r

These are precisely the primitive instructions associated with the programs
corresponding to these proofs! Indeed, these rules may be understood as
the codification of the computational content of proofs — the precise sense in
which proofs in propositional logic correspond, both statically and dynam-
ically, to programs.

The correspondence given here does not extend to general recursion,
which would correspond to admitting a circular proof, one whose justifi-
cation relies on its own presumed truth. Unsurprisingly, permitting circu-
lar proofs renders the logic inconsistent—one can derive a “proof” of any
proposition simply by appealing to itself! However, this does not mean
that there is no logical account of general recursion. Rather, it simply says
that self-reference cannot be permitted as evidence for the truth of a propo-
sition. But one could well imagine using self-reference in connection with a
relaxed notion of truth corresponding to the isolation of effects in a monad
in a programming language.

29.3 Exercises
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Chapter 30

Classical Proofs and Control
Operators

In Chapter 29 we saw that constructive logic is a logic of positive informa-
tion in that the meaning of the judgement φ true is that there exists a proof
of φ. A refutation of a proposition φ consists of a proof of the hypotheti-
cal judgement φ true ` ⊥ true, asserting that the assumption of φ leads to
a proof of logical falsehood (i.e., a contradiction). Since there are proposi-
tions, φ, for which we possess neither a proof nor a refutation, we cannot
assert, in general, φ ∨ ¬φ true.

By contrast classical logic (the one we all learned in school) maintains a
complete symmetry between truth and falsehood — that which is not true
is false and that which is not false is true. Obviously such an interpretation
conflicts with the constructive interpretation, for lack of a proof of a propo-
sition is not a refutation, nor is lack of a refutation a proof.1 In this sense
classical logic is a logic of perfect information, in which all mathematical
problems have been resolved, and for each one it is clear whether it is true
or false. One might consider this “god’s view” of mathematics, in constrast
to the “mortal’s view” we are stuck with.

Despite this absolutism, classical logic nevertheless has computational
content, albeit in a somewhat attenuated form compared to constructive
logic. Whereas in constructive logic truth is identified with the existence
of certain positive information, in classical logic it is identified with the ab-
sence of a refutation, a much weaker criterion. Dually, falsehood is identi-
fied with the absence of a proof, which is also much weaker than possession

1Or, in the words of the brilliant military strategist Donald von Rumsfeld, the absence
of evidence is not evidence of absence.
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of a refutation. This weaker interpretation is responsible for the pleasing
symmetries of classical logic. The drawback is that in classical logic propo-
sitions means much less than they do in constructive logic. For example, in
classical logic the proposition φ ∨ ¬φ does not state that we have either a
proof of φ or a refutation of it, rather just that it is impossible that we have
both a proof of it and a refutation of it.

30.1 Classical Logic

Classical logic is concerned with three categorical judgement forms:

1. φ true, stating that proposition φ is true;

2. φ false, stating that proposition φ is false;

3. #, stating that a contradiction has been derived.

We will consider hypothetical judgements in which hypotheses have either
of the first two forms; we will have no need of a hypothesis of the third
form. Up to permutation, then, hypothetical judgements have the form

φ1 false, . . . , φm false; ψ1 true, . . . , ψn true ` J,

where J is any of the three categorical judgement forms.
Rather than axiomatize classical logic directly in terms of these judge-

ment forms, we will instead give an axiomatization in which proof terms
are made explicit at the outset. The proof-explicit form of the three categor-
ical judgements of classical logic are as follows:

1. p : φ, stating that p is a proof of φ;

2. k÷ φ, stating that k is a refutation of φ;

3. k # p, stating that k and p are contradictory.

We will consider hypothetical judgements of the form (up to permutation
of hypotheses)

u1÷ φ1, . . . , um÷ φm︸ ︷︷ ︸
∆

; x1 : ψ1, . . . , xn : ψn︸ ︷︷ ︸
Γ

` J,

where J is any of the three categorical judgements in explicit form.
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Statics

A contradiction arises from the conflict between a proof and a refutation:

∆; Γ ` k÷ φ ∆; Γ ` p : φ

∆; Γ ` k # p
(30.1a)

The reflexivity rules capture the meaning of hypotheses:

∆, u÷ φ; Γ ` u÷ φ (30.1b)

∆; Γ, x : ψ ` x : φ (30.1c)

Truth and falsity are complementary:

∆, u÷ φ; Γ ` k # p
∆; Γ ` ccr(u÷ φ.k # p) : φ

(30.1d)

∆; Γ, x : φ ` k # p
∆; Γ ` ccp(x : φ.k # p)÷ φ

(30.1e)

In both of these rules the entire contradiction, k # p, lies within the scope
of the abstractor!

The rules for the connectives are organized as introductory rules for
truth and for falsity, the latter playing the role of eliminatory rules in con-
structive logic.

∆; Γ ` 〈〉 :> (30.1f)

∆; Γ ` abort÷⊥ (30.1g)

∆; Γ ` p : φ ∆; Γ ` q : ψ

∆; Γ ` 〈p, q〉 : φ ∧ ψ
(30.1h)

∆; Γ ` k÷ φ ∧ ψ

∆; Γ ` fst; k÷ φ
(30.1i)

∆; Γ ` k÷ φ ∧ ψ

∆; Γ ` snd; k÷ψ
(30.1j)

∆; Γ, x : φ ` p : ψ

∆; Γ ` λ(x:φ. p) : φ ⊃ ψ
(30.1k)
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∆; Γ ` p : φ ∆; Γ ` k÷ψ

∆; Γ ` app(p); k÷ φ ⊃ ψ
(30.1l)

∆; Γ ` p : φ

∆; Γ ` inlψ(p) : φ ∨ ψ
(30.1m)

∆; Γ ` p : ψ

∆; Γ ` inrφ(p) : φ ∨ ψ
(30.1n)

∆; Γ ` k÷ φ ∆; Γ ` l÷ψ

∆; Γ ` case(k, l)÷ φ ∨ ψ
(30.1o)

∆; Γ ` k÷ φ

∆; Γ ` not(k) :¬φ
(30.1p)

∆; Γ ` p : φ

∆; Γ ` not(p)÷¬φ
(30.1q)

Dynamics

The dynamic semantics of classical logic may be described as a process of
conflict resolution. The state of the abstract machine is a contradiction, k # p,
between a refutation, k, and a proof, p, of the same proposition. Execution
consists of “simplifying” the conflict based on the form of k and p. This
process is formalized by an inductive definition of a transition relation be-
tween contradictory states.

Here are the rules for each of the logical connectives, which all have the
form of resolving a conflict between a proof and a refutation of a proposi-
tion formed with that connective.

fst; k # 〈p, q〉 7→ k # p (30.2a)
snd; k # 〈p, q〉 7→ k # q (30.2b)

case(k, l) # inlψ(p) 7→ k # p (30.2c)
case(k, l) # inrφ(q) 7→ l # q (30.2d)
app(p); k # λ(x:φ. q) 7→ k # [p/x]q (30.2e)

not(p) # not(k) 7→ k # p (30.2f)
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The symmetry of the transition rule for negation is particularly elegant.
Here are the rules for the generic primitives relating truth and falsity.

ccp(x : φ.k # p) # q 7→ [q/x]k # [q/x]p (30.2g)
k # ccr(u÷ φ.l # p) 7→ [k/u]l # [k/u]p (30.2h)

These rules explain the terminology: “ccp” means “call with current proof”,
and “ccr” means “call with current refutation”. The former is a refutation
that binds a variable to the current proof and installs the corresponding in-
stance of its constituent state as the current state. The latter is a proof that
binds a variable to the current refutation and installs the corresponding
instance of its constituent state as the current state.

It is important to observe that the rules (30.2g) to (30.2h) overlap in the
sense that there are two possible transitions for a state of the form

ccp(x : φ.k # p) # ccr(u÷ φ.l # q).

This state may transition either to the state

[r/x]k # [r/x]p,

where r is ccr(u÷ φ.l # q), or to the state

[m/u]l # [m/u]q,

where m is ccp(x : φ.k # p), and these are not equivalent.
There are two possible attitudes about this. One is to simply accept that

classical logic has a non-deterministic dynamic semantics, and leave it at
that. But this means that it is difficult to predict the outcome of a computa-
tion, since it could be radically different in the case of the overlapping state
just described. The alternative is to impose an arbitrary priority ordering
among the two cases, either preferring the first transition to the second, or
vice versa. Preferring the first corresponds, very roughly, to a “lazy” seman-
tics for proofs, because we pass the unevaluated proof, r, to the refutation
on the left, which is thereby activated. Preferring the second corresponds
to an “eager” semantics for proofs, in which we pass the unevaluated refu-
tation, m, to the proof, which is thereby activated. Dually, these choices
correspond to an “eager” semantics for refutations in the first case, and a
“lazy” one for the second. Take your pick.

The final issue is the initial state: how is computation to be started?
Or, equivalently, when is it finished? The difficulty is that we need both a
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proof and a refutation of the same proposition! While this can easily come
up in the “middle” of a proof, it would be impossible to have a finished
proof and a finished refutation of the same proposition! The solution for an
eager interpretation of proofs (and, correspondingly, a lazy interpretation
of refutations) is simply to postulate an initial (or final, depending on your
point of view) refutation, halt, and to deem a state of the form halt # p
to be initial, and also final, provided that p is not a “ccr” instruction. The
solution for a lazy interpretation of proofs (and an eager interpretation of
refutations) is dual, taking k # halt as initial, and also final, provided that
k is not a “ccp” instruction.

30.2 Exercises
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The Wave Front





Halmos describes the process of mathematical writing as a “spiral” — writing
(or, maddeningly, revising) Chapter n demands revision of Chapters 1 through
n− 1. The currently propagating wave front of revision has reached this point in
the text. From here forward one may expect more discontinuities, discrepancies,
incongruities, and errors than, I hope, will be found from here backward.
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Subtyping





Chapter 31

Subtyping

Many languages include a notion of subtyping, which is a relation between
types stating, approximately, that a value of the subtype may also be re-
garded as a value of the supertype. Though intuitively appealing, this
formulation is misleading, or at any rate underspecified, because it does
not make clear what is meant by regarding a subtype value as a supertype
value. In this chapter we formulate a general framework for subtyping,
and consider several varieties of subtyping.

31.1 Subtyping

A subtype relation is a pre-order (reflexive and transitive relation) on types
that validates the subsumption principle:

if σ is a subtype of τ, then a value of type σ may be provided
whenever a value of type τ is required.

The subsumption principle provides a clear criterion for determining
whether one type may be considered to be a subtype of another. A require-
ment for a value of type τ is induced by the use of an elimination form
whose principal argument is of type τ. By the subsumption principle, for
σ to be a subtype of τ means that any such requirement for a value of type
τ may be met by supplying a value of type σ instead. Roughly speaking,
this may be achieved by either showing that the elimination form is well-
behaved when given a value of the subtype, or, more generally, that the
value of the subtype may be coerced, or transformed, into a value of the
supertype before passing it to the elimination form, without affecting the
intended meaning of the elimination construct.
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The coercion interpretation is the more general, because we may always
consider the possibility of the null coercion that does nothing whatsoever to
its argument. In typical cases, however, the coercion will transform a value
of the subtype into a value of the supertype in some non-trivial manner
in order to prepare it to be acted on by the elimination form. Whether
a coercion preserves the intended meaning of the elimination construct is
usually intuitively clear; we will not attempt to formalize this concept, but
rather simply argue the plausibility based on informal considerations.

Summarizing, to determine whether σ may be regarded as a subtype of
τ, we must consider all possible elimination forms associated with the type
τ and ensure that there is a suitable coercion available to permit its action
on a value of type σ instead. If this requirement cannot be met for some
elimination form, then the proposed subtyping cannot be safely permitted.
Surprisingly, this simple criterion is often ignored.

The subtyping judgement, σ <: τ, states that the type σ is a subtype of
the type τ. This judgement is inductively defined by a set of rules that may
be divided into two general categories: subtyping axioms, stating primitive
subtyping relationships, and variance rules, determining how type construc-
tors interact with subtyping. In addition we tacitly include the following
two closure rules, which ensure that subtyping is reflexive and transitive:

τ <: τ (31.1a)

ρ <: σ σ <: τ
ρ <: τ

(31.1b)

The examples to follow will illustrate particular forms of subtyping.

31.2 Subsumption

The point of a subtyping relation is to enlarge the set of well-typed pro-
grams. This is achieved by incorporating the principle of subsumption into
the typing rules for a language. This may be achieved in one of two ways.
An an implicit subtyping system we include the rule of implicit subsumption,
which permits an expression of the subtype to be silently regarded as an
expression of the supertype.

Γ ` e : σ σ <: τ
Γ ` e : τ

(31.2a)

This rule is not syntax-directed, because it may be applied to any expres-
sion of any form at any time.
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An explicit subtyping system includes the rule of explicit subsumption,
which permits an expression of the subtype to be explicitly cast, or coerced,
into a value of the supertype.

Γ ` e : σ σ <: τ
Γ ` (σ<:τ) e : τ

(31.2b)

The rules remain syntax-directed, at the expense of requiring explicit indi-
cations of the use of subtyping.

The relationship between the implicit and explicit formulations may be
seen as a problem of type inference. Implicit subsumption provides the
convenience of not requiring the uses of subtyping to be explicitly indi-
cated. Rather the type checker must determine when to insert subtyping
checks in such a way that no programs are ruled out that have a typing
derivation using the implicit subsumption rule. According to this view, it
is a simple matter to instrument the type checker so that it translates the im-
plicit form of subtyping into the explicit form by inserting coercions wher-
ever subtyping relationships are required. We may therefore consider the
explicit form of subtyping to be the primary one, with implicit subtyping
arising as a form of type inference.

Another reason to treat the explicit form as primary is that it provides
the most general foundation for the dynamic semantics. Since coercions
may, but need not, transform their arguments, the dynamic semantics must
be sensitive to the use of subtyping in a program. When we specify a sub-
typing relation, we must specify the dynamic semantics of the associated
coercion, subject to the requirement that the result of the coercion applied
to a value of the subtype be an expression of the supertype (in the explicit
form of the language). We tacitly include the following rule for evaluating
coercions:

e 7→ e′

(σ<:τ) e 7→ (σ<:τ) e′
(31.3a)

Further, we require the following safety requirement for coercions: if e val
and (σ<:τ) e 7→ e′, then e′ is of type τ in the explicit system.

Finally, we include the following rule to eliminate identity coercions:

e val
(σ<:σ) e 7→ e (31.3b)

See Section 31.5 on page 264 for further discussion pertinent to this rule.
In the sequel we will work with variants of L{→<:}, the extension of

L{→} with subtyping. Assuming that the dynamic semantics of coercion
satisfies the safety requirement for coercions, we may prove type safety for
each such extension.
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31.3 Varieties of Subtyping

In this section we will explore several different forms of subtyping in the
context of extensions of L{→}.

31.3.1 Numeric Subtyping

In informal mathematics we treat the set of integers, Z, as a subset of the
set of real numbers, R, on the grounds that there is an inclusion ι : Z ↪→ R

that treats every integer as a real number. Similarly, we regard R as a subset
of C, and so forth.

It is tempting, therefore, to consider a similar interpretation in a pro-
gramming context, by treating int as a subtype of float, where int is the
type of machine integers and float is the type of IEEE floating point num-
bers. This may be achieved by postulating that there is a coercion operation
converting each integer, n, to the corresponding floating point number, xn:

(n ∈ Z)
(int<:float) n 7→ xn

. (31.4)

But this interpretation is unrealistic, because not every machine integer has
an exact representation as a floating point number. Some representations
overflow the capacity of floating point representations, and others have
only inexact representations due to the limitations of floating point.

An alternative in the same spirit is to consider the type int to consist of
arbitrary integers (i.e., with no fixed bound imposed by machine word size),
and to replace float by the type of exact real numbers, real, represented in
any number of ways, say by Cauchy sequences of rationals. While this
is in some ways more theoretically satisfying, it is quite unrealistic because
computation on the exact real numbers is rather inefficient in practice when
compared to floating point arithmetic.

On the other hand, a related, better-behaved, form of subtyping arises
when considering multiple “sizes” of machine integers, say int and long,
representing single-word and double-word integers. In this case there is no
difficulty postulating int <: long, since every single-word integer has an
exact correlate as a double-word integer (by sign extension).
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31.3.2 Function Subtyping

Suppose, for the sake of discussion, that int <: float.1 What subtyping
relationships, if any, should hold among the following four types?

1. int→ int

2. int→ float

3. float→ int

4. float→ float

To determine the answer, keep in mind the subsumption principle, which
says that a value of the subtype should be usable in a supertype context.

Suppose f : int → int. If we apply f to x : int, the result has type
int, and hence, by the arithmetic subtyping axiom, has type float. This
suggests that

int→ int <: int→ float

is a valid subtype relationship. By similar reasoning, we may derive that

float→ int <: float→ float

is also valid.
Now suppose that f : float → int. If x : int, then x : float by

subsumption, and hence we may apply f to x to obtain a result of type int.
This suggests that

float→ int <: int→ int

is a valid subtype relationship. Since int → int <: int → float, it
follows that

float→ int <: int→ float

is also valid.
Subtyping rules that specify how a type constructor interacts with sub-

typing are called variance principles. If a type constructor preserves subtyp-
ing in a given argument position, it is said to be covariant in that position. If,
instead, it inverts subtyping in a given position it is said to be contravariant
in that position. The discussion suggests that the function space constructor

1Nothing depends on this particular choice; any other specified subtyping relationship
would suffice.
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is covariant in the range position and contravariant in the domain position.
This is expressed by the following rule:

τ1 <: σ1 σ2 <: τ2
σ1 → σ2 <: τ1 → τ2

(31.5a)

Note well the inversion of subtyping in the domain, where the function
constructor is contravariant, and the preservation of subtyping in the range,
where the function constructor is covariant.

To ensure safety, we may define the dynamic semantics of casting to a
function type by the following rule:

e val
(σ1 → σ2<:τ1 → τ2) e 7→ λ(x:τ1. (σ2<:τ2) e((τ1<:σ1) x)) (31.5b)

Here e has type σ1 → σ2, τ1 <: σ1, and σ2 <: τ2. The argument is cast to
the domain type of the function prior to the call, and its result is cast to the
intended type of the application.

31.3.3 Product and Record Subtyping

What are the variance principles associated with binary product types?
Suppose that e : σ1 × σ2. There are two elimination forms associated with
products, the projections, with which we may form fst(e) and snd(e), of
types σ1 and σ2, respectively. If σ1 <: τ1 and σ2 <: τ2, then these expressions
are also of types τ1 and τ2, respectively. But these are the types of projec-
tions from a value of type τ1 × τ2. This leads to the following covariance
principle of subtyping for product types:

σ1 <: τ1 σ2 <: τ2
σ1 × σ2 <: τ1 × τ2

. (31.6a)

The covariance of product types is also called depth subtyping, since it ap-
plies subtyping within the components of the product.

The dynamic semantics of covariance is given by the following transi-
tion:

e1 val e2 val

(σ1 × σ2<:τ1 × τ2) 〈e1, e2〉 7→ 〈(σ1<:τ1) e1, (σ2<:τ2) e2〉
(31.6b)

In other words, we may cast e from σ1×σ2 by producing the pair consisting
of the cast of its two components from σ1 to τ1 and σ2 to τ2, respectively.

Similar covariance principles apply to n-tuples and records, for essen-
tially the same reasons.
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Another form of subtyping for products is called width subtyping; it
applies to the n-ary form of product type, 〈τ1, . . . , τn〉. Width subtyping
states that a wider tuple may be regarded as a narrower tuple by simply
“forgetting” the additional components:

m ≥ n
〈τ1, . . . , τm〉 <: 〈τ1, . . . , τn〉

. (31.6c)

There are two possible dynamic interpretations of this subtyping principle,
according to whether projections are sensitive to the exact size of the tuple,
or only to those components that are actually needed to be present. If e · i
is well-defined for any tuple of size n ≥ i, then no coercion is necessary. If,
on the other hand, projection requires full knowledge of the width of the
tuple from which it is projecting, we may coerce as follows:

e val m ≥ n
(〈σ1, . . . , σm〉<:〈τ1, . . . , τn〉) 〈e1, . . . , em〉 7→ 〈e1, . . . , en〉

. (31.6d)

That is, we simply create a new tuple consisting of the first n ≤ m fields of
the subject of the coercion.

Width subtyping also applies to records (labelled tuples), but the se-
mantic interpretation is subtlely different. The reason is that the order of
fields in a record type is immaterial — any permutation of the fields results
in an equivalent record type.2 The width subtyping principle for records
may be stated as follows:

m ≥ n
〈l1 : τ1, . . . , lm : τm〉 <: 〈l1 : τ1, . . . , ln : τn〉

(31.7a)

This seems superficially similar to prefix subtyping for tuples, except that
since the order of fields does not matter, the dynamic meaning is more com-
plicated.

To see what is going on, let us consider the behavior of the field selection
operation, e · l, where e : 〈l1 : τ1, . . . , lm : τm〉. If the type of e determines
precisely the fields present in its value, then projection can be implemented
by a simple offset calculation. That is, if the typing assumption tells us that
the value of e has the form 〈l1 = e1, . . . , lm = em〉, then by maintaining the
fields in sorted order, we can determine the offset of the field l in the value
of e statically, and implement projection accordingly. If, on the other hand,
the typing only provides a view of the shape of e, then we can no longer

2It is certainly possible to consider records in which order matters, but the issues that
arise are not significantly different from those for ordered n-tuples.
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make such a prediction statically, but must determine it dynamically by, say,
looking up l in a dictionary associated with e’s value that determines the
location of field l in that value.

Turning these conditions around, if field selection is performed by a
dynamic search for the location of a field in the record value, then record
width subtyping need have no dynamic effect. If, on the other hand, field
selection is to be resolved statically, then we have no choice but to imple-
ment width subtyping by the following coercion:

e val m ≥ n

(〈l1 : σ1, . . . , lm : σm〉<:〈l1 : τ1, . . . , ln : τn〉) 〈l1 = e1, . . . , lm = em〉
7→

〈l1 = e1, . . . , ln = en〉

(31.7b)

This rule is notationally deceptive, because it assumes that the selected
fields are laid out in order at the beginning of the record value. In real-
ity one must select the appropriate fields one-by-one, and reconstruct the
record consisting of just those selected fields. If we make the implicit per-
mutation explicit, the coercion takes the following form:

e val π : { 1, . . . , m }� { 1, . . . , n }
(〈l1 : σ1, . . . , lm : σm〉<:〈lπ(1) : σπ(1), . . . , lπ(m) : σπ(m)〉) 〈l1 = e1, . . . , lm = em〉

7→
〈lπ(1) = eπ(1), . . . , lπ(n) = eπ(n)〉

(31.7c)
Here π is an injective (one-to-one) mapping of the indices of the supertype
into the indices of the subtype. This represents the selection of fields from
the subtype that remain in the supertype. The coercion copies fields in
correspondence with this permutation.

31.3.4 Sum and Variant Subtyping

Deriving the rules of subsumption for sum types follows a similar pattern.
We must bear in mind that the elimination form for a sum type is a case
analysis that covers all cases that can possibly arise — but no harm is done
if fewer than anticipated are possible.

Binary sum types are covariant in each position:

σ1 <: τ1 σ2 <: τ2
σ1 + σ2 <: τ1 + τ2

. (31.8a)
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This is reasonable, because each branch of a case analysis on a value of
the supertype expects a value of type τ1 and τ2, respectively, and we may
instead supply a value of type σ1 and σ2, since these may be coerced to the
specified supertypes.

The coercion interpretation is given by the following rules, wherein we
write σ for σ1 + σ2, and τ for τ1 + τ2:

e1 val

(σ1 + σ2<:τ1 + τ2) inlσ1 + σ2(e1) 7→ inlτ1 + τ2((σ1<:τ1) e1)
(31.8b)

e1 val

(σ1 + σ2<:τ1 + τ2) inrσ1 + σ2(e2) 7→ inrτ1 + τ2((σ2<:τ2) e2)
. (31.8c)

That is, we coerce the component expression to the appropriate summand,
then re-inject into the supertype.

The analogue of width subtyping for labelled sums states that a nar-
rower choice is a subtype of a wider choice.

m ≤ n
[l1 : τ1, . . . , lm : τm] <: [l1 : τ1, . . . , ln : τn]

(31.8d)

This is justified by the observation that a case analysis on the supertype is
prepared to consider more cases than can actually arise from a value of the
subtype.

The dynamic interpretation of this principle is simply to relabel the in-
jection with the supertype.

1 ≤ j ≤ m

([l1 : σ1, . . . , ln : σn]<:[l1 : τ1, . . . , lm : τm]) [lj = ej][l1 : τ1,...,ln : τn]

7→
[lj = ej][l1 : τ1,...,ln : τn]

.

(31.8e)

Since the only action of the coercion is to relabel the injection, there is no
need for taking explicit account of permutation as there was in the case of
records.

31.3.5 Reference Subtyping

Let us apply the same principles to determining the variance principles for
reference types. Suppose that r has type σ ref. We can do one of two things
with r:
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1. Retrieve its contents as a value of type σ.

2. Replace its contents with a value of type σ.

If σ <: τ, then retrieving the contents of r yields a value of type τ, by
subsumption. This suggests that references are covariant:

σ <: τ
σ ref <: τ ref ??

On the other hand, if τ <: σ, then we may store a value of type τ into r.
This suggests that references are contravariant:

τ <: σ
σ ref <: τ ref ??

Given that we may perform either operation on a reference cell, we
must insist that reference types are invariant (or nonvariant):

σ <: τ τ <: σ
σ ref <: τ ref

(31.9a)

The premise of the rule is often strengthened to the requirement that σ and
τ be equal:

σ = τ
σ ref <: τ ref (31.9b)

since there are seldom situations where distinct types are mutual subtypes.
A similar analysis may be applied to any mutable data structure. For

example, immutable sequences may be safely taken to be covariant, but mu-
table sequences (arrays) must be taken to be invariant, lest safety be com-
promised.

31.3.6 Recursive Subtyping

The subtyping principles for recursive types are a bit tricky to state, because
of the binding operator. It is tempting to postulate the following covariance
principle for recursive types:

σ <: τ
µ(t.σ) <: µ(t.τ)

??

The idea is that since the bound variable on both sides has been chosen to
be the same, then reflexivity will ensure that t <: t.
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For example, this rule validates the intuitively plausible subtyping prin-
ciple stating that the type of lists of integers is a subtype of the type of lists
of floating point numbers. Assuming that int <: float,

µ(t.unit + (int× t)) <: µ(t.unit + (float× t)).

This is easily derived using the covariance of sum and product types, and
reflexivity of subtyping to derive t <: t.

On the other hand, this rule also validates illegitimate subtyping rela-
tionships. Again assuming that int <: float, using the above rule we may
derive the subtyping

σ = µ(t.int× (t→ int)) <: µ(t.float× (t→ float)) = τ.

But this is unsound! Consider the function e of type σ→ int defined by

λ(x:σ. let x′ be unfold(x) in fst(x′)+1).

If the value v = fold(〈0, e〉) of type σ is regarded as a value of type τ, then
we may form the expression e′ of type float given by

snd(unfold(v))(fold(〈3.1, f 〉)),

where f is any function of type τ → float (e.g., a constant function). But

e′ 7→∗ e(3.1) 7→∗ 3.1+1,

which is type-incorrect (integer addition applied to a floating point num-
ber).

What has gone wrong? By choosing the same bound variable on both
sides of the questionable subtyping rule, we have tacitly assumed that the
two recursive types may be regarded as equal when comparing the bodies
of the recursive types for subtyping! That is, we may re-phrase the ques-
tionable rule above as follows, separating the bound variables and using a
hypothetical judgement:

s = t ` σ <: τ
µ(s.σ) <: µ(t.τ)

??

That is, we assume that s and t are equal while comparing the bodies of the
recursive types.

But this is clearly wrong, because the bound variable of a recursive type
stands for the type itself, which on the left is µ(s.σ), and on the right is
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µ(t.τ), and these are different types, in general! The correct rule is to think
self-referentially. While comparing the bodies of recursive types, we assume
what we are trying to prove:

s <: t ` σ <: τ
µ(s.σ) <: µ(t.τ)

. (31.10)

This is the correct rule. Revisiting our example, we are unable to show that
σ <: τ, because we cannot derive the hypothetical judgement

s <: t ` s→ int <: t→ float,

precisely because the function type is contravariant in the argument posi-
tion. This is a good thing, for otherwise the subtyping relation would be
unsound!

The dynamic interpretation of this coercion is interesting. An illus-
trative example will help to see what is going on. Consider the types
σ = µ(s.unit + (int× s)) and τ = µ(t.unit + (float× t)). Intuitively,
these are the types of integer and floating point lists, respectively. One
would expect σ <: τ, and indeed this follows directly from the hypotheti-
cal judgement

s <: t ` unit + (int× s) <: unit + (float× t).

What is the dynamic interpretation of this subtyping relation? Intuitively,
we must coerce every element of the list from int to float. That is, the
coercion between recursive types is a recursive function!

The dynamic interpretation of the recursive subtyping rule may be stated
as follows:

e val

(µ(s.σ)<:µ(t.τ)) fold(e) 7→ fold(([µ(s.σ)/s]σ<:[µ(t.τ)/t]τ) e)
.

(31.11)
Notice that the coercion is self-referential! The substitution on the right-

hand side will, in general, replicate µ(t.τ) in the coercion of e, leading to
a recursive call of the coercion itself. In the case of the list example, this
means that the entire list will be reconstructed, applying coercions to every
element along the way.

31.3.7 Object Subtyping

Similar subtyping principles apply to object types as apply to record types.
In particular, object types are covariant in their components, and permit
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width subtyping.

σ1 <: τ1 . . . σn <: τn

obj〈l1 : σ1, . . . , ln : σn〉 <: obj〈l1 : τ1, . . . , ln : τn〉
(31.12a)

m ≤ n
obj〈l1 : σ1, . . . , ln : σn〉 <: obj〈l1 : σ1, . . . , lm : σm〉

(31.12b)

As with records, the statement of width subtyping relies on an implicit
use of permutation os that the first m components are retained.

The dynamic semantics of object width subtyping is a bit more complex
than that for records. The reason is that, because of self-reference, it is not
sensible to drop fields that are not present in the supertype. For example,
if an object has two fields labelled a and b, then the binding of the a field
might, via self-reference, refer to field b, and vice versa. Consequently, if
we coerce this object to an object type with only an a field, then we cannot
sensibly remove the omitted b field without incurring a violation of type
safety — the remaining a field would refer to a non-existent b field at run-
time.

This means that field access for objects cannot be performed by direct
indexing based on offsets into the object based only on its static type —
the position of a field labelled l is not determined by its type when width
subtyping is permitted. Instead we must employ an indirection scheme
that separates the static view of the type from the object itself. Specifi-
cally, the dynamic representation of an object of type obj〈l1 : τ1, . . . , lm : τm〉
consists of an object whose “true type” (at the point of creation) is a sub-
type obj〈l1 : σ1, . . . , ln : σn〉, together with an injection π : { 1, . . . , m } �
{ 1, . . . , n } indicating the positions of the fields indexed by 1 ≤ i ≤ m in the
underlying object whose fields are indexed 1 ≤ i ≤ n. The dynamic effect
of subtyping is to compose permutations to maintain an accurate mapping
of the visible components of the object to its actual components.

31.4 Explicit Coercions

The dynamic semantics of the coercions given in the preceding section can
be expressed explicitly by defining an explicit coercion function from the
subtype to the supertype for each principle of subtyping. This shows that
subtyping can be “compiled away” by simply inserting calls to the appro-
priate coercion functions during type checking. Put in other terms, we may
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forego subtyping entirely, if we are willing to simply call the implied coer-
cion functions ourselves. In this sense subtyping is only a matter of con-
venience; it does not fundamentally increase the expressiveness of the lan-
guage.

Coercions among primitives types must be taken as primitive. For ex-
ample, we might postulate a function to float, which coerces an integer
to a floating point number, to serve as a witness to the subtyping relation
int <: float. Coercions for compound types are then built up systemat-
ically from the coercions at primitive type, as illustrated by the following
equations.

(σ1 → σ2 <: τ1 → τ2) =
λ( f:σ1 → σ2. λ(x:τ1. (σ2<:τ2) f((τ1<:σ1) x)))

(31.13a)

(σ1 × σ2 <: τ1 × τ2) =
λ(x:σ1 × σ2. 〈(σ1<:τ1) fst(x), (σ2<:τ2) snd(x)〉)

(31.13b)

(〈σ1, . . . , σn〉 <: 〈σ1, . . . , σm〉) =
λ(x:〈σ1, . . . , σn〉. 〈x · 1, . . . , x ·m〉)

(31.13c)

(µ(s.σ) <: µ(t.τ)) = fun f(x:µ(s.σ)):µ(t.τ) is F( f)(x) (31.13d)

In the last equation the function F( f) is the interpretation of (σ <: τ) as a
function of the assumed coercion f witnessing s <: t.

Using this explicit interpretation of coercions, we may then interpret
(σ<:τ) e as the application of the coercion (σ <: τ) to e!

31.5 Coherence

In Section 31.2 on page 252 we argued that implicit subsumption is best
regarded as a convenient syntax for explicit subsumption in which each
implicit typing derivation corresponds to a decoration of the expression
with explicit uses of subtyping inserted as casts. But since there are, in gen-
eral, many ways to perform this translation, we are faced with the question
of whether all such ways of inserting casts are equivalent. If not, then the
meaning of a program is sensitive to the structure of the derivation of its
type correctness, and not just to the program itself. Thus, the program it-
self has an ambiguous meaning, forcing the type checker to choose one of
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many possible interpretations, quite possibly not the one intended by the
programmer. If so, then the meaning of the program is independent of the
way in which it is type checked, and hence is unambiguous in its implicit
form.

When all possible translations of implicit into explicit subtyping are
equivalent, the interpretation is said to be coherent, and is otherwise in-
coherent. To avoid ambiguity, the implicit form of subsumption should be
considered only when the coercion interpretation is coherent. Coherence is
guaranteed if all coercions are trivial in the sense that they do not alter the
representation of a value when passing from a subtype to a supertype. In
the presence of non-trivial coercions, however, coherence is far from obvi-
ous.

One source of failure is well-illustrated by considering the numeric sub-
typing int <: float. Consider the expression sqrt(e1+e2), where e1 and e2
are integer expressions, and sqrt is an operation on floating point numbers.
This expression may be type checked in one of two ways, corresponding to
the following two explicit forms of the expression.

1. sqrt((int<:float) e1+(int<:float) e2).

2. sqrt((int<:float) (e1+e2)).

In the first case the two integers are coerced to floating point numbers, then
added and passed to sqrt. In the second the integers are added as such,
then coerced to floating point before being passed to sqrt. But these two
interpretations are not always the same! The reason is that addition does not
commute with floating point representation, so that the floating point form
of an integer sum need not coincide with the floating sum of the floating
point representations of its arguments.

Another, more subtle, problem of incoherence arises even in the explicit
case. When assigning semantics to a cast (σ<:τ) e, we are tactitly assuming
that all possible ways of coercing σ to τ are equivalent. The unstated assump-
tion lies in the supposition that we can coerce e from σ to τ knowing only
the endpoints, and not the path by which we get from one to the other.3

If there are two semantically distinct ways of coercing values of type σ to
values of type τ, then even explicit subsumption is incoherent. For exam-
ple, one might have the subsumption relations int <: float <: double,
in which the type double represents double-precision floating point num-
bers. It is not assured that first coercing an integer to floating point, and

3This is the justification for defining (σ<:σ) e 7→ e in Section 31.2 on page 252: all coer-
cions from σ to itself are equivalent to the identity coercion.
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then to double-precision floating points, is equivalent to directly convert-
ing the integer to double-precision, because the integer may not have an ex-
act representation in floating point, but may have one in double-precision.
Therefore subtyping is sensitive to the “path” from int to double, leading
to incoherence.

In the presence of such incoherence, not even explicit subsumption can
be regarded as semantically sensible, since the meaning of (σ<:τ) e de-
pends on the “reason” for σ <: τ, and not just on σ and τ themselves. In
such situations it is best to avoid subtyping entirely in favor of simply ask-
ing that the programmer write down the intended coercion as a function of
type σ → τ herself, and not rely on automatic generation at all. If, on the
other hand, all coercions witnessing the subtype relation σ <: τ are equiv-
alent, then one may consider explicit subsumption in the form described
here. Finally, to justify the use of implicit subsumption, one must prove co-
herence of type checking — that any way of inserting coercions is as good
as any other.

31.6 Exercises

1. Consider the subtyping issues related to signed and unsigned, fixed
precision integer types.

2. Explore the effect of functional update on record and object subtyp-
ing.
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Chapter 33

Singleton and Dependent
Kinds

The expression let e1:τ be x in e2 is a form of abbreviation mechanism by
which we may bind e1 to the variable x for use within e2. In the presence of
function types this expression is definable as the application λ(x:τ. e2)(e1),
which accomplishes the same thing. It is natural to consider an analogous
form of let expression which permits a type expression to be bound to a type
variable within a specified scope. The expression let t be τ in e binds t to τ
within e, so that one may write expressions such as

let t be nat× nat inλ(x:t. s(fst(x))).

For this expression to be type-correct the type variable t must be synony-
mous with the type nat× nat, for otherwise the body of the λ-abstraction
is not type correct.

Following the pattern of the ordinary let, we might guess that lettype
is an abbreviation for the polymorphic instantiation Λ(t.e)[τ], which binds
t to τ within e. However, this representation is incorrect! The difficulty is
that e is typechecked with the type t held abstract, which precisely violates
the requirement of synonymity with its binding.

One reaction is to simply take lettype as a primitive concept, but this
would violate the principle that language features should arise naturally
from type structure. What type-theoretic concept gives rise to type abbre-
viations? The answer to this question is singleton kinds, which extend the
kind structure of the language with a kind, equiv(c), of constructors of
kind Type that are definitionally equivalent to c. Using singletons we can
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define let t be τ in e as the application

Λ(t::equiv(τ).e)[τ],

which propagates the definition of t as τ into the scope, e, of the abbrevia-
tion. For if t has kind equiv(τ), then t is definitionally equivalent to τ, as
required to faithfully model type abbreviations.
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Chapter 34

Storage Effects

L{→} is said to be a pure language because the execution model consists
entirely of evaluating an expression for its value. ML is an impure language
because its execution model also includes effects, specifically, control effects
and store effects. Control effects are non-local transfers of control; these were
studied in Chapters 28 and 27. Store effects are dynamic modifications to
mutable storage. This chapter is concerned with store effects.

34.1 References

The L{→} type language is extended with reference types ref(τ) whose
elements are to be thought of as mutable storage cells. We correspondingly
extend the expression language with these primitive operations:

Expr e ::= l | new(e) | get(e) | set(e1, e2)

As in Standard ML, new(e) allocates a “new” reference cell, get(e) re-
trieves the contents of the cell e, and set(e1, e2) sets the contents of the cell
e1 to the value e2. The variable l ranges over a set of locations, an infinite
set of names disjoint from variables. These are needed for the dynamic
semantics, but are not expected to be notated directly by the programmer.

The typing judgement, e : τ, for the extension of L{→} with references
must be considered in the context of two forms of assumptions:

1. Variable assumptions of the form x : τ, introducing an expression vari-
able x with type τ.

2. Location assumptions of the form l : τ, introducing a location l whose
contents is of type τ.
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The hypothetical typing judgement has the form

Λ Γ ` e : τ,

where Γ stands for a finite set of variable assumptions, and Λ stands for a
finite set of location assumptions, such that no variable and no location is
the subject of more than one assumption.

The typing rules are those of L{→} (extended to carry a location typ-
ing), plus the following rules governing the new constructs of the language:

Λ, l : τ Γ ` l : ref(τ) (34.1a)

Λ Γ ` e : τ
Λ Γ ` new(e) : ref(τ)

(34.1b)

Λ Γ ` e : ref(τ)
Λ Γ ` get(e) : τ

(34.1c)

Λ Γ ` e1 : ref(τ2) Λ Γ ` e2 : τ2

Λ Γ ` set(e1, e2) : τ2
(34.1d)

Notice that the location typing is not extended during type checking! Lo-
cations arise only during execution, and are not part of complete programs,
which must not have any free locations in them. The role of the location
typing will become apparent in the proof of type safety for L{→} extended
with references.

A memory is a finite function mapping locations to closed values. The
dynamic semantics of L{→} with references is given by an abstract ma-
chine with states of the form (M, e), where M is a memory and e is an
expression whose locations all lie within the domain of M. The locations
in the domain of M are bound simultaneously in both components of the
state, so that they may be renamed as convenient. All states of the form
(∅, e), where e contains no locations, are initial. All states of the form
(M, e), where e val, are final.

The dynamic semantics of references is defined by the following rules:

l val (34.2a)

(M, e) 7→ (M′, e′)
(M, new(e)) 7→ (M′, new(e′))

(34.2b)

e val l # M
(M, new(e)) 7→ (M[l = e], l) (34.2c)
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(M, e) 7→ (M′, e′)
(M, get(e)) 7→ (M′, get(e′))

(34.2d)

e val
(M[l = e], get(l)) 7→ (M, e) (34.2e)

(M, e1) 7→ (M′, e′1)
(M, set(e1, e2)) 7→ (M′, set(e′1, e2))

(34.2f)

e1 val (M, e2) 7→ (M′, e′2)
(M, set(e1, e2)) 7→ (M′, set(e1, e′2))

(34.2g)

e val
(M[l = e′], set(l, e)) 7→ (M[l = e], e) (34.2h)

To prove type safety for this extension we will make use of some aux-
iliary relations. Most importantly, the typing relation between memories
and location typings, written M : Λ, is inductively defined by the follow-
ing rule:

∀l ∈ dom(Λ) Λ ` M(l) : Λ(l)
M : Λ

(34.3)

For each location l in the location typing, we require that the value stored
at location l has the type assigned to it by the location typing, relative to
the entire location typing. This allows for cyclic memories in which the
contents of one location may refer, directly or indirectly, to itself.

The typing rule for memories is reminiscent of the typing rule for re-
cursive functions—we assume the very typing that we are trying to prove
while trying to prove it. This similarity is no accident. In fact, we can use
mutable storage to implement recursion, as is illustrated by the following
example:

let r be new(λ n:nat.n) in
let f be λ n:nat.ifz(n, 1, n’.n*get(r)(n’)) in
let be set(r,f) in f

This expression returns a function of type nat → nat that is obtained by
(a) allocating a reference cell initialized arbitrarily with a function of ths
type, (b) defining a λ-abstraction in which each “recursive call” consists
of retrieving and applying the function stored in that cell, (c) assigning this
function to the cell, and (d) returning that function. This technique is called
backpatching.
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The well-formedness of a machine state is defined by the following rule:

M : Λ Λ ` e : τ
(M, e) ok

(34.4)

That is, (M, e) is well-formed iff there is a location typing for M relative to
which e is well-typed.

Lemma 34.1 (Weakening). If Λ ` e : τ and Λ′ ⊇ Λ, then Λ′ ` e : τ.

Proof. By induction on the derivation of typing. The presence of additional
assumptions governing locations not in Λ does not affect the validity of the
derivation.

Theorem 34.2 (Preservation). If (M, e) ok and (M, e) 7→ (M′, e′), then (M′, e′) ok.

Proof. The trick is to prove a stronger result by induction on evaluation: if
(M, e) 7→ (M′, e′), M : Λ, and Λ ` e : τ, then there exists Λ′ ⊇ Λ such that
M′ : Λ′ and Λ′ ` e′ : τ.

Theorem 34.3 (Progress). If (M, e) ok then either (M, e) is a final state or there
exists (M′, e′) such that (M, e) 7→ (M′, e′).

Proof. The proof is by induction on typing: if M : Λ and Λ ` e : τ, then
either e is a value or there exists M′ and e′ such that (M, e) 7→ (M′, e′).

34.2 Exercises

1. Prove Theorem 34.2. The strengthened form tells us that the location
typing, and the memory, increase monotonically during evaluation
in the sense that the type of a location never changes once it is estab-
lished at the point of allocation.

2. Prove Theorem 34.3 by induction on typing of machine states.

3. Sketch the contents of the memory after each step in the backpatching
example.
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Monadic Storage Effects

As we saw in Chapter 34 one way to combine functional and imperative
programming is to add a type of reference cells to L{nat⇀}. This ap-
proach works well for call-by-value languages, because we can easily pre-
dict where expressions are evaluated, and hence where references are allo-
cated and assigned. For call-by-name languages this approach is problem-
atic, because in such languages it is much harder to predict when (and how
often) expressions are evaluated.

Enriching ML with a type of references has an additional consequence
that one can no longer determine from the type alone whether an expres-
sion mutates storage. For example, a function of type nat → nat must
take in a natural number as argument and yield a natural number as result,
but may or may not allocate new reference cells or mutate existing refer-
ence cells. The expressive power of the type system is thereby weakened,
because we cannot distinguish pure (effect-free) expressions from impure
(effect-ful) expressions.

Another approach to introducing effects in a purely functional language
is to make the possibility of effects explicit in the type system. This is
achieved by introducing a modality, called a monad, that segregates the effect-
free fragment of the language from the effect-ful fragment. These two sub-
languages are related by two principles: (a) every effect-free expression
may be regarded as (vacuously) effect-ful, and (b) an effect-ful expression
may be suspended and packaged as an effect-free expression, and, corre-
spondingly, unpackaging and activating such an expression is an effect-
ful operation. A packaged effect-ful expression is a value of monadic type,
τ comp, which signals that it classifies an impure computation yielding a
value of type τ.
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In this setting the type nat → nat consists only of pure, possibly non-
terminating, functions on the natural numbers. Applying such a function
can have no effect on the store. However, the type nat → nat comp con-
sists of functions that, when applied to a natural number, yield an effect-ful
computation that, when activated, yields a natural number and may also
modify the store. Thus, the type distinguishes the possibility of there being
an effect.

35.1 A Monadic Language

The syntax of a monadic re-formulation of the extension of the language
L{nat⇀} with references is given by the following grammar:

Type τ ::= nat | parr(τ1, τ2) | ref(τ) | comp(τ)
Expr e ::= x | l | z | s(e) | ifz(e0, e1, e2) | fix[τ](x.e) |

lam[τ](x.e) | ap(e1, e2) | comp(m)
Comm m ::= return(e) | letcomp(e, x.m) |

new(e) | get(e) | set(e1, e2)

The class of expressions is pure in that they do not involve operations on
the state, which are relegated to the class of commands. The type comp(τ)
is the type of suspended computations yielding a value of type τ. The
introductory form is an expression of the form comp(m), and the corre-
sponding eliminatory form is the command letcomp(e, x.m). The com-
mand return(e) represents the inclusion of expressions into commands.
The other constructs are adapted from Chapters 15 and 34.

The concrete syntax corresponding to the new forms of abstract syntax
is given by the following chart:

Abstract Syntax Concrete Syntax
comp(τ) τ comp
return(e) return e
letcomp(e, x.m) let comp(x) be e inm
comp(m) comp(m)

As a convenience for examples, we sometimes employ the do syntax, which
permits sequential composition of impure computations in a manner rem-
iniscent of imperative programming languages. It is defined in two stages.
First, the binary “do” construct, with abstract syntax do(m1, x.m2) and
concrete syntax do {x ← m1 ;m2}, is defined to be the impure expression
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letcomp(comp(m1), x.m2). Second, we introduce the concrete syntax

do {x1 ← m1 ; . . . ; xk ← mk ; return e}

to stand for the abstract syntax

do {x1 ← m1 ; . . . do {xk ← mk ; return e} . . .}.

The static semantics of this language consists of two forms of typing
judgement, e : τ, stating that pure expression e has type τ, and m ∼ τ,
stating that the impure expression m has type τ. Both of these judgement
forms are considered with respect to hypotheses of the form xi : τi, which
introduces a variable xi with type τi, and of the form li : τi, which intro-
duces a location li whose contents is to be of type τi. We will not have need
of hypotheses of the form ui ∼ τi, because variables are only ever bound to
values, which are always pure (since they are fully evaluated). As in Chap-
ter 34, we will write Γ for a finite set of variable assumptions, and Λ for
a finite set of location assumptions. We will segregate these assumptions
from one another when writing hypothetical judgements.

The typing rules for this extension are an extension of those forL{nat⇀},
with the following additional rules.

Λ Γ ` m ∼ τ
Λ Γ ` comp(m) : comp(τ)

(35.1a)

Λ Γ ` e : τ
Λ Γ ` return(e) ∼ τ

(35.1b)

Λ Γ ` e : comp(τ) Λ Γ, x : τ ` m ∼ τ′

Λ Γ ` letcomp(e, x.m) ∼ τ′
(35.1c)

Λ, l : τ Γ ` l : ref(τ) (35.1d)

Λ Γ ` e : τ
Λ Γ ` new(e) ∼ ref(τ)

(35.1e)

Λ Γ ` e : ref(τ)
Λ Γ ` get(e) ∼ τ

(35.1f)

Λ Γ ` e1 : ref(τ) Λ Γ ` e2 : τ

Λ Γ ` set(e1, e2) ∼ unit
(35.1g)

The dynamic semantics of the monadic formulation of L{nat⇀} with
references is structured into two parts:
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1. A transition relation e 7→ e′ for pure expressions.

2. A transition relation (M, m) 7→ (M′, m′) for impure expressions.

The former relation is defined just as it is for L{nat⇀}, amended to ac-
count for the new pure expression forms. The latter is defined similarly
to Chapter 34, again amended to account for the extensions with monadic
primitives.

There are two additional forms of value at the pure expression level:

comp(m) val (35.2a)

l val (35.2b)

That is, both suspended computations and locations are values.
The rules governing the monadic primitives are as follows.

e 7→ e′

(M, return(e)) 7→ (M, return(e′)) (35.3a)

e 7→ e′

(M, letcomp(e, x.m)) 7→ (M, letcomp(e′, x.m)) (35.3b)

(M, m1) 7→ (M′, m′1)
(M, letcomp(comp(m1), x.m2)) 7→ (M′, letcomp(comp(m′1), x.m2))

(35.3c)

e val
(M, letcomp(comp(return(e)), x.m)) 7→ (M, [e/x]m) (35.3d)

The evaluation rules for the reference primitives are as follows:

e 7→ e′

(M, new(e)) 7→ (M, new(e′)) (35.3e)

e val l # M
(M, new(e)) 7→ (M[l = e], return(l)) (35.3f)

e 7→ e′

(M, get(e)) 7→ (M, get(e′)) (35.3g)

e val l # M
(M[l = e], get(l)) 7→ (M[l = e], return(e)) (35.3h)
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e1 7→ e′1
(M, set(e1, e2)) 7→ (M, set(e′1, e2))

(35.3i)

e1 val e2 7→ e′2
(M, set(e1, e2)) 7→ (M, set(e1, e′2))

(35.3j)

e val l # M
(M[l = e′], set(l, e)) 7→ (M[l = e], return(e)) (35.3k)

The transition rules for the monadic elimination form is somewhat un-
usual. First, the expression e is evaluated to obtain an encapsulated impure
computation. Once such a computation has been obtained, execution con-
tinues by evaluating it in the current memory, updating that memory as
appropriate during its execution. This process ends once the encapsulated
computation is a return statement, in which case this value is passed to
the body of the letcomp.

35.2 Explicit Effects

The chief motivation for introducing monads is to make explicit in the types
any reliance on computational effects. In the case of storage effects this is
not always an advantage. The problem is that any use of storage forces the
computation to be within the monad, and there is no way to get back out—
once in the monad, always in the monad. This rules out the use of so-called
benign effects, which may be used internally in some computation that is,
for all outward purposes, entirely pure. One example of this is provided by
splay trees, which may be used to implement a purely functional dictionary
abstraction, but which rely heavily on mutation for their implementation in
order to ensure efficiency. A simpler example, which we consider in detail,
is provided by the use of backpatching to implement recursion as described
in Chapter 34.

When formulated using monads to expose the use of effects, the back-
patching implementation, fact, of the factorial function is as follows:

do {
r ← new (λ n:nat. comp(return (n)))

; f ← return (λ n:nat. ...)
; ← set (r, f)
; return f
}
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where the elided λ-abstraction is given as follows:

λ(n:nat.
ifz(n,

comp(return(1)),
n’.comp(

do {
f’← get(r)

; return (n*f’(n’))
})))

Observe that each branch of the conditional test returns a suspended com-
putation. In the case that the argument is zero, the computation simply
returns the value 1. Otherwise, it fetches the contents of the associated
reference cell, applies this to the predecessor, and returns the result of the
appropriate calculation.

We may check that that fact ∼ nat→ (nat comp), which exposes two
aspects of this code:

1. The computation that builds the recursive factorial function is im-
pure, because it allocates and assigns to the reference cell used to im-
plement backpatching.

2. The body of the factorial function is itself impure, because it accesses
the reference cell to effect the recursive call.

The consequence is that the factorial function may no longer be used as
a (pure) function! In particular, we cannot apply fact to an argument in a
pure expression. In an impure context we must write

do {
f ← fact

; x ← let comp (x:nat) be f(n) in return x
; return x
}

in order to bind the function computed by the expression fact to the variable
f; apply this to n, yielding the result; and return this to the caller.

The difficulty is that the use of a reference cell to implement recursion is
a benign effect, one that does not affect the purity of the function expression
itself, nor of its applications. But the type system for effects studied here is
incapable of recognizing this fact, and for good reason. For it is extremely
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difficult, in general, to determine whether or not the use of effects in some
region of a program is benign. As a stop-gap measure, one way around
this is to introduce an operation of type τ comp→ τ, which may be used to
exit the monad. But this ruins the very distinction we are trying to enforce
using monads, namely that between pure and impure code!

35.3 Exercises

1. State and prove type safety for the monadic formulation of storage
effects.
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Chapter 36

Extensible Sums

The Standard ML exception mechanism comprises two separable concepts:

1. An exception control mechanism, which permits non-local transfers of
control from any point in a program to the nearest enclosing excep-
tion handler. The exception control mechanism is described in Chap-
ter 27.

2. A type of values that are passed to the exception handler when an
exception is raised. In Standard ML the type of values associated
with exceptions is the type exn, but the choice is essentially arbitrary,
the only restriction being that a single type must govern the values
associated with all exceptions in a program.

The type exn is known as an extensible datatype because it has many of
the same characteristics as a datatype, except that the collection of construc-
tors of that type is both statically and dynamically extensible. The type exn
is similar to a datatype in that at any point in time we may think of it as a
partially constructed, possibly recursive, labelled sum type l1, τ1, . . . , ln, τn.
Each label li serves a dual role as a labelled injection mapping a value of
type τi into the type exn, and as a discriminator that determines whether a
value of type exn is labelled by a specified li and, if so, extracts the injected
value. This is sufficient to construct exceptions using the injections and to
perform case analysis for specified injections using discriminators.

The crucial difference to sum types, however, is that the collection of
labels is extensible, meaning that at any point in the program we may in-
troduce a “new” value constructor for the exn type, which has the effect
of extending the sum type exn at that point with an addition summand.
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Thus the constructors of the type exn are not fully determined until the en-
tire program has been processed—the summands are specified piecemeal
throughout the program. But even more so new summands can be added
dynamically, for example in each iteration of a loop, so that the simple in-
terpretation of exn as a partially constructed sum type breaks down in that
one cannot determine the full meaning of the exn type until after execution
is complete! Nevertheless the analogy with recursive sums is informative,
and a good guide to what follows.

Confusingly, new value constructors for the exn type are introduced in
Standard ML using an exception declaration. For example, the declaration

exception Div

introduces a new summand labelled Div of exn type with an associated
value of type unit, which is suppressed from the syntax. Similarly, the
declaration

exception Fail of string

introduces a new summand labelled Fail of exn type with an associated
value of type str. Finally, one may introduce recursion using an exception
declaration such as

exception Recursive of exn

which introduces a new summand labelled Recursive whose associated
value is of type exn!

Importantly, if two exception declarations introduce an exception with
the same name, they nevertheless are distinct exceptions, even though within
the scope of one we cannot refer by name to the other. The exception dec-
laration is therefore said to be generative in that each use generates a “new”
summand of the exn type. In particular, if an exception declaration occurs
within a loop, then each iteration of the loop introduces a fresh exception,
albeit each with the same name!

Although the syntax of suggests otherwise, the exn type has little to do
with the exception control mechanism. In particular, the exception dec-
laration has nothing at all to do with exceptions! Rather, it introduces a
new summand of the exn type, which may be used in whatever way we
see fit—the type exn is no different than any other type in this respect. To
avoid confusion we will study the concept of a dynamically extensible sum
type in isolation, using a different notation that makes clear that there is no
fundamental connection to the exception control mechanism.
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36.1 Tags and Tagging

The abstract syntax of our tagging mechanism is given by the following
grammar:

Type τ ::= tagged | tag(τ)
Expr e ::= l | tagwith[τ](e1; e2) | lettag(e1; t, x, y.e2) | newtag[τ]() |

istag[t.τ](e1; e2; e3; e4)

The type tagged is the type of tagged values; it corresponds to the type exn
in Standard ML. The type tag(τ) is the type of tags with associated value of
type τ. A tag is just a label, or name. The expression tagwith[τ](e1; e2)
attaches a tag with associated type τ to a value of that type. The expression
lettag(e1; t, x, y.e2) decomposes a tagged value into its constituent parts
for use within a specified scope. A new tag with associated type τ is created
by the expression newtag[τ](). Two tags are compared for equality using
istag[t.τ](e1; e2; e3; e4).

The corresponding concrete syntax is given by the following chart:

Abstract Syntax Concrete Syntax
tagged tagged
tagwith[τ](e1; e2) tagτ e2 with e1
lettag(e1; t, x, y.e2) let tagt y with x be e1 in e2
newtag[τ]() newtag[τ]
istag[t.τ](e1; e2; e3; e4) iftagt.τ e1is e2 then e3 else e4

The static semantics consists of an inductive definition of judgements
of the form Θ ∆ Γ ` e : τ, where Θ is a finite set of hypotheses of the form
l : τ assigning an associated type to a tag such that no tag is assigned more
than one type. The hypotheses of ∆ are of the form t type, and those of Γ
are of the form x : τ, as usual.

Θ, l : τ ∆ Γ ` l : tag(τ) (36.1a)

∆ ` τ type Θ ∆ Γ ` e1 : tag(τ) Θ ∆ Γ ` e2 : τ

Θ ∆ Γ ` tagwith[τ](e1; e2) : tagged
(36.1b)

Θ ∆ Γ ` e1 : tagged Θ ∆, t type Γ, x : tag(t), y : t ` e2 : τ2

Θ ∆ Γ ` lettag(e1; t, x, y.e2) : τ2
(36.1c)

∆ ` τ type

Θ ∆ Γ ` newtag[τ]() : tag(τ)
(36.1d)
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Θ ∆ Γ ` e1 : tag(τ1) Θ ∆ Γ ` e2 : tag(τ2)

Θ ∆ Γ ` e3 : [τ2/t]τ Θ ∆ Γ ` e4 : [τ1/t]τ ∆, t type ` τ type

Θ ∆ Γ ` istag[t.τ](e1; e2; e3; e4) : [τ1/t]τ

(36.1e)

Rule (36.1e) is the most interesting. When comparing two tags for equality,
we do not know a priori whether they have the same type of associated
value. Indeed, if the tags are different, they will not, in general, have the
same associated type, but if they are the same, then they will. Thinking of
e1 as the target of the comparison and e2 as the candidate, then the type of
the comparison is always [τ1/t]τ. When the two tags are equal, then we
propagate the equality of τ1 and τ2 by insisting that e3 have type [τ2/t]τ,
but when they are not equal, we require only that e4 have type [τ1/t]τ.

The dynamic semantics is given in terms of an abstract machine whose
states have the form (T, e), where T is a finite set of tags, and e is an expres-
sion all of whose tags are in T.

l name
l val

(36.2a)

e1 val e2 val

tagwith[τ](e1; e2) val
(36.2b)

(∅, e) initial (36.2c)

e val
(T, e) final

(36.2d)

(T, e1) 7→ (T′, e′1)
(T, tagwith[τ](e1; e2)) 7→ (T, tagwith[τ](e′1; e2))

(36.2e)

e1 val (T, e2) 7→ (T′, e′2)
(T, tagwith[τ](e1; e2)) 7→ (T′, tagwith[τ](e1; e′2))

(36.2f)

(T, e1) 7→ (T′, e′1)
(T, lettag(e1; t, x, y.e2)) 7→ (T′, lettag(e′1; t, x, y.e2))

(36.2g)

tagwith[τ](e1; e2) val

(T, lettag(tagwith[τ](e1; e2); t, x, y.e)) 7→ (T, [τ, e1, e2/t, x, y]e)
(36.2h)

l # T
(T, newtag[τ]()) 7→ (T ∪ { l }, l) (36.2i)
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(T, e1) 7→ (T′, e′1)
(T, istag[t.τ](e1; e2; e3; e4)) 7→ (T′, istag[t.τ](e′1; e2; e3; e4))

(36.2j)

e1 val (T, e2) 7→ (T′, e′2)
(T, istag[t.τ](e1; e2; e3; e4)) 7→ (T′, istag[t.τ](e1; e′2; e3; e4))

(36.2k)

(l1 = l2)
(T, istag[t.τ](l1; l2; e3; e4)) 7→ (T, e3)

(36.2l)

(l1 6= l2)
(T, istag[t.τ](l1; l2; e3; e4)) 7→ (T, e4)

(36.2m)

The type tagged is definable in a language with existential types. Specif-
ically, we may define tagged to be the existential type ∃(t.t tag× t). Val-
ues of this type are packages consisting of the associated type, τ, of the
tagged value together with a tag for values of type τ paired with a value
of type τ. Consequently, we may define the introduction and elimination
forms for the type tagged as follows:

tagwith[τ](e1; e2) = pack[t.t tag× t; τ](pair(e1, e2)) (36.3)
lettag(e1; t, x, y.e2) = open[t.t tag× t](e1; t, z.[fst(z), snd(z)/x, y]e2)

(36.4)

It is easy to check that the static and dynamic semantics is preserved by
these definitions.

36.2 Safety

Given the definability of the type tagged, the safety of dynamically tagged
values reduces to showing progress and preservation for the introduction
and elimination forms for the type tag(τ) of tags.

First, we define T : Θ to hold iff dom(Θ) = T, which is to say that Θ
assigns a type to all and only those tags in T.

The preservation theorem is similar to that for reference types ( 34.2 on
page 276).

Lemma 36.1 (Preservation). If Θ ` e : τ, T : Θ, and (T, e) 7→ (T′, e′), then
there exists Θ′ ⊇ Θ such that T′ : Θ′ and Θ ` e′ : τ.
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Proof. The proof is by induction on transition. The most interesting case is
for Rule (36.2l) in which the tags l1 and l2 are equal. We have by inversion
that Θ ` l1 : tag(τ1) and Θ ` l2 : tag(τ2). But since l1 = l2, it follows
from inversion and Θ being a function that τ1 = τ2. By inversion we have
Θ ` e2 : [τ2/t]τ, but then this is just Θ ` e2 : [τ1/t]τ, as required.

The canonical forms lemma characterizes the closed values of tag type.

Lemma 36.2 (Canonical Forms). If Θ ` e : tag(τ) with e val, then e = l for
some l ∈ dom(Θ) with Θ(l) = τ.

Lemma 36.3 (Progress). If Θ ` e : τ with T : Θ, then either (T, e) final, or there
exists T′ ⊇ T and e′ such that (T, e) 7→ (T′, e′).

Proof. By induction on typing, making use of Lemma 36.2.

36.3 Exercises

Show that the operation iftagof with typing rule

Θ ∆ Γ ` e1 : tagged Θ ∆ Γ ` e2 : tag(τ2) Θ ∆ Γ, x : τ2 ` e3 : τ Θ ∆ Γ ` e4 : τ

Θ ∆ Γ ` iftagof(e1; e2; x.e3; e4) : τ
(36.5)

and evaluation rule

(l1 = l2) tagwith[τ1](l1; e1) val

(T, iftagof(tagwith[τ1](l1; e1); l2; x.e3; e4)) 7→ (T, [e1/x]e3)
(36.6)

is definable.
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Chapter 37

Eagerness and Laziness

A fundamental distinction between eager, or strict, and lazy, or non-strict,
evaluation arises in the dynamic semantics of function, product, sum, and
recursive types. This distinction is of particular importance in the context
of L{µ⇀}, which permits the formation of divergent expressions. Quite
often eager and lazy evaluation is taken to be a language design distinction,
but we argue that it is better viewed as a type distinction.

37.1 Eager and Lazy Dynamics

According to the methodology outlined in Chapter 10, language features
are identified with types. The constructs of the language arise as the intro-
ductory and eliminatory forms associated with a type. The static semantics
specifies how these may be combined with each other and with other lan-
guage constructs in a well-formed program. The dynamic semantics spec-
ifies how these constructs are to be executed, subject to the requirement of
type safety. Safety is assured by the conservation principle, which states
that the introduction forms are the values of the type, and the elimination
forms are inverse to the introduction forms.

Within these broad guidelines there is often considerable leeway in the
choice of dynamic semantics for a language construct. For example, con-
sider the dynamic semantics of function types given in Chapter 13. There
we specified the λ-abstractions are values, and that applications are evalu-
ated according to the following rules:

e1 7→ e′1
e1(e2) 7→ e′1(e2)

(37.1a)
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e1 val e2 7→ e′2
e1(e2) 7→ e1(e′2)

(37.1b)

e2 val

λ(x:τ. e)(e2) 7→ [e2/x]e
(37.1c)

The first of these states that to evaluate an application e1(e2) we must first
of all evaluate e1 to determine what function is being applied. The third of
these states that application is inverse to abstraction, but is subject to the
requirement that the argument be a value. For this to be tenable, we must
also include the second rule, which states that to apply a function, we must
first evaluate its argument. This is called the call-by-value, or strict, or eager,
evaluation order for functions.

Regarding a λ-abstraction as a value is inevitable so long as we retain
the principle that only closed expressions (complete programs) can be exe-
cuted. Similarly, it is natural to demand that the function part of an appli-
cation be evaluated before the function can be called. On the other hand it
is somewhat arbitrary to insist that the argument be evaluated before the
call, since nothing seems to oblige us to do so. This suggests an alternative
evaluation order, called call-by-name,1 or lazy, which states that arguments
are to be passed unevaluated to functions. Consequently, function param-
eters stand for computations, not values, since the argument is passed in
unevaluated form. The following rules define the call-by-name evaluation
order:

e1 7→ e′1
e1(e2) 7→ e′1(e2)

(37.2a)

λ(x:τ. e)(e2) 7→ [e2/x]e (37.2b)

We omit the requirement that the argument to an application be a value.
This example illustrates some general principles governing the dynamic

semantics of a language:

1. The conservation principle demands that the elimination forms be
inverse to the introduction forms. The elimination forms associated
with a type have a distinguished principal argument, which is of the
type under consideration, to which the elimination form is inverse.

2. The principal argument of an elimination form is necessarily evalu-
ated to an introduction form, thereby exposing an opportunity for
cancellation according to the conservation principle.

1For obscure historical reasons.
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3. It is more or less arbitrary whether the non-principal arguments to an
elimination form are evaluated prior to cancellation.

4. Values of the type have introductory form, but may also be chosen to
satisfy further requirements such as insisting that certain sub-expressions
also be values.

Let us apply these principles to the product type. First, the sole argu-
ment to the elimination forms is, of course, principal, and hence must be
evaluated. Second, if the argument is a value, it must be a pair (the only
introductory form), and the projections extract the appropriate component
of the pair.

〈e1, e2〉 val

fst(〈e1, e2〉) 7→ e1
(37.3)

〈e1, e2〉 val

snd(〈e1, e2〉) 7→ e1
(37.4)

e 7→ e′

fst(e) 7→ fst(e′)
(37.5)

e 7→ e′

snd(e) 7→ snd(e′)
(37.6)

Since there is only one introductory form for the product type, a value
of product type must be a pair. But this leaves open whether the compo-
nents of a pair value must themselves be values or not. The eager (or strict)
semantics, which we gave in Chapter 16, evaluates the components of a
pair before deeming it to be a value: specified by the following additional
rules:

e1 val e2 val

〈e1, e2〉 val
(37.7)

e1 7→ e′1
〈e1, e2〉 7→ 〈e′1, e2〉

(37.8)

e1 val e2 7→ e′2
〈e1, e2〉 7→ 〈e1, e′2〉

(37.9)

The lazy (or non-strict) semantics, on the other hand, deems any pair to be
a value, regardless of whether its components are values:

〈e1, e2〉 val (37.10)
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There are similar alternatives for sum and recursive types, differing ac-
cording to whether or not the argument of an injection, or to the introduc-
tory half of an isomorphism, is evaluated. There is no choice, however,
regarding evaluation of the branches of a case analysis, since each branch
binds a variable to the injected value for each case. Incidentally, this ex-
plains the apparent restriction on the evaluation of the conditional expres-
sion, if e then e1 else e2, arising from the definition of bool to be the sum
type unit + unit as described in Chapter 17 — the “then” and the “else”
branches lie within the scope of an (implicit) bound variable, and hence are
not eligible for evaluation!

37.2 Eagerness and Laziness Via Types

Rather than specify a blanket policy for the eagerness or laziness of the var-
ious language constructs, it is more expressive to put this decision into the
hands of the programmer by a type distinction. That is, we can distinguish
types of by-value and by-name functions, and of eager and lazy versions of
products, sums, and recursive types.

We may give eager and lazy variants of product, sum, function, and
recursive types according to the following chart:

Eager Lazy
Unit 1 >
Product τ1 ⊗ τ2 τ1 × τ2
Void ⊥ 0
Sum τ1 + τ2 τ1 ⊕ τ2
Function τ1 ◦→ τ2 τ1 → τ2

We leave it to the reader to formulate the static and dynamic semantics of
these constructs using the following grammar of introduction and elimina-
tion forms for the unfamiliar type constructors in the foregoing chart:

Introduction Elimination
1 • (none)
τ1 ⊗ τ2 e1 ⊗ e2 let x1 ⊗ x2 be e in e′

0 (none) abortτ(e)
τ1 ⊕ τ2 lftτ(e), rhtτ(e) choose e {lft(x1)⇒ e1 | rht(x2)⇒ e2}
τ1 ◦→ τ2 λ◦(x:τ1. e2) ap◦(e1, e2)
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The elimination form for the eager product type uses pattern-matching to
recover both components of the pair at the same time. The elimination form
for the lazy empty sum performs a case analysis among zero choices, and is
therefore tantamount to aborting the computation. Finally, the circle adorn-
ing the eager function abstraction and application is intended to suggest a
correspondence to the eager product and function types.

The notation is chosen to emphasize certain aspects of the eager and
lazy interpretations. Specifically, in the lazy column we have standard
nullary and binary products, and a standard function types, whereas in the
eager column we have only restricted forms of products and a strict func-
tion type. Dually, in the call-by-value column we have standard nullary
and binary sum types, whereas in the lazy column we have only restricted
forms of these. The distinction between “standard” and “restricted” forms
of these types derives from considerations that we can only summarize
briefly here. Lazy product types are said to be standard in the sense that the
expression fst(〈e1, e2〉) is interchangeable with e1, regardless of whether or
not e2 terminates, and similarly snd(〈e1, e2〉) is interchangeable with e2, in-
dependently of e1. These conditions fail for strict products (or, more prop-
erly, hold only in restricted circumstances), and hence they are said to be
restricted, or non-standard. Correspondingly, lazy function types are stan-
dard in that λ(x:τ1. e2)(e1) is interchangeable with [e1/x]e2, whereas the
corresponding property fails for strict function types, again because e2 may
not terminate and x may not be relevant to the value of e1. Dually, lazy
sums fail to satisfy certain interchangeability properties that hold for strict
sums, and consequently they are said to be restricted, or non-standard.

37.3 Laziness and Self-Reference

We have seen in Chapter 15 that we may use general recursion at the ex-
pression level to define recursive functions. In the presence of laziness we
may also define other forms of self-referential expression. For example,
consider the so-called lazy natural numbers, which are defined by the re-
cursive type lnat = µ(t.>⊕ t). The successor operation for the lazy nat-
ural numbers is defined by the equation lsucc(e) = fold(rht(e)). Using
general recursion we may form the lazy natural number

ω = fix x:lnat is lsucc(x),

which consists of an infinite stack of successors!
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Of course, one could argue (correctly) that ω is not a natural number at
all, and hence should not be regarded as one. So long as we can distinguish
the type lnat from the type nat, there is no difficulty—ω is the infinite lazy
natural number, but it is not an eager natural number. But if the distinction
is not available, then serious difficulties arise. For example, lazy languages
provide only lazy product and sum types, and hence are only capable of
defining the lazy natural numbers as a recursive types. In such languages
ω is said to be a “natural number”, but only for a non-standard use of the
term; the true natural numbers are simply unavailable.

It is a significant weakness of lazy languages is that they provide only
a paucity of types. One might expect that, dually, eager languages are sim-
ilarly disadvantaged in providing only eager, but not lazy types. However,
in the presence of function types (the common case), we may encode the
lazy types as instances of the corresponding eager types, as we described
in the next section.

37.4 Suspensions

The essence of lazy evaluation is the suspension of evaluation of certain
expressions. For example, the lazy product type suspends evaluation of
the components of a pair until they are needed, and the lazy sum type
suspends evaluation of the injected value until it is required. To encode lazy
types as eager types, then, requires only a means of suspending evaluation
of an expression using a suspension, or thunk.2

The abstract syntax of suspensions is given by the following grammar:

Type τ ::= susp(τ)
Expr e ::= susp(e) | letsusp(e1, x.e2)

Concretely, we use the following notation:

Abstract Syntax Concrete Syntax
susp(τ) τ susp
susp(e) susp(e)
letsusp(e1, x.e2) let susp(x) be e1 in e2

In addition we let force(e) stand for the expression letsusp(e, x.x).
The static semantics of suspensions is given as follows:

Γ ` e : τ
Γ ` susp(e) : susp(τ)

(37.11a)

2The etymology of this term is uncertain, but its usage persists.
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Γ ` e1 : susp(τ1) Γ, x : τ1 ` e2 : τ2

Γ ` letsusp(e1, x.e2) : τ2
(37.11b)

The following typing rule is derived:

Γ ` e : susp(τ)

Γ ` force(e) : τ
(37.12)

The dynamic semantics is given by the following rules:

susp(e) val (37.13a)

e1 7→ e′1
letsusp(e1, x.e2) 7→ letsusp(e′1, x.e2)

(37.13b)

e 7→ e′

letsusp(susp(e), x.e2) 7→ letsusp(susp(e′), x.e2)
(37.13c)

e val
letsusp(susp(e), x.e2) 7→ [e/x]e2

(37.13d)

Suspensions in this form are implementable in terms of strict functions,
using the following definitions:

τ susp = 1 ◦→ τ (37.14)
susp(e) = λ◦( :1. e) (37.15)

let susp(x) be e1 in e2 = ap◦((λ◦(x:τ. e2)), (ap◦(e1, •))) (37.16)

It is easy to check that the static semantics of suspensions is derivable, and
that the dynamic semantics is weakly simulated, under these definitions.

We may use suspensions to encode the lazy type constructors as in-
stances of the corresponding eager type constructors as follows:

> = 1 (37.17a)
〈〉 = • (37.17b)

τ1 × τ2 = τ1 susp⊗ τ2 susp (37.18a)
〈e1, e2〉 = susp(e1)⊗ susp(e2) (37.18b)
fst(e) = let x⊗ be e in force(x) (37.18c)
snd(e) = let ⊗ y be e in force(y) (37.18d)
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0 = ⊥ (37.19a)
abortτ(e) = abortτ e (37.19b)

τ1 ⊕ τ2 = τ1 susp + τ2 susp (37.20a)
lft(e) = inl(susp(e)) (37.20b)
rht(e) = inr(susp(e)) (37.20c)

choose e {lft(x1)⇒ e1 | rht(x2)⇒ e2}
= case e {inl(y1)⇒ [force(y1)/x1]e1 | inr(y2)⇒ [force(y2)/x2]e2}

(37.20d)

τ1 → τ2 = τ1 susp ◦→ τ2 (37.21a)
λ(x:τ1. e2) = λ◦(x:τ1 susp. [force(x)/x]e2) (37.21b)

e1(e2) = ap◦(e1, susp(e2)) (37.21c)

In the case of lazy case analysis and call-by-name functions we replace oc-
currences of the bound variable, x, with force(x) to recover the value of
the suspension bound to x whenever it is required. Note that x may oc-
cur in a lazy context, in which case force(x) is delayed. In particular,
expressions of the form susp(force(x)) may be safely replaced by x, since
forcing the former computation simply forces x.

37.5 Exercises
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Chapter 38

Lazy Evaluation

Lazy evaluation refers to a variety of concepts that seek to avoid evaluation
of an expression unless its value is needed, and to share the results of eval-
uation of an expression among all uses of its, so that no expression need
be evaluated more than once. Within this broad mandate, various forms of
laziness are considered.

One is the call-by-need evaluation strategy for functions. This is a re-
finement of the call-by-name semantics described in Chapter 37 in which
arguments are passed unevaluated to functions so that it is only evaluated
if needed, and, if so, the value is shared among all occurrences of the argu-
ment in the body of the function.

Another is the lazy evaluation strategy for data structures, including
formation of pairs, injections into summands, and recursive folding. The
decisions of whether to evaluate the components of a pair, or the argument
to an injection or fold, are independent of one another, and of the decision
whether to pass arguments to functions in unevaluated form.

A third aspect of laziness is the ability to form recursive values, including
as a special case recursive functions. Using general recursion we can create
self-referential expressions, but these are only useful if the self-referential
expression can be evaluated without needing its own values. Function ab-
stractions provide one such mechanism, but so do lazy data constructors.

These aspects of laziness are often consolidated into a programming
language with call-by-need function evaluation, lazy data structures, and
unrestricted uses of recursion. Such languages are called lazy languages, be-
cause they impose the lazy evaluation strategy throughout. These are to be
contrasted with strict languages, which impose an eager evaluation strategy
throughout. This leads to a sense of opposition between two camps, but ex-
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perience has shown that this is neither necessary nor desirable. For exam-
ple, in a lazy language the successor operation on natural numbers is lazy,
so that it is possible to form “natural numbers” such as ω = fix x:nat is s(x)
consisting of an infinite stack of successors. Obviously ω is not a natu-
ral number in the ordinary sense of the word, but we cannot avoid it in
a lazy language, and hence the familiar type of natural numbers is sim-
ply unavailable. On the other hand, in an eager language the successor
is evaluated eagerly, so the recursive expression above simply engenders
an infinite loop when evaluated. It is impossible in an eager language to
obtain the unnatural number ω.

Rather than accept these as consequences of language design, it is prefer-
able to put the distinction in the hands of the programmer by introducing
a type of suspended computations whose evaluation is memoized so that
they are only ever evaluated once. The ambient evaluation strategy re-
mains eager, but we now have a value representing an unevaluated expres-
sion. Moreover, we may confine self-reference to suspensions to avoid the
pathologies of laziness while permitting self-referential data structures to
be programmed.

38.1 Call-By-Need

The distinguishing feature of call-by-need, as compared to call-by-name,
is that it records in memory the bindings of all variables so that when
the binding of a variable is first needed, it is evaluated and the result is
re-bound to that variable. Subsequent demands for the binding simply
retrieve the stored value without having to repeat the computation. Of
course, if the binding is never needed, it is never evaluated, consistently
with the call-by-name semantics.

We will give the dynamic semantics of call-by-need using a transition
system with states of the form (M, e), where M is a memory mapping vari-
ables to open expressions and e is an open expression. States must satisfy
the invariant that a free variable of e or any binding in M must lie within
the domain of M.

An initial state of the transition system has the form (∅, e), where e is
a closed expression. A final state has the form (M, e), where e is an open
value — but note well that variables themselves are not values! The transi-
tion judgement is inductively defined by the following rules:

e val
(M[x = e], x) 7→ (M[x = e], e) (38.1a)
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(M[x = •], e) 7→ (M′[x = •], e′)
(M[x = e], x) 7→ (M′[x = e′], x)

(38.1b)

(M, e1) 7→ (M′, e′1)
(M, e1(e2)) 7→ (M′, e′1(e2))

(38.1c)

x # M
(M, λ(x:τ. e)(e2)) 7→ (M[x = e2], e) (38.1d)

We omit here the presentation of the rules for the other constructs, which
follow a similar pattern.

The crucial rules are those for variables, since application merely binds
the unevaluated argument to the parameter of the function before evalu-
ating its body. If the binding of a variable is a value, then that value is
returned immediately. Otherwise, the binding must be evaluated to de-
termine its value, which replaces the binding for future reference. This is
accomplished in the second rule by performing a transition on the binding,
e, of the variable, x, then replacing the binding with the result, e′. During
evaluation of e the binding of x is replaced by a special construct, called
a black hole, which ensures that evaluation would be “stuck” should the
binding of x ever be required during evaluation of e. (Observe that since
the black hole is not a value, and admits no transitions, a state of the form
(M[x = •], x) is “stuck”.) The main reason to replace the binding of x with
a black hole is primarily to do with recursion, which will be discussed in
the next section. It is important, however, that there be a binding for x in
the memory while evaluating its contents, so as to ensure that any “fresh”
variables that are added to the memory during this evaluation are different
from x so as to avoid confusion.

Type safety for the call-by-need interpretation is proved by methods
similar to those used to prove safety for mutable references (see Chap-
ter 34). However, unlike the situation with reference cells, no cyclic de-
pendencies are possible. Moreover, we wish to show that stuck states such
as (M[x = •], x) do not arise during evaluation. We define the judgement
M : Γ iff M(x) = e implies that x : τ occurs in Γ for some τ such that
Γ ` e : τ. We then define the judgement (M, e) ok iff the following three
conditions are met:

1. There exists Γ and τ such that M : Γ and Γ ` e : τ.

2. If M(x) = e, then x # e.

3. If M(y) = •, then y # e and y # M(x) for every x.
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The first condition captures the typing invariants, the second rules out self-
reference, and the third suffices to ensure that evaluation does not get stuck
due to black holes.

Theorem 38.1. 1. If (M, e) ok and (M, e) 7→ (M′, e′), then (M′, e′) ok.

2. If (M, e) ok, then either (M, e) final, or there exists M′ and e′ such that
(M, e) 7→ (M′, e′).

The first part is proved by rule induction on the definition of the tran-
sition judgement. The second part is proved by induction on the definition
of (M, e) ok, treating the derivations of typing for e and the bindings in M
as sub-derivations.

38.2 General Recursion

It is interesting to examine the dynamic semantics of general recursion in
a call-by-need setting. The most obvious approach is to simply mimic the
semantics given in Chapter 15:

(M, fix x:τ is e) 7→ (M, [fix x:τ is e/x]e)
.

(38.2)

Substitution for the recursive variable may introduce many different copies
of the recursive expression, each of which is re-evaluated whenever it is
used. It would be more in the spirit of call-by-need to share these compu-
tations among the copies, which may be formalized by the following rules.

x # M
(M, fix x:τ is e) 7→ (M[x = e], x)

. (38.3)

If the computation variable, x, is free in e, then evaluation of e may well
require the binding of x, in which case evaluation gets stuck with a state
of the form (M[x = •], x). For example, fix x:τ is x gets stuck in precisely
this manner. Such stuck states correspond to infinite loops under the call-
by-name semantics. We may regard this as a “checked error” for certain
forms of non-termination, namely those that result from an infinite regress
of self-reference.

In the presence of recursion it is no longer possible to rule out self-
reference, or dependence of evaluation on a black hole. Therefore we must
define M : Γ in a manner similar to Chapter 34 to require that Γ ` e : τ
whenever M(x) = e and Γ(x) = τ. Moreover, it is essential to define • : τ,
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since a variable of any type may be bound to a black hole during evalua-
tion. With this in mind it is relatively straightforward to prove preservation
and progress. The statement of progress must be weakened, however, to
regard states of the form (M[x = •], x) as checked errors, rather than stuck
states, since typing does not preclude circular dependencies.

38.3 Lazy Sums and Products

Call-by-need evaluation addresses only one aspect of laziness, namely de-
ferring evaluation of function arguments until they are needed, and shar-
ing the value among all other uses of it. Other aspects of laziness pertain to
product, sum, and recursive types, whose introductory forms may be given
a lazy interpretation, in which case it is also sensible to consider a “need”
semantics that avoids re-computation whenever possible.

Let us consider a “need” semantics for product types corresponding to
the lazy interpretation of pairing. The main idea is to share evaluation of
the components of the pair among all uses of that pair. This is achieved by
the following rules:

〈x1, x2〉 val (38.4a)

x1 # M x2 # M
(M, 〈e1, e2〉) 7→ (M[x1 = e1][x2 = e2], 〈x1, x2〉)

(38.4b)

(M, e) 7→ (M′, e′)
(M, fst(e)) 7→ (M′, fst(e′))

(38.4c)

(M, fst(〈x1, x2〉)) 7→ (M, x1) (38.4d)

(M, e) 7→ (M′, e′)
(M, snd(e)) 7→ (M′, snd(e′))

(38.4e)

(M, snd(〈x1, x2〉)) 7→ (M, x2) (38.4f)

In this semantics a pair is considered a value only if its arguments are vari-
ables, which are introduced when the pair is created. The projections eval-
uate to one variable or the other, inducing a demand for that component
of the pair, causing it to be evaluated and stored in memory. This ensures
that another occurrence of the same projection of the same pair will yield
the same value without having to recompute it.
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38.4 Suspension Types

As suggested in Chapter 37 it is more economical, and more expressive, to
consolidate all aspects of laziness into a single type, susp(τ), of memoized,
self-referential suspensions. The expression forms associated with this type
are given by the following grammar:

Expr e ::= susp[τ](x.e) | letsusp(e1, x.e2)

The introductory form is self-referential so as to permit formation of re-
cursive suspensions. We correspondingly drop general recursion from the
language, limiting it to values of suspension type.

The static semantics of these constructs is given by the following typing
rules:

Γ, x : susp(τ) ` e : τ

Γ ` susp[τ](x.e) : susp(τ)
(38.5a)

Γ ` e1 : susp(τ1) Γ, x : τ1 ` e2 : τ2

Γ ` letsusp(e1, x.e2) : τ2
(38.5b)

The dynamic semantics of suspensions is given by a transition system
that is reminiscent of that used for call-by-need. Indeed, the same princi-
ples of memoization and self-reference apply, albeit restricted to the type of
suspensions. One important difference, however, is that variables are now
regarded as values! Rather than implicitly replacing variables by their val-
ues when encountered, we now explicitly force evaluation of a suspension
to retrieve its value.

x # M
(M, susp[τ](x.e)) 7→ (M[x = e], x) (38.6a)

(M, e1) 7→ (M′, e′1)
(M, letsusp(e1, x.e2)) 7→ (M′, letsusp(e′1, x.e2))

(38.6b)

e val
(M[x = e], letsusp(x, y.e2)) 7→ (M[x = e], [e/y]e2)

(38.6c)

(M[x = •], e) 7→ (M[x = •], e′)
(M[x = e], letsusp(x, y.e2)) 7→ (M′[x = e′], letsusp(x, y.e2))

(38.6d)

Type safety for suspension types may be proved by means similar to
that for call-by-need. Care must be taken in the definition of the judgment
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M : Γ to account for variables in memory having suspension type. Specif-
ically, we require that Γ ` e : τ whenever M(x) = e and Γ(x) = τ susp.
Moreover, we deem that • : τ for any type τ, because the static semantics
does not preclude circular dependencies.

38.5 Exercises
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Parallelism





Chapter 39

Speculative Parallelism

The semantics of call-by-need given in Chapter 38 suggests opportunities
for speculative parallelism. Evaluation of a delayed binding is initiated as
soon as the binding is created, executing simultaneously with the evalua-
tion of the body. Should the variable ever be needed, evaluation of the body
synchronizes with the concurrent evaluation of the binding, and proceeds
only once the value is available. This form of parallelism is called specula-
tive, because the value of the binding may never be needed, in which case
the resources required for its evaluation are wasted. However, in some sit-
uations there are available computing resources that would otherwise be
wasted, and which can be usefully employed for speculative evaluation.

There is also a speculative version of suspensions, called futures, which
behave in the same manner, except that the synchronization points are ex-
plicit in the form of calls to force the suspension. The suspended com-
putation can be executed in parallel on the hypothesis that its value will
eventually be needed to proceed.

39.1 Speculative Execution

An interesting variant of the call-by-need semantics is obtained by relaxing
the restriction that the bindings of variables be evaluated only once they are
needed. Instead, we may permit a step of execution of the binding of any
variable to occur at any time. Specifically, we replace the second variable
rule given in Section 38.1 on page 302 by the following general rule:

(M[y = •], e) 7→ (M[y = •], e′)
(M[y = e], e0) 7→ (M[y = e′], e0)

(39.1)
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This rule permits any variable binding to be chosen at any time as the focus
of attention for the next evaluation step. The first variable rule remains as-
is, so that, as before, a variable may be evaluated only after the value of its
binding has been determined.

This semantics is said to be non-deterministic because the transition rela-
tion is no longer a partial function on states. That is, for a given state (M, e),
there may be many different states (M′, e′) such that (M, e) 7→ (M′, e′), pre-
cisely because the foregoing rule permits us to shift attention to any loca-
tion in memory at any time. The rules abstract away from the specifics of
how such “context switches” might be scheduled, permitting them to oc-
cur at any time so as to be consistent with any scheduling strategy. In this
sense non-determinism models parallel execution by permitting the indi-
vidual steps of a complete computation to be interleaved in an arbitrary
manner.

The non-deterministic semantics is said to be speculative, because it per-
mits evaluation of any suspended expression at any time, without regard
to whether its value is needed to determine the overall result of the compu-
tation. In this sense it is contrary to the spirit of call-by-need, since it may
perform work that is not strictly necessary. The benefit of speculation is
that it leads to a form of parallel computation, called speculative parallelism,
which seeks to exploit computing resources that would otherwise be left
idle. Ideally one should only use processors to compute results that are
needed, but in some situations it is difficult to make full use of available
resources without resorting to speculation.

Just as with call-by-need, there is also a speculative version of suspen-
sions, which are called futures. Conceptually, a delayed computation in
memory is evaluated speculatively “in parallel” while computation along
the main thread proceeds. When a suspension is forced, evalation of the
main thread is blocked until the suspension has been evaluated, at which
point the value is propagated to the main thread and execution proceeds.
The semantics of futures is a straightforward modification to the semantics
of suspensions given in Chapter 38, modified to permit non-deterministic
context switches during execution to evaluate suspended computations.

39.2 Speculative Parallelism

The non-deterministic semantics given in Section 39.1 on the previous page
captures the idea of speculative execution, but addresses parallelism only
indirectly, by avoiding specification of when the focus of evaluation may
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shift from one suspended expression to another. Thus the semantics is spec-
ified from the point of view of an omniscient observer who sequentializes
the parallel execution into a sequence of atomic steps. No paricular sequen-
tialization is enforced; rather, all possible sequentializations are derivable
from the rules.

Another approach is to formulate directly a parallel execution seman-
tics that permits multiple expressions to be evaluated simultaneously. To
avoid overspecification the parallel semantics imposes no bound on the de-
gree of parallelism. In practice, of course, one has only limited computing
resources available, so it is necessary to impose a scheduling discipline that
multiplexes parallel computations onto the available processing elements.
In the semantics we avoid imposing any particular scheduling regimen,
since the number of processors available, and any constraints on their use,
are highly sensitive to the execution environment, and are therefore not to
be considered properties of the language, but rather of its implementation.

Speculative parallelism may be formalized by introducing an additional
judgement form, M 7→par M′, which expresses one step of parallel evalua-
tion of any number of suspended expressions in memory. Each step of the
computation consists of essentially one step of the abstract machine given
in Chapter 38, but modified to remove scheduling restrictions. Let us write
(M, e) 7→seq (M′, e′) for the sequential transition relation defined in Chap-
ter 38, but modified so that states of the form (M[x = e], x), where e is not
a value, are blocked, so that no transition is possible. All other transitions
are as before. In particular, if e is a value, then we may always make the
transition

(M[x = e], x) 7→seq (M[x = e], e).

The main reason to make this change to the sequential semantics is
that even if e0 is restricted to be the variable x, Rule (39.1) amounts to
a decision to schedule evaluation of e ahead of the completion of e0. We
prefer instead to confine scheduling to the parallel semantics, which non-
deterministically chooses which suspended expressions to execute at any
one time.

(M[x1 = •] . . .[xk = •], ei) 7→seq (Mi[x1 = •] . . .[xk = •], e′i) (1 ≤ i ≤ n)
M[x1 = e1] . . .[xk = ek] 7→par M′[x1 = e′1] . . .[xk = e′k]

(39.2)
(The choice of memory, M′, in the result of the execution step, and an

important side condition governing the inference, will be specified shortly.)
Observe that each step of the parallel semantics may correspond to any

number of steps of the sequential semantics, limited only by the number of
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evaluation expressions in memory. By our restriction on the sequential se-
mantics, no progress can be made on any expression that requires the value
of a variable whose binding is not a value. It is therefore not necessary to
“black hole” the variables whose bindings are being evaluated, but we do
so to emphasize the similarity with the sequential semantics.

The same restriction on the sequential semantics also implies that no
sequential step can modify the binding of an allocated suspension. How-
ever, a sequential step may allocate new suspensions with names that lie
apart from M and the xi’s. It follows that each Mi has the form M ⊗ M′i
for some memory M′i extending the memory M.1 The result memory, M′,
is the combination M⊗M′1 ⊗ · · · ⊗M′k, which consolidates the newly allo-
cated suspensions from each of the individual steps as an extension to the
memory M.

There is one technical difficulty, however: there is no guarantee that the
domains of the M′i are disjoint! That is, two independent executions might
seek to allocate the same memory cell, each for its own purpose, resulting
in a collision. This is a well-known problem in parallel computing—the
parallel steps must somehow synchronize their allocation of memory so
as to avoid interference. There are many ways to achieve this in practice.
For specification purposes we will simply impose the requirement that the
domains of each of the newly allocated memories M′i be disjoint from one
another. This may always be achieved by a suitable choice of variables, of
which we assume there are an infinite supply.

39.3 Exercises

1If M1 and M2 are two memories with disjoint domain, we define the memory M1 ⊗
M2 so that it maps x ∈ dom(M1) to M1(x) and x ∈ dom(M2) to M2(x) and is undefined
otherwise.
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Chapter 40

Implicit Parallelism

In this chapter we study two languages with implicit parallelism, one based
on product types, the other based on a type of vectors (tuples of values of
unbounded size). In the former case the source of parallelism is the si-
multaneous evaluation of the components of a tuple, whereas in the latter
parallelism arises from the simultaneous computation of the components
of a vector.

Parallelism arises naturally in an eager, effect-free language. In such
a language it is not possible to determine the order of evaluation of the
components of a data structure. This is in sharp contrast to effect-ful lan-
guages, for then the order of evaluation, or the use of parallelism, is visible
to the programmer. Indeed, dependence on the evaluation order must be
carefully guarded against to ensure that the outcome is determinate.

40.1 Tuple Parallelism

We begin by considering a parallel semantics for tuples according to which
all components of a tuple are evaluated simultaneously. For simplicity we
consider only pairs, but the ideas generalize in a straightforward manner
to tuples of any size. Since the “widths” of tuples are specified statically as
part of their type, the amount of parallelism that can be induced in any one
step is bounded by a static constant. In Section 40.3 on page 320 we will
extend this to permit a statically unbounded degree of parallelism.

To facilitate comparison, we will consider two operational semantics
for products, the sequential and the parallel. The sequential semantics is as
in Chapter 16. However, we now write e 7→seq e′ for the transition relation
to stress that this is the sequential semantics. The sequential evaluation
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rules for pairs are as follows:

e1 7→seq e′1
pair(e1, e2) 7→seq pair(e′1, e2)

(40.1a)

e1 val e2 7→seq e′2
pair(e1, e2) 7→seq pair(e1, e′2)

(40.1b)

The parallel semantics is similar, except that we evaluate both compo-
nents of a pair simultaneously whenever this is possible. This leads to the
following rules:

e1 7→par e′1 e2 7→par e′2
pair(e1, e2) 7→par pair(e′1, e′2)

(40.2a)

e1 7→par e′1 e2 val

pair(e1, e2) 7→par pair(e′1, e2)
(40.2b)

e1 val e2 7→par e′2
pair(e1, e2) 7→par pair(e1, e′2)

(40.2c)

The first rule corresponds to a simultaneous step of evaluation on both
components of a pair. The second two permit the evaluation of one compo-
nent to complete before the evaluation of the other.

When presented two semantics for the same language, it is natural to
ask whether they are equivalent. They are, in the sense that both semantics
deliver the same value for any expression. This is the precise statement of
what we mean by “implicit parallelism”.

Lemma 40.1. 1. If pair(e1, e2) 7→∗seq e′ val, then e′ = pair(e′1, e′2) with
e1 7→∗seq e′1 val and e2 7→∗seq e′2 val.

2. If pair(e1, e2) 7→∗par e′ val, then e′ = pair(e′1, e′2) with e1 7→∗par e′1 val and
e2 7→∗par e′2 val.

Lemma 40.2. 1. If e′′ 7→∗par e′ val and e 7→seq e′′, then e 7→∗par e′.

2. If e′′ 7→∗seq e′ val and e 7→par e′′, then e 7→∗seq e′.

Proof. For example, suppose we have

pair(e1, e2) 7→seq pair(e′′1 , e2) (40.3)
7→∗par e′ val, (40.4)
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where e1 7→seq e′′1 . By Lemma 40.1 on the preceding page e′ = pair(e′1, e′2),
where e′′1 7→∗par e′1 val and e2 7→∗par e′2 val. By induction we have e1 7→∗par e′1 val,
and hence that pair(e1, e2) 7→∗par pair(e′1, e′2).

As an example in the other direction, suppose that we have

pair(e1, e2) 7→par pair(e′′1 , e′′2) (40.5)
7→∗seq e′ val, (40.6)

where e1 7→par e′′1 and e2 7→par e′′2 . By Lemma 40.1 on the facing page e′ =
pair(e′1, e′2) with e′′1 7→∗seq e′1 and e′′2 7→∗seq e′2. By induction we have e1 7→∗seq e′1
and e2 7→∗seq e′2, from which the result follows by applying the rules for
sequential evaluation of pairs.

Theorem 40.3 (Implicit Parallelism). If e and e′ are closed expressions of the
same type, e 7→∗seq e′ val iff e 7→∗par e′ val.

Proof. In each direction the proof proceeds by induction on the derivation
of the multistep transition. The result is immediate when e is e′, and follows
from Lemma 40.2 on the preceding page in the inductive case.

One important consequence of this theorem is that parallelism is seman-
tically invisible: whether we use parallel or sequential evaluation of pairs,
the result is the same. Consequently, parallelism may safely be left implicit,
at least as far as correctness is concerned. However, as one might expect,
parallelism effects the efficiency of programs.

40.2 Work and Depth

An operational semantics for a language induces a measure of time com-
plexity for expressions, namely the number of steps required to evaluate
that expression to a value. The sequential complexity of an expression is its
time complexity relative to the sequential semantics; the parallel complex-
ity is its time complexity relative to the parallel semantics. These can, in
general, be quite different. Consider, for example, the following naı̈ve im-
plementation of the Fibonacci sequence:

fun fib (n:int):int is
ifz(n, 1, n’.ifz(n’, 1, n’’.plus(fib n’, fib n’’)))

where plus is the evident function of type nat× nat→ nat.
The sequential complexity of fib(n) is O(2n), whereas the parallel com-

plexity of the same expression is O(n). The reason is that each recursive call
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spawns two further recursive calls which, if evaluated sequentially, lead to
an exponential number of steps to complete. However, if the two recursive
calls are evaluated in parallel, then the number of parallel steps to comple-
tion is bounded by n, since n is decreased by 1 or 2 on each call. In either
case the same number of arithmetic operations is performed. The differ-
ence is solely whether or not they are performed simultaneously.

This leads to the important concepts of work and depth. The work of
an expression is the total number of primitive instruction steps required
to evaluate it to a value. Since each of the rules defining the sequential
semantics have at most one transition premise, one step of the sequential
semantics represents the execution of one instruction. It follows that the
sequential complexity coincides with the overall work required. For exam-
ple, the work required to evaluate fib(n) is O(2n).

The depth of an expression is the length of the longest chain of depen-
dencies among the evaluation steps in the program. A dependency be-
tween two expressions arises whenever the value of one expression de-
pends on the value of another. In the Fibonacci example the two recursive
calls have no dependency between them, but the function itself depends on
both recursive calls in that it cannot return until both calls have returned.
Since the rules of the parallel semantics specify the simultaneous evalua-
tion of the components of a pair, the erecursive calls are evaluated simul-
taneously, but must complete before the function returns a value. This fol-
lows precisely the dependency relationships in the code, and hence the par-
allel complexity coincides with the depth of the computation. For example,
the depth of the expression fib(n) is O(n).

With this in mind, the cost semantics introduced in Chapter 9 may be
extended to account for parallelism by specifying both the work and the
depth of evaluation. The judgements of the parallel cost semantics have
the form e ⇓w,d v, where w is the work and d the depth. For all cases but
evaluation of pairs the work and the depth track one another. The rule for
pairs is as follows:

e1 ⇓w1,d1 v1 e2 ⇓w2,d2 v2

pair(e1, e2) ⇓w1+w2,max(d1,d2) pair(v1, v2)
(40.7)

The remaining rules are easily derived from the sequential cost semantics,
with both work and depth being combined additively at each step.

The correctness of the cost semantics states that the work and depth
costs are consistent with the sequential and parallel complexity, respec-
tively, of the expression.
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Theorem 40.4. For any closed, well-typed expression e, e ⇓w,d v iff e 7→w
seq v and

e 7→d
par v.

Proof. From left to right, we proceed by induction on the cost semantics.
For example, we must show that if e1 7→d1

par v1 and e2 7→d2
par v2, then

pair(e1, e2) 7→d
par pair(v1, v2),

where d = max(d1, d2). Suppose that d = d2, and let d′ = d− d1 (the case
d = d1 is handled similarly). We have e1 7→d1

par v1 and e2 7→d1
par e′2 7→d′

par v2. It
follows that

pair(e1, e2) 7→d1
par pair(v1, e′2) (40.8)

7→d′
par pair(v1, v2). (40.9)

For the converse, we proceed by considering work and depth costs sep-
arately. For work, we proceed as in Chapter 9. For depth, it suffices to
show that if e 7→par e′ and e′ ⇓d v, then e ⇓d+1 v.1 For example, suppose
that pair(e1, e2) 7→par pair(e′1, e′2), with e1 7→par e′1 and e2 7→par e′2. Since
pair(e′1, e′2) ⇓d v, we must have v = pair(v1, v2), d = max(d1, d2) with
e′1 ⇓d1 v1 and e′2 ⇓d2 v2. By induction e1 ⇓d1+1 v1 and e2 ⇓d2+1 v2 and hence
pair(e1, e2) ⇓d+1 pair(v1, v2), as desired.

This theorem relates the work and depth of an expression, which are
given by the cost semantics, to the number of transitions required to drive
the expression to a value using the sequential and parallel transition sys-
tems, respectively. This correspondence explains why the work and depth
for evaluation of a pair are w1 + w2 and max(d1, d2), respectively. But one
may argue that these costs are slightly unrealistic, since they do not ac-
count for the memory allocation implicit in the creation of a pair, nor for the
“fork” and “join” that are implicit in the parallel evaluation of the compo-
nents of the pair. These issues can be brought out more clearly by refining
the transition semantics. For example, to account for allocation, we might
distinguish the expression pair(e1, e2), which is a primitive operation that
allocates a pair, from the expression pr(e1, e2), where e1 and e2 are values,
which represents the pair once it has been allocated. To model this setup,
we add the rule

e1 val e2 val

pair(e1, e2) 7→seq pr(e1, e2)
(40.10)

1The work component of the cost is suppressed here for the sake of clarity.
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and similarly for the parallel transition semantics. Correspondingly, a pair
pair(e1, e2) is never a value; instead, we have the rule

e1 val e2 val

pr(e1, e2) val
(40.11)

Moreover, we regard the expression pr(e1, e2) is an “internal” expression
of the semantics, which may not be written down as part of a program, but
which only arises in the course of evaluation.

Using this model, the cost assignments for evaluation of a pair are re-
vised so that the work is given by the equation w = w1 + w2 + 1 and
the depth is given by d = max(d1, d2) + 1 to account for the allocation
of the pair. This implies, in particular, that the evaluation of nested pairs
now takes time proportional to the depth of nesting. For example, if e =
pair(pair(1, 2), pair(3, 4)) and v = pr(pr(1, 2), pr(3, 4)), then we have

e 7→3
seq v (40.12)

e 7→2
par v (40.13)

corresponding to work 3 and depth 2 for these expressions under the re-
vised cost semantics (assuming zero cost to evaluate the numeric literals).

40.3 Vector Parallelism

A more general form of parallelism arises from considering a type of vec-
tors, which are finite sequences of values of a specified type. Unlike tuples,
the number of components of a vector is not determined until execution
time. The primitive operations on vectors are chosen so that they may be
executed in parallel on a shared memory multiprocessor, or SMP, in constant
depth for an arbitrary vector.

Support for parallel computation with vectors consists of the following
constructs:

Type τ ::= vec(τ)
Expr e ::= vec(e0, . . . ,en−1) | velt(e1, e2) | vsiz(e) | vidx(e) |

vscan(e) | vmap(e1, e2) | vupd(e1, e2)

These expressions may be informally described as follows. The expres-
sion vec(e0, . . . ,en−1) evaluates to an n-vector whose elements are given
by the expressions ei, 0 ≤ i < n. The operation velt(e1, e2) retrieves the
element of the vector given by e1 at the index given by e2. The operation
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vsiz(e) returns the number of elements in the vector given by e. The op-
eration vidx(e) creates a vector of length n (given by e) whose elements
are 0, . . . , n− 1. The operation vscan(e) takes a vector of natural numbers
and returns a vector of the same length obtained by computing the partial
sums obtained by a left-to-right scan of the input vector. The operation
vmap(e1, e2) applies the function given by e1 to every element of e2 in paral-
lel. Finally, the operation vupd(e1, e2) yields a new vector of the same size,
n, as the vector v1 given by e1, but whose elements are updated according
to the vector v2 given by e2. The elements of e2 are pairs specifying an in-
dex 0 ≤ i < n and a value v, indicating that the ith element of the output
should be v, all other elements remaining untouched. If v2 specifies an in-
dex i more than once, then the result is determined by the rightmost such
occurrence.

The static semantics of these primitives is given by the following typing
rules:

Γ ` e1 : τ . . . Γ ` en : τ

Γ ` vec(e0, . . . ,en−1) : vec(τ)
(40.14a)

Γ ` e1 : vec(τ) Γ ` e2 : nat
Γ ` velt(e1, e2) : τ

(40.14b)

Γ ` e : vec(τ)
Γ ` vsiz(e) : nat

(40.14c)

Γ ` e : nat
Γ ` vidx(e) : vec(nat)

(40.14d)

Γ ` e : vec(nat)
Γ ` vscan(e) : vec(nat)

(40.14e)

Γ ` e1 : τ → τ′ Γ ` e2 : vec(τ)

Γ ` vmap(e1, e2) : vec(τ′)
(40.14f)

Γ ` e1 : vec(τ) Γ ` e2 : vec(prod(nat, τ))

Γ ` vupd(e1, e2) : vec(τ)
(40.14g)

The parallel dynamic semantics is given by the following rules.

∅ 6= I ⊆ { 0, . . . , n− 1 } ∀i ∈ I (ei 7→par e′i) ∀i /∈ I (e′i = ei & ei val)
vec(e0, . . . ,en−1) 7→par vec(e′0, . . . ,e′n−1)

(40.15a)
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e0 val . . . en−1 val

velt(vec(e0, . . . ,en−1), i) 7→par ei
(40.15b)

e0 val . . . en−1 val

vsiz(vec(e0, . . . ,en−1)) 7→par n (40.15c)

vidx(n) 7→par vec(0, . . . ,n− 1) (40.15d)

∀ 0 ≤ i < n m′i = ∑i−1
j=0 mj

vscan(vec(m0, . . . ,mn)) 7→par vec(m′0, . . . ,m′n)
(40.15e)

e val e0 val . . . en−1 val

vmap(e, vec(e0, . . . ,en−1)) 7→par vec(e(e0), . . . ,e(en−1))
(40.15f)

e0 val . . . en val e′0 val . . . e′n′−1 val

vupd(vec(e0, . . . ,en−1), vec(e′0, . . . ,e′n′−1)) 7→par vec(e′′0, . . . ,e′′n−1)
(40.15g)

where for each 0 ≤ i < n,

e′′i =

{
di if 0 ≤ k < n′ is largest s.t. e′k = pair(i, di)

ei otherwise

The sequential dynamic semantics of vectors is defined similarly to the
parallel semantics. The only difference is that vector expressions are eval-
uated in left-to-right order, rather than in parallel. This is expressed by the
following rule:

e0 val . . . ei−1 val ei 7→seq e′i
vec(e0, . . . ,ei−1,ei,ei+1, . . . ,en−1) 7→seq vec(e0, . . . ,ei−1,e′i,ei+1, . . . ,en−1)

(40.16)
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With these two basic semantics in mind, we may also derive a cost se-
mantics for vectors, where the work corresponds to the number of steps re-
quired in the sequential semantics, and the depth corresponds to the num-
ber of steps required in the parallel semantics.

Vector expressions are evaluated in parallel.

∀ 0 ≤ i < n ei ⇓wi ,di vi

vec(e0, . . . ,en−1) ⇓w,d vec(v0, . . . ,vn−1)
(40.17a)

where w = ∑n−1
i=0 wi and d = maxn−1

i=0 di.
Retrieving an element of a vector takes constant work and depth.

e1 ⇓w1,d1 vec(v0, . . . ,vn−1) e2 ⇓w2,d2 i (0 ≤ i < n)
velt(e1, e2) ⇓w1+w2+1,d1+d2+1 vi

(40.17b)

Retrieving the size of a vector takes constant work and depth.

e ⇓w,d vec(v0, . . . ,vn−1)

vsiz(e) ⇓w+1,d+1 n
(40.17c)

Creating an index vector takes linear work and constant depth.

e ⇓w,d n
vidx(e) ⇓w+n,d+1 vec(0, . . . ,n− 1)

(40.17d)

Scanning takes linear work and constant depth.

e ⇓w,d vec(m0, . . . ,mn−1) m′i = ∑i−1
j=0 mj

vscan(e) ⇓w+n,d+1 vec(m′0, . . . ,m′n−1)
(40.17e)

Mapping a function across a vector takes constant work and depth be-
yond the cost of the function applications.

e1 ⇓w1,d1 v

e2 ⇓w2,d2 vec(v0, . . . ,vn−1)

vec(v(v0), . . . ,v(vn−1)) ⇓w,d vec(v′0, . . . ,v′n−1)

vmap(e1, e2) ⇓w1+w2+w+1,d1+d2+d+1 vec(v′0, . . . ,v′n−1)

(40.17f)
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Updating a vector takes linear work and constant depth.

e1 ⇓w1,d1 vec(v0, . . . ,vn−1)

e2 ⇓w2,d2 vec(v′0, . . . ,v′n′−1)

vupd(e1, e2) ⇓w1+w2+k+n,d1+d2+1 vec(v′′0, . . . ,v′′n−1)

(40.17g)

where for each 0 ≤ i < n,

v′′i =

{
wi if 0 ≤ k < n′ is largest s.t. v′k = pair(i, wi)

vi otherwise

Theorem 40.5. e ⇓w,d v iff e 7→d
par v and e 7→w

seq v.

40.4 Provably Efficient Implementations

The semantics of parallelism given above is based on an idealized parallel
computer with an unlimited number of processors. In practice this idealiza-
tion must be simulated using some fixed number, p, of physical processors.
In practice p is on the order of 10’s of processors, but may even rise (at the
time of this writing) into the 100’s. In any case p does not vary with input
size, but is rather a fixed parameter of the implementation platform. The
important question is how efficiently can one simulate unbounded paral-
lelism using only p processors? That is, how realistic are the costs assigned
to the language by our semantics? Can we make accurate predictions about
the running time of a program on a real parallel computer based on the ide-
alized cost assigned to it by our semantics?

The answer is yes, through the notion of a provably efficient implemen-
tation. Although a full treatment is beyond the scope of this book, it is
worthwhile to summarize the main ideas.

Theorem 40.6 (Provable Implementation). If e ⇓w,d v, then e can be evaluated
on a shared memory multi-processor with p-processors in time O(w/p + d lg p).

Observe that for p = 1, the stated bound simplifies to O(w), as would
be expected. The class of shared-memory multiprocessors is broad, and
includes most commercial multiprocessors.

To understand the significance of Theorem 40.6, observe that the defi-
nition of work and depth yields a lower bound of Ω(max(w/p, d)) on the
execution time on p processors. We can never complete execution in fewer
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than d steps, and can, at best, divide the total work evenly among the p
processors. The theorem tells us that we can come within a constant factor
of this lower bound. The constant factor, lg p, represents the overhead of
scheduling parallel computations on p processors.

The goal of parallel programming is to maximize the use of parallelism
so as to minimize the execution time. By Theorem 40.6 on the preceding
page this will occur if the term w/p dominates, which occurs if the ratio
w/d of work to depth is at least p lg p. This ratio is sometimes called the
parallelizability of the program. For highly sequential programs, d is directly
proportional to w, yielding a low parallelizability — increasing the num-
ber of processors will not speed up the computation. For highly parallel
programs, d might be constant or proportional to lg w, resulting in a large
parallelizability, and good utilization of the available computing resources.
It is important to keep in mind that it is not known whether there are inher-
ently sequential problems (for which no parallelizable solution is possible),
or whether, instead, all problems can benefit from parallelism. The best that
we can say at the time of this writing is that there are problems for which
no parallelizable solution is known.

To get a sense of what is involved in the proof of Theorem 40.6 on the
facing page, let us consider the assumption that the index operation on
vectors given above has constant depth. The theorem implies that index is
implementable on an SMP in time O(n/p + lg p). To do this, we allocate,
but do not initialize, a region of memory of size n in constant time. The
idea is to assign responsibility for a segment of n/p elements to each of the
p processors, which then simultaneously initialize their segment. To de-
termine the starting point, ni, for processor i, we construct in O(lg p) steps
the vector consisting of the numbers 0, 1, . . . , p − 1, then multiply every
element of this vector by n/p to obtain the required sequence of starting
points. We then ask in parallel for the ith processor to initialize its seg-
ment with the numbers ni through ni + (n/p)− 1, requiring O(n/p) steps
in parallel. The total time required is then O(n/p + lg p), as required.

Another source of the O(lg p) overhead is the need to re-schedule the
processors after each round of execution. At the end of a round execution
on each processor either terminates, continues from its present point, or
creates two or more new tasks for parallel execution. The scheduler must
poll the processors to determine their status, enqueueing any new or con-
tinuing work, then re-assigning work from the queue to the processors. The
polling process amounts to a computation of partial sums, where each pro-
cessor is assigned 0, if it has completed, 1, if it is continuing, and 2 or more,
if it creates new tasks. The partial sums are then used to enter the tasks into
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a queue for scheduling on the next round. Computation of the partial sums
requires O(lg p) steps, which is the overhead of scheduling on each round.

The overall bound of O(w/p + d lg p) quoted in Theorem 40.6 on page 324
arises from two considerations. If the depth, d, is the dominant factor, then
the per-round overhead results in the d lg p component of the overall cost.
Otherwise the scheduling cost can be hidden in the workload by activating
lg p items of work per processor, for a total of p lg p units of work on each
round. Note that the partial sums computation required for load balancing
still takes O(lg p) time for this slightly larger workload. This implies that
the scheduling overhead is hidden, as witnessed by the simple calculation
(w lg p)/(p lg p) = w/p.
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Chapter 41

Process Calculus

So far we have mainly studied the static and dynamic semantics of pro-
grams in isolation, without regard to their interaction with the world. But
to extend this analysis to even the most rudimentary forms of input and
output requires that we consider external agents that interact with the pro-
gram. After all, the whole purpose of a computer is to interact with a per-
son!

To extend our investigations to interactive systems, we begin with the
study of process calculi, which are abstract formalisms that capture the essence
of interaction among independent agents. There are many forms of process
calculi, differing in technical details and in emphasis. We will consider the
best-known formalism, which is called the π-calculus. The development
will proceed in stages, starting with simple action models, then extending
to interacting concurrent processes, and finally to the π-calculus itself.

41.1 Actions and Events

Our treatment of concurrent interaction is based on the notion of an event,
which specifies the set of actions that a process is prepared to undertake in
concert with another process. Two processes interact by undertaking two
complementary actions, which may be thought of as a read and a write on
a common channel. The processes synchronize on these complementary
actions, after which they may proceed independently to interact with other
processes.

To begin with we will focus on sequential processes, which simply await
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the arrival of one of several possible actions, known as an event.

Process P ::= await(E)
Event E ::= 0 | E1 + E2 | α.P
Action α ::= ?a | !a

The variables a, b, and c range over channels, which serve as conduits for
synchronization. The actions ?a and !a are said to be complementary. As
a mnemonic device, it may help to think of the first as a read action, and
the second as a write action, on a communication channel (but one could
equally well take the opposite point of view).

We will handle events modulo structural congruence, written P1 ≡ P2
and E1 ≡ E2, respectively, which is the strongest equivalence relation closed
under the following rules:

E ≡ E′
await(E) ≡ await(E′)

(41.1a)

E1 ≡ E′1 E2 ≡ E′2
E1 + E2 ≡ E′1 + E′2

(41.1b)

P ≡ P′
α.P ≡ α.P′

(41.1c)

E + 0 ≡ E (41.1d)

E1 + E2 ≡ E2 + E1 (41.1e)

E1 + (E2 + E3) ≡ (E1 + E2)+ E3 (41.1f)

The importance of imposing structural congruence on sequential pro-
cesses is that it enables us to think of an event as having the form

α1.P1 + . . . + αn.Pn

for some n ≥ 0, with the understanding that when n = 0 this notation
stands for the null event, 0. The derived process expression 1 stands for the
“inert” process await(0), which awaits the event that will never occur.

An illustrative example of Robin Milner’s is a simple vending machine
that may take in a 2p coin, then optionally either permit selection of a cup
of tea, or take another 2p coin, then permit selection of a cup of coffee.

V = await(?2p.await(!tea.V + ?2p.await(!coffee.V)))
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As the example indicates, we tacitly permit recursive definitions of pro-
cesses, with the understanding that a defined identifier may always be re-
placed with its definition wherever it occurs.

Because we have suppressed the internal computation occurring within
a process, sequential processes have no dynamic semantics on their own—
their dynamics arises only as a result of interaction with another process.
For the vending machine to operate there must be another process (you!)
who initiates the events expected by the machine, causing both your state
(the coins in your pocket) and its state (as just described) to change as a
result.

41.2 Concurrent Interaction

We enrich the language of processes with concurrent composition.

Process P ::= await(E) | P1 ‖ P2

Structural congruence for processes is enriched by the following rules:

P ‖ 1 ≡ P (41.2a)

P1 ‖ P2 ≡ P2 ‖ P1 (41.2b)

P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3 (41.2c)

P1 ≡ P′1 P2 ≡ P′2
P1 ‖ P2 ≡ P′1 ‖ P′2

(41.2d)

This permits us to regard a process as having the form

await(E1) ‖ . . . ‖ await(En)

where n ≥ 0, it being understood that when n = 0 this is the process 1.
We may now define the dynamic semantics of concurrent processes by

a judgement of the form P1 −→ P2, where P1 and P2 are processes. The
dynamic semantics consists of interactions among two processes offering
to undertake complementary actions.

await(E1 + !a.P1) ‖ await(E2 + ?a.P2) −→ P1 ‖ P2 (41.3a)

JUNE 26, 2007 DRAFT 5:05PM



332 41.3. REPLICATION

The interaction may be understood as the synchronized occurrence of a
read and a write on the same channel by two processes.

In addition to synchronizing, concurrent processes may also proceed to
execute independently of one another.

P1 −→ P′1
P1 ‖ P2 −→ P′1 ‖ P2

(41.3b)

P2 −→ P′2
P1 ‖ P2 −→ P1 ‖ P′2

(41.3c)

As an example, let us consider the interaction of the vending machine,
V, with the user process, U, defined as follows:

U = await(!2p.await(!2p.await(?coffee.1))).

Here is a trace of the interaction between V and U, suppressing uses of
structural congruence:

V ‖U −→ await(!tea.V + ?2p.await(!coffee.V)) ‖ await(!2p.await(?coffee.1))
−→ await(!coffee.V) ‖ await(?coffee.1)
−→ V

41.3 Replication

Some presentations of process calculus forego reliance on defining equa-
tions for processes in favor of a replication construct, which we write *P.
This process stands for as many concurrently executing copies of P as one
may require, which may be modeled by the structural congruence

*P ≡ P ‖ *P.

This hides the overhead of process creation, and gives no hint as to how
often it can or should be applied. One could alternatively build replication
into the reaction rules to model replication behavior more closely.

Replication may be used to model recursive definitions by introducing
an “activator” process that is contacted to effect the recursion. Consider the
recursive definition A = P(A), where P is a process expression involving
occurrences of the defined process A. This may be simulated by defining

A = *await(?a.P(await(!a.1))),
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in which we have replaced occurrences of A within P by the process that
signals the event a. To initiate A we must put it in parallel with the process
await(!a.1), which initiates process.

As an example, let us consider Milner’s vending machine written using
replication, rather than using recursive process definition:

V1 = *await(?v.V2) (41.4)
V2 = await(?2p.await(!tea.V0 + ?2p.await(!coffee.V0))) (41.5)
V0 = await(!v.1) (41.6)

The process V1 is a replicated server that awaits a signal on channel v to
create another instance of the vending machine. The recursive calls are
replaced by signals along v to re-start the machine. The original machine,
V, is simulated by the parallel composition V0 ‖V1.

41.4 Private Channels

It is often desirable to isolate interactions among a group of concurrent pro-
cesses from those among another group of processes. This can be achieved
by creating a private channel that is shared among those in the group, and
which is inaccessible from all other processes. This may be modeled by
enriching the language of processes with a construct for creating a new
channel:

Process P ::= ν(a.P)

As the syntax suggests, this is a binding operator in which the channel a is
bound within P.

Structural congruence is extended with the following rules:

P =α P′

P ≡ P′
(41.7a)

P ≡ P′
ν(a.P) ≡ ν(a.P′)

(41.7b)

a # P2

ν(a.P1) ‖ P2 ≡ ν(a.P1 ‖ P2)
(41.7c)

The last rule, called scope extrusion, will be important for the treatment of
communication in the next section.
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Reaction is extended with one additional rule permitting reactions to
take place within the scope of a binder.

P −→ P′
ν(a.P) −→ ν(a.P′)

(41.8)

No process may interact with ν(a.P) along the newly-allocated channel,
for to do so would require knowledge of the private channel, a, which is
chosen, by the magic of α-equivalence, to be distinct from all other channels
in the system.

As an example, let us consider again the non-recursive definition of the
vending machine. The channel, v, used to initialize the machine should be
considered private to the machine itself, and not be made available to a user
process. This is naturally expressed by the process expression ν(v.V0 ‖V1),
where V0 and V1 are as defined above using the designated channel, v. This
process correctly simulates the original machine, V, because it precludes
interaction with a user process on channel V. If U is a user process, the
interaction begins as follows:

ν(v.V0 ‖V1) ‖U −→ ν(v.V2) ‖U ≡ ν(v.V2 ‖U)

The interaction continues as before, albeit within the scope of the binder,
provided that v has been chosen (by structural congruence) to be apart from
U, ensuring that it is private to the internal workings of the machine.

41.5 Synchronous Communication

The concurrent process calculus presented in the preceding section mod-
els synchronization based on the willingness of two processes to under-
take complementary actions. A natural extension of this model is to permit
data to be passed from one process to another as part of synchronization.
Since we are abstracting away from the computation occurring within a
process, it would not make much sense to consider, say, passing an integer
during synchronization. A more interesting possibility is to permit pass-
ing channels, so that new patterns of connectivity can be established as a
consequence of inter-process synchronization. This is the core idea of the
π-calculus.

Traditionally, the π-calculus is viewed as an extension of the concurrent
calculus given in the preceding section in which actions are generalized to
express the asymmmetric communication from one process to another at
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the point of synchronization.

Action α ::= ?a(x) | !a<b>

The action ?a(x) represents a read, or receive, along channel, a, of another
channel that will be bound to the variable x when received. The action
!a<b> represents a write, or send, of a channel, b, along a channel, a.

This notation is, however, rather confusing, because it separates a binder
from the scope of its binding. An alternative, which we adopt here, is to
change the syntax of events to account for the two forms of actions directly.

Event E ::= 0 | E1 + E2 | ?a(x).P | !a<b>.P

The event ?a(x).P binds the variable x within the process expression P.
The syntax for processes remains as in the case of the simple concurrent
calculus, albeit with an enriched concept of event.

Interaction in the π-calculus consists of synchronization on the concur-
rent availability of complementary actions on a channel, passing a channel
from the sender to the receiver.

await(E1 + !a<b>.P1) ‖ await(E2 + ?a(x).P2) −→ P1 ‖ [b/x]P2 (41.9)

In contrast to pure synchronization the message-passing form of interac-
tion is fundamentally asymmetric — the receiver continues with the chan-
nel passed by the sender substituted for the bound variable of the action.

41.6 Mutable Cells as Processes

Let us consider a reference cell server that, when given an initial value,
creates a cell that listens on two dedicated channels, one to get the current
value of the cell, the other to set it to a new designated value. This may be
defined using recursion equations as follows:

C(x, g, s) = await(S(g, s) + G(x, g, s)) (41.10)
S(g, s) = ?s(y).C(y, g, s) (41.11)

G(x, g, s) = !g<x>.C(x, g, s) (41.12)

The cell is parameterized by its current value and two channels on which
to contact it to get and set its value. Each message causes a new cell to be
created, reflecting any update to its value.
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To avoid the recursion implicit in the equations we may instead define
a server that creates fresh cells whenever contacted on a specified channel,
c, specifying an initial value, x, for that cell and two channels, g and s, on
which to contact it to get and set its value.

R(c) = *await(?c(x, g, s).C′(c, x, g, s)) (41.13)
C′(c, x, g, s) = await(S′(c, g, s) + G′(c, x, g, s)) (41.14)

S′(c, g, s) = ?s(y).await(!c<y, g, s>.1) (41.15)
G′(c, x, g, s) = !g<x>.await(!c<x, g, s>.1) (41.16)

The reference cell server repeatedly awaits receipt of a creation message on
channel r, and creates a new cell with the specified initial value and chan-
nels on which to contact it. The cell awaits contact, then behaves appropri-
ately, but this time contacting the server to create a new cell with updated
value after each message.

To use reference cells in a process P, we put P in parallel with an in-
stance, R(c), of the cell server, which is contacted via channel c. For exam-
ple, the process

ν(c.R(c) ‖ ν(g.ν(s.await(!c<0, g, s>.await(!s<1>.await(?g(x).. . .))))))

allocates a channel for communication with the reference cell server, then
allocates two channels for a new cell, initializes it to 0, sets it to 1, then
retrieves its value, and so forth.

This example illustrates the importance of scope extrusion in the π-
calculus. Initially, the process R(c) is run concurrently with a process that
allocates two new channels, g and s, and then sends these channels, along
with the initial value, 0, along c. Tracing out the reactions, this results in
a process offering to send along g and to receive along s, which represents
the new reference cell, running in parallel with the subsequent process that
manipulates this newly allocated cell. For this to make sense, the scope of
g and s must be enlarged to encompass the body of R(c) after receipt of
0, g, and s along c. Structural congruence ensures that we may “lift” the
allocation of g and s to encompass R(c), since g and s may be chosen, by
α-equivalence, to be distinct from any channels already occurring in R(c).
This enables communication of the cell server with the cell client along the
channels g and s.
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41.7 Asynchronous Communication

This form of interaction is called synchronous, because both the sender and
the receiver are blocked from further interaction until synchronization has
occurred. On the receiving side this is inevitable, because the receiver can-
not continue execution until the channel which it receives has been deter-
mined, much as the body of a function cannot be executed until its ar-
gument has been provided. On the sending side, however, there is no
fundamental reason why notification is required; the sender could simply
send the message along a channel without specifying how to continue once
that message has been received. This “fire and forget” semantics is called
asynchronous communication, in constrast to the synchronous form just de-
scribed.

The asynchronous π-calculus is obtained by removing the synchronous
send event, !a<b>.P, and adding a new form of process, the asynchronous
send, written !a<b>. The syntax of the asynchronous π-calculus is therefore
given by the following grammar:

Process P ::= !a<b> | await(E) | P1 ‖ P2 | ν(a.P)
Event E ::= 0 | ?a(x).P | E1 + E2

Up to structural congruence, an event is just a choice of zero or more reads
along any number of channels.

The basic reaction rule of communication is re-phrased for the asyn-
chronous case as follows:

await(E + ?a(x).P) ‖ !a<b> −→ [b/x]P (41.17)

Should there be more than one read on the channel a within the awaited
event, the choice of which to select for communication is not specified —
either could be chosen. One may regard the pending asynchronous write
as a kind o buffer in which the message is held until a receiver is chosen.

In a sense the synchronous π-calculus is more fundamental than the
asynchronous variant, because we may always mimic the asynchronous
send by a process of the form await(!a<b>.1), which performs the send,
and then becomes the inert process 1. In another sense, however, the asyn-
chronous π-calculus is more fundamental, because we may encode a syn-
chronous send by introducing a notification channel on which the receiver
sends a message to notify the sender of the successful receipt of its mes-
sage. This exposes the implicit communication required to implement syn-
chronous send, and avoids it in cases where it is not needed (in particular,
when the resumed process is just the inert process, as just illustrated).
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41.8 Exercises

1. Explore Church-like encodings of data structures in the π-calculus.

2. Show how to avoid implicit replication.

3. Implement synchronous send in the asynchronous π-calculus.

4. Formulate the polyadic π-calculus. Can it be encoded in the monadic
π-calculus?

5. Show that in the asynchronous π-calculus, events are definable as
processes.
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Chapter 42

Concurrent ML

Concurrent ML, or CML, is an extension of Standard ML with concurrency.
The basic mechanisms of CML can be seen as analogues of those that make
up the π-calculus, but there are, in addition, a number of mechanisms, such
as negative acknowledgements, that go beyond what is found in abstract
process calculi. We will study the basic mechanisms of CML, and show
how to give them a semantics using techniques similar to those of the π-
calculus.

42.1 Channels and Events

CML is based on two fundamental abstract types, channels and events.
Channels carry values of a specified type, including, potentially, other chan-
nels. Events are also typed, with the type of the event indicating the type
of value arising from synchronizing with it. We will take some liberties
in defining the primitives of CML so as to simplify the presentation. The
actual signatures are substantial enrichments of these, and make use of
slightly different naming conventions.

The signature of channels is given by the following declaration:

signature CHANNEL = sig
type ’a chan
val channel : unit -> ’a chan

end

The expression channel() allocates a fresh channel whose type is deter-
mined from context.

The signature of events is given by the following declaration:
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signature EVENT = sig
type ’a event
val recv : ’a chan -> ’a event
val send : ’a chan * ’a -> unit event
val never : ’a event
val always : ’a -> ’a event
val choose : ’a event * ’a event -> ’a event
val wrap : ’a event * (’a -> ’b) -> ’b event

end

The basic forms of event are the send and receive events. The event recv
a is enabled when data is available to be received on channel a; the value
of the event is the received value. The event send (a,v) is enabled when
transmission of the value v on the channel a is possible; the value of this
event is always (). The event never is never enabled. The event always
v is always enabled, and has value v. The event choose(e1,e2) is enabled
when either e1 or e2 is enabled, and its value is the value of the enabled
event, with ties broken arbitrarily. Finally, the event choose(e, f) is en-
abled whenever e is enabled; if the value of e is v, then the value of this
event is the value of the application f (v).

Processes are constructed from the following primitives:

signature PROCESS = sig
val spawn : (unit -> ’a) -> ’a
val exit : unit -> ’a
val sync : ’a event -> ’a

end

The expression spawn f creates a new process executing f(), and returns
(). The expression exit() terminates the current process. The expression
sync e waits for the event e to be enabled, synchronizes on it, and returns
its value.

42.2 Dynamic Semantics

The dynamic semantics of CML may be given in terms of an implemen-
tation of the EVENT signature. Events are represented as values of an ML
datatype representing events in a normalized form in which wrap events
occur only in juxtaposition with send and recv events, and in which tree-
structured choices are flattened into lists. We assume given a structure Ch
:> CHANNEL.
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structure Event :> EVENT = struct

datatype ’a comm event =
Recv of ’a Ch.chan | Send of ’a Ch.chan * ’a

datatype ’a atomic event =
Never | Always of ’a | Wrap of ’a comm event * (’a -> ’b)

type ’a event = ’a atomic event list

val never = [Never]
fun always v = [Always v]
fun recv a = [Wrap (Recv a, fn x => x)]
fun send (a, v) = [Wrap (Send (a, v), fn x => x)]
fun choose (es1, es2) = es1 @ es2
fun wrap1 (Never, f) = Never
| wrap1 (Always v, f) = Always (f v)
| wrap1 (Wrap (c, f), g) = Wrap (c, g o f)

fun wrap (es, f) = map (wrap1 f) es

end

The dynamic semantics of CML may be given in terms of this represen-
tation of events by erecting the infrastructure of the π-calculus around it.
Processes are defined by the following grammar:

CML Processes P ::= {e} | P1 ‖ P2 | ν(a.P)
CML Atomic Events A ::= Never | Always(v) | Wrap(Recv(a), f) |

Wrap(Send(a,v), f)
CML Events E ::= [A1, . . . , An] (n ≥ 0)

We define structural congruence of CML processes analogously to that for
π-calculus processes (see Chapter 41). In particular the order of events in
a list of atomic events does not matter, and any occurrences of Never in an
event are eliminated.

The reaction relation is defined on structural congruence classes of pro-
cesses by the following rules, in addition to the general rules governing the
process calculus combining forms given in Chapter 41.

The fundamental synchronization rule is as follows:

{sync(Wrap(Recv(a), f):: )} ‖ {sync(Wrap(Send(a,v),g):: )}
−→

{ f(v)} ‖ {g()}
(42.1a)
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The receiving process yields the value of f(v), where v is obtained from
the sending process. The sending process yields the value of g().

The always-enabled process is always enabled:

{sync(Always(v):: )} −→ {v} (42.1b)

Allocating a new channel is easily expressed by creating a new channel
and returning it:

{channel()} −→ ν(a.{a}) (42.1c)

42.3 Exercises
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Monadic Input/Output
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Dependent Types





Chapter 44

Indexed Families of Types

44.1 Type Families

44.2 Exercises
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Chapter 45

Dependent Types

45.1 Dependency

45.2 Exercises
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Modularity





Chapter 46

Separate Compilation and
Linking

46.1 Linking and Substitution

46.2 Exercises
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Basic Modules
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Parameterized Modules
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Part XVIII

Equivalence





Chapter 49

Equational Reasoning for
Functional Programs

Equations are the heart and soul of mathematics. We derive equations such
as

(x + 1)2 = x2 + 2 x + 1

to express the equivalence of two functions of the variable x ∈ R. We solve
equations such as

z2 + 1 = 0

for z ∈ C for the complex number i =
√
−1. In elementary geometry

congruence and similarity are forms of equality between geometric objects.
The laws of physics are expressed as differential equations governing the
structure and evolution of a physical system.

The beauty of functional programming is that equality of expressions
in a functional language corresponds very closely to familiar patterns of
mathematical reasoning. For example, in the language L{nat→} of Chap-
ter 14 in which we can express addition as the function plus, the expres-
sions

λ(x:nat. λ(y:nat. plus(e1)(e2)))

and
λ(x:nat. λ(y:nat. plus(e2)(e1)))

are equal, regardless of what e1 and e2, so long as they are of type nat. In
other words, the addition function as programmed in L{nat→} is commu-
tative. This may seem obvious, in the sense that you may have expected it
to be true, but why, precisely, is it so? More importantly, what do we even
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mean when we say that two expressions of a programming language are
equal? In this chapter we will develop answers to these questions for the
language L{nat→} introduced in Chapter 14.

49.1 Observational Equivalence

When are two expressions equal? Whenever we cannot tell them apart!
This may seem tautological, but it is not, because it depends on what we
consider to be a means of telling expressions apart. What “experiment”
are we permitted to perform on expressions in order to distinguish them?
What counts as an observation that, if different for two expressions, is a
sure sign that they are different?

If we permit ourselves to consider the syntactic details of the expres-
sions, then very few expressions could be considered equal. For example,
if it is deemed significant that an expression contains, say, more than one
function application, or that it has an occurrence of λ-abstraction, then very
few expressions would come out as equivalent. But such considerations
seem silly, because they conflict with the intuition that the significance of
an expression lies in its contribution to the outcome of a computation, and
not to the process of obtaining that outcome. In short, if two expressions
make the same contribution to the outcome of a complete program, then
they ought to be regarded as equal.

We must fix what we mean by a complete program. Two considerations
inform the definition. First, the dynamic semantics of L{nat→} is given
only for expressions without free variables, so a complete program should
clearly be a closed expression. Second, the outcome of a computation should
be observable, so that it is evident whether the outcome of two computations
differs or not. We define a complete program to be a closed expression of type
nat.

An experiment, or observation, about an expression is any means of using
that expression within a complete program. We define an expression context
to be an expression with a “hole” in it serving as a placeholder for another
expression. The hole is permitted to occur anywhere, including within the
scope of a binder. The bound variables within whose scope the hole lies
are said to be exposed (to capture) by the expression context. These variables
may be assumed, without loss of generality, to be distinct from one another.
A program context is a closed expression context of type nat—that is, it is a
complete program with a hole in it. The meta-variable C stands for any
expression context.
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Replacement is the process of filling a hole in an expression context, C,
with an expression, e, which is written C{e}. Importantly, the free vari-
ables of e that are exposed by C are captured by replacement (which is why
replacement is not a form of substitution, which is defined so as to avoid
capture). If C is a program context, then C{e} is a complete program iff
all free variables of e are captured by the replacement. For example, if
C = λ(x:nat. ◦), and e = x+x, then

C{e} = λ(x:nat. x+x).

The free occurrences of x in e are captured by the λ-abstraction as a result
of the replacement of the hole in C by e.

We sometimes write C{◦} to emphasize the occurrence of the hole in
C. Expression contexts are closed under composition in that if C1 and C2 are
expression contexts, then so is

C{◦} := C1{C2{◦}},

and we have C{e} = C1{C2{e}}. The trivial, or identity, expression context
is the “bare hole”, written ◦, for which ◦{e} = e.

The static semantics of expressions of L{nat→} is extended to expres-
sion contexts by defining the typing judgement

C : (Γ ` τ) (Γ′ ` τ′)

so that if Γ ` e : τ, then Γ′ ` C{e} : τ′. This judgement may be induc-
tively defined by a collection of rules derived from the static semantics of
L{nat→} (for which see Rules (14.1)). Some representative rules are as
follows:

◦ : (Γ ` τ) (Γ ` τ) (49.1a)

C : (Γ ` τ) (Γ′ ` τ′)
s(C) : (Γ ` τ) (Γ′ ` τ′)

(49.1b)

C2 : (Γ ` τ) (Γ′, x : τ1 ` τ2)
λ(x:τ1. C2) : (Γ ` τ) (Γ′ ` τ1 → τ2)

(49.1c)

C1 : (Γ ` τ) (Γ′ ` τ2 → τ′) Γ′ ` e2 : τ2

C1(e2) : (Γ ` τ) (Γ′ ` τ′)
(49.1d)

Γ′ ` e1 : τ2 → τ′ C2 : (Γ ` τ) (Γ′ ` τ2)
e1(C2) : (Γ ` τ) (Γ′ ` τ′)

(49.1e)

The remaining rules follow a similar pattern.
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Lemma 49.1. If C : (Γ ` τ) (Γ′ ` τ′), then Γ′ ⊆ Γ, and if Γ ` e : τ, then
Γ′ ` C{e} : τ′.

Observe that the trivial context consisting only of a “hole” acts as the
identity under replacement. Moreover, contexts are closed under composi-
tion in the following sense.

Lemma 49.2. If C : (Γ ` τ) (Γ′ ` τ′), and C ′ : (Γ′ ` τ′) (Γ′′ ` τ′′), then
C ′{C{◦}} : (Γ ` τ) (Γ′′ ` τ′′).

Kleene equivalence determines when two experiments have the same out-
come. If e and e′ are complete programs, then e is Kleene equivalent to e′,
written e ' e′, iff e 7→∗ n iff e′ 7→∗ n. This condition does not demand that
both sides terminate, but it can be shown that all well-typed expressions in
L{nat→} terminate, and so this need not be explicitly required.

Definition 49.1. Suppose that Γ ` e : τ and Γ ` e′ : τ are two expressions
of the same type. We say that e and e′ are observationally equivalent, written
Γ ` e ∼= e′ : τ, iff C{e} ' C{e′} for every program context C.

In other words, for all possible experiments, the outcome of an experiment
on e is the same as the outcome on e′. This is obviously an equivalence
relation.

A type-indexed family of equivalence relations Γ ` e1 ≡ e2 : τ is a con-
gruence iff it is preserved by all contexts. That is,

if Γ ` e ≡ e′ : τ, then Γ′ ` C{e} ≡ C{e′} : τ′

for every expression context C : (Γ ` τ) (Γ′ ` τ′). Such a family of rela-
tions is consistent iff it coincides with Kleene equivalence at the type nat.

Theorem 49.3. Observational equivalence is the coarsest consistent congruence
on expressions.

Proof. Consistency follows directly from the definition by noting that the
trivial context is a program context. Observational equivalence is obvi-
ously an equivalence relation. To show that it is a congruence, we need
only observe that type-correct composition of a program contex with an
arbitrary expression context is again a program context. Finally, it is the
coarsest such equivalence relation, for if Γ 6` e ∼= e′ : τ, then there is a pro-
gram context C such that C{e} 6' C{e′}, so that extending observational
equivalence with this pair would be inconsistent.
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Theorem 49.3 on the facing page licenses the principle of proof by coin-
duction to show that two expressions are observational equivalence: to show
that Γ ` e ∼= e′ : τ, it is enough to exhibit a consistent congruence such that
Γ ` e ≡ e′ : τ. It can be difficult, however, to construct such a relation. In
the next section we will provide a general method for doing so that will
prove useful in many situations.

49.2 Logical Equivalence

The key to simplifying reasoning about observational equivalence is to ex-
ploit types. Informally, we may classify the uses of values of a type into
two broad categories, the passive and the active uses. The passive uses are
those that merely manipulate values without actually inspecting them. For
example, we may pass a value of type τ to a function that merely returns
it. The active uses are those that operate on the value itself; these are the
elimination forms associated with the type of that value. For the purposes
of distinguishing two expressions, it is only the active uses that matter; the
passive uses merely manipulate values at arm’s length, affording no op-
portunities to distinguish one from another. This leads to the definition of
typed, or logical, equivalence.

Definition 49.2. Logical equivalence is a type-indexed family of relations e ∼ e′ :
τ between closed expressions of type τ. It is defined along with the relation e ≈ e′ :
τ of logical equivalence between closed values by induction on the structure of τ
as follows:

e ∼ e′ : τ iff if e 7→∗ e1 val then e′ 7→∗ e′1 val and e1 ≈ e′1 : τ and
if e′ 7→∗ e′1 val then e 7→∗ e1 val and e1 ≈ e′1 : τ

e ≈ e′ : nat iff e = e′ = z, or
e = s(e1) and e′ = s(e′1) and e1 ≈ e′1 : nat

e ≈ e′ : τ1 → τ2 iff e = λ(x:τ1. e2), e′ = λ(x:τ1. e′2), and
e1 ≈ e′1 : τ1 implies [e1/x]e2 ∼ [e′1/x]e′2 : τ2

Observe that if e ≈ e′ : τ, then e val and e′ val, and that if e ∼ e′ : τ, then if
d 7→ e, then d ∼ e′ : τ, and if d′ 7→ e′, then e ∼ d′ : τ. Moreover, if e val and
e′ val, then e ∼ e′ : τ iff e ≈ e′ : τ. Finally, note that e ≈ e′ : nat iff e = e′ = n
for some n ≥ 0.
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The general form of logical equivalence is extended to open terms by
considering logically equivalent substitution instances. An expression as-
signment, γ, for a context Γ is an assignment of a closed expression γ(x) :
Γ(x) to each variable x ∈ dom(Γ). The relation γ ≈ γ′ : Γ holds iff dom(γ) =
dom(γ′) = dom(Γ), and γ(x) ≈ γ′(x) : Γ(x) for every variable, x, in their
common domain. We then define Γ ` e ∼ e′ : τ to mean that γ̂(e) ∼ γ̂′e′ : τ
whenever γ ≈ γ′ : Γ.

49.3 Logical and Observational Equivalence Coincide

In this section we prove the coincidence of observational and logical equiv-
alence.

Lemma 49.4 (Substitution and Functionality). If Γ, x : σ ` e ∼= e′ : τ, and
d : σ, then Γ ` [d/x]e ∼= [d/x]e′ : τ. Furthermore, if d ∼= d′ : σ, then Γ `
[d/x]e ∼= [d′/x]e′ : τ.

Proof. Suppose that C : (Γ ` τ) ( ` nat) is a program context. We are
to show that C{[d/x]e} ' C{[d/x]e′}. Since d and d′ are closed, and since
C is a program context, this is equivalent to showing that [d/x]C{e} '
[d/x]C{e′}. Let D be the context (λ(x:σ. C{◦}))(d), and note that D :
(Γ, x : σ ` τ) ( ` nat). It follows from the assumption thatD{e} ' D{e′}.
But by construction D{e} ' [d/x]C{e}, and D{e′} ' [d/x]C{e′}. Let
D′ be the context (λ(x:σ. C{◦}))(d′), and note that it, too, is a program
context. Now if d ∼= d′ : σ, by congruence of observational equivalence,
D{e} ∼= D′{e} : nat, and similarly D{e′} ∼= D′{e′} : nat. By consistency of
observational equivalence these are valid Kleene equivalences, from which
the result follows.

Lemma 49.5 (Closure Under Application). Suppose that e ≈ e′ : τ1 → τ2. If
e1 ≈ e′1 : τ1, then e(e1) ∼ e′(e′1) : τ2.

Proof. By assumption and Definition 49.2 on the previous page we know
that e = λ(x:τ1. e2) and e′ = λ(x:τ1. e′2), and hence that [e1/x]e2 ∼ [e′1/x]e′2 :
τ2. But since e(e1) 7→ [e1/x]e2 and e′(e′1) 7→ [e′1/x]e′2, the result follows im-
mediately from the definition of logical equivalence of expressions.

Lemma 49.6 (Consistency). e ∼ e′ : nat iff e ' e′.

Proof. Immediate, from Definition 49.2 on the preceding page.

Lemma 49.7 (Reflexivity). If Γ ` e : τ, then Γ ` e ∼ e : τ.
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Proof. We are to show that if Γ ` e : τ and γ ≈ γ′ : Γ, then γ̂(e) ∼ γ̂′(e′) :
τ. The proof proceeds by induction on typing derivations. For example,
consider the case of Rule (13.2b), in which τ = τ1 ⇀ τ2, e = λ(x:τ1. e2) and
e′ = λ(x:τ1. e′2). Since γ̂(e) and γ̂′(e′) are values, it is enough to show that

λ(x:τ1. γ̂(e2)) ≈ λ(x:τ1. γ̂′(e′2)) : τ1 ⇀ τ2.

Assume that e1 ≈ e′1 : τ1; we are to show that [e1/x]γ̂(e2) ∼ [e′1/x]γ̂′(e′2) :
τ2. Let γ2 = γ[x 7→ e1] and γ′2 = γ′[x 7→ e′1], and observe that γ2 ≈ γ′2 :
Γ, x : τ1. Therefore, by induction we have γ̂2(e2) ∼ γ̂′2(e′2) : τ2, from which
the result follows directly.

Symmetry and transitivity of logical equivalence are easily established
by induction on types, noting that Kleene equivalence is symmetric and
transitive. Logical equivalence is therefore an equivalence relation.

Lemma 49.8 (Congruence). If C0 : (Γ ` τ) (Γ0 ` τ0), and Γ ` e ∼ e′ : τ,
then Γ0 ` C0{e} ∼ C0{e′} : τ0.

Proof. By induction on the derivation of the typing of C0. In the case of
Rule (49.1a), the result is immediate. Suppose that the context typing is
derived by Rule (49.1c), so that C0 = λ(x:τ1. C2) and τ0 = τ1 → τ2 for
some type τ2. We are to show that

Γ0 ` C0{e} ∼ C0{e′} : τ0,

which is to say that

Γ0 ` λ(x:τ1. C2{e}) ∼ λ(x:τ1. C2{e′}) : τ1 → τ2

To this end, suppose that γ0 ≈ γ′0 : Γ0, and that e1 ≈ e′1 : τ1. Let γ1 =
γ0[x 7→ e1], γ′1 = γ′0[x 7→ e′1], and observe that γ1 ≈ γ′1 : Γ, x : τ1. By
Definition 49.2 on page 365 it is enough to show that

γ̂1(C2{e}) ∼ γ̂′1(C2{e′}) : τ2.

But this follows immediately from the inductive hypothesis.

Theorem 49.9. If Γ ` e ∼ e′ : τ, then Γ ` e ∼= e′ : τ.

Proof. By Lemmas 49.6 on the facing page and 49.8, and Theorem 49.3 on
page 364.

Lemma 49.10. If e ∼= e′ : τ, then e ∼ e′ : τ.
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Proof. By induction on the structure of τ. If τ = nat, then the result is
immediate, since the trivial expression context is a program context. If τ =
τ1 → τ2, then suppose that e 7→∗ d val and e′ 7→∗ d′ val. Since d and d′

are closed values of function type, d = λ(x:τ1. e2) and d′ = λ(x:τ1. e′2) for
some e2 and e′2. We are to show that d ≈ d′ : τ1 → τ2. So suppose further
that d1 ≈ d′1 : τ1, and show that [d1/x]e2 ∼ [d′1/x]e′2 : τ2. By Theorem 49.9
on the previous page d1

∼= d′1 : τ1, and hence by Lemma 49.4 on page 366
[d1/x]e2 ∼= [d′1/x]e′2 : τ2, from which the result follows by induction.

Theorem 49.11. If Γ ` e ∼= e′ : τ, then Γ ` e ∼ e′ : τ.

Proof. Assume that Γ ` e ∼= e′ : τ. Suppose that Γ = x1 : τ1, . . . , xn : τn
for some n ≥ 0, and that e1 ≈ e′1 : τ1, . . . , en ≈ e′n : τn. By Theorem 49.9 on
the previous page we have that e1

∼= e′1 : τ1, . . . , en ∼= e′n : τn, and hence by
Lemma 49.4 on page 366 we have

[e1, . . . , en/x1, . . . , xn]e ∼= [e′1, . . . , e′n/x1, . . . , xn]e′ : τ.

Therefore by Lemma 49.10 on the previous page we have

[e1, . . . , en/x1, . . . , xn]e ∼ [e′1, . . . , e′n/x1, . . . , xn]e′ : τ,

as required.

Corollary 49.12. Γ ` e ∼= e′ : τ iff Γ ` e ∼ e′ : τ.

49.4 Some Laws of Equivalence

In this section we summarize some useful principles of observational equiv-
alence for L{nat→}. For the most part these may be proved as laws of
logical equivalence, and then appealing to Corollary 49.12.

49.4.1 General Laws

Logical equivalence is indeed an equivalence relation: it is reflexive, sym-
metric, and transitive.

Γ ` e ∼= e : τ (49.2a)

Γ ` e′ ∼= e : τ
Γ ` e ∼= e′ : τ

(49.2b)
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Γ ` e ∼= e′ : τ Γ ` e′ ∼= e′′ : τ
Γ ` e ∼= e′′ : τ

(49.2c)

Observational equivalence is a congruence: we may replace equals by
equals anywhere in an expression.

Γ ` e ∼= e′ : τ C : (Γ ` τ) (Γ′ ` τ′)
Γ′ ` C{e} ∼= C{e′} : τ′

(49.3a)

Equivalence is stable under substitution of values for free variables, and
substituting equivalent values in an expression gives equivalent results.

Γ ` e : τ Γ, x : τ ` e2 ∼= e′2 : τ′

Γ ` [e/x]e2 ∼= [e/x]e′2 : τ′
(49.4a)

Γ ` e1
∼= e′1 : τ Γ, x : τ ` e2 ∼= e′2 : τ′

Γ ` [e1/x]e2 ∼= [e′1/x]e′2 : τ′
(49.4b)

49.4.2 Symbolic Evaluation Laws

All of the instruction steps of an operational semantics are valid laws of
equivalence. These are called symbolic evaluation laws, because they are
extensions of the operational semantics to expressions with free variables
that may occur anywhere within a program.

Γ ` rec z {z⇒ e0 | s(x) with y⇒ e1} ∼= e0 : τ (49.5a)

e = rec s(e′) {z⇒ e0 | s(x) with y⇒ e1}
Γ ` e ∼= [e′, e/x, y]e1 : τ

(49.5b)

Γ ` (λ(x:τ1. e2))(e1) ∼= [e1/x]e2 : τ2 (49.5c)
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49.4.3 Extensionality Laws

Two functions are equivalent if they are equivalent on all arguments.

Γ, x : τ1 ` e(x) ∼= e′(x) : τ2

Γ ` e ∼= e′ : τ1 → τ2
(49.6)

Consequently, every expression of function type is equivalent to a λ-
abstraction:

Γ ` e ∼= λ(x:τ1. e(x)) : τ1 → τ2 (49.7)

49.4.4 Induction Law

An equation involving a free variable, x, of type nat can be proved by in-
duction on x.

Γ ` [n/x]e ∼= [n/x]e′ : τ (for every n ∈N)
Γ, x : nat ` e ∼= e′ : τ

(49.8a)

To apply the induction rule, we proceed by mathematical induction on
n ∈N, which reduces to showing:

1. Γ ` [z/x]e ∼= [z/x]e′ : τ, and

2. Γ ` [s(n)/x]e ∼= [s(n)/x]e′ : τ, if Γ ` [n/x]e ∼= [n/x]e′ : τ.

49.5 Exercises
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Chapter 50

Parametricity

The motivation for introducing polymorphism was to enable more pro-
grams to be written — those that are “generic” in one or more types, such
as the composition function given in Chapter 23. Then if a program does not
depend on the choice of types, we can code it using polymorphism. More-
over, if we wish to insist that a program can not depend on a choice of types,
we demand that it be polymorphic. Thus polymorphism can be used both
to expand the class of programs we may write, and also to limit the class of
programs that are permissible in a given context.

The restrictions imposed by polymorphic typing give rise to the expe-
rience that in a polymorphic functional language, if the types are correct,
then the program is correct. Roughly speaking, if a function has a poly-
morphic type, then the strictures of type genericity vastly cut down the set
of programs with that type. Thus if you have written a program with this
type, it is quite likely to be the one you intended!

The technical foundation for these remarks is called parametricity. The
goal of this chapter is to give an account of parametricity for L{2→∀}. For
the sake of technical simplicity, we consider a call-by-name dynamic semantics for
L{2→∀}. The results described herein can be extended to the call-by-value
case as well, at the expense of some additional complications.

50.1 Overview

We will begin with an informal discussion of parametricity based on a “seat
of the pants” understanding of the set of well-formed programs of a type.

Suppose that a function value f has the type ∀(t.t→ t). What function
could it be? When instantiated at a type τ it should evaluate to a function



372 50.2. OBSERVATIONAL EQUIVALENCE

g of type τ → τ that, when further applied to a value v of type τ returns
a value v′ of type τ. Since f is polymorphic, g cannot depend on v, so v′

must be v. In other words, g must be the identity function at type τ, and f
must therefore be the polymorphic identity.

Suppose that f is a function of type ∀(t.t). What function could it be?
A moment’s thought reveals that it cannot exist at all! For it must, when
instantiated at a type τ, return a value of that type. But not every type has
a value (including this one), so this is an impossible assignment. The only
conclusion is that ∀(t.t) is an empty type.

Let N be the type of polymorphic Church numerals introduced in Chap-
ter 23, namely ∀(t.t→ (t→ t)→ t). What are the values of this type?
Given any type τ, and values z : τ and s : τ → τ, the expression

f[τ](z)(s)

must yield a value of type τ. Moreover, it must behave uniformly with
respect to the choice of τ. What values could it yield? The only way to
build a value of type τ is by using the element z and the function s passed
to it. A moment’s thought reveals that the application must amount to the
n-fold composition

s(s(. . . s(z) . . .)).

That is, the elements of N are in one-to-one correspondence with the natu-
ral numbers.

50.2 Observational Equivalence

In this section we give a precise formulation of observational equivalence
for L{2→∀}, the extension of L{→∀}with the base type, 2, containing two
distinct values, tt and ff.

An expression context is, as in Chapter 49, an expression with a single
occurrence of a “hole” that may be filled by an open expression. The typing
judgement for expression contexts,

C : (∆; Γ ` τ) (∆′; Γ′ ` τ′),

is defined as in Chapter 49 to mean that C exposes the variables Γ, and is
such that ∆′; Γ′ ` C{e} : τ′ whenever ∆; Γ ` e : τ.

As in Chapter 49, we define a program to be a closed expression of type
2, and define a program context to be a closed expression context of this
type. Kleene equivalence is defined for programs is defined by e ' e′ iff
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(1) e 7→∗ tt iff e′ 7→∗ tt, and (2) e 7→∗ ff iff e′ 7→∗ ff. This is obviously
an equivalence relation. We say that a type-indexed family of relations be-
tween closed expressions of the same type is consistent iff it coincides with
Kleene equivalence at the type 2.

Definition 50.1. Two expressions of the same type are observationally equiva-
lent, written ∆; Γ ` e ∼= e′ : τ, iff C{e} ' C{e′}whenever C : (∆; Γ ` τ) ( ` 2).

Lemma 50.1. Observational equivalence is the coarsest consistent congruence.

Proof. The composition of a program context with another context is itself
a program context. It is consistent by virtue of the empty context being a
program context.

Lemma 50.2 (Closed Substitution and Functionality).

1. If ∆, t; Γ ` e ∼= e′ : τ and ρ type, then ∆; [ρ/t]Γ ` [ρ/t]e ∼= [ρ/t]e′ :
[ρ/t]τ.

2. If Γ, x : σ ` e ∼= e′ : τ and d : σ, then Γ ` [d/x]e ∼= [d/x]e′ : τ. Moreover,
if d ∼= d′ : σ, then Γ ` [d/x]e ∼= [d′/x]e : τ, and similarly for e′.

Proof. 1. Let C : (∆; [ρ/t]Γ ` [ρ/t]τ) ( ` 2) be a program context. We
are to show that

C{[ρ/t]e} ' C{[ρ/t]e′}.

Since C and ρ are closed, this is equivalent to

[ρ/t]C{e} ' [ρ/t]C{e′}.

Let C ′ be the context Λ(t.C{◦})[ρ], and observe that

C ′ : (∆, t; Γ ` τ) ( ` 2).

Therefore, from the assumption, it follows that

C ′{e} ' C ′{e′}.

But C ′{e} ' [ρ/t]C{e}, and C ′{e′} ' [ρ/t]C{e′}, from which the re-
sult follows.

2. By an argument essentially similar to that for Lemma 49.4 on page 366.
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50.3 Logical Equivalence

In this section we introduce a form of logical equivalence that captures the
informal concept of parametricity, and also provides a characterization of
observational equivalence. This will permit us to derive properties of ob-
servational equivalence of polymorphic programs of the kind suggested
earlier.

The definition of logical equivalence for L{2→∀} is somewhat more
complex than for L{2nat→}. The main idea is to define logical equiva-
lence for a polymorphic type, ∀(t.τ) to satisfy a very strong condition that
captures the essence of parametricity. As a first approximation, we might
say that two expressions, e and e′, of this type should be logically equiva-
lent if they are logically equivalent for “all possible” interpretations of the
type t. More precisely, we might require that e[ρ] be related to e′[ρ] at
type [ρ/t]τ, for any choice of type ρ. But this runs into two problems, one
technical, the other conceptual. The same device will be used to solve both
problems.

The technical problem stems from impredicativity. In Chapter 49 logi-
cal equivalence is defined by induction on the structure of types. But when
polymorphism is impredicative, the type [ρ/t]τ might well be larger than
∀(t.τ)! At the very least we would have to justify the definition of logical
equivalence on some other grounds, but no criterion appears to be avail-
able. The conceptual problem is that, even if we could make sense of the
definition of logical equivalence, it would be too restrictive. For such a def-
inition amounts to saying that the unknown type t is to be interpreted as
logical equivalence at whatever type it turns out to be when instantiated.
To obtain useful parametricity results, we shall ask for much more than
this. What we shall do is to consider separately instances of e and e′ by types
ρ and ρ′, and treat the type variable t as standing for any relation (of a suit-
able class) between ρ and ρ′. One may suspect that this is asking too much:
perhaps logical equivalence is the empty relation! Surprisingly, this is not
the case, and indeed it is this very feature of the definition that we shall
exploit to derive parametricity results about the language.

To manage both of these problems we will consider a generalization of
logical equivalence that is parameterized by a relational interpretation of
the free type variables of its classifier. The parameters determine a sepa-
rate binding for each free type variable in the classifier for each side of the
equation, with the discrepancy being mediated by a specified relation be-
tween them. This permits us to consider a notion of “equivalence” between
two expressions of different type—they are equivalent, modulo a relation
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between the interpretations of their free type variables.
We will restrict attention to a certain class of “admissible” binary rela-

tions between closed expressions. The conditions are imposed to ensure
that logical equivalence and observational equivalence coincide.

Definition 50.2 (Admissibility). A relation R between expressions of types ρ
and ρ′ is admissible, written R : ρ↔ ρ′, iff it satisfies two requirements:

1. Respect for observational equivalence: if R(e, e′) and d ∼= e : ρ and d′ ∼= e′ :
ρ′, then R(d, d′).

2. Closure under converse evaluation: if R(e, e′), then if d 7→ e, then R(d, e′)
and if d′ 7→ e′, then R(e, d′).

The second of these conditions will turn out to be a consequence of the first,
but we are not yet in a position to establish this fact.

The judgement δ : ∆ states that δ is a type assignment that assigns a
closed type to each type variable t ∈ ∆. A type assignment, δ, induces a
substitution function, δ̂, on types given by the equation

δ̂(τ) = [δ(t1), . . . , δ(tn)/t1, . . . , tn]τ,

and similarly for expressions. Substitution is extended to contexts point-
wise by defining δ̂(Γ)(x) = δ̂(Γ(x)) for each x ∈ dom(Γ).

Let δ and δ′ be two type assignments of closed types to the type vari-
ables in ∆. A relation assignment, η, between δ and δ′ is an assignment of
an admissible relation η(t) : δ(t)↔ δ′(t) for each t ∈ ∆. The judgement
η : δ↔ δ′ states that η is a relation assignment between δ and δ′.

Logical equivalence is defined in terms of its generalization, called pa-
rameterized logical equivalence, written e ∼ e′ : τ [η : δ↔ δ′], is defined as
follows.

Definition 50.3 (Parameterized Logical Equivalence). The relation e ∼ e′ :
τ [η : δ↔ δ′] is defined by induction on the structure of τ by the following con-
ditions:

e ∼ e′ : 2 [η : δ↔ δ′] iff e ' e′

e ∼ e′ : t [η : δ↔ δ′] iff η(t)(e, e′)
e ∼ e′ : τ1 → τ2 [η : δ↔ δ′] iff e1 ∼ e′1 : τ1 [η : δ↔ δ′] implies

e(e1) ∼ e′(e′1) : τ2 [η : δ↔ δ′]
e ∼ e′ : ∀(t.τ) [η : δ↔ δ′] iff for every ρ, ρ′, and every R : ρ↔ ρ′,

e[ρ] ∼ e′[ρ′] : τ [η[t 7→ R] : δ[t 7→ ρ]↔ δ′[t 7→ ρ′]]
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Logical equivalence is defined in terms of parameterized logical equiv-
alence by considering all possible interpretations of its free type- and ex-
pression variables. An expression assignment, γ, for a context Γ, written
γ : Γ, is an assignment of a closed expression γ(x) : Γ(x) to each vari-
able x ∈ dom(Γ). An expression assignment, γ : Γ, induces a substitution
function, γ̂, defined by the equation

γ̂(e) = [γ(x1), . . . , γ(xn)/x1, . . . , xn]e,

where the domain of Γ consists of the variables x1, . . . , xn.
The relation γ ∼ γ′ : Γ [η : δ↔ δ′] is defined to hold iff dom(γ) =

dom(γ′) = dom(Γ), and γ(x) ∼ γ′(x) : Γ(x) [η : δ↔ δ′] for every variable,
x, in their common domain.

Definition 50.4 (Logical Equivalence). The expressions ∆; Γ ` e : τ and ∆; Γ `
e′ : τ are logically equivalent, written ∆; Γ ` e ∼ e′ : τ iff for every assigment
δ and δ′ of closed types to type variables in ∆, and every relation assignment η :
δ↔ δ′, if γ ∼ γ′ : Γ [η : δ↔ δ′], then γ̂(δ̂(e)) ∼ γ̂′(δ̂′(e′)) : τ [η : δ↔ δ′].

When e, e′, and τ are closed, then this definition states that e ∼ e′ : τ iff
e ∼ e′ : τ [∅ : ∅↔ ∅], so that logical equivalence is indeed a special case
of its generalization.

Lemma 50.3 (Closure under Converse Evaluation). Suppose that e ∼ e′ :
τ [η : δ↔ δ′]. If d 7→ e, then d ∼ e′ : τ, and if d′ 7→ e′, then e ∼ d′ : τ.

Proof. By induction on the structure of τ. When τ = 2, the result holds by
definition of Kleene equivalence. When τ = t, the result holds because all
relations under consideration are closed under converse evaluation. Oth-
erwise the result follows by induction, making use of the definition of the
transition relation for applications and type applications.

Lemma 50.4 (Respect for Observational Equivalence). Suppose that e ∼ e′ :
τ [η : δ↔ δ′]. If d ∼= e : δ̂(τ) and d′ ∼= e′ : δ̂′(τ), then d ∼ d′ : τ [η : δ↔ δ′].

Proof. By induction on the structure of τ, relying on the definition of ad-
missibility, and the congruence property of observational equivalence. For
example, if τ = ∀(t.σ), then we are to show that for every R : ρ↔ ρ′,

d[ρ] ∼ d′[ρ′] : σ [η[t 7→ R] : δ[t 7→ ρ]↔ δ′[t 7→ ρ′]].

Since observational equivalence is a congruence, d[ρ] ∼= e[ρ] : [ρ/t]δ̂(σ),
d′[ρ] ∼= e′[ρ] : [ρ′/t]δ̂′(σ). From the assumption it follows that

e[ρ] ∼ e′[ρ′] : σ [η[t 7→ R] : δ[t 7→ ρ]↔ δ′[t 7→ ρ′]],
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from which the result follows by induction.

Corollary 50.5. The relation e ∼ e′ : τ [η : δ↔ δ′] is an admissible relation
between closed types δ̂(τ) and δ̂′(τ).

Proof. By Lemmas 50.3 on the facing page and 50.4 on the preceding page.

Logical Equivalence respects observational equivalence.

Corollary 50.6. If ∆; Γ ` e ∼ e′ : τ, and ∆; Γ ` d ∼= e : τ and ∆; Γ ` d′ ∼= e′ : τ,
then ∆; Γ ` d ∼ d′ : τ.

Proof. By Lemma 50.2 on page 373 and Corollary 50.5.

Lemma 50.7 (Compositionality). Suppose that

e ∼ e′ : τ [η[t 7→ R] : δ[t 7→ δ̂(ρ)]↔ δ′[t 7→ δ̂′(ρ)]],

where R : δ̂(ρ)↔ δ̂′(ρ) is such that R(d, d′) holds iff d ∼ d′ : ρ [η : δ↔ δ′].
Then e ∼ e′ : [ρ/t]τ [η : δ↔ δ′].

Proof. By induction on the structure of τ. When τ = t, the result is imme-
diate from the definition of the relation R. When τ = t′ 6= t, or τ = 2, the
result holds vacuously. When τ = τ1 → τ2 or τ = ∀(u.τ), where without
loss of generality u 6= t and u # ρ, the result follows by induction.

Despite the strong conditions on polymorphic types, logical equiva-
lence is not vacuous—in fact, expression satisfies its constraints.

Theorem 50.8 (Reynolds). If e : τ is a closed expression, then e ∼ e : τ.

Proof. By induction on derivations of the typing judgement for L{2→∀}.
We consider two representative cases here.

Rule (23.2a) By induction we have that for all δ : ∆, δ′ : ∆, η : δ↔ δ′, and
all ρ, ρ′, and R : ρ↔ ρ′,

[ρ/t]γ̂(δ̂(e)) ∼ [ρ′/t]γ̂′(δ̂′(e)) : τ [η∗ : δ∗ ↔ δ′∗],

where η∗ = η[t 7→ R], δ∗ = δ[t 7→ ρ], and δ′∗ = δ′[t 7→ ρ′]. Since

Λ(t.γ̂(δ̂(e)))[ρ] 7→∗ [ρ/t]γ̂(δ̂(e))

and
Λ(t.γ̂′(δ̂′(e)))[ρ′] 7→∗ [ρ′/t]γ̂′(δ̂′(e)),

the result follows by Lemma 50.3 on the facing page.
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Rule (23.2b) By induction we have that for all δ : ∆, δ′ : ∆, η : δ↔ δ′,

γ̂(δ̂(e)) ∼ γ̂′(δ̂′(e)) : ∀(t.τ) [η : δ↔ δ′]

Let ρ̂ = δ̂(ρ) and ρ̂′ = δ̂′(ρ). Define the relation R : ρ̂↔ ρ̂′ by R(d, d′)
iff d ∼ d′ : ρ [η : δ↔ δ′]. By Corollary 50.5 on the previous page, this
relation is admissible.

By the definition of logical equivalence at polymorphic types, we ob-
tain

γ̂(δ̂(e))[ρ̂] ∼ γ̂′(δ̂′(e))[ρ̂′] : τ [η[t 7→ R] : δ[t 7→ ρ̂]↔ δ′[t 7→ ρ̂′]].

By Lemma 50.7 on the preceding page

γ̂(δ̂(e))[ρ̂] ∼ γ̂′(δ̂′(e))[ρ̂′] : [ρ/t]τ [η : δ↔ δ′]

But

γ̂(δ̂(e))[ρ̂] = γ̂(δ̂(e))[δ̂(ρ)] (50.1)

= γ̂(δ̂(e[ρ])), (50.2)

and similarly

γ̂′(δ̂′(e))[ρ̂′] = γ̂′(δ̂′(e))[δ̂′(ρ)] (50.3)

= γ̂′(δ̂′(e[ρ])), (50.4)

from which the result follows.

Corollary 50.9. If ∆; Γ ` e ∼= e′ : τ, then ∆; Γ ` e ∼ e′ : τ.

Proof. By Theorem 50.8 on the previous page ∆; Γ ` e ∼ e : τ, and hence by
Corollary 50.6 on the preceding page, ∆; Γ ` e ∼ e′ : τ.

Lemma 50.10 (Congruence). If ∆′, ∆; Γ′, Γ ` e ∼ e′ : τ and C : (∆; Γ ` τ) (∆′; Γ′ ` τ′),
then ∆′; Γ′ ` C{e} ∼ C{e′} : τ.

Proof. By induction on the structure of C.

Corollary 50.11. If ∆; Γ ` e ∼ e′ : τ, then ∆; Γ ` e ∼= e′ : τ.

Proof. Logical equivalence is obviously consistent, and by Lemma 50.10, it
is a congruence, and hence is contained in observational equivalence.
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Corollary 50.12. Logical and observational equivalence coincide.

Proof. By Corollaries 50.9 on the facing page and 50.11 on the preceding
page.

If d : τ and d 7→ e, then d ∼ e : τ, and hence by Corollary 50.11 on
the facing page, d ∼= e : τ. Therefore if a relation respects observational
equivalence, it must also be closed under converse evaluation. This shows
that the second condition on admissibility is redundant, though it cannot
be omitted at such an early stage.

50.4 Relational Parametricity

Using the Parametricity Theorem we may prove results about the inhabi-
tants of polymorphic types. For example, if e : ∀(t.t→ t), then we may
show that if ρ is any type, and d : ρ, then e[ρ](d) 7→∗ d. Let R be such that
R(d, d′) iff d 7→∗ d and d′ 7→∗ d. Observe that R : ρ↔ ρ, and that R(d, d). It
follows by Theorem 50.8 on page 377 that R(e[ρ](d), e[ρ](d)), which is to
say that e[ρ](d) 7→∗ d, as required.

(More examples to follow. . . .)

50.5 Exercises
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Chapter 51

Representation Independence

Parametricity is the essence of representation independence. The typing
rules for open given in 24.1 on page 190 ensure that the client of an abstract
type is polymorphic in the representation type. According to our informal
understanding of parametricity this means that the client behavior of the
client is independent of the choice of representation.

To say that no client can distinguish between two implementations of
the same existential type is just to say that these two implementations are
observationally equivalent as expressions of the existential type. Therefore
representation independence for abstract types boils down to observational
equivalence. But, as we have argued in Chapters 49 and 50, it can be quite
difficult to reason directly about observational equivalence. A useful suffi-
cient condition is derived from the concept of logical equivalence defined
in Chapter 50 for polymorphic languages. This condition is called bisimi-
larity.

51.1 Bisimilarity of Packages

For two packages
e′1 = pack ρ1 with e1 as ∃(t.τ)

and
e′2 = pack ρ2 with e2 as ∃(t.τ)

of the same existential type, ∃(t.τ), to be observationally equivalent, it is
sufficient to exhibit a relation R : ρ1 ↔ ρ2 between closed expressions of
types ρ1 and ρ2, respectively, such that

e1 ∼ e2 : τ [[t 7→ R] : [t 7→ ρ1]↔ [t 7→ ρ2]].
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This means that e1 and e2 are to be logically related as elements of type τ,
under the assumption that elements of type t (which may occur free in τ)
are related by the specified relation R. When this is the case, we say that
R is a bisimulation between the two packages, and that the packages are
thereby bisimilar.

Recall from Chapter 24 that the client, ec, of the abstract type ∃(t.τ) is
such that t type, x : τ ` ec : τc for some type τc such that t # τc. It follows
from Theorem 50.8 on page 377 that

[e1/x]ec ∼ [e2/x]ec : τc [[t 7→ R] : [t 7→ ρ1]↔ [t 7→ ρ2]]

whenever
e1 ∼ e2 : τ [[t 7→ R] : [t 7→ ρ1]↔ [t 7→ ρ2]].

It follows that

open e′1 as t with x:τ in ec ∼ open e′2 as t with x:τ in ec : τc.

That is, the two implementations are indistinguishable by any client of the
abstraction. This crucial property is called representation independence for
abstract types. It is crucial that t # τc to ensure that the equivalence of
the client under change of representation is independent of the relation R,
which governs only the “private” parts of the abstraction.

Representation independence the following technique for proving the
correctness of an ADT implementation. Suppose that we have a “clever”
implementation of an abstract type ∃(t.τ) whose correctness we wish to
verify. Let us call this the candidate implementation. To prove correctness
of the candidate, we exhibit a reference implementation that is taken to be
manifestly correct (or proved correct by a separate argument), and show
that the reference and candidate implementations are bisimilar. It follows
that they are observationally equivalent, and hence interchangeable in all
contexts. In other words the candidate is “as correct as” the reference im-
plementation.

51.2 Two Representations of Queues

Returning to the queues example, let us take as a reference implementation
the package determined by representing queues as lists. As a candidate
implementation we take the package corresponding to the following ML
code:
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structure QFB :> QUEUE =
struct
type queue = int list * int list
val empty = (nil, nil)
fun insert (x, (bs, fs)) = (x::bs, fs)
fun remove (bs, nil) = remove (nil, rev bs)
| remove (bs, f::fs) = (f, (bs, fs))

end

We will show that QL and QFB are bisimilar, and therefore indistinguishable
by any client.

Letting ρls = nat list and ρfb = nat list× nat list, define the rela-
tion R : ρls ↔ ρfb as follows:

R = { (l, 〈b, f 〉)) | l ∼= b @ rev( f) : nat list }

We will show that R is a bisimulation by showing that implementations of
empty, insert, and remove determined by the structures QL and QFB are
equivalent relative to R.

To do so, we will establish the following facts:

1. QL.empty R QFB.empty.

2. Assuming that m ∼ n : nat and l R 〈b, f 〉, show that

QL.insert(〈m, l〉) R QFB.insert(〈n, 〈b, f 〉〉).

3. Assuming that l R 〈b, f 〉, show that

QL.remove(l) ∼ QFB.remove(〈b, f 〉) : nat× t [[t 7→ R] : [t 7→ ρls]↔ [t 7→ ρfb]].

Observe that the latter two statements amount to the assertion that the op-
erations preserve the relation R — they map related input queues to related
output queues.

The proofs of these facts are relatively straightforward, given some rel-
atively obvious lemmas about expression equivalence.

1. To show that QL.empty R QFB.empty, it suffices to show that

nil @ rev(nil) ∼= nil : nat list,

which follows by symbolic execution, using the definitions of the op-
erations involved.
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2. For insert, we assume that m ∼ n : nat and l R 〈b, f 〉, and prove that

QL.insert(m, l) R QFB.insert(n, 〈b, f 〉).

By the definition of QL.insert, the left-hand side is observationally
equivalent to m :: l, and by the definition of QR.insert, the right-
hand side is observationally equivalent to 〈n :: b, f 〉. It suffices to
show that

m :: l ∼= (n :: b) @ rev( f) : nat list.

Calculating, we obtain

(n :: b) @ rev( f) ∼= n :: (b @ rev( f)) : nat list

and
n :: (b @ rev( f)) ∼= n :: l : nat list,

since l ∼= b @ rev( f) : nat list. Since m ∼ n : nat, it follows that
m = n, which completes the proof.

3. For remove, we assume that l is related by R to 〈b, f 〉, which is to say
that l ∼= b @ rev( f) : nat list. We are to show

QL.remove(l) ∼ QFB.remove(〈b, f 〉) : nat× t [[t 7→ R] : [t 7→ ρls]↔ [t 7→ ρfb]].

Assuming that the queue is non-empty, so that removing an element
is well-defined, it can be shown that l ∼= l′ @ [m] : nat list for some
l′ and m. We proceed by cases according to whether or not f is empty.
If f is non-empty, then it can be shown that f ∼= n :: f ′ : nat list for
some n and f ′. Then by the definition of QFB.remove,

QFB.remove(〈b, f 〉) ∼= 〈n, 〈b, f ′〉〉 : nat× t,

taking equality at type t to be the relation R. We must show that

〈m, l′〉 ∼ 〈n, 〈b, f ′〉〉 : nat× t,

with t equality being R. This means that we must show that m = n
and l′ ∼= b @ rev( f ′) : nat list.

Calculating from our assumptions,

l ∼= l′ @ [m]
∼= b @ rev( f)
∼= b @ rev(n :: f ′)
∼= b @ (rev( f ′) @ [n])
∼= (b @ rev( f ′)) @ [n],
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from which the result follows. Finally, if f is empty, then it can be
shown that b ∼= b′ @ [n] : nat list for some b′ and n. But then

rev(b) ∼= n :: rev(b′) : nat list,

which reduces to the case for f non-empty.

This completes the proof — by representation independence the refer-
ence and candidate implementations are equivalent.

51.3 Exercises
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Chapter 52

Process Equivalence

Leibniz’s Principle, when applied to program fragments, states that two
fragments are equal if and only if they cannot be separated by a specified
class of experiments that may be performed on them. In the case of pure
functional programs the experiments are program contexts, which are com-
plete programs computing an answer of finitely observable type containing
a “hole” where the fragments are to be placed. If the answers are the same
whenever the one fragment is replaced by the other in all possible program
contexts, then those two fragments are equal.

In a richer language, such as one with input and output, it makes sense
to consider the effect of the fragments on the environment as well as, or
instead of, considering their contribution to the final answer computed by
a complete program. For example, one might consider observations to con-
sist of everything that is output onto the screen during execution, and re-
gard two fragments as equal iff they induce the same output in all program
contexts.

More generally still, we may consider equivalence of processes based
on the actions they take during execution, equating two process expres-
sions iff they induce the same actions when placed in an arbitrary con-
current programming context. This includes input and output as special
cases, for we may regard the screen as a concurrent process that interacts
with other processes along specified channels (e.g., stdin and stdout).

This leads us to consider a theory of process equivalence based on the
availability of visible actions that may affect their synchronization behav-
ior. We will confine ourselves to the pure synchronization calculus of Chap-
ter 41 so as to avoid the complexities of taking into account the possibilities
afforded by channel-passing.
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52.1 Labelled Transition Systems

To define equivalence of processes it is necessary to first define the per-
missible actions of a process. This is specified by defining two families
of transitions systems, one whose states are process expressions, and the
other whose states are event expressions. In each case a label is a general-
ized action, either a synchronization action in the sense of Chapter 41, or the
distinguished silent action, τ. Informally, the judgement P α7−→ P′ means
that process P may perform action α and become process P′, and similarly
for event expressions. The silent action represents an externally invisible
step taken by a process, rather than an externally visible one with which
another process may synchronize. Silent actions correspond to reactions as
defined in Chapter 41.

The precise definitions of the labelled transition system for process cal-
culus is given by the following rules.

E α7−→ E′

await(E) α7−→ await(E′)
(52.1a)

P1
α7−→ P′1

P1 ‖ P2
α7−→ P′1 ‖ P2

(52.1b)

P2
α7−→ P′2

P1 ‖ P2
α7−→ P1 ‖ P′2

(52.1c)

P1
?a7−→ P′1 P2

!a7−→ P′2
P1 ‖ P2

τ7−→ P′1 ‖ P′2
(52.1d)

P α7−→ P′ a # α

ν(a.P) α7−→ ν(a.P′)
(52.1e)

α.P α7−→ P (52.1f)

E1
α7−→ E′1

E1 + E2
α7−→ E′1

(52.1g)

E2
α7−→ E′2

E1 + E2
α7−→ E′2

(52.1h)
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52.2 Simulations, Strong and Weak

Labelled transition tells us what actions a process is capable of undertaking.
This gives rise to the notion of the simulation of one process by another. We
will say that a process Q simulates a process P iff there exists a simulation
relation R on processes such that (a) P R Q, and (b) whenever P R Q and
P α7−→ P′, then there exists Q′ such that P′ R Q′ and Q α7−→ Q′. Such
a relation R is said to be a simulation relation between P and Q. It is a
bisimulation between P and Q iff it is also a simulation between Q and P,
which is to say that if P R Q and Q α7−→ Q′, then there exists P′ such that
P α7−→ P′ and P′ R Q′. The processes P and Q are then said to be bisimilar.

Bisimilarity of processes with respect to labelled transition is a rather
strong condition, because it requires not only that two processes exhibit
equivalent behavior with respect to observable actions, but also with respect
to the unobservable, or silent, action, τ — the unobservable action is treated
as if it were observable!

To remedy this we introduce an auxiliary transition judgement derived
from the original in which silent actions are disregarded. The τ-collapse of
a labelled transition system to mean that P may make a transition to P′

exhibiting the observable action α by making any number of τ-transitions
prior to and subsequent to an α-transition. More precisely, we define P α7−→τ

P′, where α 6= τ, to hold iff there are process expressions Q and Q′ such that

P τ7−→
∗

Q α7−→ Q′ τ7−→
∗

P′.

We then define a weak simulation to be a simulation with respect to the
τ-collapse of the original transition judgement. That is, a weak simula-
tion is a relation R between process expressions such that if P R Q and
P α7−→τ P′, then there exists Q′ such that P′ R Q′ and Q α7−→τ Q′. A weak
bisimulation is a weak simulation for which the converse of this latter con-
dition also holds. Simulation with respect to the original transition system
is then called strong simulation. As the name suggests, strong similarity is
sufficient for weak similarity, but the converse is by no means the case.

52.3 Exercises
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