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Abstract

The evolution of Matrix Structural Analysis (MSA) from 1930 through 1970 is outlined. Hightlighted
are major contributions by Collar and Duncan, Argyris, and Turner, which shaped this evolution.
To enliven the narrative the outline is configured as a three-act play. Act I describes the pre-WWII
formative period. Act II spans a period of confusion during which matrix methods assumed bewildering
complexity in response to conflicting demands and restrictions. Act III outlines the cleanup and
consolidation driven by the appearance of the Direct Stiffness Method, through which MSA completed
morphing into the present implementation of the Finite Element Method.

Keywords: matrix structural analysis; finite elements; history; displacement method; force method; direct stiffness
method; duality

1 INTRODUCTION

Who first wrote down a stiffness or flexibility matrix?

The question was posed in a 1995 paper [1]. The educated guess was “somebody working in the
aircraft industry of Britain or Germany, in the late 1920s or early 1930s.” Since then the writer has
examined reports and publications of that time. These trace the origins of Matrix Structural Analysis
to the aeroelasticity group of the National Physics Laboratory (NPL) at Teddington, a town that has
now become a suburb of greater London.

The present paper is an expansion of the historical vignettes in Section 4 of [1]. It outlines the major
steps in the evolution of MSA by highlighting the fundamental contributions of four individuals: Collar,
Duncan, Argyris and Turner. These contributions are lumped into three milestones:

Creation. Beginning in 1930 Collar and Duncan formulated discrete aeroelasticity in matrix form.
The first two journal papers on the topic appeared in 1934-35 [2,3] and the first book, couthored with
Frazer, in 1938 [4]. The representation and terminology for discrete dynamical systems is essentially
that used today.

Unification. In a series of journal articles appearing in 1954 and 1955 [5] Argyris presented a formal
unification of Force and Displacement Methods using dual energy theorems. Although practical
applications of the duality proved ephemeral, this work systematized the concept of assembly of
structural system equations from elemental components.

FEMinization. In 1959 Turner proposed [6] the Direct Stiffness Method (DSM) as an efficient and
general computer implementation of the then embryonic, and as yet unnamed, Finite Element Method.
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Figure 1. Flowchart of model-based simulation (MBS) by computer.

This technique, fully explained in a follow-up article [7], naturally encompassed structural and con-
tinuum models, as well as nonlinear, stability and dynamic simulations. By 1970 DSM had brought
about the demise of the Classical Force Method (CFM), and become the dominant implementation in
production-level FEM programs.

These milestones help dividing MSA history into three periods. To enliven and focus the exposition
these will be organized as three acts of a play, properly supplemented with a “matrix overture” prologue,
two interludes and a closing epilogue. Here is the program:

Prologue - Victorian Artifacts: 1858–1930.

Act I - Gestation and Birth: 1930–1938.

Interlude I - WWII Blackout: 1938–1947.

Act II - The Matrix Forest: 1947–1956.

Interlude II - Questions: 1956–1959.

Act III - Answers: 1959–1970.

Epilogue - Revisiting the Past: 1970-date.

Act I, as well as most of the Prologue, takes place in the U.K. The following events feature a more
international cast.

2 BACKGROUND AND TERMINOLOGY

Before departing for the theater, this Section offers some general background and explains historical
terminology. Readers familiar with the subject should skip to Section 3.

The overall schematics of model-based simulation (MBS) by computer is flowcharted in Figure 1.
For mechanical systems such as structures the Finite Element Method (FEM) is the most widely used
discretization and solution technique. Historically the ancestor of FEM is MSA, as illustrated in Figure
2. The morphing of the MSA from the pre-computer era — as described for example in the first book
[4] — into the first programmable computers took place, in wobbly gyrations, during the transition
period herein called Act II. Following a confusing interlude, the young FEM begin to settle, during
the early 1960s, into the configuration shown on the right of Figure 2. Its basic components have not
changed since 1970.
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Figure 2. Morphing of the pre-computer MSA (before 1950) into the present FEM. On the left
“human computer” means computations under direct human control, possibly
with the help of analog devices (slide rule) or digital devices (desk calculator).
The FEM configuration shown on the right settled by the mid 1960s.

MSA and FEM stand on three legs: mathematical models, matrix formulation of the discrete equations,
and computing tools to do the numerical work. Of the three legs the latter is the one that has undergone
the most dramatic changes. The “human computers” of the 1930s and 1940s morphed by stages into
programmable computers of analog and digital type. The matrix formulation moved like a pendulum.
It began as a simple displacement method in Act I, reached bewildering complexity in Act II and went
back to conceptual simplicity in Act III.

Unidimensional structural models have changed little: a 1930 beam is still the same beam. The
most noticeable advance is that pre-1955 MSA, following classical Lagrangian mechanics, tended to
use spatially discrete energy forms from the start. The use of space-continuum forms as basis for
multidimensional element derivation was pioneered by Argyris [5], successfully applied to triangular
geometries by Turner, Clough, Martin and Topp [8], and finalized by Melosh [9] and Irons [10,11]
with the precise statement of compatibility and completeness requirements for FEM.

Matrix formulations for MSA and FEM have been traditionally classified by the choice of primary
unknows. These are those solved for by the human or digital computer to determine the system state. In
the Displacement Method (DM) these are physical or generalized displacements. In the Classical Force
Method (CFM) these are amplitudes of redundant force (or stress) patterns. (The qualifier “classical”
is important because there are other versions of the Force Method, which select for example stress
function values or Lagrange multipliers as unknowns.) There are additional methods that involve
combinations of displacements, forces and/or deformations as primary unknowns, but these have no
practical importance in the pre-1970 period covered here.

Appropriate mathematical names for the DM are range-space method or primal method. This means
that the primary unknowns are the same type as the primary variables of the governing functional.
Appropriate names for the CFM are null-space method, adjoint method, or dual method. This means
that the primary unknowns are of the same type of the adjoint variables of the governing functional,
which in structural mechanics are forces. These names are not used in the historical outline, but
are useful in placing more recent developments, as well as nonstructural FEM applications, within a
general framework.
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The terms Stiffness Method and Flexibility Method are more diffuse names for the Displacement and
Force Methods, respectively. Generally speaking these apply when stiffness and flexibility matrices,
respectively, are important part of the modeling and solution process.

3 PROLOG - VICTORIAN ARTIFACTS: 1858-1930

Matrices — or “determinants” as they were initially called — were invented in 1858 by Cayley
at Cambridge, although Gibbs (the co-inventor, along with Heaviside, of vector calculus) claimed
priority for the German mathematician Grassmann. Matrix algebra and matrix calculus were developed
primarily in the U.K. and Germany. Its original use was to provide a compact language to support
investigations in mathematical topics such as the theory of invariants and the solution of algebraic
and differential equations. For a history of these early developments the monograph by Muir [12] is
unsurpassed. Several comprehensive treatises in matrix algebra appeared in the late 1920s and early
1930s [13–15].

Compared to vector and tensor calculus, matrices had relatively few applications in science and tech-
nology before 1930. Heisenberg’s 1925 matrix version of quantum mechanics was a notable exception,
although technically it involved infinite matrices. The situation began to change with the advent of
electronic desk calculators, because matrix notation provided a convenient way to organize complex
calculation sequences. Aeroelasticity was a natural application because the stability analysis is natu-
rally posed in terms of determinants of matrices that depend on a speed parameter.

The non-matrix formulation of Discrete Structural Mechanics can be traced back to the 1860s. By
the early 1900s the essential developments were complete. A readable historical account is given by
Timoshenko [16]. Interestingly enough, the term “matrix” never appears in this book.

4 ACT I - GESTATION AND BIRTH: 1930-1938

In the decade of World War I aircraft technology begin moving toward monoplanes. Biplanes disap-
peared by 1930. This evolution meant lower drag and faster speeds but also increased disposition to
flutter. In the 1920s aeroelastic research began in an international scale. Pertinent developments at the
National Physical Laboratory (NPL) are well chronicled in a 1978 historical review article by Collar
[17], from which the following summary is extracted.

4.1 The Source Papers

The aeroelastic work at the Aerodynamics Division of NPL was initiated in 1925 by R. A. Frazer. He
was joined in the following year by W. J. Duncan. Two years later, in August 1928, they published a
monograph on flutter [18], which came to be known as “The Flutter Bible” because of its completeness.
It laid out the principles on which flutter investigations have been based since. In January 1930 A.
R. Collar joined Frazer and Duncan to provide more help with theoretical investigations. Aeroelastic
equations were tedious and error prone to work out in long hand. Here are Collar’s own words [17,
page 17] on the motivation for introducing matrices:

“Frazer had studied matrices as a branch of applied mathematics under Grace at Cambridge; and he
recognized that the statement of, for example, a ternary flutter problem in terms of matrices was neat
and compendious. He was, however, more concerned with formal manipulation and transformation
to other coordinates than with numerical results. On the other hand, Duncan and I were in search
of numerical results for the vibration characteristics of airscrew blades; and we recognized that we
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could only advance by breaking the blade into, say, 10 segments and treating it as having 10 degrees of
freedom. This approach also was more conveniently formulated in matrix terms, and readily expressed
numerically. Then we found that if we put an approximate mode into one side of the equation, we
calculated a better approximation on the other; and the matrix iteration procedure was born. We
published our method in two papers in Phil. Mag. [2,3]; the first, dealing with conservative systems,
in 1934 and the second, treating damped systems, in 1935. By the time this had appeared, Duncan had
gone to his Chair at Hull.”

The aforementioned papers appear to be the earliest journal publications of MSA. These are amazing
documents: clean and to the point. They do not feel outdated. Familiar names appear: mass, flexibility,
stiffness, and dynamical matrices. The matrix symbols used are [m], [ f ], [c] and [D] = [c]−1[m] =
[ f ][m], respectively, instead of the M, F, K and D in common use today. A general inertia matrix is
called [a]. As befit the focus on dynamics, the displacement method is used. Point-mass displacement
degrees of freedom are collected in a vector {x} and corresponding forces in vector {P}. These are
called [q] and [Q], respectively, when translated to generalized coordinates.

The notation was changed in the book [4] discussed below. In particular matrices are identified in [4]
by capital letters without surrounding brackets, in more agreement with the modern style; for example
mass, damping and stiffness are usually denoted by A, B and C , respectively.

4.2 The MSA Source Book

Several papers on matrices followed, but apparently the traditional publication vehicles were not viewed
as suitable for description of the new methods. At that stage Collar notes [17, page 18] that

“Southwell [Sir Richard Southwell, the “father” of relaxation methods] suggested that the authors of
the various papers should be asked to incorporate them into a book, and this was agreed. The result was
the appearance in November 1938 of “Elementary Matrices” published by Cambridge University Press
[4]; it was the first book to treat matrices as a branch of applied mathematics. It has been reprinted
many times, and translated into several languages, and even now after nearly 40 years, stills sells in
hundreds of copies a year — mostly paperback. The interesting thing is that the authors did not regard
it as particularly good; it was the book we were instructed to write, rather than the one we would have
liked to write.”

The writer has copies of the 1938 and 1963 printings. No changes other than minor fixes are apparent.
Unlike the source papers [2,3] the book feels dated. The first 245 pages are spent on linear algebra and
ODE-solution methods that are now standard part of engineering and science curricula. The numerical
methods, oriented to desk calculators, are obsolete. That leaves the modeling and application examples,
which are not coherently interweaved. No wonder that the authors were not happy about the book.
They had followed Southwell’s “merging” suggestion too literally. Despite these flaws its direct and
indirect influence during the next two decades was significant. Being first excuses imperfections.

The book focuses on dynamics of a complete airplane and integrated components such as wings, rudders
or ailerons. The concept of structural element is primitive: take a shaft or a cantilever and divide it
into segments. The assembled mass, stiffness or flexibility is given directly. The source of damping
is usually aerodynamic. There is no static stress analysis; pre-WWII aircraft were overdesigned for
strength and typically failed by aerodynamic or propulsion effects.

Readers are reminded that in aeroelastic analysis stiffness matrices are generally unsymmetric, being
the sum of a a symmetric elastic stiffness and an unsymmetric aerodynamic stiffness. This clean
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decomposition does not hold for flexibility matrices because the inverse of a sum is not the sum of
inverses. The treatment of [4] includes the now called load-dependent stiffness terms, which represent
another first.

On reading the survey articles by Collar [17,19] one cannot help being impressed by the lack of
pretension. With Duncan he had created a tool for future generations of engineers to expand and
improve upon. Yet he appears almost apologetic: “I will complete the matrix story as briefly as
possible” [17, page 17]. The NPL team members shared a common interest: to troubleshoot problems
by understanding the physics, and viewed numerical methods simply as helpers.

5 INTERLUDE I - WWII BLACKOUT: 1938-1947

Interlude I is a “silent period” taken to extend from the book [4] to the first journal publication on the
matrix Force Method for aircraft [20]. Aeroelastic research continued. New demands posed by high
strength materials, higher speeds, combat maneuvers, and structural damage survival increased interest
in stress analysis. For the beam-like skeletal configurations of the time, the traditional flexibility-based
methods such as CFM were appropriate. Flexibilities were often measured experimentally by static load
tests, and fitted into the calculations. Punched-card computers and relay-calculators were increasingly
used, and analog devices relied upon to solve ODEs in guidance and ballistics. Precise accounts of
MSA work in aerospace are difficult to trace because of publication restrictions. The blackout was
followed by a 2-3 year hiatus until those restrictions were gradually lifted, R&D groups restaffed, and
journal pipelines refilled.

6 ACT II - THE MATRIX FOREST: 1947-1956

As Act II starts MSA work is still mainly confined to the aerospace community. But the focus has
shifted from dynamics to statics, and especially stress, buckling, fracture and fatigue analysis. Turbines,
supersonic flight and rocket propulsion brought forth thermomechanical effects. The Comet disasters
forced attention on stress concentration and crack propagation effects due to cyclic cabin pressurization.
Failsafe design gained importance. In response to these multiple demands aircraft companies staffed
specialized groups: stress, aerodynamics, aeroelasticity, propulsion, avionics, and so on. A multilevel
management structure with well defined territories emerged.

The transition illustrated in Figure 2 starts, driven by two of the legs supporting MSA: new computing
resources and new mathematical models. The matrix formulation merely reacts.

6.1 Computers Become Machines

The first electronic commercial computer: Univac I, manufactured by a division of Remington-Rand,
appeared during summer 1951. The six initial machines were delivered to US government agencies
[21]. It was joined in 1952 by the Univac 1103, a scientific-computation oriented machine built by
ERA, a R-R acquisition. This was the first computer with a drum memory. T. J. Watson Sr., founder
of IBM, had been once quoted as saying that six electronic computers would satisfy the needs of the
planet. Turning around from that prediction, IBM launched the competing 701 model in 1953.

Big aircraft companies began purchasing or leasing these expensive wonders by 1954. But this did
not mean immediate access for everybody. The behemoths had to be programmed in machine or
assembly code by specialists, who soon formed computer centers allocating and prioritizing cycles.
By 1956 structural engineers were still likely to be using their slides rules, Marchants and punched
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card equipment. Only after the 1957 appearance of the first high level language (Fortran I, offered on
the IBM 704) were engineers and scientists able (and allowed) to write their own programs.

6.2 The Matrix CFM Takes Center Stage

In static analysis the non-matrix version of the Classical Force Method (CFM) had enjoyed a distin-
guished reputation since the source contributions by Maxwell, Mohr and Castigliano. The method
provides directly the internal forces, which are of paramount interest in stress-driven design. It of-
fers considerable scope of ingenuity to experienced structural engineers through clever selection of
redundant force systems. It was routinely taught to Aerospace, Civil and Mechanical Engineering
students.

Success in hand-computation dynamics depends on “a few good modes.” Likewise, the success of
CFM depends crucially on the selection of good redundant force patterns. The structures of pre-1950
aircraft were a fairly regular lattice of ribs, spars and panels, forming beam-like configurations. If the
panels are ignored, the selection of appropriate redundants was well understood. Panels were mod-
eled conservatively as inplane shear-force carriers, circumventing the difficulties of two-dimensional
elasticity. With some adjustments and experimental validations, sweptback wings of high aspect ratio
were eventually fitted into these models.

A matrix framework was found convenient to organize the calculations. The first journal article on the
matrix CFM, which focused on sweptback wing analysis, is by Levy [20], followed by publications of
Rand [22], Langefors [23], Wehle and Lansing [24] and Denke[25]. The development culminates in
the article series of Argyris [5] discussed in Section 6.5.

6.3 The Delta Wing Challenge

The Displacement Method (DM) continued to be used for vibration and aeroelastic analysis, although
as noted above this was often done by groups separated from stress and buckling analysis. A new
modeling challenge entered in the early 1950s: delta wing structures. This rekindled interest in
stiffness methods.

The traditional approach to obtain flexibility and stiffness matrices of unidimensional structural mem-
bers such as bars and shafts is illustrated in Figure 3. The governing differential equations are integrated,
analytically or numerically, from one end to the other. The end quantities, grouping forces and dis-
placements, are thereby connected by a transition matrix. Using simple algebraic manipulations three
more matrices shown in Figure 3 can be obtained: deformational flexibility, deformational stiffness
and free-free stiffness. This well known technique has the virtue of reducing the number of unknowns
since the integration process can absorb structural details that are handled in the present FEM with
multiple elements.

Notably absent from the scheme of Figure 3 is the free-free flexibility. This was not believed to exist
since it is the inverse of the free-free stiffness, which is singular. A general closed-form expression for
this matrix as a Moore-Penrose generalized stiffness inverse was not found until recently [26,27].

Modeling delta wing configurations required two-dimensional panel elements of arbitrary geometry, of
which the triangular shape, illustrated in Figure 4, is the simplest and most versatile. Efforts to follow
the ODE-integration approach lead to failure. (One particularly bizarre proposal, for solving exactly
the wrong problem, is mentioned for fun in the label of Figure 4.) This motivated efforts to construct
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Figure 3. Transition, flexibility and stiffness matrices for unidimensional linear structural
elements, such as the plane beam depicted here, can be obtained by integrating the
governing differential equations, analytically or numerically, over the member to
relate end forces and displacements. Clever things were done with this “method of lines”
approach, such as including intermediate supports or elastic foundations.

the stiffness matrix of the panel directly. The first attempt in this direction is by Levy [28]; this was
only partly successful but was able to illuminate the advantages of the stiffness approach.

The article series by Argyris [5] contains the derivation of the 8 × 8 free-free stiffness of a flat
rectangular panel using bilinear displacement interpolation in Cartesian coordinates. But that geometry
was obviously inadequate to model delta wings. The landmark contribution of Turner, Clough, Martin
and Topp [8] finally succeeded in directly deriving the stiffness of a triangular panel. Clough [29]
observes that this paper represents the delayed publication of 1952-53 work at Boeing. It is recognized
as one of the two sources of present FEM implementations, the second being the DSM discussed later.
Because of the larger number of unknowns compared to CFM, competitive use of the DM in stress
analysis had necessarily to wait until computers become sufficiently powerful to handle hundreds of
simultaneous equations.

6.4 Reduction Fosters Complexity

For efficient digital computation on present computers, data organization (in terms of fast access as
well as exploitation of sparseness, vectorization and parallelism) is of primary concern whereas raw
problem size, up to certain computer-dependent bounds, is secondary. But for hand calculations
minimal problem size is a key aspect. Most humans cannot comfortably solve by hand linear systems
of more than 5 or 6 unknowns by direct elimination methods, and 5–10 times that through problem-
oriented “relaxation” methods. The first-generation digital computers improved speed and reliability,
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Figure 4. Modeling delta wing configurations required panel elements of arbitrary geometry such
as the triangles depicted here. The traditional ODE-based approach of Figure 3 was tried by
some researchers who (seriously) proposed finding the corner displacements in (a) produced
by the concentrated corner forces in (b) on a supported triangle from the elasticity equations solved
by numerical integration! Bad news: those displacements are infinite. Interior fields assumptions
were inevitable, but problems persisted. A linear inplane displacement field is naturally
specified by corner displacements, whereas a constant membrane force field is naturally
defined by edge tractions (c). Those quantities “live” on different places. The puzzle was first
solved in [8] by lumping edge tractions to node forces on the way to the free-free stiffness matrix.

but were memory strapped. For example the Univac I had 1000 45-bit words and the IBM 701, 2048
36-bit words. Clearly solving a full system of 100 equations was still a major challenge.

It should come as no surprise that problem reduction techniques were paramount throughout this period,
and exerted noticeable influence until the early 1970s. In static analysis reduction was achieved by
elaborated functional groupings of static and kinematic variables. Most schemes of the time can be
understood in terms of the following classification:

generalized forces




primary

{
applied forces fa

redundant forces y

secondary

{
condensable forces fc = 0
support reactions fs

generalized displacements




primary

{
applied displacements ua

redundant displacements z

secondary

{
condensable displacements uc

support conditions us = 0

(1)

Here applied forces are those acting with nonzero values, that is, the ones visibly drawn as arrows by
an engineer or instructor. In reduction-oriented thinking zero forces on unloaded degrees of freedom
are classified as condensable because they can be removed through static condensation techniques.
Similarly, nonzero applied displacements were clearly differentiated from zero-displacements arising
from support conditions because the latter can be thrown out while the former must be retained.
Redundant displacements, which are the counterpart of redundant forces, have been given many names,
among them “kinematically indeterminate displacements” and “kinematic deficiencies.”

Matrix formulation evolved so that the unknowns were the force redundants y in the CFM and the
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displacement redundants z in the DM. Partitioning matrices in accordance to (1) fostered exuberant
growth culminating in the matrix forest that characterizes works of this period.

To a present day FEM programmer familiar with the DSM, the complexity of the matrix forest would
strike as madness. The DSM master equations can be assembled without functional labels. Boundary
conditions are applied on the fly by the solver. But the computing limitations of the time must be kept
in mind to see the method in the madness.

6.5 Two Paths Through the Forest

A series of articles published by J. H. Argyris in four issues of Aircraft Engrg. during 1954 and 1955
collectively represents the second major milestone in MSA. In 1960 the articles were collected in a
book, entitled “Energy Theorems and Structural Analysis” [5]. Part I, sub-entitled General Theory,
reprints the four articles, whereas Part II, which covers additional material on thermal analysis and
torsion, is co-authored by Argyris and Kelsey. Both authors are listed as affiliated with the Aerospace
Department of the Imperial College at London.

The dual objectives of the work, stated in the Preface, are “to generalize, extend and unify the funda-
mental energy principles of elastic structures” and “to describe in detail practical methods of analysis
of complex structures — in particular for aeronautical applications.” The first objective succeeds well,
and represents a key contribution toward the development of continuum-based models. Part I carefully
merges classical contributions in energy and work methods with matrix methods of discrete structural
systems. The coverage is methodical, with numerous illustrative examples. The exposition of the
Force Method for wing structures reaches a level of detail unequaled for the time.

The Displacement Method is then introduced by duality — called “analogy” in this work:

“The analogy between the developments for the flexibilities and stiffnesses ... shows clearly that
parallel to the analysis of structures with forces as unknowns there must be a corresponding theory
with deformations as unknowns.”

This section credits Ostenfeld [30] with being the first to draw attention to the parallel development.
The duality is exhibited in a striking Form in Table II, in which both methods are presented side by side
with simply an exchange of symbols and appropriate rewording. The steps are based on the following
decomposition of internal deformation states g and force patterns p:

p = B0 fa + B1 y, g = A0 ua + A1 z, (2)

Here the Bi and Ai denote system equilibrium and compatibility matrices, respectively. The vector
symbols on the right reflect a particular choice of the force-displacement decomposition (1), with
kinematic deficiencies taken to be the condensable displacements: z ≡ uc.

This unification exerted significant influence over the next decade, particularly on the European com-
munity. An excellent textbook exposition is that of Pestel and Leckie [31]. This book covers both
paths, following Argyris’ framework, in Chapters 9 and 10, using 83 pages and about 200 equations.
These chapters are highly recommended to understand the organization of numeric and symbolic hand
computations in vogue at that time, but it is out of print. Still in print (by Dover) is the book by
Przemieniecki [32], which describes the DM and CFM paths in two Chapters: 6 and 8. The DM
coverage is strongly influenced, however, by the DSM; thus duality is only superficially used.
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6.6 Dubious Duality

One key application of the duality in [5] was to introduce the DM by analogy to the then better known
CFM. Although done with good intentions this approach did not anticipate the forthcoming development
of continuum-based finite elements through stiffness methods. These are naturally derived directly
from the total potential energy principle via shape functions, a technique not fully developed until the
mid 1960s.

The side by side presentation of Table II of [5] tried to show that CFM and DM were going through
exactly the same sequence of steps. Some engineers, eventually able to write Fortran programs,
concluded that the methods had similar capabilities and selecting one or the other was a matter of
taste. (Most structures groups, upholding tradition, opted for the CFM.) But the few engineers who
tried implementing both noticed a big difference. And that was before the DSM, which has no dual
counterpart under the decomposition (2), appeared.

The paradox is explained in Section 4 of [1]. It is also noted there that (2) is not a particularly useful
state decomposition. A better choice is studied in Section 2 of that paper; this one permits all known
methods of Classical MSA, including the DSM, to be derived for skeletal structures as well as for a
subset of continuum models.

7 INTERLUDE II - QUESTIONS: 1956-1959

Interlude I was a silent period dominated by the war blackout. Interlude II is more vocal: a time of
questions. An array of methods, models, tools and applications is now on the table, and growing.
Solid-state computers, Fortran, ICBMs, the first satellites. So many options. Stiffness or flexibility?
Forces or displacements? Do transition matrix methods have a future? Is the CFM-DM duality a
precursor to general-purpose programs that will simulate everything? Will engineers be allowed to
write those programs?

As convenient milestone this outline takes 1959, the year of the first DSM paper, as the beginning of
Act III. Arguments and counter-arguments raised by the foregoing questions will linger, however, for
two more decades into diminishing circles of the aerospace community.

8 ACT III - ANSWERS: 1959-1970

The curtain of Act III lifts in Aachen, Germany. On 6 November 1959, M. J. Turner, head of the
Structural Dynamics Unit at Boeing and an expert in aeroelasticity, presented the first paper on the
Direct Stiffness Method to an AGARD Structures and Materials Panel meeting [6]. (AGARD is NATO’s
Advisory Group for Aeronautical Research and Development, which had sponsored workshops and
lectureships since 1952. Bound proceedings or reports are called AGARDographs.)

8.1 A Path Outside the Forest

No written record of [6] seem to exist. Nonetheless it must have produced a strong impression since
published contributions to the next (1962) panel meeting kept referring to it. By 1960 the method had
been applied to nonlinear problems [33] using incremental techniques. In July 1962 Turner, Martin
and Weikel presented an expanded version of the 1959 paper, which appeared in an AGARDograph
volume published by Pergamon in 1964 [7]. Characteristic of Turner’s style, the Introduction goes
directly to the point:
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“In a paper presented at the 1959 meeting of the AGARD Structures and Material Panel in Aachen, the
essential features of a system for numerical analysis of structures, termed the direct-stiffness method,
were described. The characteristic feature of this particular version of the displacement method is
the assembly procedure, whereby the stiffness matrix for a composite structure is generated by direct
addition of matrices associated with the elements of the structure.”

The DSM is explained in six text lines and three equations:

“For an individual element e the generalized nodal force increments {�Xe} required to maintain a set
of nodal displacement increments {�u} are given by a matrix equation

{�Xe} = K e {�u} (3)

in which K e denotes the stiffness matrix of the individual element. Resultant nodal force increments
acting on the complete structure are

{�X} =
∑

{�Xe} = K {�u} (4)

wherein K , the stiffness of the complete structure, is given by the summation

K =
∑

K e (5)

which provides the basis for the matrix assembly procedure noted earlier.”

Knowledgeable readers will note a notational glitch. For (5) to be a correct matrix equation, K e must
be an element stiffness fully expanded to global (in that paper: “basic reference”) coordinates, a step
that is computationally unnecessary. A more suggestive notation used in present DSM expositions is
K = ∑

(Le)T K e Le, in which Le are Boolean localization matrices. Note also the use of � in front of
u and X and their identification as “increments.” This simplifies the extension to nonlinear analysis,
as outlined in the next paragraph:

“For the solution of linear problems involving small deflections of a structure at constant uniform
temperature which is initially stress-free in the absence of external loads, the matrices K e are defined
in terms of initial geometry and elastic properties of the materials comprising the elements; they remain
unchanged throughout the analysis. Problems involving nonuniform heating of redundant structures
and/or large deflections are solved in a sequence of linearized steps. Stiffness matrices are revised
at the beginning of each step to account for charges in internal loads, temperatures and geometric
configurations.”

Next are given some computer implementation details, including the first ever mention of user-defined
elements:

“Stiffness matrices are generally derived in local reference systems associated with the elements (as
prescribed by a set of subroutines) and then transformed to the basic reference system. It is essential
that the basic program be able to acommodate arbitrary additions to the collection of subroutines
as new elements are encountered. Associated with these are a set of subroutines for generation of
stress matrices Se relating matrices of stress components σ e in the local reference system of nodal
displacements:

{σ e} = Se {ū} (6)

The vector {ū} denotes the resultant displacements relative to a local reference system which is attached
to the element. ... Provision should also be made for the introduction of numerical stiffness matrices
directly into the program. This permits the utilization and evaluation of new element representations
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which have not yet been programmed. It also provides a convenient mechanism for introducing local
structural modifications into the analysis.”

The assembly rule (3)-(5) is insensitive to element type. It work the same way for a 2-node bar, or a 64-
node hexahedron. To do dynamics and vibration one adds mass and damping terms. To do buckling
one adds a geometric stiffness and solves the stability eigenproblem, a technique first explained in
[33]. To do nonlinear analysis one modifies the stiffness in each incremental step. To apply multipoint
constraints the paper [7] advocates a master-slave reduction method.

Some computational aspects are missing from this paper, notably the treatment of simple displacement
boundary conditions, and the use of sparse matrix assembly and solution techniques. The latter were
first addressed in Wilson’s thesis work [34,35].

8.2 The Fire Spreads

DSM is a paragon of elegance and simplicity. The writer is able to teach the essentials of the method
in three lectures to graduate and undergraduate students alike. Through this path the old MSA and the
young FEM achieved smooth confluence. The matrix formulation returned to the crispness of the source
papers [2,3]. A widely referenced MSA correlation study by Gallagher [36] helped dissemination.
Computers of the early 1960s were finally able to solve hundreds of equations. In an ideal world,
structural engineers should have quickly razed the forest and embraced DSM.

It did not happen that way. The world of aerospace structures split. DSM advanced first by word of
mouth. Among the aerospace companies, only Boeing and Bell (influenced by Turner and Gallagher,
respectively) had made major investments in DSM by 1965. Among academia the Civil Engineering
Department at Berkeley become a DSM evangelist through Clough, who made his students — including
the writer — use DSM in their thesis work. These codes were freely disseminated into the non-aerospace
world since 1963. Martin established similar traditions at Washington University, and Zienkiewicz,
influenced by Clough, at Swansea. The first textbook on FEM [37], which appeared in 1967, makes
no mention of force methods. By then the application to non-structural field problems (thermal, fluids,
electromagnetics, ...) had begun, and again the DSM scaled well into the brave new world.

8.3 The Final Test

Legacy CFM codes continued, however, to be used at many aerospace companies. The split reminds
one of Einstein’s answer when he was asked about the reaction of the old-guard school to the new
physics: “we did not convince them; we outlived them.” Structural engineers hired in the 1940s and
1950s were often in managerial positions in the 1960s. They were set in their ways. How can duality
fail? All that is needed are algorithms for having the computer select good redundants automatically.
Substantial effort was spent in those “structural cutters” during the 1960s [32,38].

That tenacity was eventually put to a severe test. The 1965 NASA request-for-proposal to build the
NASTRAN finite element system called for the simultaneous development of Displacement and Force
versions [39]. Each version was supposed to have identical modeling and solution capabilities, includ-
ing dynamics and buckling. Two separate contracts, to MSC and Martin, were awarded accordingly.
Eventually the development of the Force version was cancelled in 1969. The following year may be
taken as closing the transition depicted in Figure 2, and as marking the end of the Force Method as a
serious contender for general-purpose FEM programs.
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9 EPILOGUE - REVISITING THE PAST: 1970-DATE

Has MSA, now under the wider umbrella of FEM, attained a final form? This seems the case for
general-purpose FEM programs, which by now are truly “1960 heritage” codes.

Resurrection of the CFM for special uses, such as optimization, was the subject of a speculative
technical note [40]. This was motivated by concerted efforts of numerical analysts to develop sparse
null-space methods [41–45]. That research appears to have been abandoned by 1990. Section 2 of
[26] elaborates on why, barring unexpected breakthroughs, a resurrection of CFM is unlikely.

A more modest revival involves the use of non-CFM flexibility methods for multilevel analysis. The
structure is partitioned into subdomains or substructures, each of which is processed by DSM; but
the subdomains are connected by Lagrange multipliers that physically represent node forces. A key
driving application is massively parallel processing in which subdomains are mapped on distributed-
memory processors and the force-based interface subproblem solved iteratively by FETI methods
[46]. Another set of applications include inverse problems such as system identification and damage
detection. Pertinent references and a historical sketch may be found in a recent article [47] that presents
a hybrid variational formulation for this combined approach.

The true duality for structural mechanics is now known to involve displacements and stress functions,
rather than displacements and forces. This was discovered by Fraeijs de Veubeke in the 1970s [48].
Although extendible beyond structures, the potential of this idea remains largely unexplored.

10 CONCLUDING REMARKS

The patient reader who has reached this final section may have noticed that this is a critical overview
of MSA history, rather than a recital of events. It reflects personal interpretations and opinions. There
is no attempt at completeness. Only what are regarded as major milestones are covered in some
detail. Furthermore there is only spotty coverage of the history of FEM itself as well as its computer
implementation; this is the topic of an article under preparation for Applied Mechanics Reviews.

This outline can be hopefully instructive in two respects. First, matrix methods now in disfavor may
come back in response to new circumstances. An example is the resurgence of flexibility methods in
massively parallel processing. A general awareness of the older literature helps. Second, the sweeping
victory of DSM over the befuddling complexity of the “matrix forest” period illustrates the virtue of
Occam’s proscription against multiplying entities: when in doubt chose simplicity. This dictum is
relevant to the present confused state of computational mechanics.
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