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Abstract

Although there have been a few proposals for fusion reactors employing plasmas far out of
thermodynamic equilibrium (such as migma and inertial-electrostatic confinement), there
has never been a broad. systematic study of the entire possible range of such devices.
This research fills that gap by deriving fundamental power limitations which apply to
virtually any possible type of fusion reactor that uses a grossly nonequilibrium plasma.
Two main categories of nonequilibrium plasmas are considered: (1) systems in which the
electrons and/or fuel ions possess a significantly non-Maxwellian velocity distribution,
and (2) systems in which at least two particle species, such as electrons and ions or
two different species of fuel ions, are at radically different mean energies. These types
of plasmas would be of particular interest for overcoming bremsstrahlung radiation losses
from advanced aneutronic fuels (eg. *He-3He, p-'!B, and p-®Li) or for reducing the number
of D-D side reactions in D-*He plasmas. Analytical Fokker-Planck calculations are used
to determine accurately the minimum recirculating power that must be extracted from
undesirable regions of the plasma’s phase space and reinjected into the proper regions of
the phase space in order to counteract the effects of collisional scattering events and keep
the plasma out of equilibrium. In virtually all cases, this minimum recirculating power
is substantially larger than the fusion power, so barring the discovery of methods for
recirculating the power at exceedingly high efficiencies, reactors employing plasmas not
in thermodynamic equilibrium will not be able to produce net power. Consequently, the
advanced aneutronic fuels cannot generate net power in any foreseeable reactor operating
either in or out of equilibrium. Moreover, D-*He can only produce net power when
burned in thermodynamic equilibrium, which means that in any possible D-*He reactor,
the neutrons and tritium produced by D-D side reactions cannot be reduced below a
certain level, which is calculated.

Thesis Supervisor: Lawrence M. Lidsky
Title: Professor of Nuclear Engineering
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Chapter 1

Introduction

In order to make candidate fusion reactors more acceptable to the public and the electric
utility industry, it has been suggested to use advanced fusion fuels instead of the traditional
deuterium-tritium (D-T) or pure deuterium (D-D) cycles [2—21]. Advanced-fuel reactions
of interest include deuterium-helium-3 (D-*He), helium-3-helium-3 (*He-3He), proton-
boron-11 (p-!!B), and proton-lithium-6 (p-SLi); these fuels would produce much less
neutron radiation and involve much smaller total radioactive inventories than D-T and
D-D. Also, since virtually all of these fuels’ reaction products would be charged, it may be
possible to convert the fusion product energy directly into electrical energy at very high
efficiencies (> 80%) instead of having to do the conversion with a thermal cycle at only

about 30-40% efficiency.

Unfortunately, plasmas in or fairly close to thermodynamic equilibrium are not able
to reduce the undesirable D-D side reactions from a D-3He plasma below a certain level
[11, 12], and equilibrium plasmas are not even able to produce net power with the more
advanced aneutronic fuels [12, 22]. Because the properties of plasmas far out of thermo-
dynamic equilibrium (ie. with highly non-Maxwellian velocity distributions or particle

species at radically different mean energies) have not been systematically studied in the
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past, the principal object of the present investigation is to determine the fundamental
limitations which apply to all types of reactors employing nonequilibrium plasmas and
then to examine whether it is feasible to improve the performance of D-3He or advanced

aneutronic fuel reactors by utilizing plasmas not in thermodynamic equilibrium.

1.1 Background Information

Considering the complexity of the fusion problem and the long and difficult history of
fusion research, fusion reactors will probably be much more technologically sophisticated
than fission reactors and thus may have trouble competing on a solely economic basis.
Because of this likely disadvantage, it would be best if fusion reactors could boast of
better performance than fission reactors in terms of virtually all other characteristics.
One of the most important of these characteristics is neutron production, since neutrons
can activate structural materials, degrading them and ultimately converting them into
high-level radioactive waste, which necessitates difficult and costly removal and disposal
practices [13, 14, 23]. The neutrons from a fusion reactor could also be used to make
weapons-grade nuclear material, rendering such types of fusion reactors serious nuclear
proliferation hazards. A related problem is the presence of radioactive elements such as
tritium in the plasma, either as fuel for or as products of the nuclear reactions; substantial
quantities of radioactive elements would not only pose a general health risk, but tritium in
particular would also be another proliferation hazard. The problems of neutron radiation
and radioactive element production are especially interconnected because both would
result from D-D fusion (roughly half of the fusion events would lead to a neutron-producing

branch and the other half would result in a tritium-producing branch).

Therefore, one figure of merit for the performance of a fusion reactor is the percentage
of its total power which is produced as neutron kinetic energy, as compared with the
amount of a fission reactor’s total power which is produced in the form of neutrons. On

average the fission of 233U yields approximately 210 MeV, of which about 5 MeV is neutron
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kinetic energy [24]. Thus for fission, the neutron power fraction is Pheutrons/Priotal =
2%. It would be highly desirable for fusion reactors to achieve a neutron power fraction
substantially smaller than this value. While this is not the only or even necessarily the
primary criterion to use in evaluating fusion approaches, it is certainly an important item

to consider.

Because of tb. twin considerations of neutrons and radioactive elements, it has been
felt for some time that D-T and D-D fusion reactors may not be sufficiently attractive for
the public and the electric utility industry [13, 14]. Both fuel mixtures produce neutrons
in such copious quantities (Preutrons/Priotat = 80% for D-T and at least approximately
40% for D-D [12]) that the central components of reactors employing these fuels might
have to be replaced quite often [23], at great inconvenience and cost. In addition, these
reactors would involve the presence of large amounts of tritium, since D-T reactions run

on it and D-D reactions produce it.

D-3He, 3He-3He, p-'!B, and p-5Li fuels have all been proposed as much cleaner alter-
natives [2, 3, 10, 11, 12, 14], but because they require higher ion temperatures than D-T,
the performance of reactors using these fuels is subject to much tighter constraints. The
most important factor which limits the performance of these fuels in equilibrium plasmas
is the bremsstrahlung radiation from the electrons, which is caused by electrons colliding
with ions or with other electrons. Energy losses due to escaping particles can theoretically
be rendered manageable by improving the confinement system. Similarly, synchrotron ra-
diation losses can in principle be limited to acceptable levels by choosing magnetic field
géometries which avoid the use of strong magnetic fields within most of the inner volume
of the plasma (eg. configurations with multipoles {10}, strong plasma diamagnetism [18],
or ring magnets [25]), as well as by reflecting the synchrotron radiation back into the
plasma and reabsorbing it there. In contrast, little can be done about bremsstrahlung
losses from plasmas in thermodynamic equilibrium (apart from attempting to convert
the radiation into electric power at low thermal efficiencies), since the frequency range

of the radiation is not conducive to reflection or efficient direct electric conversion, and
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both magnetic fusion and inertial confinement fusion plasmas are optically thin to the

bremsstrahlung they emit.

The impact of bremsstrahlung losses on equilibrium fusion plasmas may be seen by
performing a simple calculation. (For more details of this calculation, see Chapters 6 and
7.) The rate of energy transfer between ions and electrons, P, may be determined by

using a modified version of the usual Spitzer rate [26, 27],

Z2n;InA me Ti\ ~3/2 0.3T; Watts
_ —28 1 e e ]
Fie = 7.61-107n, Z _;—3/_2 ( —m—,—Ti) (1 + mec2) (T - Te) cm? '
1 t+e

(1.1)

which accounts for relativistic effects [11, 28, 29] and the possibility that the ion energies
may be much larger than the electron energies. The conventions which have been used
in the above formula are that temperatures T' and the electron rest energy m.c? are in
eV, the ion mass m; = p;m, has been expressed in terms of the proton mass myp, and
the density n is in cm™3. The Coulomb logarithm is given by In A ~ [24 — In (\/72,/T:)]
(see (30]) and varies from about 5 for inertial confinement fusion (ICF) plasmas up to

approximately 20 for some magnetic confinement plasmas.

For the purposes of making an optimistic calculation of the minimum power loss,
sources of electron heating other than Coulomb friction with the ions will be neglected.
One should realize, however, that in a realistic reactor, the electrons would also be heated
by external heating systems, friction with fusion products, and other sources. As a result,
the electron temperatures and bremsstrahlung radiation losses will be larger than are

computed below.

The bremsstrahlung loss power density, including relativistic corrections (12, 31], is

.72, 2
Pyrem = 1.69 - 1073202 /T, {-Z—’f;"‘[u.ms T +1.874( Te )]

€ mec2 mec'z
3 T, Watts
— —_— 1.2
* V2 mec? } cm? (1.2)
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If there is no other energy loss mechanism for the electrons, the minimum loss incurred
by them will be due to bremsstrahlung radiation, so one may set P, = Pyern to find the
equilibrium electron temperature T,. (Because of these assumptions, the reactor plasma
will be in what has previously been described as the “hot ion mode” [32].) The resulting
value for the bremsstrahlung loss may be compared with the fusion power Py, for the

case in which there are two fuel ion species i1 and i2 with Z;; =1 and = = n;; /ni»:
_ Watts
Ppys = 1.602-107"ning (00) 1y Erus o

_ T Watts
= 1.602-10 wm ne (o0) s Efus

pe (1.3)

where (ov) fus 1S the average fusion reactivity (fusion cross section times net collision

velocity) in cm3/sec and Ejy; is the energy (in eV) released per fusion event.
If there is only one ion species then in Eq. (1.3) one should make the substitution,

T 5 1
(.’l: + Zi2)2 2Z1~2 ’

(1.4)

Thus it is found that the bremsstrahlung losses for various fuels under approximately

optimum conditions are as given in Table 1.1.

Fuel T T, (00)jug (in | Bpuy | Cogpisane | Fheen
mixture 10716 cm—3/s)
D-T (1:1) 50 keV | 42 keV 8.54 17.6 MeV 0.80 0.007
D-°He (1:1) | 100 keV | 73 keV 1.67 18.3 MeV 0.01 0.19
D-D 500 keV | 209 keV 1.90 3.7 MeV 0.36 0.35
JHe-’He 1 MeV | 274 keV 1.25 12.9 MeV - 1.39
p-1TB (5:1) | 300 keV | 137 keV 2.39 8.7 MeV . 1.74
p-°Li (3:1) | 800 keV | 256 keV 1.60 4.0 MeV - 4.81

Table 1.1: Bremsstrahlung losses for various fusion fuels with In A = 15 and fusion cross
section data drawn from references [33], [34], [35], and [36].
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From the results shown in the table, one may see that the bremsstrahlung loss under
optimum conditions is insignificant for D-T, but it becomes appreciable for D-3He and
D-D and is prohibitively large for the advanced aneutronic fuels. The Coulomb logarithm
was chosen to be 15, which is the smallest value which can reasonably be expected in
a magnetic fusion device, although variations of the Coulomb logarithm over its entire
range (5-20) only affect the electron temperatures and bremsstrahlung loss fractions by a

fairly small amount. (See Chapters 6 and 7 for more detailed calculations.)

In the table it has been assumed that the fusion products are somehow removed before
they undergo any further reactions, in order to prevent possible neutron production from
reactions of daughter nuclei. Leaving the fusion products in the plasma would appreciably
alter the performance of only three of the fuels. The results for D-3He would be improved
slightly and the performance of D-D would be improved to a much greater extent by
burning up the T and 3He produced by D-D reactions, but then considerable numbers
of very unpleasant 14-MeV neutrons would be generated by D-T reactions in the plasma
for both D-3He and D-D fuels. Similarly, the performance of p-SLi would be improved
considerably by burning the produced 3He with the Li or with exogenous D, but even
so the system would not be able to break even against realistic losses. (Complete burnup
of the 3He produced by p-®Li could effectively increase the value of Ej,, in Table 1.1 by
~ 17 — 18 MeV [12], which in an absolutely ideal system would enable the fusion power
to exceed the bremsstrahlung slightly; however, for the operation of a realistic system
with many other power loss mechanisms, one would need the bremsstrahlung loss to be

substantially less than the total fusion power.)

D-3He would be a fairly attractive fuel for fusion reactors, since for a 1:1 fuel mixture
D-D side reactions would cause only about 1% of the total fusion power to be produced
in neutrons and would produce tritium at only a fairly modest rate. Of course, since this
neutron power fraction is still comparable to that of fission reactors, it would be desirable
to reduce the problems associated with the D-D side reactions even further if possible,

but this cannot be accomplished in a plasma in thermodynamic equilibrium. By the very
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equilibrium nature of the plasma, the deuteron temperature cannot be made substantially
lower than the helium-3 temperature in order to cut down on the D-D reactions. Further-
more, although the D-D reactions could be significantly reduced by operating with a large
excess of 3He, this technique would unfortunately cause the bremsstrahlung radiation

losses and other losses to exceed the fusion power.

The advanced aneutronic fuels, 3He-3He, p-!!'B, and p-°Li, would be even more at-
tractive for use in reactors, as they would produce essentially no neutrons through direct
reactions (although one would still have to consider low-level neutron production via
photo-ejection or fast-fusion-product-induced ejection of neutrons from reactor structural
materials). The unfortunate fact that the advanced aneutronic fuels cannot produce net
power when burned in thermodynamic equilibrium, as illustrated in Table 1.1, was first

observed over a decade ago [12, 22].

Because plasmas in thermodynamic equilibrium cannot burn advanced aneutronic fuels
or reduce the D-D side reactions in D-3He systems below a certain level, there have been
several proposals to use reactors in which the ions and/or electrons are significantly non-
Maxwellian or in which the mean energies of two particle species in the plasma (eg.
ions and electrons or two species of fuel ions) are significantly different from each other.
Particular proposals for such nonequilibrium fusion systems include inertial-electrostatic
confinement fusion (18, 19, 37], migma [15, 16, 38, 39], and other ideas [4, 13, 40, 41).
While the specific details of the proposed schemes vary, it is worthwhile to explore the
general limitations imposed on systems which deviate from thermodynamic equilibrium
in these ways; the properties and limitations of these types of systems have not previously
been examined in much detail, let alone in a broad, systematic fashion. After finding
the general constraints on nonequilibrium plasma systems, it will be determined whether
reactors operating within those limits can offer significantly improved performance with

D-3He or advanced aneutronic fuels.
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1.2 Simplifying Assumptions and Conventions Used in the

Thesis

Certain simplifying assumptions are made for the purpose of performing this analysis.
The assumptions, together with the reasons why they are made, are outlined below, and

they are utilized throughout the thesis except where explicitly noted otherwise.

e In comparing collisional scattering effects, fusion, and bremsstrahlung with each
other, the density, spatial density profiles, and plasma volume do not matter, since
all of these phenomena are two-body effects and thus are proportional to [ d3x[n(x)]?

(neglecting the weak density dependence of the Coulomb logarithm).

s The regions of the plasma which have values of [ d3x[n(x)]? large enough to be of
interest are approvitnately isotropic. If they are anisotropic, one must deal with
counterstreaming [42], Weibel [43, 44], and other instabilities, so it is preferred
to avoid significant anisotropy in these regions. (However, the potential utility of
anisotropic systems, assuming that they can somehow actually avoid instabilities,

will be examined later in the thesis.)

e Although instabilities can prove to be a serious concern even in nonthermal plasmas
which are essentially isotropic, the effects of instabilities will not be taken into
account in any of the calculations. Because of this choice, the results represent an
optimistic bound on the performance of plasma fusion systems which operate out of
thermodynamic equilibrium. Due to instabilities and other defects not considered
here, actual nonequilibrium systems will be more difficult to maintain and will offer

poorer performance.

e Spatial variations of temperature and energy may be neglected in the regions of
significant [ d3x[n(x)]2. (The potential usefulness of systems which violate this

assumption will also be checked eventually.)
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e In calculating bremsstrahlung rates, the plasma is assumed to be quasineutral and
optically thin to bremsstrahlung. (The thesis will later return to these assumptions

and consider systems which violate them.)

¢ The functional dependence of (6v);,; on the mean ion energy (E;) will be assumed
to be approximately independent of the precise shape of the ion velocity distribu-
tion function (Maxwellian, monoenergetic, etc.) provided that the distributions are
isotropic and the two ion species (if there are in fact two separate fuel ion species)
both have that same mean energy. This assumption is justified, as shown explicitly

in Appendix A for particular distribution shapes. Even if the distributions are not

Maxwellian (because of nuclear elastic scattering [10], active shaping of the velocity

distributions, or other phenomena), the fusion reactivity must still be averaged over
all angles, a process which leads to very nearly the same answer as averaging over

Maxwellian distributions.

Fusion fuels other than those listed in Table 1.1 will not be considered in the calcu-
lations presented in this thesis, although the calculations could readily be performed for
other fuels if desired. The three most commonly suggested fuels which are not examined,

together with the reasons why they are not investigated here, are as follows:

e D-SLi - This fuel is roughly as difficult to burn as p-!'B [12], yet it produces
substantially more neutrons, both from D-D side reactions and also certain D-SLi

reactions which directly produce neutrons.

e p-"Li - The cross section for this reaction is far too low except possibly for T; > 1
MeV (34], but at such high temperatures an endothermic, direct neutron-producing

reaction also becomes very significant [30].

e p-Be - Not only is this fuel mixture very difficult to burn, but also °Be is infamous
for the ease with which it can be induced to disintegrate into a neutron plus two

alpha particles. (See [12] and [34] for more information.)
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By convention, all quantities in the thesis are in cgs units, with energies and temper-
atures both measured in ergs, unless otherwise stated. Temperatures and energies will

frequently be converted into eV, but it will be noted when this is done.

In order for it to be explicitly obvious that certain portions of the work apply to non-
Maxwellian distributions as well as Maxwellian distributions, ions and electrons will often
be characterized by mean particle energies rather than temperatures. For comparisons
with prior experience, the reader may find it preferable in these cases to think in terms

of a “temperature” of T = 2(FE) /3, where (E) is the mean particle energy.

Ion masses m; will frequently be given ir terms of the proton mass my, so that y; =

m;/mp.

1.3 Overview of Material to be Presented

The presentation of material will commence with the consideration of methods for reducing
the rate of energy transfer between ions and electrons in order to lower the mean electron
energy and bremsstrahlung losses. Since on average an ion colliding with an electron will
give energy to the electron only when the electron is moving more slowly than the ion, one
obvious method of reducing ion-electron energy transfer is to deplete electrons in the low-
speed part of the electron distribution function. To some extent this effect happens in a
“passive” natural manner because the slow electrons that directly receive energy from ions
are thereby promoted to higher velocities; this phenomenon becomes more pronounced as

the ion temperature T; becomes much greater than the electron temperature Tp.

A simple calculation of this effect was done by Rosenbluth for the case of electrons in
the presence of one Maxwellian ion species with T; ~ T, [45, 46]. However, Rosenbluth’s
calculation does not apply to cases in which T; > T}, more than one ion species is present,
or the ions are significantly non-Maxwellian. Because this effect provides a “no cost”

method of reducing ion-electron energy transfer (provided that the ions are substantially
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more energetic than the electrons) and the magnitude of the potential benefit from the
effect for T; > T, has not previously been determined, a detailed analytical treatment of
the problem will be presented in Chapter 2. The derivation of Chapter 2 will extend to
those cases not covered by Rosenbluth’s derivation, namely situations involving T; > T,
multiple ion species, and non-Maxwellian ion distributions. The material in Chapter 2
will also serve as an introduction to the analytical Fokker-Planck methods to be employed

again in Chapter 3.

Chapter 3 is really the centerpiece of this entire thesis. In it will be derived the
minimum power requirements imposed on any system which attempts to actively (rather
than passively, as in Chapter 2) deplete the slow electrons and thus reduce the ion-electron
energy transfer rate. However, the machinery set up in Chapter 3 can also be applied to
other problems involving non-Maxwellian distribution functions, and so the chapter will
explore one of the most important of these other issues, specifically the minimum power
requirements of any system which maintains ions or electrons in an isotropic but beamlike

state with a given thermal velocity spread.

An overall evaluation of the effectiveness of various methods to “decouple” the ion and
electron energies and lower the mean electron energy will be given in Chapter 4. These
methods include the passive and active depletion of slow electrons discussed in Chapters

2 and 3 respectively, along with all other techniques that have been proposed to date.

Chapter 5 will deal with energy decoupling between two fuel ion species. Such an
effect would be particularly useful, for instance, for suppressing D-D side reactions from
D-3He plasmas by keeping the deuterons at lower energies than the helium-3 ions. As
another example, decoupling between ion species might also be useful for boosting the
fusion rate in p-!'B plasmas by using high-energy protons and very low-energy boron
ions to operate within the narrow maximum resonance peak of the reaction cross section.
The cffectiveness of all known techniques for possibly maintaining two fuel ion species at

substantially different mean energies will be examined.

Once the general constraints on nonequilibrium plasma systems have been determined,
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the potential usefulness of such systems for improving the performance of D-3He or the
advanced aneutronic fuels will be examined. For example, if it were possible to keep the
electrons of an advanced aneutronic fuel plasma at much lower energies than they would
otherwise have, fuels like p-!''B and *He-3He would be able to produce net power despite
bremsstrahlung losses; this issue will be confronted in Chapter 6. Furthermore, devices
capable of maintaining nonequilibrium plasmas might allow the D-D side reactions in D-
3He reactors to be greatly suppressed by cither reducing the bremsstrahlung losses from
3He-rich plasmas or by permitting the deuterons to be kept at much lower energies than

the ®He ions. This problem will be addressed in Chapter 7.

One of the most striking features of Dante's Inferno [47) (apart from its big-name
cast) was the extreme temperature differences between the different circles of hell. As
the ultimate goal of this project is to maintain similarly large temperature differences
between the ions and electrons or between two ion species within the plasma in order to
improve the performance of aneutronic fuels, the project has been dubbed INFERNO -
Interspecies Nonclassical Flow of Energy for Reduced Neutron Output. (The name also

alludes to the painful difficulty of the task and the calculations involved.)
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Chapter 2

Modification of Ion-Electron
Energy Transfer Rate For Large
Ratios of Ion to Electron

Temperatures

Rosenbluth (45, 46] has shown that natural interactions of electrons with ions tend to
cause a passive depletion of some of the slow electrons which promote ion-electron energy
transfer, thereby decreasing the ion-electron energy transfer rate from its classical Spitzer
value [26, 27]. However, Rosenbluth’s derivation assumed that the ions were Maxwellian,
the electrons were nearly Maxwellian, and the ion thermal velocity was much less than
the electron thermal velocity. The object of this chapter is to broaden the scope of the
derivation to cover even highly non-Maxwellian distribution functions and temperature

regimes in which the mean ion velocity starts to approach the average electron velocity.

In addition to being a useful addition to the fundamental plasma physics knowledge

regarding ion-electron energy transfer, a better understanding of this phenomenon has im-
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portant practical applications. If the ion-electron energy transfer could be reduced appre-
ciably from the classical Spitzer value, the electron temperature, and thus bremsstrahlung
and synchrotron radiation losses, would be substantially reduced, and as a result the
performance of fusion reactors (especially advanced fuel reactors) would be significantly

improved.

Before the main results of the paper are presented, Section 2.1 will offer a brief and
fairly intuitive look at the ion-elect - 1. energy transfer problem. Then Section 2.2 will
present much more detailed and rigorous calculations which should give a good descrip-
tion of the problem under a wide array of possible conditions (eg. various types of ion
velocity distributions, temperature ranges, etc.). Finally, Sections 2.3 and 2.4 will apply
these general results to the specific cases in which the ion distributions are Maxwellian
and monoenergetic, respectively, and derive simple approximate answers as well as more

accurate analytical results.

2.1 Preliminary Estimate of the Effect

Before presenting a detailed analysis of the ion-electron energy transfer problem, it is

worthwhile to consider the more qualitative results offered by a much simpler model.

The energy exchange time between a test particle of velocity v and background

particles with a Maxwellian velocity distribution characterized by the thermal velocity

V2T /m! is defined [27] as

m2v3 (v/v})?

v

tg = .
E= 16122225 In A lerf (v/v}) — (v/v})ert! (v/v})] ' (2.1)
in which the error function is
2 rw 2
f = — “Vdy, 2.
erf(w) N /0 e Y (2.2)
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the definition erf'(x) = dlerf(z)]/dz has been made, and in all other cases the primes

denote the background particles as opposed to the test particle.

One finds the following electron-ion collision time t$ and electron-electron collision

time t% for electrons of velocity v in the limit vy € v K vye:

2,3 2

el — mev v
- v, 2.3
‘e 16w Z2e*n; In A v} (23)
e M 3Ty ' (2.4)

E = 16metn.InA 4o

In the case of electrons for which t‘g < t¥, collisions with the ions will tend to have
a greater effect than collisions with the faster electrons. As may be seen from the energy
exchange times, this constraint is satisfied for electrons whose speeds are less than a

certain critical velocity v,

2.
W< g\:_%'z, B2 3 (2.5)

v 'vte E v, .
Ne ti c

Now the form of the modification to the Spitzer heat transfer rate may be obtained in a
straightforward and intuitive manner. The power transferred from the ions to the electrons
is essentially proportional to the number of electrons moving more slowly than the ions.
Since it is assumed that vti < Vge, the energy transfer rate P, wiil be proportional to

fe(0), the value of the electron velocity distribution at v = 0.

For v > v, electron-electron collisions dominate and the electron distribution assumes

what is essentially its usual Maxwellian distribution,

’02
fe(v) ox exp (—-v—2> (for v > v,) . (2.6)

te

On the other hand, below the critical velocity the dominance of collisions with ions

tends to upscatter some of the electrons to higher energies and thereby flatten out the

36




electron distribution at a constant value, namely its value at the critical velocity:

2

fe(v) x exp (—-U—g) (for v < ;). (2.7)

te

Since P;e  fe(0), one may see that the actual heat transfer rate in comparison with

its classical Spitzer value is

P = exp v_g
(Pie)Spitzer 'U¢2¢

2/3
= exp{ — (C — . (2.8)

While the above calculation yields a value of C = 3\/7/4, the true value of C cannot
be found from this simple calculation. This limitation is caused by the uncertainty in the
precise velocity at which the electron distribution may be considered to flatten out. All

that can be said for now is that C appears to be a constant of order unity.

Having taken this first enlightening look at the problem, one may now appeal to more
detailed calculations to ascertain the accuracy of this initial computation, determine the
actual value of C, and extend the analysis to other cases not covered in this simple

example.

It should be remarked from the outset that only collisional interspecies energy transfer
will be considered. Various instabilities which might be driven by substantial deviations
of the plasma from thermodynamic equilibrium and which would further promote energy
transfer will be ignored; thus these calculations will serve to set a lower bound on the

ion-electron energy transfer rate.
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2.2 General Description of Interspecies Energy Transfer

In this section will be presented a description of how the Fokker-Planck collision oper-
ator may be applied to the present problem in order to obtain the equilibrium particle

distribution functions and the interspecies energy exchange rate.

2.2.1 Rosenbluth Potentials for General Isotropic Distributions

Consider the distribution function f, for a given particle species a; the distribution func-

tion is normalized such that

/ P fa(v) = ng . (2.9)

As presented by Rosenbluth [48, 49], the collisionally induced evolution of the particle

distribution functions is governed by the Fokker-Planck equation,

0fa Zae 0fa

1
8t foa + “7‘;; (E + —-v X B) . vaa - (Et—')co' . (210)

The Fokker-Planck collision operator in the above equation is given by

8 1 1
(32) = ~ S Tat¥y: [faVuhas = 39u (aTo Vutas)]
col B
= > Cas=-Vv-} Jag, (211
B B

in which Cag is the collision operator just between two species a and S, Jap is the

collisional velocity-space particle flux, the sums over all 8 include 8 = «a,

4w Z? Zf,e“ InA

Paﬂ = mg ’ (2.12)
and the Rosenbluth potentials h,g and g,g are defined as:
hag(v) = d’u |V U| (2.13)
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9ap(V) = /daufﬁ(u)|v -uf, (2.14)
with the useful relation

Mg +m
hag = (;—mﬂ) vauﬂ (2.15)

For isotropic velocity distributions, the Rosenbluth potentials (2.13) and (2.14) may
be integrated over all angles in velocity space as follows (@ is the angle between u and v)

[50]):

mq +mg / fp(w)u?sin@ du df
hag(v) = 2m——=
tag (V) g Vu? + 12 — 2uv cos 8
mq +mg / duu? f3(u)VuZ + v2 — 2uvcosf|"
mg ' uv

= 27
0

_ ma; mg /oo(du41ru2)fg(u) [u@(v —u) +vO(u — v)]

uv

= 47 (w) [/ dufg(u) (—2__“) / dufﬂ(u)u] , (2.16)

in which ©(z) is the Heaviside unit step function.

Similarly, one finds that .

gap(v) = 2m / fa(u)Vu? + v2 — 2uv cos Bu® sin fdudf
_ o [/ duu? fg(u)(u? + v? — 2uv cos 0)3/2] "
0

3uv

_ 1 /oo(du47ru2)fg(u) [u(u2 + 3v2)O(v — u) + v(v? + 3u?)O(u — v)]

uv

= [/ dufg(u) ( + 3u?v — 3u® — wv ) + ‘/000 dufg(u)(uv? +3u3)] .
(2.17)

The following derivatives of the Rosenbluth potentials are also needed for the calcu-
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lations presented in this paper:

ahap_ M + Mg i/v 2.
= 4w (—_m,g )v2 A dufg(u)u®; (2.18)

6290/3 _ o 4r v 9 ul 00
oy = 33 /Odufﬁ(u) 3u —v—2—2uv +2v/0 dufg(u)u

= 8?7‘- [% [)v dufp(u)u’ +/v°° dufﬂ(u)u] . (2.19)

2.2.2 Interspecies Energy Transfer Rate

The rate of energy transfer per volume from the o species to the 3 species is defined to
be Paﬂi
1
Popg = —/dav (Emavz) Cag - (2.20)

By using the definition of the Fokker-Planck collision operator and integrating by

parts, one finds

1 1
Pu = gmalas [ d Vs - |faVuhas = 3Vv (faVoVuges)]

1 1
= “Emaraﬂ/dsv (favv’vz : Vvhaﬁ - Evvvz -Vy- (favvvvgaﬂ)]

; |
= —3Malap [ EVRIaV: Vhas =V Vy - (faVsVugap)]

1 .
= _Emaraﬂ _/ d’v _2f°‘v ’ Vvhaﬂ + faV%gaﬂ]

= —maroﬁ/d3vfa [V - Vvhag + (—Imﬂ—) hagl . (2.21)

Mq -+ mg

For isotropic velocity distributions the energy transfer becomes
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ma +mﬂ

= —167r2mal"03/0wdvv2fa[ (m) /dufg(uu + - /dufg(u

m

+ /voo dufg(u)u]

= 64n32223%¢* lnA/oodvUQf —l—l/vduf (u)u? — -I—/wduf (u)u
a?p 0 o] mg v Jo B ma Ju 8 .
(2.22)

oo h
Puﬁ = —moragfo (dv47rv2)fa [Uaazﬂ + ( s ) hop}

2.2.3 Equilibrium Distribution Functions

With the aid of Eq. (2.15), the collision operator between two species may be rewritten

as

1
CO,B = FaﬁVv . [i(vaa) . VVvaaﬁ - faVvhaﬂ} . (2.23)

Ma
Mo + Mg

For isotropic distribution functions the collision operator is

_ 190 .2 1afaaga,, Mg Ohgap
Cos = Tasa," [2 v O  ma+mg ® G

16 22252 4InA v o0
T nA i 602{2%3[13/ dv'fp(v')v'4+/ dv'fﬁ(v')v']

% v2/ dv' fg(v")v"? } (2.24)

m2 v2 Jv

The collision operator between two species which was given in Eq. (2.24) may not
seem immediately familiar, so it will now be explicitly shown that this expression for the

collision operator reduces to a previously published result. Calculating the divergence in
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Eq. (2.24), one finds
16m2Z2Z%e* In A Ofal 1 fv %
Cog = ——o b 0 ( {_3&“ [—3/ du fp(u)u +/ dufﬂ(u)u]

m2v? v
m,q ‘02 ./ dufﬂ })

ma/ dufs(u

/dufﬂ(u)u +v/ dufg(u)u — v? / dufp(u J}

0% fa
Ov2

v

1671'2Z2Z‘(2,e4 InA §

m2v? v
3fa [
611 3

161r2Z§Z2 etln A 4
3m2 { [;}—5—/ dufg(u)u +j dufp(u)u]

2
+e [/ du fg(u) (32—":‘—2——) / du fy (u)u ]

+3E§fa(v)fﬂ(v)} . (2.25)

For like particles Eq. (2.25) becomes

1672Z%*In A { 0%f,
Caa

SO CL L s "ot
af“[ dufa(u) (3———) 2 [ dufa(u)u]+3[fa(”]}

274 .4 2
e e [ [ttt + [ s +20iao?

3 [ [ (-2) ()]

(2.26)

This last expression for Cq, matches Eq. (1) of Reference [49)].

The collisional velocity-space particle flux from Eq. (2.11) is found to be
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167°Z2Z8e InA (Qfe 1T1 [* , fp o (R,
of = — {3v§[;3_/o dv' fa(v')v +/u d’Ufﬁ(’U)'U]

tfp el / " o' fa ()2 b @ (2.27)
mgv? Jo ’

mg

where ¥ denotes the “radial” direction in velocity space.
Assuming that there are no external forces or spatial gradients, for f, to be in equilib-
rium one must have (0fq/0t)co. = 0. For isotropic velocity distributions, this requirement

reduces to }_5Jap = 0, or equivalently

N
(/%) J§ dv' Ep Z3 fp(v' )0 + [7° dv' 32 Z[%fﬁ('v')v’] |

0fa(v) _
v - -fa('U) [

(2.28)

For the case of electrons interacting with ions, the electron distribution function will
acquire a quasi-equilibrium shape while its mean energy is still in the process of changing
due to energy exchange with the ion species. Therefore one may use Eq. (2.28) to find the

LN 13

electrons’ “equilibrium” distribution function f,, which may then be used in Eq. (2.22)

to arrive at the rate of interspecies energy transfer.

Note that f,(v) cannot increase with increasing v in any range of velocity space if the
distribution is to be held in equilibrium (or quasi-equilibrium) solely by collisions with
other species (even if those other species have fixed and/or non-Maxwellian distribution
functions). Thus, one cannot “dig a well” in the electron distribution to cause a radical
depletion of the slow-moving electrons which draw energy away from ions, unless one
resorts to particle sources and sinks, externally applied electromagnetic fields, transient

operating conditions, etc.
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2.3 Ion-Electron Energy Transfer for Maxwellian Ions

In this section the general ion-electron energy transfer formulas of the previous section
will be applied to the specific case in which the various ion species which are present have

Maxwellian velocity distributions.
2.3.1 General Heat Transfer for Maxwellian Ions

For Maxwellian ions with thermal velocity vy; = 1/2T;/m;, the distribution function is

’02
filv) = 3,2 3 e p( UT) . (2.29)

ti
It is assumed for the time being that different ion species in the plasma may have

different temperatures.

Substituting Eq. (2.29) into the expression for the ion-electron heat transfer, Eq.
(2.22), and integrating by parts, one finds that the power per volume transferred from

the ions to the electrons is

P, = 1672¢* lnA/o dvvzfe(v)z Zini [_\/__:—l‘% exp (—:—2) - %erf (%)] .
e Vti ti t
(2.30)

Now one needs to find the equilibrium electron distribution function f¢(v) to use in Eq.
(2.30) for the heat transfer. By substituting (2.29) into Eq. (2.28) and again employing

integration by parts, the differential equation determining fe(v) reduces to
£ {3v / v’ fe(v')o" ~ v / o' fulw' o + 9;— /0 " v/ fo ()
R [ () ke (-3))
+folv {/ WL+ T ZZW;;? me [L/i_’?erf (%) - Lexp (-%’%)]} =0
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for the case of electrons in the presence of multiple Maxwellian ion species.

If Eq. (2.31) is solved numerically and its solution for the equilibrium fe(v) used with
Eq. (2.30), one will find the exact value for the heat transfer to electrons from Maxwellian
ions for any choice of parameters. However, to obtain useful analytical expressions and

simplified numerical results, further approximations are required.

One should also note that by using Eq. (2.30) and assuming that the electrons remain
perfectly Maxwellian (and allowing the ratio of ion and electron temperatures to remain
arbitrary), the result first found by Spitzer [26, 27) may be obtained:

4/2rmimeZ2e*nine In A
(miT. + men)3/2

(Pie)Spitzer = (Tz - Te) . (2'32)

This classical Spitzer energy transfer rate will serve as a useful basis for comparison

with the modified rate described by Egs. (2.30) and (2.31).

2.3.2 Modification of Spitzer Ion-Electron Heat Transfer

If the electrons moving more slowly than the ions are partially depl:ted due to energy
upscattering from the ions, the heat transfer rate will be less than the Spitzer result.
To examine this effect, it will be assumed that the ions are Maxwellian and are moving
significantly more slowly that the electrons, but the electron distribution will not be
assumed to be Maxwellian. This calculation will produce a modification factor to the
Spitzer heat transfer rate which will reduce to the answer obtained by Rosenbluth [45, 46]

in the proper limit.
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Relationship Between Slow Electron Depletion and Reduction of Ion-Electron

Heat Transfer

Before proceeding with the main line of the derivation, one of the key arguments used in
the more intuitive analysis of Section 2.1 will now be confirmed; in particuiar, it will be
shown that the ion-electron heat transfer rate is essentially proportional to the number of

electrons moving more slowly than the ions, or in other words approximately proportional

to fe(v =0).

For vie > vy one may assume that the electron distribution shape is governed by

electrons with velocities v such that v > wvy;; therefore Eq. (2.30) becomes

- 1672 Z2e'n; In A

P~ [0 - [T doston] | (2.33)

m;

For Maxwellian electrons Eq. (2.33) reduces to:

1672 Z2%en; In A
P = nlzm : (Tt - Te) [fe(O)]Maa:wellian
illle

~ (He)Spitzer ' (2'34)

Equation (2.34) is clearly the v, >> vy limiting form of the full Spitzer result of
Eq. (2.32). Assuming that the electrons do not deviate too much from a Maxwellian

distribution, then one may use

| ot %fe(O) (2.35)

in Eq. (2.33). Dividing the resulting expression by Eq. (2.34) produces the result

(Pie)Spitzer %CT‘I [fe(o)]Ma:rwellian [fe(O)]Maz:wellmn ’

Because substantially non-Maxwellian electron distributions will arise only when T; >
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Te (causing interactions with ions to interfere strongly with the electron distribution), the
correction to the Spitzer rate will reduce to (2.36) even when the assumption underlying

Equation (2.35) breaks down:

P - %fc(o) _ fe(0) 2.37
(PiC)SPi"zer ;77-1‘:— [fe (0)]Mazwellian [fe (0)]Mamwellian ' ( . )

Therefore when the electron distribution function is altered so that fewer than the
Maxwellian number of electrons have very slow speeds, the heat transfer rate is reduced

accordingly.

Derivation of Electron Distribution and Energy Transfer

Attention will now be directed to electrons with velocity v such that vy < v < vge. In
this case one may make the approximations exp (—v%/v%) — 0 and erf (v/vy;) — 1 in Eq.
(2.31).

Using these approximations, the differential equation for the electron distribution be-

comes

4 m;

~ A Z2 i ] 3 Z1.2 ille
% [Z 47r:3 3/ dv' fe(v )v] + fe(v) [’; fe(0)+2i?—"m—. =0
| (2.38)

Assuming that the electrons are nearly Maxwellian so that Maxwellian values may be

used for the electron-related quantities within the brackets, one obtains

e e TR o [ o e ()] o

(2.39)

The form of Eq. (2.39) suggests that one define a critical velocity v, for the electrons
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2 2
3_ o [T =2ZiniT; [T. 37 Zini ,
VLEW2) —— [ —=——) ——vve . 2.40
¢ VQZI: ne m; \ me 4 z;: ne Gt (240)

This definition is the same critical velocity which was found in the introductory section.

By using the critical velocity and assuming that all of the ion species are at the same

temperature T;, Eq. (2.39) may be solved to find f.(v) [51]:

v dv'v’ (v’3 + %vg)
B D)

fev) = fe(0) exp { - /0 (2.41)

€

One may find f,(0) from the normalization condition in Eq. (2.9). It should be realized

that the derivation of this distribution function assumed that v; < v <K vge.

The integral in the exponent may be evaluated [52]:

/vdv’v’(v’3+%vg) 1, (I—E) 3/" dv'v'
0

= —p° - -
(v +v3) 2 Ti) “Jo (v3+03)

1, Te) v (1 (v + v)?
= = 1-28) 2 In |~
2" +( T:) 3 2ln v2 — v, + v2

—V3tan™! (—\}—5-) — V3tan™! (2:)/;”1)':)} .
(2.42)

It is clear from Equation (2.42) that in the classical limit (v — 0) the distribution

function becomes the usual Maxwellian.

Now the electron distribution function found above may be used in the expression
from Eq. (2.30) for ion-electron energy transfer in the presence of Maxwellian ion species.

Making this substitution and dividing by the Spitzer energy transfer rate from Eq. (2.32),
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one obtains

Pie ~ ﬁi. (]_ + Tﬁﬁ)an

(Pie)Spitzer 2
1,0 [(,.13 _;
oo ) —%/v dvv v + 7 'v
X {/‘; dvv” exp T, L +v3)
o2 (zz)“” [Te oo (227 _ et (2)
VT \me T; P vZ v Vg
_ -1
y /-oo doo? ex _me /v dv'v' ( B+ —'503)
0 P Te Jo (’U’3 + 'Ug) '

(2.43)

Note that v ~ v; corrections have been retained so that the correct Spitzer rate will

be recovered for v3 — 0.

Useful Approximate Answer

A simplified answer can be extracted from Eq. (2.43) by analytical means [53].

In the first integral of Eq. (2.43), the integrand is appreciable only for v of the order
of vy; or smaller, so one may assume that v and v’ are of the order v; and thus much

smaller than v.. In this limit the integral becomes

o me v 'V (0'3 + %vﬁ)’ 2 (m;\*? |T, —v?
/0 dvv® exp T, fo (03 + v3) NG (E) T, %P\ 2
o0

X Ve - (2.44)

The integrands of the remaining integrals in Eq. (2.43) are not restricted to the v ~ vy

velocity range (they do not have the exp(—v?/v%) term), so in general the electron velocity
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v in these integrals extends to the order of v, or much larger than v.. In this limit, the
integral in the exponentials of these terms may be approximated by using Eq. (2.42), so
that

~

/u dv'v' (v’3 + %vg)
0

T. 27
2 e\.,2
(0B + 03) v (1 ) (2.45)

1
5 —‘?,‘ ‘Ucﬁ.

Therefore the remaining integrals in Eq. (2.43) may be approximated as

% g me [ dv'V (v’3 + %vg)
/0 dv v v er ('U_t:) exp —Fe/o W3 2)
X Uy €X 2m (1 - E) mev; /oo dvv ex _mev2
te p 3\/'3‘ 1} Te 0 p 2Te

Te 27!' Te) 1"‘802
~ — —_— 1 —_——— . 2.4
vte”le P { 3\/§ ( T‘z Te ' ( 6)

o0 v dv'v' (v + ey
/ dv v%xp{—.’ﬁ/ ( Ll °)
0 0

Te (v +v3)
~ exp{% (1 - %) mT;:’Z} /000 dvv® exp {_n;;f}
%(%)3/2‘3’“’{3% (1_%) "‘T:’g} (2.47)
Using these approximations, Eq. (2.43) becomes
P (1 4 &E)wexp{_ (_2”_2 @L":E)m} (2.48)
(Pic)spitzer m; Te B ne m; T, ’

where some corrections of order vZ/v2, have been neglected in the asymptotic evaluation

of the integrals.

For the case in which only one ion species is present (Z;n; = n.) and the temperature

ratio T; /T, remains moderate, this expression clearly reduces to precisely the answer
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obtained by Rosenbluth [46]:

2/3
(Pie) Rosenbluth ~1— (27"2 Mme 3) / . (2.49)

(Pie)Spitzer ?)ST ! E Te

It is useful to realize that 272/3%/% ~ 5.000.

Now the significance of this work may be seen. While Rosenbluth’s answer is just
an expansion valid for T; not much larger than T, (and indeed takes on a nonphysical
negative value if one chooses T;/T, to be sufficiently large), the result presented in Eq.
(2.43) and even the more approximate one of Eq. (2.48) are considerably more accurate,
and they give sensible answers even for large T;/T.. The accuracy of Eq. (2.43) will next
be demonstrated by numerically integrating this expression and comparing the result with

the output of a Fokker-Planck code for a wide range of T;/T, values.

More Accurate Answer via Numerical Integration

Mathematica [54] has been used to plot the normalized distribution function from Eq.
(2.41) for various values of T;/T, (with Z; = 1 and A = 1 for all of the curves). Figure
2-1 shows the plots for T;/T, =1, 10, 100, and 1000. As may be seen in the figure,
the flattening of the electron distribution at small velocities becomes more pronounced
as the temperature ratio increases, as expected. (Some of the approximations made in
obtaining Eq. (2.41) begin to break down for T;/T,=1000, but the general appearance of

the distribution function at these parameters is still highly revealing.)

The correction to the Spitzer rate as described by Eq. (2.43) has been calculated
via numerical integration with Mathematica. The resulting graphs are shown in Figures
2-2 through 2-4 for the cases in which the plasma consists of pure light hydrogen, pure
deuterium, and pure helium-3. These results for the case of Maxwellian ions are contrasted
in the graphs with the results for the case of monoenergetic ions, which will be derived in

the next section.
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Figure 2-1: Electron distribution for a pure hydrogen (*H) plasma with T;/T.=1 (a), 10
(b), 100 (c), and 1000 (d).
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Figure 2-2: Correction factor to the Spitzer ion-electron energy transfer rate for a pure
hydrogen ('H) plasma as a function of T;/T: a) monoenergetic ions, b) Maxwellian ions,

c) approximate answer from Eq. (2.50).

53



0.8 |
N A e
8 0.6 | ]
[=% .
23 4
\
T C
& 0.4 [ ]

0.2 [ ]

1 , 10 100 1000
' TilTe

Figure 2-3: Correction factor to the Spitzer ion-electron energy transfer rate for a pure
deuterium plasma as a function of T;/T,: a) monoenergetic ions, b) Maxwellian ions, c)

approximate answer from Eq. (2.50).
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Figure 2-4: Correction factor to the Spitzer ion-electron energy transfer rate for a pure
helium-3 plasma as a function of T;/T,: a) monoenergetic ions, b) Maxwellian ions, c)

approximate answer from Eq. (2.50).
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As may be seen in the graphs, the correction factor begins to level off for large T;/T.
This behavior is to be expected, for if one continues to hold the ion distribution perfectly
Maxwellian and redefines T, to be 2/3 of the mean electron energy (even when the electron
distribution becomes non-Maxwellian), the ion-electron heat transfer should return toward
the T; /T, — oo Spitzer rate for extremely large vaiues of T;/T. (when vZ > vZ, so the ion
velocity is the dominant determinant of the relative collision velocity). At T;/T, = 1000,
this upward return back toward the Spitzer formula has not yet begun (except for the
case of light hydrogen with monoenergetic ions, as shown by curve (a) of Figure 2-2), but

the correction factor is beginning to level off in preparation for the upward turn.

Along with the plots based on Eq. (2.43), Figures 2-2 through 2-4 also present graphs

of the more approximate but more readily useable answer,

2/3
P, ( Me Ti)i‘/2 Zni me T;

—_—x (14 —= exps—(35) *+——— . 2.50
(Pie)Spitzer m; T, Z ne m; Te ( )
Note that the coefficient in the exponent has been changed from the previous approximate
value of 5.00 to the present value of 3.5 in order to match the complete results more
accurately over a wider range of values of 7;/T.. As one may see in the graphs, this
approximate answer matches the full analytical results quite well for temperature ratios

such. that

Z2n; m, T,
1<y i pt o 2.51
<y Anml g, @51

in which m,, is the proton mass.

Figure 2-5 again shows the numerically integrated result for the case of deuterium with
a Maxwellian ion distribution, but now that curve is compared with the results obtained
by Galambos [55, 56] using the FPPAC Fokker-Planck code [57, 58]. It may be seen that
there is fairly good agreement between the present analytical results and the code results
for the heat transfer rate. Methods for obtaining even more precise analytical expressions

for the energy exchange rate will now be presented.
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Figure 2-5: Comparison of analytical result from Eq. (2.43) (line) with code results
(points) from [55, 56] for a pure deuterium plasma with a Maxwellian ion distribution.
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2.3.3 Toward Even More Accurate Analytical Results

It should be possible to nbtain an even more accurate answer by returning to the full non-
linear first-order differential equation for the electron distribution function in the presence
of Maxwellian ions, Eq. (2.31). This first-order equation for f. may be iterated, so that
the coefficients are found by using a less accurate expression for the distribution, which

will be denoted f;:

9
% (& [ [
Znpk | T ( v ) v v?
ZilhiV% (VT e (V) -2 v
+; 4m3/2y [ 2 & Vyi v P v}
Yl gy 4 S Zinime [/ (1)_1 AT
+ fe(v) {/0 dv' fo(v')v +2i: 2732 m; | 2 erf on) o &XP ) =0.

Solving this equation, the iterated solution for the distribution function expressed in

terms of the previous iteration’s solution is

v v’
fo(v) = £u(0) exp {— | [dv’v' {3 | v sz
3Zi2ni Me \/1—l' o ) v ,vl2
+Xi: 2m3/2 m; | 2 orf (vu‘ v P v,
U,
x { /0 dv" fg(U” 'v"" + vl3 / dv" fe (,U")

-1
3Zn} [T v v v'?
+ Z 132 |9 erf (Uu‘) "o exp —”zzi .

(2.53)

One may then find f.(0) directly from the normalization condition as usual.

If one begins the iteration process by assuming that fa(v) is Maxwellian and charac-
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terized by the thermal velocity v, then the distribution function of Eq. (2.53) becomes

v dv'v' 3 ﬁ vl ,UI ,Ul2
= - 51 9 f e T Ve R
fe(v) = fe(0) exp { 2-/(; [ 'Ut2e {2 { 2 * <vtc) Ute op ( 'U?e
37 Z}n; m, ( v ) 2 v v*
+ —lerf([ —) - ——=—exp| ——
Xi: 4 n, m; [er Ut VT vy P v

3 \/7? 'UI ’U’ ,UI2
X {5 [—2—erf (E) - Zexp (_.'U_tz;

-1
3V Z2niv}; ( v ) 2 v v'?
— = lerff | — | — —=— —— .
+ ; 4 nvl °r Vg VT v exp vz

Note that by using the series expansion for v’ < vy, one finds
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By taking just the first term of this expansion, making the approximation v > vy, and
defining the critical velocity v, as before, the distribution function of Eq. (2.54) reduces

to the simpler form used in the previous section.

Even more accurate distribution functions could be found by using Eq. (2.54) or a

simplified form of it as the basis for further iterations with Eq. (2.53).

Once a distribution function of the desired accuracy has been obtained, it can be used
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to find the correction to the Spitzer ion-electron energy transfer rate,

P; VT T )(1+me'f§)3/2/0°°{dvv2fe(”)

(Pie)spitzer 2 (T —Te m; Te £e(0)
X [% <‘:Z—Z)3/2 %exp (_7:2)1—2-) - %erf (vit,)]}
X [ /0 > dm;?%%]—l . (2.56)

Another possible improvement involves refining the definition of the clectron temper-
ature. For the case of significantly non-Maxwellian electrons, it is desirable to accom-
pany the heat transfer expression by a definition of the effective electron temperature

©, = 2(E.) /3, where (E.) is the mean energy per electron. One finds that

gnie/ooo (dv47rv2) (%mevz) fe(v)
2, [ duut fo(u)
3°¢ oo duu?fe(u)’

O

(2.57)

in which u = v/u.

Numerical integration with Mathematica revealed that using the distribution function
of Eq. (2.54) produces only minute alterations in the graphs which were presented earlier.
Likewise, plotting the heat transfer correction factor versus 7;/©, (as opposed to T} /Te)
only makes very slight alterations in the curves, since T, and O only begin to diverge
for large values of T;/T., where the correction factor is nearly flat with respect to the

temperature ratio.

More appreciable improvements might be gained from iterating the electron distribu-
tion function at least once more or by expressing all of the integrals in terms of ©, instead
of T, (being careful to maintain self-consistency with the new definition throughout the
derivation), but these possibilities were not tested computationally, as the resulting ex-
pressions could not be numerically integrated within a reasonable time on the sort of

computers presently available to the author (Macintosh Quadra 610).
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2.4 Ion-Electron Energy Transfer for Monoenergetic Ions

Now the energy transfer rate will be calculated assuming that the ions all have velocity v;,
or energy E; = miv? /2. This calculation is relevant to the evaluation of fusion concepts
such as those proposed by Bussard [18] and Maglich [38], which are intended to operate
with nearly monoenergetic ion beams that have energies much greater than the mean

electron energy.

(In spherically convergent systems of the type proposed by Bussard, the density gener-
ally varies as roughly 1/72, where r is the radial distance from the center of the spherical
plasma [18]. Therefore most of the collisions occur in the dense central region, where par-
ticles are coming from and returning to all directicns, and so the assumption of isotropy
made in the present calculations is valid. Anisotropy could be a more serious concern
in Maglich’s migma configuration [38], although the present isotropic calculation may be

considered a first-order treatment of the plasma behavior in that device.)

2.4.1 Derivation of Electron Distribution and Energy Transfer

For isotropic but monoenergetic ions, the distribution function is

n;

fi(v)

50(v — ;) . (2.58)

47”)"

By substituting this distribution function in Eq. (2.22), the power per volume trans-
ferred from the ions to the electrons is found to be

1

mev;

U; (o o]
P = 167r2Z?e“n,-lnA[ / dv'fe(v')va—mif dv'fe(v')v'] . (2.59)
0 1 Ju;

Using the monoenergetic ion distribution together with the earlier general formula for
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the equilibrium electron distribution function, Eq. (2.28), one obtains

o 1 l " ! "' —Z?ni 2 . ® N1 Ziz'ni -
ov 3 [v3 /0 v’ fe(v')o" + ; PP v; O(v — v) +/U dv' fe(v')v' + 2:: Tro; O(v; — v)

1 v P Z2n;me 1
+fe(v) [U—E./o d‘U’fe(‘UI)'U + ; —‘i;—aﬁe(v —v;)| =0. (2.60)
For v; substantially smaller that vy, the electron distribution will be governed by the
equation for the overwhelming majority of the electrons which have v > v;, so one may
set O(v —v;) =1 and O(v; — v) = € in Eq. (2.60) in order to find a good expression for

fe(v). However, if v; is comparable to v, phenoniena rcenring on both sides of v = v;

must be taken into account.
2.4.2 Useful Approximate Answer

For electrons with v > v > v;, Eq. (2.60) may be approximated by

Ofe Z2n; v? 1/°° Lo 1 |8 Zinime|
oo l¥4m}3 3 t3 ), dv' fe(V')0'| + fe—s 3fe(0)+2i: i m; =0. (261)

Note that this equation for electrons interacting with monoenergetic ions is exactly
the same as Eq. (2.38) for electrons interacting with Maxwellian ions in the corresponding

velocity range (vge 3> v >> vy;), provided that one uses vZ — 2v?/3, or T; — 2E;/3.

Accordingly, the critical velocity for the electrons is now defined as
Ne mM; | M

Zn; E; [T,
vi=vor YA e (2.62)
i

Similarly the electron distribution function is

e me [V V'V (v’3 + %%ug)
felv) = ar P "_"/0 (3 + v3)

-1
: 0o o dv"v" (v + 3 gva
X [ dv'v"? exp{—-%/ ( 2 B C) . (2.63)
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The power density transferred from the ions to the electrons may be approximated as

Pie = __fe(O) - (2-64)

1 2Z24 InA [2 E; ©
6m T:n,n / dvfa(v ]
i

This expression is identical to Eq. (2.33) provided that one again makes the identifi-
cation T; — 2E;/3. Because of the exact correspondence between Eqs. (2.61) and (2.64)
and their predecessors in the Maxwellian ion case, the Maxwellian results may be used

here, provided the proper substitution is made for the ion temperature in each case.

By analogy with the earlier Maxwellian results, a useful approximation for the heat

transfer is (taking the numerical coefficient in the exponential to be 3.5-2/3 =~ 2.4)
2/3
Pie ( 2me E; )3/ 2 Z2n; m, E;
P = \It3.-7) ep{—|24> ———= . (265
(Pie)Spitzer 3m; T, P 2 ne m; T ( )

2.4.3 More Accurate Answer

By using the electron distribution function of Eq. (2.63) in Eq. (2.59) and dividing by

the Spitzer rate, a more accurate expression for the correction factor is found to be

_ B \/'zrf T, (1+3E§)3/2
(Pie)spitzer 2 (% E; - Te) 3m; T,
st | [+ (2 1)
X mcvl/ vo? exp _—i/o T
o0 m. v dv'v (,UIS + 31‘1,03)
—/ dvv exp —-—"/ —
Yi Te Jo (v +vc)
3

; e v dv'v' (vl3+2E c) -1
R [ wmten{-ge [ GO

(2.66)

Mathematica was again employed in order to numerically integrate and graph this
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improved expression for the ion-clectron heat transfer rate in the case monoenergetic
ions. The results are shown in Figures 2-2 through 2-4 (along with the results for the
Maxwellian ion case) for plasmas consisting of pure light hydrogen, pure deuterium, and

pure 3He, respectively. In the graphs, the effective ion temperature has been defined as

T; = 2E;/3.

Since the most important feature about the interactions of the ions with the electrons
is that the ion speeds are typically much smaller than the electron thermal speed, one
would expect that the heat transfer rate would depend only on the mean ion energy
and not the particular ion distribution shape (except at very large temperature ratios,
T;/T. ~ 1000, when the mean ion and electron speeds start to become comparable). This

behavior is indeed quite evident in the figures.

Based on the comparison with the analytical and code results for Maxwellian ions,
this monoenergetic ion answer appears to be fairly accurate. However, techniques for
obtaining an even more precise analytical answer for the monoenergetic ion case will now

be discussed.

2.4.4 Toward Even More Accurate Analytical Results

As in the case of Maxwellian ions, an even more accurate answer may be obtained by
returning to the full nonlinear first-order differential equation for the electron distribution
function, Eq. (2.60), and iterating. The next iteration expression for f, written in terms

of the previous iteration’s less accurate expression, f?, is
322
fe(v) = 1:(0) exp{ I [ { / "+ Y e v’—vi)}
0 m;
x {/0 dv”fg(v”)v"4+v'3 /., dvllf;(,vll)vll
v
-1
Z0n; | v
ST 102000 — v:) + —O(v; —
+zi: o |V (v —v) + o O(v; — ')

(2.67)
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As usual f.(0) is calculated directly from the normalization condition.

If one begins the iteration process by assuming that f;(v) is Maxwellian and charac-
terized by the thermal velocity vy, then the distribution function of Eq. (2.67) becomes

V'’ ! v 02
olv) = fe(O)eXP{ =2 [dvt {g[l/z—%erf(::)—aem (—0—2)]

te

R R

Note that by using the series expansion for v; < v/ <« vy this distribution function

reduces to the simpler one found given in the previous section.

Even more accurate distribution functions could be found by using Eq. (2.68) or a

simplified form of it as the basis for further iterations with Eq. (2.67).

Once a distribution function of the desired accuracy has been obtained, it can be used

to find the correction to the Spitzer ion-electron energy transfer rate,

(79,-52;? ~ @(%Efiq’e) (”i:ﬁf%)m
x %3/ “}83 /d fe(O]
WEL 5] e

as well as the effective electron temperature, as given by Equation (2.57).
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2.5 Summary

Corrections to the classical Spitzer rate of ion-electron energy exchange were calculated
for the case of large T;/T, ratios. The results of these calculations are substantially more

accurate and more broadly applicable than the original result of Rosenbluth [46].

A useful expression for the correction factor is

2/3
Pie ( meT)3/2 Z n;meT
Toe— ~ (1+57) ew{-{35 @70
(Pie)Spitzer m; T, p Z Ne M T ( )

This result assumes that all of the ion species are Maxwellian and at the same tem-
perature T;. If the ions are non-Maxwellian, an effective ion temperature for use in the
above equation may be defined in terms of the mean ion energy, T; = 2 (E;) /3. Note that
this simple approximation yields accurate results only for the temperature range

VAL Zinimp T;
< . .
1 Z — < 50 (2.71)

For temperature ratios larger than this range, the approximate answer given above
begins to underestimate the actual energy transfer rate, so in such cases one should use

the results of one of the more sophisticated calculations presented in this chapter.

These more accurate analytical expressions for the correction factor were numerically
integrated and graphed using Mathematica, and the results were summarized in graphs
for plasmas of various compositions. The results generally agree with those obtained by

Galambos [55, 56) with a Fokker-Planck code.

As was shown, iterative methods may be empioyed if one desires to obtain even more
accurate analytical expressions for the correction factor for the two cases of Maxwellian

ions and monoenergetic ions.

The correction factor derived in this chapter may be incorporated into calculations of
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electron energy balance and bremsstrahlung radiation in order to improve the accuracy

of those calculations; this will be done in Chapters 6 and 7.
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Chapter 3

Power Requirements for Actively
Maintaining Non-Maxwellian

Velocity Distributions

The limitations on any system which actively maintains one or more particle species in

substantially non-Maxwellian (but isotropic) velocity distributions will now be examined.

Figure 3-1 shows the most efficient system imaginable for maintaining a nonequilibrium
plasma. Entropy generated by collisions in the plasma (at the rate S’) is pumped out of
the plasma in the form of heat energy (Q). Most of this heat energy is recycled by a
heat engine (limited by the Carnot efficiency) and returned to the plasma as work input
(Wreciw); the remainder of the heat energy (Ql,,_.,,) is exhausted to a low-temperature

thermal reservoir.

This conceptual system for keeping the plasma out of thermodynamic equilibrium
immediately shows that there will be two fundamental limitations. One limitation is

the minimum power loss due to the heat energy that must be exhausted to the low-
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Figure 3-1: Maximally efficient system for maintaining a nonequilibrium plasma.
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temperature reservoir; if this minimum power exceeds the fusion power, the reactor will
clearly not be useful. The second limiting quantity is the minimum recirculating power,
which for typical parameters should be much larger than the minimum power loss. As
a practical constraint, if this recirculating power beccmes much larger than the fusion

power, the reactor will not be particularly desirable.

This basic picture will now be used to derive detailed limits on the performance
of plasma fusion systems in which one or more particle species have substantially non-

Maxwellian distributions.

There are two cases of particular interest. The first is that of a nearly monoenergetic
but isotropic beam with a given thermal spread, such as the distributions that have
been proposed for ions and/or electrons in inertial-electrostatic confinement fusion [19]
and migma [38]. The second cese is that of a nearly Maxwellian distribution in which
virtually all of the slow particles have been depleted below some speed that is small in
comparison with the “thermal” speed that characterizes the Maxwellian shape. This type
of distribution would be desirable for electrons in advanced-fuel plasmas, since by depleting
most of the electrons with speeds slower than the ion speeds, ion-electron energy transfer
can be greatly reduced, thereby also subistantially cutting the bremsstrahlung radiation

losses.

Rough preliminary estimates of the power requirements for maintaining the particle
distributions in these two important cases will be made in Section 3.1. After this brief and
intuitive introduction to the problems which must be faced, a rigorous derivation of the
power requirements will be given in Section 3.2. In Section 3.3, the re ults of the rigorous
derivation will be applied to the calculation of the power requirements for a large number
of different fusion fuels. Because all of these calculations will be performed assuming
isotropy of the velocity distribution functions, Section 3.4 will estimate the impact that
large deviations from isotropy would have on the calculations. Finally, Section 3.5 will
discuss the categories of possible fusion approaches which can be ruled out on the basis

of the calculations presented in this chapter.
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3.1 Prelimary Estimates

Before performing a meticulous calculation of the requirements for maintaining non-
Maxwellian velocity distributions, it would be useful to estimate the requirements (at

least the recirculating power) for the two limiting cases just mentioned.

3.1.1 Beamlike Velocity Distribution with a Thermal Spread

Attention will first focus on an isotropic velocity distribution in which the particles are
centered around a mean speed v, with some “thermal” spread v; < v, on each side of
the mean speed. Due to collisions, a certain number (actually a certain density) of the
particles ny,5 will gain an amount of energy AE(,; on a timescale of Tfast- If the width
of the distribution is to be kept from spreading beyond the allowed v;, then one must

recirculate a power density Precirc defined by

Nfast AE
Precire = —fast — " Jast . (31)
Tfast

According to Sivukhin [59], the parallel velocity-space diffusion coefficient for a particle
with velocity vies¢ in the presence of isotropic, monoenergetic field particles of the same

species with speed v, is

4m(Ze)*nv2In A

Dy =
" 3m2v?est
= ﬁ ( Yo )3 _"_i (3 2)
3\/6 Vtest Teol ' '

where the usual definition of the collision time [30] with (E) = (3/2)T ~ mv2/2,

o /(B
col = 2V/37(Ze)inlnA '’

(3.3)
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was used to rewrite the diffusion coefficient.

The time for a typical test particle to be collisionally upscattered from the velocity v,

to the maximum allowed velocity vs.s = v, + v; may be estimated as

Tfast = bﬁ

Q
Iw
S
N
S
N——”’
N
2
e

(3.4)

where only the largest term has been retained.

By likewise keeping only the largest term of AEf,s and using (E) &~ mv2/2, one finds

the energy upscattering to be

1 v
AEfast = :‘):m(v_%ast - 'Ug) ~ 2',;)_:' <E) . (35)

The final necessary assumption is that approximately half of the particles will be
upscattered in energy and haif will be downscattered, so nses; = n/2. By putting all of
this information together, the recirculating power required to hold the proper distribution

shape despite self-collisions is found to be

VT v, n (E)

P, recirc 2/6 -U_t Teol
0.24 o PAB) (3.6)
UVt Teol

One might wonder whether this rather crude technique for estimating the recirculat-
ing power is particularly precise, or even whether there may not be more complicated
considerations which would greatly alter the answer. Yet as will be shown rigorously later

in the chapter, this initial estimate is surprisingly accurate.
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3.1.2 Nearly Maxwellian Distribution with Slow Particles Depleted

The other major type of distribution function of interest is one that is nearly Maxwellian
but with essentially all of the very slow particles depleted. This situation would be
especially desirable for the electron distribution in advanced-fuel plasmas, so that far
fewer than the purely Maxwellian number of electrons would have speeds slower than the
ions, thus resulting in a large reduction in the rate of energy transfer from the ions to the

electrons.

For the purpose of a simple initial estimate, one may choose an electron distribution
which looks superficially like a normal Maxwellian with a characteristic thermal velocity
vy = /27, s/me but has no particles at speeds below some velocity v,, which is chosen
such that it is comparable to (actually somewhat greater than) the ion thermal velocity

and obeys the relation, v, < vyy.

The recirculating power which must be continually extracted from the tail of the

electron distribution function and given to the slow electrons to boost their energies is

Nstow A Esiow

Precire = see )
E

(3.7)

where 10y is the density of slow electrons that must continually be acted upon, AEj4y

is the energy that must be given to each one of them, and t% is the collision time for slow

electrons interacting with Maxwellian “field” electrons, as given in Eq. (2.4).

By using the overall electron-electron collision time from Eq. (3.3) with (E) ~

(3/2)Tos = (3/4)mev};, t5 from Eq. (2.4) may be rewritten as

2
O B (3.8)
4 'Utj

Within a time period t%, the density of electrons which must be boosted in energy to

prevent them from occupying the depleted region below v = v, will be comparable to the
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normal Maxwellian population of that region of velocity space,

n 4 4 v 3
~ | — V(23 = —— =1 . 3.9
etew ("3/ 2”?!) (37w0) 3vm e (vtf) (39)

If the distribution were allowed to relax for a time t%, the number of slow electrons would
approach this equilibrium value but would still be less than it, so g, will actually be

somewhat less than the value on the right-hand side of Eq. (3.9).

Naively one might think that the required AFEj,, to restore each electron that had
been about to become slower than v, to its proper place would be comparable to mev?/2.
However, while one group of electrons with v = v, is attempting to diffuse lower in velocity
space, another group of electrons is following “on their heels” at a slightly higher velocity
but still with a net downward movement in velocity. To intercept electrons attempting to
cross the v = v, line and return them to a velocity just above that value would cause the
downward velocity space flux to coalesce into a large undesirable spike in the distribution
there. Because of this reason, intercepted slow electrons must be boosted up much higher
in the distribution function to some “continental divide” from which they are free to
diffuse either lower or higher in velocity space. The exact amount of energy which they
must be given is not readily apparent in this simple model, but it should be comparable

to the mean electron energy: AEg,, ~ (E).

Putting all of this information together, one arrives at the conclusion that

Precire ~ Jo M . (310)
Vtf  Teol

The proper numerical coefficient by which this expression should be multiplied cannot be
determined from this simple model, and to discover it, one will have to await the much

more rigorous calculations of Section 3.2.5.
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3.2 Limitations on Isotropic Non-Maxwellian Distributions

Now that preliminary estimates have been made, the requirements needed to maintain
isotropic but non-Maxwellian velocity distributions will be calculated in a rigorous fashion.

For simplicity, only the effects of like-particle collisions will be considered.

3.2.1 Model Distributicn Function

The particle distribution function is chosen to be non-Maxwellian but isotropic, specifically

the distribution shown in Figure 3-2,

F(o) = nKi {exp[—(v — v5)%/v3,] + exp[—(v + vo)2 JvE]} for v < v, (3.11)

nK {exp[—(v — vo)2/vff] + exp[—(v + vo)2/v4]} for v > vy,
in which K is a constant included to normalize the distribution and the “thermal veloci-
ties” on the fast (subscript f) and slow (subscript s) sides of v = v, may be expressed in
terms of “temperatures,” so that vy = 1/2Tps/m and vy = (/2T,;/m. Of course, in the
spherical velocity coordinates convenient for studying isotropic plasmas, onc only needs

to be concerned with the distribution for v > 0.

This distribution function has many virtues. It can be set to a Maxwellian by the
choice v, = 0, and even for other choices of v, it goes to the Maxwellian limit for large
v. By varying the relative values of v,, v, and vy, a wide variety of distribution shapes
may be studied. Yet despite this high degree of flexibility, the particular form of the
distribution function allows one to obtain exact expressions for quantities such as the
mean particle energy and the collision operator. Furthermore, the exp[—(v + v,)2/v3]
term of the distribution function, which describes the decay of the (not explicitly seen)
pgak on the negative side of v = 0, ensures that the derivative with respect to velocity

will be continuous across v = 0 and equal to zero.

While the precise non-Maxwellian distribution function produced by a certain system
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Figure 3-2: Model isotropic particle velocity distribution function.
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may differ somewhat from this particular functional form (depending on the methods used
to create and maintain the distribution shape), calculations involving the distribution of
Eq. (3.11) should yield answers which are broadly applicable (at least approximately)
to any system with a non-Maxwellian distribution function that is isotropic, peaks at a

certain velocity v,, and possesses characteristic widths on the fast and slow sides of v = v,,.

The two cases of particular interest which have already been mentioned can easily be
explored using this model distribution function. By setting vys = vy = v, f(v) becomes
suitable for describing a beamlike velocity distribution with a thermal spread. The second
case, that of a nearly Maxwellian distribution in which there is a steep hole at very low

speeds, may be investigated by choosing v;; < v, K v, iz

(It should be briefly remarked that if one wished to study distributions in which v >
vys and vgs 3> Vo, Eq. (3.11) would have to be modified so that the exp[—(v + v,)%/v},]
term would be cut off for v > v,; a suitable modification of the distribution function would

be

) TZK{ {exp[—(v - v0)2/vt2s] + exP[—(v + 00)2/")!23]} for v <, 3 12)
v) = .
nK{ [exp (-4% ) + 1] exp [—‘—‘1—’—] for v > v,
ts

L)

Otherwise the exponential decay for v > v, would be dominated by the decay term
from the peak on the negative side of v = 0 rather than by the desired fast decay ve-
locity vy. This problem is not of concern in the present calculations, which only involve

distribution functions for which Eq. (3.11) is perfectly adequate as it is.)

One may find K from the normalization condition (with the unnormalized distribution
function defined as fy,(v) = f(v)/nK) and with ample use made of the integrals given in

Appendix B):

00 . -1
K, = [/ dU47”’zfun(v)
0
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1

= . (3.13)
T (2'!)31);5\/7—1' + V3T — 4V, + 202y /T + VT + 4'ut2fvo)
For vys = vy = vy, K is greatly simplified:
1 1
K, == . 3.14
172 w3120, (202 + v}) (3.14)

It may be seen that in the Maxwellian limit (v, = 0), the distribution function,

including K, reduces to a properly normalized Maxwellian with temperature Tp;.

In the opposite limiting case, that of nearly monoenergetic particles with a thermal

spread vy = v = vgy such that v,/v; > 1, the distribution function becomes

)2
flv) = —47%2— \/1_11” exp [—w—v;—"—)—l . (3.15)

As vy — 0 for truly monoenergetic particles, this expression for the distribution func-
tion assumes its proper limiting form,

n
4mv2

fv) = (v — o) . (3.16)

3.2.2 Mean Particle Energy

The mean energy of the particles in the plasma is (see the integrals in Appendix B)

1 / oo dvdmov? (lmvz) f(v)

n Jo 2

= % (3ﬁv§, + 16v;v, — 3vvis /T + 120702/ — 16070450, + 3v} v/

+ 16ve5v] — 120502045 /7 + 16v, ;02 v, — g vp /T + duiy/T — 16003
+120% 02 /7 — 1603 v, + 3\/171)?3)

/(\/7_w¢2, + duggvo — ViU VT + 202/ — dugsu, + \/1—rvt23) . (3.17)

(E)
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For vgs = vy = v, the mean energy simplifies to

m (4v) + 120202 + 3u)

1
E) ==
(E) 4 202 + v?

(3.18)

It is satisfying to note that in the Maxwellian limit, v, = 0, the energy reduces to its
usual value, (E) = %Tof. Similarly, in the monoenergetic limit (v, vey — 0) the energy

also assumes its expected value, (E) = imv? = E,.

The mean energy may be used in the definition of the like-particle collision time, Eq.

(3.3).

3.2.3 Depletion of Slow Particles

It is useful to note how heavily populated the slow-velocity region of the distribution func-
tion is compared with the case of a Maxwellian distribution with the same mean particle
energy. (In other words, the Maxwellian with which the non-Maxwellian distribution is
being compared has a temperature Throz, = 2(E) /3, where (E) is the mean particle
energy of the non-Maxwellian distribution.) Dividing the non-Maxwellian distribution

function by the Maxwellian one, it is found that

=0 _ (4 @)\ 0
fMazwellian(v =0) (37r m ) n
2ym

= 33 [(3\/%?, + 16010, — v v /7 + 120702/
— lﬁvffvtsvo + 3vff \/;vfs + 16, ,uf," — 12, ,v,%v,s\/%
+ 160 v2,v, — 3ugpv3, /T + vl /T — 160,03
+ 12v,2;v3 V7 — 16030, + 3\/1_rvfs)
/(\/7_W¢2f + 4y o — VgV VT + 2027 — duggu, + \/7—Wt23)] is
x(2v3v¢,\/7—r + Vi VT — v, + 20ku /T + vV + 4vt2fvo) -
xel=v/vh) | (3.19)




For vys = vy = vy, this expression becomes

FO)  _ (4vd +120292 + 36))*? (o)

= 2
fMazw.(O) 33/2%(2’03 + 03)5/2 (3 0)

A graph of f(0)/fmazw.(0) vs. vo/v; is given in Figure 3-3. Some important values
should be noted. Half of the slow particles have been depleted when v,/v; = 0.8606; 90%
of them have been depleted when v,/v; = 1.506, and 99% of the slow particles have been
depleted when v,/v; = 2.1432.

This ratio is important, because for ion-electron energy transfer in which the electron
distribution function is nearly constant down in the range of velocities comparable to the

ion velocities, one may write (see Eq. (2.36))

b ___f(o)
(Pie)Spitzcr B fIMa:cw,(O) ) (3'21)

In Eq. (3.21), energy transfer from electrons back to ions has been neglected.

However, a more general but more complex relation must be used when the electron
distribution possesses fine structure in the ion velocity range. For the particular case of
Maxwellian ions interacting with electrons which have an isotropic but otherwise arbitrary
distribution function, it is found from Egs. (2.30) and (2.32) that

_Re _ﬂe_(H_"zB)“” [ d? L)
(Pie)Spitzer (T, —Te) m; T, 0 fe azw.(O)

2 m; 1 v2 1 (v)
X|—=——exp|—— | ——erf(— ]| . (3.22
[ﬁ Me Vi p( v?,) v Vi (3:22)

One should recall that T, = 2 (E,) /3 for non-Maxwellian electrons.

For the electron distribution in which v, € v, K V45 = vee With v, > vy, Eq. (3.22)

reduces to

P; - ﬁ [(’Uti/vo) + 2(”0/””)] exp (_vg/v?i) I-T. 3.23
(Ijie)SPitzer = T,-T. . ( . )
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Figure 3-3: Slow particle depletion as a function of the exact shape of a beamlike distri-
hution function with a thermal velocity spread.
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For the purposes of future calculations with advanced fuels, it is useful to note that

for T; =~ 10T, the ion-electron energy transfer rate of Eq. (3.23) approaches zero for

Vo = \/§vti.

3.2.4 Collision Operator

The Fokker-Planck collision operator for collisions among like particles with an isotropic

velocity distribution was given in Eq. (2.26) and may be rewritten as

2 4 2 v o0
(aa_{) - 87 (Ze) lnA{;gvﬁ‘ [) dv,f(vl)v’4+/v d’U'f(’U')'U’:I +2[f(v)]2

S8 [Fanor [ann (-2 (2]
- ) G [ v [ o]

3fun [/ dv Ifun('vl) ( P"é‘ _ 21)_4) + 5/t',°° dv’fun(‘v’)vl]

+3 [fun<v)]’~’} : (3.24)

Using Eq. (3.24), an exact analytical solution for the collision operator with the distri-
bution function from Eq. (3.11) may be found, but it is far too long (and unenlightening
to superficial inspection) to give here, so it has been hidden in Appendix C. Appendix C

also contains graphs of the collision operator for certain sets of parameters.

In the Maxwellian limit with v, = 0, (8 /8t)co1. = 0 for all v, as expected; a Maxwellian
distribution is a stationary solution of the Fokker-Planck equation. The collision operator
for the more general distribution with v, # 0 also conserves particles and energy when

integrated over all velocities, as may be shown by numerical integration.

It should be mentioned that since the collision operator involves a 82 f/9v? term, it
develops a discontinuity across v = v, for vys # vys. Because the discontinuity is finite and

because no derivatives of the collision operator have to be taken in this paper, this behavior
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should not pose any mathematical difficulties. The discontinuity could be removed by
replacing the sharp “step fuunction” boundary in Eq. (3.11) with a smooth function such
as that used for Butterworth low-pass filters [60], 1/[1 + (v/v,)?"] (with n a sufficiently
large integer), or for the Fermi-Dirac function [61], 1/{1 + exp[(v — v,)/Av]} (with Av
sufficiently small). However, when these low-pass filtering functions are made sufficiently
sharp, one would simply recover the collision operator calculated in this paper (with
the discontinuity replaced by an extremely rapid variation in the collision operator near
v = v,). Furthermore, the replacement of the step function with smooth low-pass filtering
functions such as these would prevent the problem from being at all analytically tractable,
or even readily computed numerically, considering the complexity of the calculations. For

these reasons, the discontinuity in the collision operator is tolerated in these calculations.

3.2.5 Minimum Recirculating Power

The minimum recirculating power required to maintain the non-Maxwellian distribution

may be found by using the method illustrated in Figure 3-4.

As shown in Figure 3-4, a certain number of the particles (Ng0y) have lost energy
as a result of collisions and have become too slow. The minimum energy required to
restore these particles to their proper place in the distribution function is the energy
difference between the total energy of all of the particles in the slow group and the total
energy represented by the first Njiow vacated states (in order of increasing energy) in
the desired non-Maxwellian distribution function. This amount of energy must be given
to the particles every time they are downscattered in energy (a continual process), so it
really represents a power. Rather thén injecting this much fresh power into the plasma,
in the ideal case the energy may be obtained by selectively extracting energy from those
particles which have become too fast as the result of collisions. The “dividing velocity”

vq4, which separates the first Ny, vacated states in the desired distribution function from
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Figure 3-4: Method of calculating the minimum recirculating power necessary in order to
hold the desired non-Maxwellian velocity distribution shape.
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higher-energy vacated states, is defined as being finite and satisfying the relation:

/Oud (dvamo?) (%%) _=0. (3.25)

By expressing the collision operator for like-particle collisions in terms of the flux of
particles in velocity space, (0f/0%)cot = —Vv - J, and then employing Gauss’s divergence

theorem, it may be seen that the dividing velocity is the finite velocity at which

J(Ud) =0. (3'26)

With the aid of the explicit form of the velocity-space particle flux from Eq. (2.27),

this definition of the dividing velocity becomes

of
ov

. % [;13 /0 " duf (wyut + /:° duf(u)u] + % f(va) /0 M dufup® =0. (3.27)

Insertion of the model distribution function from Eq. (3.11) yields an implicit equation
for vg (in which vg appears in the arguments of exponentials and error functions). Either
this resulting equation or Eq. (3.25) may be solved numerically to find the value of the
dividing velocity for given values of v, vy, and v, in the model distribution function.

(See Appendix D for the results of some test cases.)

The power which is found using the method outlined in Figure 3-4 is the minimum
recirculating power needed to keep the non-Maxwellian distribution function constant,

and it is defined as

e o) () ()
Precire = ./0 (dU47|'U ) (2771’0 ot ) .o . (3.28)

By again relating the collision operato: to the velocity-space flux, integrating by parts,

and noting that J = 0 at the |v| = vy surface, the recirculating power may be rewritten
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Precire = —/ ’ (dv47T'U2) J mu
0
374 4 v v
= M/ ddv{g—i [/ duf(U)u4+v3/°oduf(U)u]
0 0 v

3m
+3uf () /0 " du f(u)u2} . (3.29)

The first line of Eq. (3.29) reveals a somewhat different way of looking at the definition
of the recirculating power. The flux in velocity space is essentially the net acceleration
or deceleration of particles in a certain regiocn of velocity space due to collisions; when
multiplied by the mass that appears in the equation, this quantity can be pictured as
a force. The power given to a particle by a force is the product of the force and the
particle’s velocity, so the above definition of the recirculating power is equivalent to the
total power which is removed from decelerating particles (characterized by a negative or
inward flux J in velocity space) and given to accelerating particles (characterized by a

positive or outward flux in velocity space) in the course of the collisional proce.s.

With this insight, it is now possible to generalize the definition of the recirculating
power so that it also covers cases in which more than one dividing velocity is present.
For an isotropic but otherwise arbitrary non-Maxwellian distribution function, collisional
relaxation may create multiple, unconnected regions in which there is a net deceleration
of particles (negative particle flux in velocity space); likewise, there may be multiple,
unconnected regions in which there is a net acceleration of particles (positivle particle flux).
At the boundaries where the flux changes sign, J = 0, or in other words, the boundaries
occur at dividing velocities. If the non-Maxwellian distribution is to be maintained, power
must be extracted from all of the regions with net acceleration due to collisions (J > 0)
and given to all of the regions with net deceleration (J < 0). Assuming that no energy
is lost from the distribution via radiation or other mechanisms, the total power which

must be extracted is equal to the total power which must be added, so that each power
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is equivalent to the recirculating power:

o [® 2\ (1 9\ (3f
Precire = /0 (dv47rv ) ™M B co!@[J (v))
- 3 () (o) (50)
= 3 /0 (dv47rv ) ( 5 o)., sign[J(v)] . (3.30)
When only one dividing velocity is present, Eq. (3.30) reduces to the definition in Eq.

(3.28).

(It should be observed that systems which recirculate power by extracting particles
that have strayed in phase space, directly converting their full kinetic energy into electrical
energy, and providing that energy to fresh particles which are then injected into the proper
region of phase space will have a substantially larger recirculating power, which is given

by

Pacre = [ (@) (5m7) (37),_e[(5)..

- : /0°° (dvdme?) (%va) (%)l . N CE

This recirculating power is much larger than that of Eq. (3.28), since here all of the energy

of errant particles must be recycled, whereas in Eq. (3.28) only the discrepancy between
stray particles’ actual and desired energy had to be handled by the power recirculation

system.)

As was stated earlier, one case of particular interest is that of an clectron distribution
which is essentially Maxwellian with the exception that a steep hole has been cut in the
distribution function at low velocities. The collision operator for such a distribution is
somewhat more complicated than that shown in Figure 3-4, but it can be shown that the
definition of the recirculating pbwer in Eq. (3.28) still applies. By using Mapie [62] to
integrate Eq. (3.28) numerically for the general distribution function of Eq. (3.11) and
then examining tlie results for distributions of this particular type (v;s < v, < v [r raw

“data given in Appendix D), one finds that the recirculating power may be expressed in a
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useful empirical form:

Precire = Ro(vo/vy) (;'”t_f) n(E) (3.32)

Teol

where Rg(vo/viy) is a slowly varying function (at least for v,/vyy < 1) as given in Table
3.1. The functional dependence of this result agrees with that of the simple estimate made

in Eq. (3.10).

[ vo/ves | Ro(vo/ves) | T vo/vis | Ro(ve/ves) ||

1/60 0.0637 1/6 0.0749
1/30 0.0644 1/3 0.0957
1/10 0.0687 1 0.183

Table 3.1: Selected values of the function Ro(v,/vis) in Eq. (3.32) for the recirculat-
ing power required to deplete the slow particles in an otherwise essentially Maxwellian
distribution.

The particular value of v,/vss used for each entry in Table 3.1 is 10, but the results

are essentially independent of v,/v; provided that it is much greater than 1 (at least 3

or so; see the data in Appendix D for more details).

The other major case of interest is that of an isotropic beam!'ike distribution with a
given thermal velocity spread. Upon numerical integration of Eq. (3.28) for the distribu-
tion of Eq. (3.11) with v = vy = v; (see the raw data in Appendix D), it is found that

the recirculating power may be expressed as

Vo

Precire = Ry (vo/vr) (_)

Ut

n(E)

Tecol

(3.33)

where Ry (vo/v;) is a slowly varying (for v,/v; > 1) function as given in Table 3.2. Quite
remarkably this rigorous calculation of the recirculating power agrees almost perfectly

with the rough estimate made in Section 3.1.1 for v,/v; > 1.

Clearly the statement that R; is a slowly varying function breaks down for v, < vy,

where the power dependence of Pyecire 0n v,/v; changes; in this nearly Maxwellian regime
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Lvo/ue [ R [ Jw/ue] R
3

0.01 | 5.81-10~7 0.148
0.1 |563-10* 4 10.168
0.5 0.0365 5 |0.183
1 0.0854 10 |0.221
1.5 0.107 30 |0.253
2 0.122 100 | 0.265

Table 3.2: Selected values of the function R)(vo/v;) in Eq. (3.33) for the recirculating
power required to maintain an isotropic, beamlike distribution.

of v, < vy, a more descriptive expression for Precirc is

v\ n(E
Precirc = 0.6 (_o_) (E) . (3.34)

m Tecol

For simplicity, the recirculating power will by default be expressed for the case in
which vs = vy = vy, except where otherwise stated. To apply the formulas which are to

follow to the case v <K v, K v; f» one should make the substitution,

Rava/u) (22) = Ro(vavis) (E) . (3.35)

Putting the results obtained thus far into more readily useable form, the minimum

recirculating power required to keep species “a” non-Maxwellian despite self-collisions is

» 4 ,21 1
Prccirc = 8.55 - 10_25RI (vo/'vl) (&) V Z':_‘" Za"a nd W (336)
a

v /<E(x, o) cm?

As any realistic reactor will have non-negligible losses associated with the recirculating

power, it is important that the recirculating power not be much greater than the fusion

power (and preferably even less than the fusion power).
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Dividing the recirculating power by the fusion power from Eq. (1.3), one finds

Precire _ -6 ('Uo> me (I + Zi2)2 Zg”g
Prs - 5.34 - 107" Ry (vo /) ) /ma . 2
InA

X . (3.37)
(0"“)]'1,3 Efus, eV (Ea, eV)

If only one ion species is present, the substitution of Eq. (1.4) should be made.

3.2.6 Temporary Energy Down-Shifting

One might wonder how the recirculating power requirement presented in this chapter
would be affected by having a plasma in which the particles circulate between different
regions where they have different energies. As a concrete example, an electrostatic po-
tential might be applied between two regions. In comparison with the second region, the
first section of the plasma will be assumed to have relatively high particle energies and a
large value of [n2d®x, so the first region is where most of the deleterious scattering ef-
fects will occur. One might think that it would be easier to “repair” the particle velocity
distribution when the particles circulate into the second region and have lower energies
than they did in the first. Yet it can be shown that the recirculating power requirement

is completely independent of the region in which the velocity distribution is repaired.

For a simple method of seeing why the recirculating power remains the same even when
the particles are temporarily “down-shifted” in energy, one may consider the estimate of
the recirculating power from Section 3.1.1, Precire = NfastOEfast/Trase. The number
of particles which have become faster than desired, n fast» remains the same even if the
particles are temporarily moved up a potential hill so that they all slow down. Likewise,
Tfasts the timescale on which the particles become too fast, is also unaffected by the
potential gradient, since it is determined solely by the rate of collisions in the dense first
region. Finally, since the vacated “proper” states of the particles and the overpopulated

“improper” particle states lose the same amount of kinetic energy in moving up the
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potential gradient, the difference AFEy,;; between them remains the same. Thus the

recirculating power requirement is unaffected.

A more rigorous way to demonstrate that temporary energy shifts have no effect on
the power requirements is to write the formal definition of the recirculating power in terms
of particle kinetic energies (E) instead of particle velocities:

E
Precire = — / “dEE (‘—9@) : (3.38)
0 ot col

For simplicity it has been assumed that there is only one dividing energy Ey = nw?i/2,
although this proof could easily be extended to the general case in which there are multiple

dividing energies.

If the particle distribution is downshifted in kinetic energy by an amount AE (without
bumping into E = 0 and losing particles) so that the new energy is E' = E — AE, the

recirculating power needed to counteract collisional effects will be

Es~AE af(E' + AE)
/ _ / /
recirc — /0 dE'E ( ot >col
E,
- - ‘dE (E - AE) (ai@)
0 ot col
_ Ea Jf(E) Fa J0f(E) .
- - dEE( - )ml+/_\E/0 dE (“_az )m,. (3.39)

The first integral in Eq. (3.39) is just the original value of Pyecjre, while the second integral
is zero by the definition of the dividing energy. Therefore the result of this more rigorous
analysis is also that the recirculating power is unaltered by temporary energy downshifting

of the particle distribution:

/

recire = Precirc - (3.40)
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3.2.7 Entropy Generation Rate
The entropy density of a given particle species is [61, 63, 64, 65]:

S=-— / Py f(v)n[f(v)] . (3.41)

Thus the rate of entropy generation per volume due to particle collisions is

% = —/dsvln[f(v)] (g—{)wl —/dav (%{)m’
= - [@vinli) (%{)wi , (3.42)

where the second term resulting from the time derivative was zero because of conservation

of particles in collisions.

For the isotropic distributions of interest, the entropy generation per volume is

%? = —-/000 dvdnv? In f (v)] (%) . (3.43)

Since the entropy is only a well-defined quantity for near-equilibrium systems, the
entropy generation rate of Eq. (3.43) may not be strictly valid for highly non-Maxwellian

plasmas, but it should at least serve to make useful estimates.

Equation (3.43) was integrated numerically for the distribution function of Eq. (3.11)
with v, = vy; = vy, The result of the numerical calculation (see the raw data in Appendix

D) is that the entropy production may be described by the equation,

Ry vw\2 n
G = Ralvofu) () (3.44)

in which Ra(v,/v;) is a slowly varying (for v,/v; > 1) function whose values are given in

Table 3.3.
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Lvo/ve | R Ll we/ve | Ro ]

0.01 {2.23.10°10 5 0.332
0.03 | 5.45-1079 10 | 0.390
0.1 | 6.87-1076 30 | 0.447
05 | 2.40-1072 100 | 0.471
1 0.138 300 |0.479
1.5 0.207 1000 | 0.481
2 0.241 3000 | 0.482
3 0.282 10000 | 0.482
4 0.310 30000 | 0.482

Table 3.3: Selected values of the function Ry(v,/v,) in Eq. (3.44) for the entropy genera-
tion rate of an isotropic, beamlike distribution.

For v, < v the functional dependence of dS/dt on v, /v, changes. While dS/dt in this
regime is not strictly proportional to a given power of the velocity ratio, a rough estimate
of the dependence for v,/v; < 1 is

dS vo\% n
—_— e~ —, .45
dt (Ut) Teol (3 0)

3.2.8 Minimum Power Loss

The minimum theoretical power density loss required to maintain the non-Maxwellian

distribution (as shown in Figure 3-1) is

dS
(Ploss)min = ITIOW . (3.46)

This relationship, which is familiar from classical thermodynamics, also holds true here,
despite the highly nonequilibrium character of the plasma which is generating ihe entropy.
The reason why the relationship is still valid is that although the usual connection [61]

between temperature, energy, and entropy,

1
T

, (3.47)
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is ill defined in the context of the nonequilibrium plasma, it may still be safely applied to
the low-temperature thermal reservoir. Provided that the expression for dS/dt is indeed
the actual entropy production rate, the rate of energy increase in the low-temperature
thermal reservoir associated with receiving that much entropy will be the power given in

Eq. (3.46).

Tiow for terrestrial reactors will be roughly 270-300°K, or about 0.025 eV. (For space
reactors the heat is radiated away to the vacuum, so theoretically Tj,, could essentially
be arbitrarily low. In practice, however, there will be a minimum practical Tj,,, even for
a space-based reactor, since the required area of the radiator is inversely proportional to
the radiated power flux, o4, T}, where o, is the Stefan-Boltzmann constant.) With
this value for Tjoy, the minimum power loss required to keep species “a” in a beamlike

velocity distributicn characterized by v, /v, is

Vo 2 n
(Poss)min = Ra(vo/vr) (—) — 0.025 eV

Ut Teol
me ZinllnA W

2
~ . 1026 Vo) [Me
~ 2.14-10 Rg(vo/vt)(vt) ‘/ma B o) o (3.48)

Clearly the loss power density must be kept to some fraction of the fusion power

density if the reactor is to be self-supporting.

Dividing the minimum power loss by the fusion power, one finds:

(HOSS)min
Pjus

2 ~\2 74,2
~ 1.33. 10—7R2(’Uo/'Ut) (v_o) (z+ Zt2) Za;"a Me
vy T ng Maq

N InA
(O'U)fus Efus, eV (Ea, e\f')s/2 .

(3.49)

Recall that if there is only one ion species, one should make the substitution in Equa-

tion (1.4).
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The constraint that (Poss)min < Prus implies that

[ s B (B )
2V m, InA B

T n?

(z + Zi2)2 Zgn

2
Ro(vo/vr) (’;—t) < 7.49 - 10°

3.2.9 Effective Thermodynamic Temperature

One possible point of confusion regarding the maintenance of non-Maxwellian velocity
distributions should be cleared up. As was remarked earlier, Eq. (3.47) is not particularly .
useful for defining the effective thermodynamic temperature of the non-Maxwellian dis-
tribution. This unfortunate fact arises because both the entropy and the energy depend
on multiple parameters, and they do so in different ways, so that the diffcerentials of the

various parameters do not cancel when one takes the ratio of Eq. (3.47).

On the other hand, a different and more readily calculable definition of the effective
thermodynamic temperature of the non-Maxwellian distribution can be constructed based

on the picture of Figure 3-1:

_ Precirc
Tepr = dsjdt (3.51)

However, this temperature is not a readily identifiable (let alone useful) quantity, even
in the Maxwellian limit. The reason for this problem is that a non-Maxwellian distribution
function may be viewed as a sum of Maxwellian distributions with different temperatures,
where each Maxwellian has been multiplied by a coefficient (which may actually be nega-
tive, further complicating the physical interpretation). Energy and particles flow between
the different Maxwellians, giving rise to both the entropy production and the minimum
recirculéting power required to sustain the overall non-Maxwellian distribution. Thus the
effective temperature defined in Eq. (3.51) is a complicated function of !the temperatures
and coefficients of the various Maxwellian components of the distribution, and it cannot
be expected to correspond to the temperature of the “dominant” Maxwellian component

even in the limit of an overall velocity distribution which is nearly Maxwellian.
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These sorts of complications illustrate why it is necessary to calculate the recirculating
power directly from the collision operator via the method of Figure 3-4, rather than by
attempting to guess correctly the effective temperature of the plasma and then multiply

that temperature by the entropy generation rate to arrive at the recirculating power.

3.3 Results for Isotropic Non-Maxwellian Distributions

Now the equations derived in the previous section will be explicitly applied to certain

specific cases of interest.

3.3.1 Nearly Maxwellian Electron Distributions with Slow Electrons

Actively Depleted

Ion-electron energy transfer is mediated by electrons moving more slowly than the ions,
so in order to drastically cut the energy transfer rate, lower the electron temperature,
and reduce the bremsstrahlung radiation losses from advanced fuel plasmas, it would be
highly desirable to actively deplete all of the slow electrons. To keep the required amount
of recirculating power to a minimum, the rest of the electron distribution function should
~ be left essentially in equilibrium (apart from the nonequilibrium effects caused by receiving
the “refugee” electrons displaced from lower velocities). Thus the requirements of nearly
total depletion of slow electrons and minimization of recirculating power lead one to
consider electron distribution function such as that of Eq. (3.11) with v, < v, < v r
where v, is chosen to be on the order of the ion thermal velocity and v, ¢ is found from

the mean electron energy, (E.) ~ 3Ty/2 = (3/4)mevff.

By using a “blanket” value of Ry = 0.069 and choosing v, = v/3v (for the reasons
given in Section 3.2.3), where the il ion species is defined to be the lower-mass species

if two fuel ion species are present, the recirculating power needed to maintain a narrow,
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steep hole in the electron distribution is found to be

Precire 1 5. 19-8 (24 Zi)? V(i ev)InA (3.52)
Prus T Vi1 (0V) pys Efus, ev (Ee, ev)

in which p;) = m; /m,.

The recirculating power is inversely proportional to the mean electron energy, so it
would seem advantageous to operate with (£,) as large as possible. Unfortunately, another
factor must be considered; as the energy increases, the bremsstrahlung radiation loss
increases at least as rapidly as the square root of (E.), as shown in Eq. (1.2). Therefore
the electron energy must be kept sufficiently low to limit the bremsstrahlung power loss

to a reasonable level.

The results of Eq. (3.52) for specific cases are given in Table 3.4 (where InA = 15
was assumed). In the table, the mean electron energies for the advanced aneutronic fuels
were chosen so that the bremsstrahlung losses would not exceed half of the fusion power.
For the other two fuels (D-3He and D-D), the mean electron energy was chosen so that
the bremsstrahiung losses would be no more than half as large as they would be in the
equilibrium case (as calculated in Chapter 1). If the electron energies are lower than the
values given, the bremsstrahlung losses will be lower but the recirculating power levels
will be higher (note the “<” and “>" signs in the table). The calculation was not done
for D-T since bremsstrahlung losses can be made negligibly small for D-T without at all
altering the electron distribution from a Maxwellian shape (see the results for D-T in
Chapter 7). (Values fozl\“the average fusion reactivity (ov) fus for ions with a mean energy

(E;) = (3/2)T; are given in Table 1.1.)

From Table 3.4, it appears that for fusion plasmas using any of these fuels, the electrons
cannot be maintained in a significantly non-Maxwellian state without using a recirculating
power that is considerably larger tl.an the fusion power. Since the slow electrons cannot be
significantly depleted without resorting to unreasonably large recirculating power levels,

ion-electron ‘en‘crgy transfer will proceed at essentially its normal Spitzer-type rate.
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) recire
Fuel (Eq) (Ee) Pfus PP} us

D-*He (1:1) | 150 keV | <39 keV || <0.093 || > 4.7
D-D 750 keV | <170 keV || <0.18 || > 2.3
SHe-He |[1.5MeV [ <160keV || <0.50 || > 5.0
p-IB (5:1) | 450 keV | <35keV | <0.50 [ > 42
p-°Li (3:1) [ 1.2MeV | <22keV || <0.50 || > 210

Table 3.4: Precire/ Prus for nearly Maxwellian electron distributions with the slow electrons
depleted and In A = 15.

3.3.2 Further Optimization of Nearly Maxwellian Electron Distribu-

tions with Slow Electrons Actively Depleted

As one of the principal objects of this study is to determine whether any plausible systen:
can maintain usefully non-Maxwellian electron velocity distributions and thereby igaite
advanced aneutronic fuels, it is very important to investigate how well suited the chosen

model distribution funrction is for this purpose.

In order to take into account all the necessary details of ion and electron behav-
ior, a specific case will be chosen, namely a plasma of pure 3He (which is the closest
to ignition ot of all the advanced aneutronic fuels) with an ion temperature of 1 MeV
and inA = 20. From the equations presented in Chapter 1, it is found that if the ion-
clectron energy transfer rate is reduced from its classical value by two orders of magnitude
(Pie/(Pie)spitzer = 0.01), the equilibrium electron “temperature” (defined as (2/3) (E.)
for non-Maxwellian distributions) will be 49 keV, and the corresponding bremsstrahlung
power loss fraction will be Pyren/Prus = 0.28 (probably the largest which could realis-
tically be tolerated when one includes other Josses, as well as limited electric conversion

efficiencies).

Thus the problem becomes to optimize the distribution function shape subject to
the constraints that (E¢) = (3/2) - 49 keV= 73.5 keV and Pi¢/(Pic)spitzer = 0.01. This

optimization has been performed for the model distribution function of Eq. (3.11), as well
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as for a more general distribution function.

Optimization of the Model Distribution from Eq. (3.11)

The model velocity distribution function of Eq. (3.11) contains three independently ad-
justable parameters: v,, vi5, and vy;. By using the conditions on (E,) and Py, two of these
independent velocity variables may be eliminated. The remaining independent variable
has been chosen to be v,, and for ease of interpretation, all electron velocities have been

expressed in terms of the ion thermal velocity v, where v; = /2T; /mn;.

Figure 3-5 shows the behavior of the recirculating power requirement as v, is varied.
The minimum recirculating power subject to the constraints which have been noted occurs
when v, = 1.91v,. At this value of v,, v;s must be equal to zero in order to reduce
the ion-electron energy transfer rate by the necessary factor of 100; for smaller values
of v,, it would not be possible to reduce the energy transfer rate enough (the electron
distribution would overlap too much with the ion distribution). From the constraint on
mean electron energy, it is found that for v, = 1.91vy, v,y = 15.68v;;. (For a completely
Maxwellian electron distribution at T, = 49 keV, the electron thermal velocity would be
Ve = 16.43v4.) As v, is increased, vy, also increases to prevent P, from dropping below

1/100 of the Spitzer value, while v,y decreases to keep the mean energy constant.

For the optimum operating point of v, = 1.91v;, the recirculating power is Precire &
8.75 - 10™3n¢ (Ee) /Tcot, e, Which corresponds to Precire/ Prus = 17.1. This result is larger
than the recirculating power value for He which was found in the previous section, pri-
marily because here the mean electron energy is being held much lower ((E.) = 73.5 keV
vs. 160 keV) in order to reduce the bremsstrahlung losses further (Pyrem/Prus = 0.28 vs.
0.50). (There are also minor differences between the results of this section and those of the
previous section due to different assumptions about In A and the relative values of v,, vy,
and v;. Here the Coulomb logarithm has been chosen to be 20, which for magnetic fusion

reactors is probably a more realistic value than the highly optimistic choice of InA = 15
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Figure 3-5: Optimization of v,, vsf, and vy from Eq. (3.11) for electrons in a pure 3He
plasma (T; = 1 MeV and InA = 20) subject to the constraints that (E.) = (3/2) - 49
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which was made in the previous section.)

The physical interpretation of the results graphed in Figure 3-5 is that there is no
power cost incurred to keep the lower edge of the distribution arbitrarily sharp (vis — 0)
provided that potential instabilities are ignored, as they are here. By contrast, there is
a power cost to maintain more of the electron distribution in a non-Maxwellian shape
(recall that Precire/ (1 (E) [Teot) ~ vo/viy for vy < vo < vgy). Therefore, the optimum
distribution function is a nearly Maxwellian shape in which all of the electrons up to a
certain velocity have been depleted and in which that velocity (v,) is as small as is allowed

by the constraint on the ion-electron energy transfer rate.

In conclusion, this calculation justifies the particular form of the distribution function

(vts K v K vgp) which was used in the previous section.

Optimization of a More General Distribution Function

Now attention will be turned to determining the impact of using a velocity distribution
function which is more general than can be described using Eq. (3.11). The particular

distribution function which was chosen was

nKj exp[—(v — vp1)?/vZ] for v < v,
f) =1 nK{(1 - A)exp[—(v - vol)z/v?ﬂ] + Aexp[—(v — 7’02)2/":2;'2]} (3.53)
for v > v,.

This new distribution function has six independently adjustable parameters: v,;, Vo2,
Utsy Utf1, Utf2, and A. It is assumed that vy > v,;. Based on the optimization of the
carlier model distribution function, one can safely choose to set v;; = 0. The conditions
on (Ee) and P, can again be used in order to climinate two more of the variables, so that

only three independently adjustable parameters are left.

Two local minima of the recirculating power have been found; for one A is small and
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positive (corresponding to a relatively small positive perturbation of the model distribu-
tion function which was previously used), while for the other, A is small and negative
(corresponding to a small negative perturbation of the previously used distribution func-

tion).

The minimum recirculating power with a positive perturbation (subject to the noted
constraints) occurs for v, = ve2 =~ 1.923vy, vep1 =~ 15.788vyi, vip2 ~ 8.8y, and A =
0.0883. The recirculating power for these parameters is Precirec & 3.39-1073n, (E,) / Teol, ¢
or Precire/ Prus = 6.63. The effects of variations about this optimum are shown in Figures
3-6 through 3-8, where the three independent parameters have been chosen to be Vifl1,

Utf2, and 7 2.

While this power is still much too large to be practical, it is a substantial decrease from
the minimum recirculating power which was found with the earlier model distribution
function, and so it should be carefully explained. For the particular parameter values
which have been cited, the new distribution function (with v, f1 = 15.788vy;) is essentially
equivalent to the old distribution function (which had vy ~ 15.68v;) plus a relatively
small (A/(1 — A) ~ 0.1) perturbation which has a qualitatively similar shape but a much
smaller value of vy (v = 8.8vy). The total number of electrons in the perturbation is
roughly one order of magnitude greater than the total number of electrons which have
been displaced from the region v < v, as compared with a perfect Maxwellian of the same

mean energy.

What appears to be happening is that the displaced electrons “prefer” (energetically
speaking) to remain relatively close to the velocity region from which they have been
removed; however, if the displaced electrons are trying to diffuse back downward in velocity
into the relatively small depleted region, there must also be a considerable number of
electrons which will diffuse upward in velocity into the (much larger) velocity space volume
which surrounds the perturbation. Thus it is reasonable that the optimum of the new
distribution function occurs when the perturbation is fairly concentrated at small velocities

and contains several times the number of displaced slow electrons.
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Figure 3-6: Optimization of vy of the improved model distribution function with a
positive perturbation (see Eq. (3.53)) in order to minimize Pjcir. for electrons in a pure
3He plasma (T; = 1 MeV and In A = 20) subject to the constraints that v, 71 = 15.788uy;,
Vo2 = Vo1, (Ee) = 73.5 keV, and Pj./(Pic)spitzer = 0.01.
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Figure 3-7: Optimization of vy, of the improved model distribution function with a
positive perturbation (see Eq. (3.53)) in order to minimize Py for electrons in a pure
3He plasma (T; = 1 MeV and InA = 20) subject to the constraints that v, 72 = 8.8uy,
Vo2 = Vo1, (Ee) = 73.5 keV, and Pie/(Pie)Spitzer =0.01.
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Figure 3-8: Optimization of v, of the improved model distribution function with a positive
perturbation (see Eq. (3.53)) in order to minimize P, for electrons in a pure 3He
plasma (T; = 1 MeV and InA = 20) subject to the constraints that vyy; = 15.788uy,
vr2 = 8.8vsi, (Ee) = 73.5 keV, and Pie/(Pie)spitzer = 0.01.
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The minimum recirculating power for tlie case of a negative perturbation is comparable
to but slightly larger than the minimum with a positive perturbation. The minimum
occurs for vp; & 1.926v;, ver = 12vy, vy = 15.683vy, vyse = 10.912v, and A ~ —0.05.
For these parameters, the recirculating power is Precire = 3.83 - 1073n, (Ee) /7col, e, OF
Precire/ Prus = 7.49. The effects of variations about this optimum are shown in Figures
3-9 through 3-11, where the three independent parameters have been chosen to be wgg,

vif1, and A.

With an even more general distribution function, one could probably reduce the re-
circulating power somewhat further. This route was not taken in the present research
because of the limitations of the computational methods employed; the calculations were
performed with Maple on Sun Sparc Classic and Sparc 5 computers, and this method
was not able to calculate the recirculating power for distributions more general than that
of Eq. (3.53) in a reasonable amount of time. (Mathematica also showed similar limita-
tions.) A complicating factor is that as the distribution is made more general, the number
of independently variable parameters increases. Consequently, the parameter phase space
over which Pecire must be minimized (still subject to the noted constraints) gains more
dimensions, and the parameter phase space volume which must be searched in order to
find the global minimum of Precir. becomes dauntingly large (especially when it can take
several tens of minutes to calculate Precirc for just one data point, as is presently the
case). If the issue of more general distribution functions is taken up again in the future, it

may be profitable to resort to more powerful numerical methods, such as those outlined

in [66).

Yet even though the presently employed methods have not found the absolute optimum
distribution function shape, there is good reason to believe that the results are sufficiently
valid to meet the intended purpose, which was to determine the feasibility of advanced
fuel reactors operating with non-Maxwellian electrons. The distribution of Eq. (3.53) has
allowed the perturbation to assume its preferred magnitude and width in velocity space,

so further corrections are likely to be smaller. Furthermore, the recirculating power for
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Figure 3-9: Optimization of vg2 of the improved model distribution function with a neg-
ative perturbation (see Eq. (3.53)) in order to minimize Precirc for electrons in a pure
3He plasma (T; = 1 MeV and In A =: 20) subject to the constraints that v, 71 = 15.683vy,
A = —-0.05, (Ee) = 73.5 keV, and Pi¢/(Pie)spitzer = 0.01.
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Figure 3-10: Optimization of v;5; of the improved model distribution function with a
negative perturbation (see Eq. (3.53)) in order to minimize Precirc for electrons in a
pure 3He plasma (T; = 1 MeV and InA = 20) subject to the constraints that vgy = 12,
A = —0.05, (E,) = 73.5 keV, and Pie/(Pic)spitzer = 0.01.
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Figure 3-11: Optimization of A of the improved model distribution function with a neg-
ative perturbation (see Eq. (3.53)) in order to minimize Precire for clectrons in a pure
3He plasma (T; = 1 MeV and In A = 20) subject to the constraints that v, 71 = 15.683vy;,
Vo2 = 12uy;, (Ee) = 73.5 keV, and Pie/(Pie)Spitzer = 0.01.
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electrons of this distribution shape in a 3He plasma is still almost seven times the fusion

power.

Several highly optimistic assumptions and choices have been made in doing these
calculations, including the following: the quoted power is the recirculating power required
of a maximally efficient entropy extraction and power recirculation system (as opposed to
a much lower-efficiency, more realistic system), the bremsstrahlung losses assumed here
are still quite large in comparison with realistic reactor designs (large bremsstrahlung
losses accompany the high mean electron energies which have been chosen to reduce the
recirculating power), and 3He was chosen because at least in the ideal reactors under
consideration, it is the closest to ignition of all the advanced aneutronic fuels, in spite of
its extremely high necessary ion temperatures. Despite these and other optimistic choices,

the recirculating power requirement is still much too large.

For these reasons, it is highly dcubtful that sufficiently large gains in performance

could be made by moving to more precisely tailored electron distribution functions.

3.3.3 Beamlike Electrons with a Thermal Spread

Because a beamlike distribution is further from thermodynamic equilibrium than the
nearly Maxwellian distributions with the low-velocity holes which were considered above,
one would expect the recirculating power required to maintain beamlike electrons to be
even larger than the values summarized in Table 3.4. This will now be shown to be the

case.

For electrons with v, = v = vy, the ratio of recirculating power to fusion power is

Precire _ g 34 107° Ry (v /1)
Pfus

(vo) (z + Zip)? InA (3.54)

Ut z (Uv)fus Efus. eV (Ee, eV)

The minimum recirculating power needed to maintain a given value of v,/v; for the
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electrons with varicus fuels under approximately optimum conditions is given in Table
3.5. (Here it has been assumed that In A = 15, and the fusion reactivity (ov) (,, has been
taken from the entries in Table 1.1 for ions with the same mean energies. The electron
energies for the first three fuels have been chosen to be less than or equal to the equilibrium
mean electron energies compnted in Chapter 1, while the electron energies for the last
three fuels have been selected so that the bremsstrahlung losses will not exceed half of

the fusion power.):

Fuel (Ex) By | R | T | T | g
mixture for for for
Voot =1 | vo/vr =2 | vo/vy =10
D-T (1:1) | 75keV | <63keV || <0.007 || >7.3 > 21 > 190
D-*He (1:1) | 150 keV | < 108 keV | < 0.19 > 61 > 180 > 1600
D-D 750 keV | <315 keV || <0.35 >35 >99 > 900
SHe-He | 1.5 McV | <158 keV || < 0.50 > 85 > 240 > 2200
p-''B (5:1) | 450 keV | < 34.8 keV || < 0.50 > 350 > 1000 > 9100
p-8Li (3:1) | 1.2 MeV | <21.6 keV || <0.50 > 870 > 2500 > 23000

Table 3.5: Precire/ Pyus for beamlike electrons with In A = 15.

Clearly in terms of the recirculating power requirement it is easier to maintain the
electrons in a nearly Maxwellian distribution with only the slow electrons depleted than
to keep the whole electron distribution in a significantly beamlike state. Yet either way,

the recirculating power is too large to be feasible in currently foreseeable systems.

Nevertheless, if one did have a mechanism for recirculating the power at very high
efficiencies and in a practical manner, the minimum power loss (as limited by the second
law of thermodynamics) could theoretically be made quite small. To demonstrate how
much less stringent this minimum power loss condition is in comparison with the recir-
culating power requirement, the case of beamlike electrons with (Poss)min < Prus will be

considered. For this case, one finds that

z (O"U)fua Efus, eV (Ec, cV)al2

2
v,
Ry (vo/vr) (v—t) < 7.49-10° Gz T

(3.55)
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The maximum allowable values of v,/v; subject to the constraint that (Pioss)min <

Py, are given in Table 3.6.

[ Fuel mixture [ (E:) | (Ee) | Porem/Prus || vo/ve |
D-T (1:1) 75keV | <63 keV <0.007 | <250
D-3He (1:1) | 150 keV | < 108 keV <0.19 <110
D-D 750 keV | < 315 keV <0.35 < 250
SHe-*He 1.5 MeV | <158 keV < 0.50 <120
p-'IB (5:1) | 450 keV | < 34.8 keV < 0.50 <27
p-°Li (3:1) | 1.2MeV | <216 keV | <0.50 <15

Table 3.6: Maximum allowable v,/v; for beamlike electrons with (Ploss)min < Pjus and
InA = 15.

As may be seen from Table 3.6, the constraint that the minimum theoretical power
loss must be less than the fusion power would still permit the electron distribution to be
nearly monoenergetic with a very small thermal spread. The primary limitation on how
far the electrons can be kept from thermodynamic equilibrium is therefore the difficulty

of handling the vast amounts of recirculating power in an efficient and practical manner.

3.3.4 Beamlike Ions with a Thermal Spread

These calculational techniques may also be applied to non-Maxwellian ion populations.
For isotropic ion distributions in which the two fuel ion species (if there are indeed two
different types of fuel ions) have the same mean energy, the fusion reactivity is essentially
independent of the precise ion velocity distribution shape (Maxwellian, monoenergetic,
etc.), since ion-ion collisions must still be averaged over all angles. This fact is shown
explicitly in Appendix A. Therefore non-Maxwellian ion distributions are not of interest
for boosting the fusion rate. However, they might be desirable for helping to maintain the
proper radial focusing in inertial-electrostatic confinement fusion {67} or for other purposes,
so it is worthwhile to investigate the minimum recirculating power levels needed to sustain

such distributions.
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For beamlike ions (v; = v;s = v;5) with only one ion species present, the recirculating

power as compared with the fusion power is

. 4
Pyus Ut/ Vi (ov)fus Efus, ev [ (Ei, ev)

For simplicity, even when the ion distributions are nearly monoenergetic, Maxwellian-
averaged values of (gv) ;,, will be used in the calculations below. As shown in Appendix
A, this substitution is accurate to within 20% or so, depending on the specific fuel and
parameters. This degree of accuracy is perfectly acceptable for the purpose of these

calculations.

An exact calculation of the recirculating power required when two non-Maxwellian
fuel ion species are present would require considerably more work than has been done
so far, since both like-particle and unlike-particle collisions would have to be taken into
account, and the differences in the charge and mass of the two ion species would affect
the collision operators for the two different types of collisions. As a simpler alternative,
one may use the present expressions, which should be quite accurate for single ion species,
to estimate the results for two different ion species, at least when the charge and mass
of the two ion species are not extremely different. Accordingly, approximate answers are

calculated below for D-T and D-3He (but not p-'!B or p-SLi).

(Aside: If onc were going to perform a much more accurate calculation of the recircu-
lating power required to maintain non-Maxwellian ion or electrons, one might wish also
to include the effects of ion-electron collisions. Ion-electron collisions were neglected in
all of the calculations in this chapter because they should constitute a fairly small effect
in comparison with ion-ion and electron-electron collisions. Neglecting energy differences
between the species, the ratio of the relevant electron-electron, ion-ion, and ion-electron
collision timescales Tee : Tii : Ty is roughly like 1 : v/m;/me : (mi/m,) [27], so entropy

should be generated at a much slower rate by ion-electron collisions.)

The minimum recirculating power to keep ions in a modestly beamlike state (with
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vo/vr = 2 or 10) is given in Table 3.7 for a variety of fuels under approximately optimum

conditions:

Fuel (Ez) Prccirc/Pfus Prccirc/P]u_.,
for vy /vy = 2 | for vy /v, = 10
D-T (1:1) 75 keV 0.3 3
D-He (1:1) | 150 keV 4 40
D-D 750 keV 1.1 9.6
SHe-’He | 1.5 MeV 4.3 38

Table 3.7: Precire/Pjus for beamlike ions with InA = 15.

Although answers for p-'!'B and p-SLi were not calculated, judging from the trends of
previous calculations the performance of these fuels should be worse than that of 3He-3He

and the other fuels for which the present calculation was performed.

The maximum allowable values of v,/v; for the ions subject to the constraint that

(Pioss)min < Ppys may be found from the formula,

2 1; (ov FE E; )32
Ry(vo/v1) (Z—t) < 1.61- 108V )f‘”Zj’l‘:;‘( o) (3.57)
1

and they are given in Table 3.8.

[ Fuel mixture | (E;)) [ wo/w |
D-T (1:1) 75 keV || < 3000
D-*He (1:1) | 150 keV || < 1000
D-D 750 keV || < 3800
"He-*He | 1.5 MeV | <2700

Table 3.8: Maximum allowable v,/v; for beamlike ions with (Pjges)min < Ppys withInA =
15.

Just as was shown carlier for the electrons, for the ions the minimum theoretical power

loss is a far less serious concern than the recirculating power.
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Because of the vast recirculating power requirements, the ability of a system to keep
the ions in a non-Maxwellian state is severely limited. D-T and perhaps also D-D can
theoretically be maintained in a modestly beamlike state if one has an efficient mechanism
for actually recirculating the power, but for the other fuels the ion velocity distributions
cannot be kept even reasonably non-Maxwellian unless a practical mechanism for recir-

culating the power at extraordinarily high efficiencies can be found.

3.4 Estimate of Limitations on Highly Anisotropic Distri-

butions

Up until this point it has generally been assumed that the particle velocity distributions
are isotropic. It has been suggested [68] that strongly anisotropic distributions might
considerably slow the collisional relaxation process, so the assumption of isotropy will
now be lifted, and the maximum extent to which anisotropy might affect the recirculating
power will be estimated by considering highly anisotropic distributions. For simplicity it

will be assumed that only one particle species is present.

For the purposes of making an estimate which can be compared with the results for
isotropic distributions, the case of two cold, counter-propagating linear beams (which
are presumed to have equal densities and other properties) will be examined. It will be
assumed that each beam is centered around some drift velocity (+v,%) in the lab frame.
This preferred x axis will also be referred to as the parallel direction. The ¥ and 2 axes will
then be denoted as perpendicular directions. In the reference frame of each beam’s drift
veiocity, that beam possesses a spheroidal, Maxwellian shape in velocity space; in such
a reference frame, the beam may have significantly different parallel and perpendicular

temperatures, T} and T, .

Because each beam, in its own reference frame, possesses a Maxwellian shape in each

direction, the only effect of collisions between particles within the same beam will be to
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drive 7Tj and T'; toward equilibrium with each other. This relaxation is described by the

relation [69]:

ar, _ _1dhy _ (T -T))

dt 2 dt T, (3:58)
in which the inverse relaxation time is
1 _2ymn'(Ze)'InA /' dpp?(1 - p?) (3.59)
Ty vm —1 (1= )Ty + 232 '

For simplicity, n’ = n/2 has been used to denote just the density of the one beam in

question, not the combined density n of both beams.

For T between the two limiting values, T, =T} and T| > Tj, the respective bounds

on the relaxation time are

3/2 3/2
15@71 >7, > vmT, : (3.60)
8ymn'(Ze)t InA w3/2n!(Ze) In A

With T, = %mv?l, the upper bound on the relaxation time between the temperatures

of the different directions is

- < 15m?v},
* T 16vV2mn/(Ze)tInA

(3.61)

Collisions between the two beams will have other effects. Specifically, interbeam colli-
sions will cause a slowing down of each beam (decrease in v,), transverse velocity diffusion
of each beam (increase in v, ), and longitudinal velocity diffusion of each beam (increase
in vy, where T} = mv;"" /2). As a convenient perspective for the analysis, the situation
may be viewed in the frame of one of the beams; the case is then identical to the situ-
ation in which a nearly monoenergetic, very high-energy beam (with velocity v = 2v,)
is interacting with a fairly cold background plasma with zero average velocity. Relevant

formulas for beam-plasma interactions [50] may then be used in the present calculations.
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Perpendicular velocity diffusion due to interbeam collisions may be described by

iy _ % , (3.62)
ot To.
where
m2v'2

b1 = 8mn'(Ze)*InA -~ (3.63)

Likewise, parallel velocity diffusion due to interbeam collisions may be described by

2
vy _ Y (3.64)
t Toy
in which
;= m2yf®
ol dmvin'(Ze)* In A

o\ 2
= 8 (v_) Tp, > Tp, - (3.65)
t

The “average” thermal velocity v, of each beam is defined as v, = |/2T,,y/m, where
Tavg = (2TL +T||)/3

Thus perpendicular velocity diffusion will occur much more rapidly than parallel diffu-

sion (which is why T'| > Tj was assumed in examining relaxation due to collisions within
the same beam).

The third effect of interbeam collisions, the slowing down of the average beam velocity,
is given by the relation

(3.66)
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where

2,02
mcu,

Ts = 8tn!(Ze)' InA P (367)

Equation (3.62) allows the increase in perpendicular temperature due to interbeam

collisions to be expressed as

or. _T.. (3.68)
ot T,
in which
m2vv?,
T = 4rn!(Ze)tIn A’ (369)

Taking the ratio of this time with the intrabeam relaxation time, one finds that

Loles, (3.70)
To Vi1

As a result of this ratio, each beam will stay approximately “round” in velocity space, or

equivalently T} =~ T, . Hence for simplicity, the definition v; = v;) will be made.

From these findings, one can see that the physical picture of the effects of collisions
on the beams is that initially fast (large v,) beams, which are each characterized by
a spherical “radius” of v;, begin to slow down. Part of the kinetic energy which had
been initially associated with the highly ordered counterpropagating drift velocities of the
beams is transferred via collisions to become random thermal energy of each beam, so

that as v, decreases, the radius v; of each beam increases.

The equation for slowing down of the beams, Eq. (3.66), can be rewritten to give the

time 7510,y Which is required for the beam particles to lose an amount of velocity equal to
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v; and become slower than would be desirable:

o, __ w (3.71)
ot Tslow
in which the time to become too slow has been defined as
2,2
= __M VY% (3.72)

Tslow m'(Ze)*InA -’

To prevent the beams from slowing down and spreading out, the minimum amount of

power which must be recirculated is

NstowAEsiow

, (3.73)

P, recirc
Tslow

where ng0 is the density of the particles which become too slow on the above timescale

and AEg,, is the average amount of energy those slow particles have lost.
Using nsiow = n and AEg 4, ~ (1/2)m[v2 — (v, — v;)?] = mv,vy, one finds that

E
Precire = ﬁu . (3.74)

4\/6— Tcol

This result for a “one-dimensional” highly anisotropic beamlike distribution may be
compared with the equivalent result for a “three-dimensional” isotropic beamlike distri-

bution from Eq. (3.6):

(Precirc)1D beamlike ~ § U
(P recirc)SD beamlike 4 v,

(3.75)

Because of the fact that v;/v, <« 1 for a beamlike distribution, the one-dimensional
beamlike distribution requires considerably less recirculating power to maintain than does
the three-dimensional beamlike distribution. If the ions are anisotropic and colliding head-

on, the value of (gv),,; may also be increased over its Maxwellian-averaged value by a
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factor of roughly 2 to 4 (see Appendix A).

However, the highly optimistic assumptions which have been made here must be kept
in mind. It has been assumed that instabilities are not of concern in calculating the recir-
culating power, when in reality they would be a very great concern for such nonequilibrium
distributions; instabilities would also be much more of a problem for highly anisotropic
distributions than for approximately isotropic ones. Instabilities could greatly increase
the recirculating power requirements or even prevent the task from being accomplished
at all. Furthermore, it has been assumed that the collisionally generated entropy can be
extracted from the plasma and the power can be recirculated from the thermal spread (v;)
to the ordered beam motion (v,) with the maximum possible efficiency. Realistic systems
would have a much harder time removing entropy, and consequently the recirculating

power levels and power losses would be much larger.

Yet even if the full advantage of Eq. (3.75) could actually be realized, the improvement
would be great enough to help only some of the more reactive, lower-Z; fuels (eg. D-T and
D-D). More advanced fusion fuel ions, as well as electrons in all types of fusion plasmas,
would still require too much recirculating power to be maintained in a beamlike velocity

distribution.

In conclusion, even if strong anisotropy could somehow be maintained without in-
tolerable instability problems, it would not be able to sufficiently reduce the minimum
recirculating power which is required in order to hold a particle velocity distribution in a
particular desired nonequilibrium shape (except for ion beams in D-T reactors, since the

reactivity of D-T is so high [70]).
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3.5 Non-Maxwellian Fusion Systems Ruled Out

3.5.1 Systems Ruled Out So Far

In this chapter it has been shown that to maintain a non-Maxwellian velocity distribution
or to keep two particle species at radically different mean energies would entail a recircu-
lating power substantially larger than the fusion power. In all presently known types of
svstems, it would be necessary to have one mechanism for extracting the required amount
of power from undesirable regions of the plasma’s phase space and a different mechanism
for returning the power to the proper region of the plasma’s phase space. Realistically
each of these mechanisms (and perhaps also the power transmission system linking them)
would have non-negligible losses. Moreover, if these mechanisms could not tightly focus
on the correct regions of plasma phase space and extract or add just the right amount of
power there without substantially affecting other parts of phase space as well, then the
mechanisms might have to recirculate far more than the theoretical minimum recirculat-
ing power just to get the job done. Even if nearly ideal power extraction and reinjection
systems existed, it would be undesirable from an engineering and economic standpoint
to have a fusion reactor which must continually extract vast amounts of power from the
plasma, process the power, and re-inject it back into the plasma. For these reasons,
systems with recirculating power levels substantially larger than the fusion power were

deemed inviable.

In order to emphasize the broad extent and powerful implications of these findings,
some specific examples of non-Maxwellian fusion systems which have been ruled out by this
work should be given. In particular, the following systems cannot maintain particularly
non-Maxwellian ion or electron distributions without having to recirculate a prohibitively

large amount of power in comparison with the fusion power:

e Systems without explicit means of keeping the particles highly non-Maxwellian de-

spite Coulomb collisions (eg. inertial-electrostatic confinement {19] and migma [38]).
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e Systems involving removal and direct conversion of particles with improper velocities
and reinjection of particles with the correct velocity (eg. multipolar traps with

electrons removed before they thermalize [37]).

e Systems with selective heating of slow particles, even if the heating energy comes

from a direct converter which selectively decelerates particles that are too fast.

¢ Transient nonequilibrium burning systems which try to produce enough fusion power
before the particle distributions equilibrate (eg. ICF, bombs, and pulsed beam
methods [71]).

Many other examples could also be given, but those presented above should serve as

an indicator of the scope of the results which have been found in this chapter.

3.5.2 Demonstration That Virtually All Remaining Types of Systems
Are Also Ruled Out

These objections to systems for maintaining nonequilibrium fusion plasmas might be
circumvented if one possessed a hypothetical single mechanism which could both extract
the power and also immediately reinject it properly and at exceedingly high efficiencies.
With reference to Figure 3-1, this technique would allow the recirculation of the power not
by an external heat engine, but rather by the plasma and the hypothetical mechanism
acting in concert as the heat engine. Put in a slightly different way, the hypothetical
mechanism would use the plasma as the “working fluid” of a heat engine and put the
plasma through a closed thermodynamic cycle which would result in the net extraction
of entropy from the plasma. This arrangement would be quite similar to a classical
thermodynamic heat engine except that all of the states of the working fluid in the cycle
would be far from thermodynamic equilibrium. As long as the entropy is indeed extracted
(in the form of fairly low-temperature heat to limit the power losses) and work is added to
the plasma (to compensate for the heat loss and keep the energy constant), such a system

would not violate any fundamental physical tenets such as the laws of thermodynamics or
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Liouville’s theorem. The minimum power in heat energy which must be removed from the
plasma and dumped to the outside world is (Pjpss)min, Which was calculated for several

cases in this chapter and shown to be quite small in comparison with the fusion power.

Particle Interactions with Externally Applied and Self-Consistent Internal

Electromagnetic Fields

The only apparent means of operating on the plasma in the required fashion is through
the use of electromagnetic fields. Yet it can be shown that externally applied and self-
consistent internal electric and magnetic fields cannot transport entropy to or from the
plasma. Upon multiplying the Fokker-Planck equation, Eq. (2.10), by (In f + 5/2) and

integrating over all velocity space [72, 73], one arrives at the entropy conservation equation,

dSplasma _ (a_S) LV, [/ d3vvf " f] |
dt ot collisions emarx;;;u}llu
as oS
+ (E) par‘::‘c;es:z::ccg + (E‘) '_Enﬁ:‘f:?'_’;::: ) (3,76)

in which the term corresponding to interactions between electromagnetic fields and the

plasma is

EM—plasma
interactions

(%_f) =2 [ i (mg+3) [(9e B -2 (@ xB) =0, (37)

This term is zero because the electric and magnetic fields do not depend on the velocities
of the particles perceiving them (barring relativistic effects). Thus externally applied and
internal self-consistent electric and/or magnetic fields cannot carry entropy away from the

plasma or directly transfer entropy between different groups of particles.

This is a rather broad conclusion, but there are two loopholes which are worthy of

notice; these potential loopholes will be considered in the following sections.
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Wave-Particle Interactions

One might consider using electromagnetic or electrostatic waves to manipulate the plasma
in the desired ways. As a very simple example, if a hot plasma emits photons as syn-
chrotron or bremsstrahlung radiation, the plasma will cool down, and its entropy will be
lowered; thus photons can in fact remove entropy from the plasma. It is possible that there
could be other, more potentially useful situations in which the emission or absorption of
photons (for electromagnetic waves) or even phonons (for other types of plasma waves)
could alter plasma entropy in ways beneficial to maintaining systems out of thermody-
namic equilibrium. This question leads one to consider devices employing wave-particle

interactions.

There are several ways in which such techniques might be used to pump out the
entropy at a very low temperature so that the power loss would be kept to a minimum.
For instance, a wave with a certain energy might be injected into the plasma, and after
interacting with the particles and removing their entropy, the wave would have the same
energy but a broader frequency linewidth. The wave would then be direct-converted to
recover nearly all of its energy, but due to the linewidth broadening a small fraction of
the wave’s energy could not be converted back into electrical energy and would have to

be dissipated as heat in the wave-receiving system.

As a specific means of transferring entropy from the particles to the wave, one might
wish to make the phase velocity of the wave equal to the desired optimum velocity of the
particle distribution. If particles have not been too terribly affected by collisions since
their last trip through the velocity-focusing device, their velocities should still be near the
wave phase velocity. Particles which have been upscattered in energy by collisions would
return that energy to the wave, while particles which have previously lost energy would
be accelerated by “riding the wave” and would recover the necessary amount of energy
from the traveling wave. Thus the wave would use Landau-damping-type processes [74]
in order to serve as a sort of “Robin Hood” intermediary which would rob energy from

the fast particles and return it to the slow particles from which it had been taken by
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means of collisions. These sorts of wave-particle interactions are used in traveling-wave
linear particle accelerators (75, 76, 77] as well as in free electron lasers {78]. If the wave
really does remove entropy from the particles, then there will be an increase in the wave's

entropy density, which is given by the formula [79],

Suave =3 [ #xmiNa )], (3.78)

where N, (k) is the number of photons of a given mode o and wavevector k per volume.

Another example of a wave-based method of entropy extraction would be a system in
which the electromagnetic waves are used to transfer the entropy from the high-energy
fusion plasma particles to a much lower-energy group of particles which can be sacrificed
(actually direct-converted at the best possible eficiencies) without causing an excessive

energy loss.

Regrettably, the use of wave-particle interactions does not appear to be a useful way to
proceed. Bremsstrahlung and synchrotron radiation could indeed extract entropy and en-
ergy from particles which have become too fast due to collisions, but an equivalent amount
of outside energy would still have to be given to particles which have been collisionally
down-scattered (unless there were significant amounts of inverse bremsstrahlung or cy-
clotron absorption in the right regions of phase space; see Appendix E for more details).
One is therefore inevitably led back to the same value of the minimum recirculating power
which has already been shewn to be prohibitively large. (Bremsstrahlung radiation would
also have the tremendous drawback that it is broad-band and very short-wavelength, and
therefore essentially impossible to convert with any efficiency better than the relatively

low efficiency of a thermal conversion cycle.)

The question of whether more general types of wave-particle interactions might be used
to recirculate power efficiently within the plasma and to remove the collisionally generated
entropy can be resolved by using a modified version of a derivation given by Swanson [80).

In quasilinear theory the change in the distribution function due to interactions with
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waves may be written in terms of a diffusion tensor D:

By using this expression for the wave-particle interaction tugether with the definition

of entropy from Eq. (3.41) and integrating by parts, one finds that
dS 3 (6 f )
22 - = 1
dt / d v at wave 8 f

(3.80)

With the diffusion tensor appropriate for electromagnetic waves [80], the change in

entropy becomes

ds Ze\? & ;. 1 d3k
@ = ) X" e

n=-—oo

2

of
v 2 k

Tk
X , 3.81
(wrk —k-v)2+42 (3.81)

where n designates the wave mode, a,, ) is essentially the polarization vector of the given
wave mode (see the descriotion in [80] for more details), w,y is the real part of the

frequency corresponding to wavevector k, and -y is the growth rate.

Thus the change in particle entropy is non-negative for undamped waves (v, > 0),
since all factors other than the growth rate are manifestly non-negative. (As shown in
Figure 3-1, the entropy would have to be extracted along with a small but non-negligible

amount of energy, so the wave would have to be undamped if it were to work as intended.)

Similarly, the quasilinear diffusion tensor for particles interacting with electrostatic
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waves [79] may be used to obtain the result,

ffg - +(%)2;/d3v-f%v)-/d3k

8y Ug
(wrc —k-v)2 4+

af -2
av K

(3.82)

in which a designates the wave mode, Ug is the spectral energy density of the waves, and

k is the polarization vector of the given wave node.
This quantity is also non-negative for undamped waves.

For both electromagnetic and electrostatic waves, the addition of a static magnetic
ficld only affects wave-particle interactions and the diffusion tensor in ways (79, 80] which
do not alter the fundamental conclusion that the plasma’s entropy cannot decrease as a

result of the wave-particle interactions.

Therefore, barring unforeseen benefits from highly nonlinear effects which cannot be
adequately described by the quasilinear treatment above, these types of wave-particle
interactions cannot be used to pump entropy out of the plasma and maintain non-

Maxwellian velocity distributions.

Remaining Approaches

The second loophole in the proof about electromagnetic fields and entropy extraction is
that at least hypothetically, fields might be able to modify the rate of collisional entropy
generation (without also dampening the fusion rate too much) or the process of entropy
transfer between different groups of particles without the fields themselves actually having

to carry the entropy at any point.

This loophole has not yet been closed, so it remains an open, although admittedly quite
distant, possibility. No current plasma systems can exploit such possible phenomena, but

some novel concepts for doing so are suggested in Appendix E. Barring the success of one
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of these “wild ideas,” however, the outlook for non-Maxwellian plasma fusion systems is

very bleak.

3.6 Summary

Without requiring much more recirculating power than fusion power: 1) electrons cannot
be maintained in an appreciably non-Maxwellian state (even for D-T), and 2) ions can

at best be kept only modestly non-Maxwellian, and even then only for D-T and perhaps

also D-D.

Any potentially feasible approaches for recirculating the power inside the plasma and
at exceedingly high efficiencies need to be more closely examined (and will be, in Appendix

E).
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Chapter 4

Energy Decoupling Between lons

and Electrons

Since bremsstrahlung radiation losses resulting from large mean electron energies are a
serious difficulty for D-3He and D-D reactors and are generally prohibitive for reactors
employing advanced aneutronic fuels, it would be highly desirable to reduce the mean
electron energies selow their normal equilibrium values. If sources of electron heating
other than Coulomb friction with the fuel ions are neglected, then the equilibrium electron
energy is determined by equating the electron energy gain from friction with the ions and
the total energy loss from bremsstrahlung radiation, synchrotron radiation, electron losses
from the confinement system, etc. Methods of reducing the mean electron energy below
this equilibrium value will be referred to as techniques for decoupling the electron energy

from the ion energy.

Numerous methods of ion-electron decoupling have been examined, including the tech-
niques presented in Chapters 2 and 3. Virtually all of these methods can be shown to
fail for one reason or another; very few potentially useful directions of exploration for

ion-electron decoupling approaches remain.

129



4.1 Failed Ideas for Ion-Electron Decoupling

Virtually all effects one might consider employing to accomplish the necessary decoupling
simply do not work, or at least do not work well enough. A partial list of techniques

which are insufficient includes the following ideas.

4.1.1 Active Cooling of Electrons

One way to lower the mean electron energy would be the “brute force” method of somehow
actively cooling the electrons. Examples of possible electron cooling methods include
synchrotron radiation and energetic parucle remeval, both of which would be coupled with
direct electric conversion schemes in order to minimize the net power loss. In a maximally
efficient system, virtually all of the energy extracted from the electrons could be returned
to the ions. This concept leads to a minimum recirculating power Precire = Pie. (If the
system cannot return the extracted energy to the ions then this quantity becomes the loss

power, not just the recirculating power.)

The ion-electron energy transfer rate of Eq. (1.1) for given ion and electron temper-
atures may be directly compared with the fusion rate from Eq. (1.3), yielding the result

(with temperatures and energies in eV and all other quantities in cgs units),

P. )2 2n;
P_’_ = 4.75-107° (z + Zo) lE Z % n;/z (T: - T) [24 —In (@)]
fus T (ov) fus Efus, eV T pin Te T

2/3
0.37, Z2n; m, T; Watts
x {1 — {35y 2 2_€22
( M meCQ)exp! ( Zt: ne miTe cm3 '

(4.1)

where the corrections due to variations in the Coulomb logarithm [30] and ion-induced

partial depletion of slow electrons (from Eq. (2.50)) have been included.

The electron temperature (or two-thirds of the mean electron energy if the electrons
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are non-Maxwellian) must be kept low enough that bremsstrahlung losses are reduced
to the desired levels. The maximum allowable electron temperature for a given amount
of bremsstrahlung loss may be found by comparing the bremsstrahlung power from Eq.

(1.2) with the fusion power from Eq. (1.3):

Pbrem = 1.06- 10—-13 (:E + Zi2)2 \/—Te.eV
P]ua z < OV > fus, cgs Ejus, eV
. 722n. 2
x {M [1 +.7936( Tez) +l.874( T‘*?) ] + 3 ( Te2>} ,
Te MeC meC 2 \mec

(4.2)

where all temperatures and energies (including the electron rest energy) are given in eV.

Table 4.1 presents the minimum recirculating power (as defined by the ion-electron
energy transfer rate) required for a system which actively refrigerates the electrons in
order to keep the bremsstrahlung at a certain level. The electron temperatures for D-D
and D-3He have been chosen to cut the bremsstrahlung losses in half from what they
would be without active refrigeration, while the electron temperatures for the advanced

aneutronic fuels have been chosen to limit the bremsstrahiung losses to half of the fusion

power.
3 Porewm || Precire

Fllel ’111 Te (Uv>fus (lﬂ Ejus Pfug Pfu‘

mixture 1076 cm=3/s)
D-°He (1:1) | 100 keV | 26 keV 1.67 18.3 MeV | 0.093 2.0
D-D 500 keV | 113 keV 1.90 3.7 MeV | 0.18 1.1
"He-’He | 1 MeV | 106 keV 1.25 129 MeV | 0.50 [ 6.2
p-!'B (5:1) | 300 keV | 23 keV 2.39 8.7 MeV | 0.50 33.6
p-°Li (3:1) | 800 keV | 14 keV 1.60 4.0 MeV | 0.50 325

Table 4.1: Recirculating power to actively refrigerate electrons (with In A = 15 and fusion
cross section data drawn from references [33], [34], and [35]).

Therefore even in the best of circumstances (an electron cooling system which returns

131



virtually all of the extracted energy to the ions), a reactor would have to recirculate an
amount of power greater than the fusion power in order to refrigerate the electrons to a

useful degree. This approach is clearly not practical.

If the electron energy is to be successfully decoupled from that of the iuns, it will be
necessary actually to reduce the energy transfer rate from its usual value. (In the above
calculation, the reduction due to the effect examined in Chapter 2 helps slightly, but it is

far from being as large a reduction as is required.)

4.1.2 Particle Circulation Between Two Regions with (E;) > (E.) and
(Ee) > (Ei)

Another approach one might consider would be to design a system in which particles cir-
culate between two (or more) regions in which the energies of the particles are significantly
different. In particular, it might be possible to establish an electric potential difference
between the two parts of the plasma, thus causing ions to lose energy and electrons to
gain energy (or vice versa) in traveling between them. One of the regions would then
have (E;) > (E,) so tha* in it energetic ions would fuse and electrons would have energies
too low to radiate strongly, while in the second region the situation would be reversed,
(Ee) > (E;), and energy transferred from the ions to the electrons in the first region would

be transferred back in the second.

This idea fails for a straightforward reason. In order for the energy transfer in the two
regions to be comparable, the volume-integrated square of the density [ d3x[n(x)])? must
be comparable for the two regions. Since the second part of the plasma has a higher mean
electron energy than the first and also has a comparable [ d3x[n(x)]?, bremsstrahlung
losses from the second region will be larger than those from the first, and with lower
ion energies, the second region will not even be able to compensate partially for these
losses by producing substantial amounts of fusion power. Therefore such schemes are

counterproductive.
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4.1.3 Non-Maxwellian Electron Distributions

Since ion-electron energy transfer is directly mediated by slow electrons (electrons which
move more slowly than the ions), it would be possible to achieve a large reduction in the
energy transfer rate and bremsstrahlung loss by actively depleting the slow electrons, or
in other words by creating and maintaining a non-Maxwellian electron velocity distribu-
tion. This was the motivation underlying the work presented in Chapter 3. Yet as was
demonstrated in that chapter, the recirculating power needed for the active maintenance
of such electron distributions in the presence of electron-electron collisions is substantially
larger than the fusion power for all cases of interest (even when the electron distribution
is nearly Maxwellian with only a narrow hole “cut out” in the low velocity range). This
minimum recirculating power is independent of the specific mechanism used to keep the
electrons non-Maxwellian (eg. systems with rapid throughput of electrons, selective en-
ergy extraction from fast electrons with selective energy donation to slow ones, etc.). For
this reason, any readily foreseeable types of fusion reactors must make do with essentially

Maxwellian electrons.

4.1.4 Non-Maxwellian Ion Distributions

Among other things, Chapter 2 demonstrated that even highly non-Maxwellian ion distri-
butions such as a monoenergetic distribution will transfer energy to ions at almost exactly
the same rate as Maxwellian ions with the same mean ion energy, even when there are

very large energy differences between the ions and electrons.

In fact, as shown in Appendix A, isotropic but non-Maxwellian distributions would also
have nearly the same fusion reactivity (ov) (within 20% or so) as Maxwellian ions with the
same mean energy, since ion-ion collisions mus.t still be averaged over all angles (assuming
that if there are two fuel ion species, their mean energies are the same, a problem which
will be addressed in the next chapter). Thus a non-Maxwellian ion distribution could not

even indirectly reduce the relative severity of the recirculating power requirements and
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bremsstrahlung losses by boosting the fusion power.

Therefore, there is little to be gained in terms of ion-electron energy decoupling by
attempting to keep the ion distributions non-Maxwellian (even if one could in spite of the

recirculating power requirements to do so).

4.1.5 Effects of Anisotropy on Ion-Electron Energy Transfer

As this research has generally focused on isotropic systems, one might wonder whether
anisotropy (if it could be sustained without instabilities) could help the situation. The
effect of anisotropic ion and electron velocity distributions on the energy transfer rate

may be derived as follows.

(P} ]

According to Sivukhin, the rate of energy transfer to a particle of species “a” from

species “b” is [59):

(mava + mpvp) « (Va — vp)
[va — Vb|3

2724
<dEa> _ _4nZ;Z{e"InA ’ (4.3)

= [ Eufutve)

memy
in which the distribution function for species b has been taken to be completely arbitrary.

By applying this formula to ions and electrons and integrating over arbitrary distri-
bution functions for both species (with § defined to be the angle between the velocity v;

of an ion and the velocity ve of an electron), it is found that

_ 4mZ2e'lnA [ 4 3 [miv? — mev? — mi(v; - ve)]
P = mime /d /d Ve fi(Vi)fe(Ve) IV —Ve|3

_ drZ2e 4lnA/d3 /d3 fi(vi) fe(ve)[miv? — mev2 — m;v;ve cos 6]
mime V3|1 + (vi/ve)? — 2(v;/ve) cos 0)3/2

. (4.4)

This expression reduces to the “isotropic” P, equation if all ion velocities are per-
pendicular to the electron velocities (6 = 90°, as would be the case in an ideal migma

configuration with electrons oscillating through the plane of the ion orbits [38, 39]).
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Furthermore, it also reduces to the isotropic rate if the ion and/or electron velocity
distributions are anisotropic but symmetric under inversion. In other words, if there is
bi-directional flow, as would be needed for colliding ion beams to fuse, cosf will have a

certain value just as often as it has the negative of that value.

Therefore anisotropy does not substantially alter ion-electron energy transfer for cases

of interest.

4.1.6 Magnetic Fields

It was once suggested that magnetic fields might decrease the rate of energy transfer
between ions and electrons by decreasing the effective value of the Coulomb logarithm
(12, 81]). Unfortunately, detailed studies of this issue [55, 82, 83] revealed that magnetic
fields actually increase the energy transfer rate. Of course, even if magnetic fields did
in fact decrease the energy transfer, they would also cause synchrotron radiation losses,
so it would still be highly undesirable to have strong magnetic fields throughout the
bulk of the plasma. From the standpoint of radiation losses, it is best to limit strong
magnetic confinement fields to the outer edges of the plasma by employing multipolar
field geometries or by arranging for the plasma to exclude the field diamagnetically from

most of its internal volume.

4.1.7 Operation Without Electrons

Because the root of the radiation loss problem is electrons, one okvious idea would be to
eliminate or at least greatly reduce the number of electrons in the system by maintaining
a grossly nonneutral plasma of positive fuel ions. However, space charge effects from the
ions would limit the density of the plasma, in accordance with the Brillouin limit [84],

B?/8n
m,-c2 )

n; <

(4.5)
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Even for extremely large magnetic fields, the Brillouin-limited ion density is quite low.
For example, for B =2-10% G (20 T), the ion density is limited to
1.1-10'2 cm™®

n; < , 4.6
i " (4.6)

where p; = m;i/m,.

For a p-!!B plasma with fuel ion densities of n, < 102 cm™2 and 7, < 10!! cm™3, the
fusion power density is at most about 30 W/m3, far too low to be of interest for fusion

reactors of reasonable size.

One might try to exploit the fact that the Brillouin limit only applies to the overall
average density by attempting to create a spherical ion focusing system with a dense
fusion core [85], but unrealistically high fields would still be required, collisional scattering
effects would rapidly degrade the particle velocity distributions needed to maintain proper
focusing [86, 87], and the approach would not readily scale up to large (108-10° Watt)

fusion reactors.

Thus the Brillouin-limited ion density is too low for the production of useful amounts

of fusion power in a system without electrons.

4.1.8 Freferential Fusion Product Heating of Ions

Preferential fusion product heating of ions (without heating the electrons) via nuclear
elastic scattering [10, 55, 88, 89, 90, 91, 92] or other mechanisms does not improve these
calculations; it is already assumed that the ion energy distribution is held fixed and that
the only source of electron heating is Coulomb friction with ions. In less idealized systems,
the electrons would gain energy from the fusion products, from external heating beams,
and from other sources, and the electron temperatures and bremsstrahlung radiation
rates would be even higher than calculated in this thesis. Furthermore, since the fusion

reactivity is nearly independent of the ion velocity distribution shape for a given mean
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ion energy (as shown in Appendix A), enhancement of the fast tail of the ion distribution

due to nuclear elastic scattering would not substantially alter the results given here.

4.1.9 Spatially Inhomogeneous Systems

Ion-electron energy transfer, fusion, and bremsstrahlung are all two-body collisional events,
so they are all proportional to [ d3x[n(x)]2. Therefore the relative magnitudes of these
effects are not altered in spatially inhomogeneous sytems; the ratios of these quantities
are independent of the densities and density profiles (apart from the weak density depen-
dence of the Coulomb logarithm). Thus ion-electron decoupling cannot be faciliated by

employing inhomogeneous plasmas.

4.1.10 Wave-Based Recirculation of Power from Electrons Back to Ions

A method of using waves to couple the energy of fusion products selectively and efficiently
to current drive or fuel ion energy (without also coupling to electrons) has recently been
suggested [93, 94, 95]. This idea leads one to contemplate the use of waves to recirculate
the large amounts of power which would be required if a plasma’s electron temperature
were kept much below the equilibrium value determined from the ion temperature and
the electron losses. Because of the large mass difference between ions and electrons, even
if the ion energies were far larger than the electron energies, it would still be possible to

have
ve > 'Uphase > U; ) (4-7)

where ve and v; are the characteristic electron and ion velocities, respectively, and vppase
is the phase velocity of the wave. Thus the electrons could give energy to the wave,
which in turn would give it to the ions. This technique would operate entirely within the

plasma itself and at least theoretically might have extremely high efficiencies, so at least
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superficially it appears very attractive.

Unfortunately, this approach seems to be fatally flawed. Below the velocity vppase, the
electrons would have to be held in a highly non-Maxwellian distribution, or else the elec-
trons would reabsorb the wave energy via Landau damping [74] instead of transmitting
the energy to the ions. As was shown in Chapter 3, the maintenance of substantially non-
Maxwellian velocity distributions would require prohibitively large recirculating power
levels. Furthermore, even if the electron distribution could be held in the proper shape, it
was explicitly demonstrated in Section 3.5 that wave-particle interactions cannot decrease
the entropy of a particle species, barring highly nonlinear effects unforeseen by the quasi-
linear calculation performed in that section. For these reasons, wave-based techniques of
recirculating power from the electrons back to the ions do not appear to be a useful way

to approach the problem.

4.1.11 Reabsorption of Bremsstrahlung Radiation Within the Plasma

While the reabsorption of bremsstrahlung radiation within the plasma would not con-
stitute an jon-electron energy decoupling method, it would nonetheless solve (or at least
alleviate) the problem of high-electron-temperature-induced radiation losses, so it will be

considered here.

In order for most of the bremsstrahlung to be reabsorbed in the plasma, the plasma
radius R must be comparable to or greater than the inverse of the bremsstrahlung reab-

sorption coefficient K as given in [96, 97):

R>—=17-107-—"22_cm, (4.8)

If most of the bremsstrahlung is reabsorbed, the electron temperature will equilibrate

to become approximately the same as the ion temperature.
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Even for a very dense (n, = 10!® cm™3) p-!'B magnetic fusion plasma with T, =
300,000 eV, Z; effective = 2, and In A = 20, one finds R > 6-10?° meters. Thus magnetic
fusion reactors clearly have no hope of retaining useful amounts of bremsstrahlung within

the plasma.

Extremely dense ICF-type plasmas theoretically might be able to retain a substantial
amount of bremsstrahlung, but for such fusion systems one must also consider another
important quantity, namely the energy yield from the fusion of each pellet. The yield can
be expressed in terms of the explosive energy of an equivalent amount of TNT:

,- ni (4 3 1 ton TNT
Yield = mpurnEfus, eV?l (§TI'R ) (m) ) (4.9)

in which 7pyrn is the fraction of the ion pairs which are burned up in the reaction, Efy ev
is the energy in eV released per reaction, n; is the total ion density, and R is the pellet
radius. It has been assumed fcr simplicity that the fuel mixture is stoichiometric so that

each ion can find a proper fusion partner.

A truly accurate inverse bremsstrahlung calculation for ultra-dense, high-energy plas-
mas of the type under consideration would require the incorporation of three-body effects,
electron-electron collisional effects, and relativistic corrections. However, the above equa-
tions may be used at least to get some idea of the physical implications of bremsstrahlung

reabsorption for fusion reactors.

Currently contemplated ICF reactors would achieve compressed plasma densities of
about 10% times the density of uncompressed solid fuel [98]. By using the equations
presented above, one finds that a fusion plasma of this density, or even one with a density
a few orders of magnitude higher, would require a pellet radius large enough that even if

the pellet could be ignited, the yield would be sufficient to destroy the reactor.

In order to bring the yield down to a reasonable level while retaining the bremsstrahlung
within the plasma, the density would have to be increased until it is roughly 8 or so orders

of magnitude larger than the density of the uncompressed solid fuel, or in other words
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about 5 orders of magnitude greater than is currently considered for ICF fusion reac-
tors. Even if such phenomenal amounts of compression could somehow be achieved, the
cumulative bremsstrahlung losses during the compression of the plasma might become
intolerably large before the plasma could attain a density high enough to retain further

bremsstrahlung.

For these reasons, reabsorption of the bremsstrahlung within the fusion plasma does
not appear to be a feasible or useful means of lowering the radiation losses of advanced

aneutronic fuels to acceptable levels.

4.1.12 Direct Electric Conversion of Bremsstrahlung Radiation

As a final related note, it should be mentioned that even highly optimistic calculations re-
garding various proposed methods for directly converting bremsstrahlung radiation power
into electrical power arrive at efficiencies which are not much greater than thermal con-
version efficiencies [5]. (In thermal conversion approaches, the bremsstrahlung would
be reabsorbed in a solid or liquid blanket surrounding the reactor, and then the heat de-
posited in the blanket would be used to drive a heat engine at Carnot-limited efficiencies.)
Bremsstrahlung radiation is simply emitted at frequencies which are too high to permit
radio-frequency-type conversion and too low to permit truly efficient conversion via the

Compton effect [5].

4.2 Ion-Electron Decoupling Approaches Which Are Still
Potentially Viable

When examined in terms of the removal of collisionally generated entropy, the problem

of ion-electron decoupling is quite similar to the issue considered in Chapter 3, the main-

tenance-of non-Maxwellian-velocity-distributions:—An-ion-electron-decoupling sy stem-—can

also be described by Figure 3-1, and it is subject to the same stringent limitations noted
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in Section 3.5. Likewise, the handful of approaches which were not ruled out in Chapter 3
could at least hypothetically be adapted to the problem of ion-electron decoupling. Pos-
sible directions of research which may yet prove fruitful for ion-electron decoupling will

be discussed in more detail in Appendix E.

4.3 Summary

While it cannot be claimed that this is an exhaustive list of all possible ion-electron energy
decoupling methods, at least all currently known potential ways to decouple the electrons
have been examined and shown to fail because they would not work well enough or would
not even work at all. Unless some of the highly speculative approaches such as those
outlined in Appendix E meet with success, reactor designs which rely on ion-electron

energy decoupling appear doomed to failure.
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Chapter 5

Energy Decoupling Between Two

Fuel Ion Species

It is worthwhile to check whether one ion species can be maintained at a significantly
lower energy than the other ion species, or in other words whether two ion species can
be decoupled in energy from each other. Such an energy decoupling would be useful fo.r
operating D-3He plasmas with deuteron energies much lower than the 3He energy in order
to suppress D-D reactions. Decoupling between the two ion species in p-!!B and p-SLi
plasmas could also increase the fusion reaction rate by up to a factor of two or three by
not “smearing out” the sharp resonance peaks in the reaction cross sections with a wide

range of net collision velocities between the two types of ions.

5.1 Failed Ideas for Decoupling Between Ion Species

Several ideas for decoupling between ion species have been suggested, but unfortunately
none of them can work sufficiently well to be of use. The principal proposed approaches,

together with the reasons why they fail, are summarized below.
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5.1.1 Degree of Passive Decoupling Due to Ion Loss Via Fusion Events

It has been proposed [18, 19] that it might be possible for the ions in a system to be lost to
fusion events before the mean energies of the two fuel ion species have time to equilibrate.
To investigate this issue, it will be assumed that the i1 species is more energetic than the
12 species and that the standard Spitzer expression for interspecies energy transfer may
be applied to this problem. (As was shown in Chapter 3, the individual ion species cannot
deviate substantially from Maxwellian distributions without requiring prohibitively large

amounts of recirculating power; thus the standard formula may be employed here.)

Considering for the moment only the heating of the i2 species by the i1 species, the

power density (in eV /sec-cm®) transferred to the i2 ions will be [27, 30):

3  dTj 19 VMM ZE Zhniang In Ay i
Pj_io = =n; =2.63-10 L Ti1 — Ti0) , 5.1
i1—i2 27712 di (,,n“Ti2 + mi2Til)3/2 ( il 12) \ )

in which the temperatures are in eV.

The cooling rate of i2 ions due to the replacement of fused ions is:

3
Peoot = 5Tinirniz (00) fys - (5.2)

The equilibrium temperature of the i2 species is determined by setting the total
amounts of heating and cooling equal to each other. Since both the heating and cooling
expressions have the same dependence on the ion densities, integrating them over the
spatial region of interest has no effect on the ratio between them. By defining the ion
mass as a multiple of the proton mass mp, m; = p;mp, and expressing the temperatures
in eV, one arrives at an expression which is convenient for seeing the general range of

permitted values for Tjo:

-1
7.40 - 10° (0v) ;. (11 Ti2, ev + pi2Tin, ev)/?
V22823 In Ay _io

T = T;
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For all of the fuels of interest (D-T, D-3He, p-!!B, etc.) utilized under any reasonable
circumstances (see for example the parameters in Table 1-1), one finds from Eq. (5.3)
that the temperature of the 72 species is constrained to be very close to that of the il
species:

95T <Tp<Ty . (5.4)

Therefore this evaluation shows that it is not possible to keep one ion species at a
significantly lower temperature or energy than the other unless one provides an additional

means of cooling the 2 species or of reducing the energy transfer rate between the species.

5.1.2 Active Refrigeration of One Ion Species

Now calculations will be performed for the case in which a large temperature difference

between the ion species is maintained by somehow actively refrigerating one species. In
a maximally efficient system, virtually all of the energy removed from the less energetic
species would be returned to the more energetic species, making the interspecies power
flow the minimum recirculating power. Less than ideal systems would require more re-
circulating power and/or incur sizeable losses each time the power was handled by the

recirculation system.

It will be assumed that Tj; 3> Tj9, so that the collisions between the two ion species
occur at a relative velocity v = /3T;;1/mi1. Coulomb collisions will then transfer energy
between the species at the rate calculated above. Dividing this energy transfer rate by

the fusion power and putting Tj; and Ej,, in eV, one obtains:

P2

—1.20.10-13741 ZAZ5InAi_ip

. 5.5
Pfus my2 ofusEjus, eVTil, eV ( )

For a numerical estimate it is illustrative to use the case of p-!'B reactions, for which
it would be desirable to have high-energy protons (i1 species) and low-energy boron ions

(42 species). The peak of the fusion cross section, of,s = 8-10725 cm?, occurs for a proton
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energy of about 620,000 eV, or T;; equal to two-thirds of that energy [35]). Estimating the
Coulomb logarithm as approximately 15 and very optimistically assuming that all of the

protons have the optimum energy of 620 keV, the power ratio is found to be:

P,_u
p—1'B

As another example, D-3He reactions may be considered. In order to suppress D-D
side reactions, it would be desirable to keep all of the deuterons at very low energies.
Assuming very optimistically that all of the 3He ions can be kept at the optimum energy
of 675 keV, the fusion cross section will be at its maximum, ofys = 7.2 - 10725 cm? [33].

For In A = 15, this means that the power ratio is

Pape_p
—_—— 2. 5.7
Pus (5.7)

Realistically it will not be possible to keep the energetic ion species in a nearly mo-
noenergetic distribution, so there will be a large spread in the collision velocities and
most will not occur at the peak cross section. Also, it may not be practical to support
the required mean ion energies of over 600 keV. If the ions are essentially Maxwellian or
if they are at a lower mean energy, the ratio of the interspecies energy transfer rate to the
fusion power may be over an order of magnitude greater than the values calculated above

for these two fuels.

Thus the recirculating power requirements imposed on a system which actively main-
tains two fuel ion species at very different mean energies appear to be too large to be
practical unless a means can be found to reduce the interspecies energy transfer rate or

to recirculate the power in an extremely efficient and relatively trouble-free manner.
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5.1.3 Non-Maxwellian Ion Distributions

It has already been observed that highly non-Maxwellian ion distributions cannot be
employed to reduce the energy transfer rate because they would necessitate the use of far
too much recirculating power (see Chapter 3). Yet even if the power limitations were not
a problem, non-Maxwellian ion velocity distributions would not be useful for decoupling

the energies of two ion species, as will now be shown.

It will again be assumed that the i1 species is to be maintained at a much larger mean
energy than the ¢2 species. By analogy with the case of ion-electron energy decoupling,
the only way in which non-Maxwellian ion distributions would decrease the energy flow
between the 71 and i2 species is if there were very few i2 ions “below” the il ions in
velocity space. In other words, the mean i2 speed must be larger than the mean il speed.
For vjs > v;;, the ratio of the ion energies must obey the relation,

(Ei2) L
(Eir) = ma

(5.8)

This sets a limit on the maximum difference in the ion energies.

Because of this requirement, such methods cannot be employed with p-!!B and p-SLi
plasmas. It is not possible to keep the protons at high energies (> 600 keV in order
to maximize the fusion rate) and the more massive ions at low energies while allowing
the more massive ions to have higher velocities than the protons. Although it would be
permissible to have the opposite situation with high-energy but relatively low-velocity
1B or ®Li and lower-energy but higher-velocity protons, there would be many unpleasant
consequences. It would be desirable to hold the proton velocities to low enough values
that they would not “smear” the peaks in the fusion cross section which one desired to
exploit. However, if the !'B or SLi velocities were then kept from exceeding the proton
velocities, the net collision velocities would be limited to uninterestingly low values in
terms of promoting nuclear reactions. On the other hand, if the boron or lithium ions

were accelerated up to fusion velocities (regardless of the implications for the interactions
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with the protons), the presence of such high-energy, relatively high-Z ions would cause
the ion-electron energy transfer and bremsstrahlung radiation losses to be at least as bad

as they were in the equilibrium case calculated in Chapter 1.

D-3He plasmas could potentially make use of this effect, but only in a modest fashion.
Because the masses of the two ion species are not very dissimilar, one would be limited
to (Ep) / (E,._3) > 2/3. Even if the recirculating power necessary to keep the deuterons
non-Maxwellian with the slow ions depleted could be tolerated, the deuteron energy could
not be made greatly lower than the helium ion energy, as would be required in order to

suppress D-D side reactions to a worthwhile degree.

Thus, one concludes that the use of non-Maxwellian ion distributions is neither a
feasible approach nor even a particularly desirable one in dealing with energy decoupling

between ion species.

5.1.4 Wave-Mediated Recirculation of Power Between Ion Species

Just as Chapter 4 considered the possibility of using waves to recirculate power between
ions and electrons, the possibility of using waves to recirculate power between two ion
species which are at different energies will be considered here. In systems of the desired
type, the waves would have a phase velocity vppese between the velocities of the two ion

species, so that vy > Vppese > vi1, but the mean energies of the two ion species would

ubey—the—relatiuu, Ezl P E;Q.

These relative orderings of the velocities and energies lead directly back to the argu-
ments stated above for systems with non-Maxwellian ion distributions. Desirable types of
p-!!B and p-5Li plasmas cannot meet these requirements, and at best such systems could
keep deuterons at only modestly lower energies than helium-3 ions, which is not enough

to greatly reduce the D-D side reactions.

Even if this method could work, it would require the velocity distribution of the 2
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species to have dfi2/0v > 0 for a significant part of the distribution, or else the i2
distribution would reabsorb the waves it emits instead of transmitting them to the il
species. This requirement leads back to the tremendous recirculating power levels which

are necessitated by non-Maxwellian distributions.

The final argument against wave-based techniques is that all such methods which were
examined in Section 3.5 were shown to be unable to remove entropy from the plasma,
which is what would have to occur in order for the collisionally mediated transfer of

energy between species to be counteracted.

5.1.5 Particle Circulation Between Two Regions with (E;;) > (E;2) and
(Ei2) > (Ei1)

Another way to handle the large amount of recirculating power in an essentially “hands-
oft” and efficient manner would be to pass all of the ions back and forth between two
(or possibly more) regions with potential differences between them. If the two ion species
have different charges (which they do in all cases of interest), it would then be possible to
establish conditions such that (E;) > (Ej2) in the main (fusion) region and (Ej2) > (E;)
in the other (but no significant rate of fusion reactions occurred there). Energy transferred

between the species in one region would automatically be recirculated back in the other.

Even if this technique could be made to work, it will now be shown that it could not

possibly help enough.

D-3He

For a D-3He plasma, it would be desirable to have a “fusion region” in which the 3He
ions have some energy Eopiimum and the deuterons are at a much lower energy, €. In this
region, energy will flow from the helium ions to the deuterons. Ideally, one would like to

have the particles periodically circulate into a “restoration region” in which the D energy
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is higher than the 3He energy, so that the energy transferred between the species in the

fusion region will be returned to its proper place.

In order to achieve this effect, one would have to create an electrostatic potential
energy increase A® in going from the fusion region to the restoration region. Since the
helium ions will lose twice as much kinetic energy as the deuterons, it is possible to reverse
the relative order of the ion species’ energies as desired. Unfortunately, the constraints
on the ion kinetic energies in the restoration region, £, > E,__, > 0, set a lower limit
on the deuteron energy in the fusion region,

1
€2> §Eoptimum . (59)

The deuteron energy in the fusion region of the plasina is required to be at least half of
the 3He energy; this decrease in D energy is only sufficient to reduce the D-D neutrons by
roughly a factor of 2, which is a far smaller reduction than would be desired. Furthermore,
this result is predicated on the extremely optimistic assumption that such systems can

actually be made to work.

p-!'B and p-SLi

Now the use of these types of systems with p-!'B and p-8Li will be considered. For the
sake of generality, the two ion species in the plasma will be referred to as the protons and

the 12 species.

If most of the fusion events could be made to occur near the peak of the fusion
cross section, rather than over a wide range of net collisional energies, the average fusion
reactivity could be substantially improved. For an isotropic system, this goal would require
one of the ion species to be at a high energy and the other to be at an energy so low that

it cannot greatly alter the relative collision velocity between the two types of ions.

It would not be useful to have a fusion region with high proton cnergies and very
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low 12 energies (so that energy flows from protons to i2 ions in the fusion region) and
then a restoration region at a different potential. If the potential change in going from
the fusion to the restoration region were positive, the i2 species would lose more kinetic
energy (due to its charge Z;; > 1) than the protons, and thus energy flow between species
would not be reversed in the restoration region (it would still go from protons to 72 ions).
On the other hand, if there were a potential decrease so that the ions gained a substantial
amount of kinetic energy upon entering the restoration region, both species would have
high energies, causing the restoration region to have a high fusion rate with comparatively

few of the collisions occurring near the peak of the cross section.

The opposite situation, in which the fusion region contains high-energy i2 ions (at
some energy Eopiimum) and low-energy protons (at an energy ¢), would be only slightly
more useful. The potential change in moving from the fusion region to the restoration
region would have to be positive to cause a reversal of the energy flow between the ion
species. The constraints on the particle energies in the restoration region, E, > Ej > 0,

set a lower limit on ¢, just as they did in the D-3He case, so that

1
€2 Z_'Eoptimum . (510)

i2

Because of the mass difference between protons and i2 ions, even a fairly small amount
of proton energy will correspond to a large proton velocity in comparison with the 2
velocities. Therefore, even if this method could be made to work as intended, proton
energies in the fusion region would remain high enough to ensure that a large number
of the proton-i2 collisions would happen at a net collision velocity far from the optimum

collision velocity at which the peak of the fusion cross section occurs.

5.1.6 Counter-Propagating Ion Beams

The use of counter-propagating “cold” beams of the two different ion species with properly

chosen energies would enable virtually all of the fusion reactions to occur at the optimum
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collision velocity and essentially eliminate reactions between particles in the same beam
(eg. D-D side reactions). Unfortunately, one would then have to cope with the recirculat-
ing power required to negate the effects of both parallel and perpendicular velocity-space
diffusion, assuming that a specific mechanism for doing so even existed. As was shown
in Chapter 3, the recirculating power entailed in choosing to operate with such beams
would be prohibitively large for all fuels except possibly D-T and D-D, which are not
of particular interest here. Weibel, counter-streaming, and other instabilities would also
pose huge problems. For these reasons, this does not appear to be a useful approach to

the problem.

- 5.1.7 Effects of Anisotropy in Beam-Plasma Systems

A less ambitious anisotropic system would be one in which a high-energy beam of i1 ions
interacts with a low-energy, relatively stationary “target plasma” of 2 ions. It therefore
becomes of interest to examine how the energy transfer rate between the ion species in

such configurations would differ from the rate given in Eq. (5.5) for the isotropic case.

Again employing the result from Sivukhin [59] for energy transfer between two species,

Eq. (4.3), the power flow between the ion species is

AnZ% Z%e* In A
Pi_ip = 2 /d3V.1/d via fi1(vi1) fia(Viz)

mi1m;2

% (mivig + miavia) - (vig — V|2)
|V11 - "12'3

(5.11)

For i1 ions sufficiently fast that v;; 3> (mi2/mi1)vio and v > vi (as would be needed
to avoid blurring the resonance peak of the p-!'B fusion cross section or to strongly

suppress D-D side reactions from D-3He reactors), one finds that

4rZ4 Z%et In A 1
Py = “":_22 / d*viy / davizfil(vil)fiZ(Viz);
1 1
4w Z% Zhnipet In A
mi2

Q

/ d3Vi1fi1(Vi1)% : (5.12)
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Because of the assumption that the i1 ions are much faster than the 2 ions, the energy
transfer rate no longer depends on the angle between the velocities of the two ion species.
In other words, the energy transfer rate between the species reduces to that found in
Eq. (5.5) regardless of any anisotropy in the velocity distribution of the i1 species. (Of
course, even if there were some tangible benefit to this approach, one would still have to
deal with the problems of instabilities, the recirculating power needed to maintain the ion

beam against diffusive and decelerating effects, and heating of the electrons by the beam.)

5.2 Approaches to Decoupling Between Ion Species Which
Are Still Potentially Viable

The problem of energy decoupling between ion species can be viewed in terms of Figure 3-
1, just as could the problems of maintaining non-Maxwellian distributions and decoupling
electrons from ions. Thus while all of the techniques which have been exariined have
been ruled out, there still remain a very small number of possible avenues for further
exploration; these remaining routes are similar to those which could be considered for
velocity distribution focusing and ion-electron decoupling, and they will be examined in

more detail in Appendix E.

5.3 Summary

To hold the mean energy of one ion species substantially lower than that of the other would
require a recirculating power considerably greater than the fusion power. All presently
foreseeable methods of reducing the interspecies energy transfer rate or of recirculating
the power efficiently and with little effort have been demonstrated to be inadequate or
impractical. Barring a radical breakthrough in one of the directions outlined in Appendix

E, it does not appear to be possible to decouple the energies of two fuel ion species in a
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reactor.

Because of these findings, there is no apparent way to reduce the D-D side reactions
of D-3He plasmas by keeping the deutercns substantially colder than the helium ions.
Futhermore, even if two ion species could be maintained with nearly monoenergetic ve-
locity distributions (which they cannot, as shown in Chapter 3), the energies of the two
species would have to be nearly equai; therefore the fusion reactivity (ov) fus would be
averaged over all collision angles and would become essentially the Maxwellian-averaged
quantity (to within 20% or so; see Appendix A for more details). This implies that one
could not efficiently exploit the resonance peaks of fusion cross sections, such as the sharp

peaks in the p-!!B cross section.

153



Chapter 6

Advanced Aneutronic Fuels

The three advanced aneutronic fuels which have been considered are 3He-3He, p-!'B, and
p-SLi. If it were possible to hold a plasma significantly out of thermodynamic equilib-
rium, one could greatly improve the performance of these three fuels over that which
could be obtained if they were burned in thermodynamic equilibrium. The improvement
in performance could be accomplished by decoupling the electron energy to lower the
bremsstrahlung losses; the most effective method of decoupling the electrons would be to
deplete most of the slow electrons which can drain energy from the ions. For the proton-
based fuels, the performance could also be increased by decoupling the energies of the two
ion species in the plasma, so that virtually all of the collisions between ions of the two
species would occur at the optimum net collision velocity corresponding to the maximum

fusion cross section.

Yet as has been shown in Chapters 3-5, to hold a plasma out of thermodynamic
equilibrium in these ways would require prohibitively large amounts of recirculating power.
It therefore becomes of interest to determine the best performance which can be obtained
from each of these three advanced aneutronic fuels when they are burned in a plasma which

is essentially in thermodynamic equilibrium. Chapter 1 presented a quick calculation of
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the performance of equilibrium systems which use these fuels, but a more systematic
analysis will now be performed. The analysis in this chapter will incorporate the results
of Chapter 2 and optimize the net power production with respect to those parameters

which can still be varied, such as the ion temperature and the fuel stoichiometry.

After some general remarks about the bremsstrahlung radiation loss calculations in
Section 6.1, the remaining sections of this chapter will graphically illustrate the optimum

performance of equilibrium 3He-3He, p-!!B, and p-®Li systems.

6.1 Bremsstrahlung Radiation Losses

As was stated in Chapter 1, the bremsstrahlung losses have buen evaluated by setting
the ion-electron energy transfer rate, P, equal to the bremsstrahlung power loss, Pyrem,
to find the equilibrium electron temperature. The bremsstrahlung losses caused by that
electron temperature have been compared with the fusion power. In contrast with the
results in Chapter 1, the calculations presented in this chapter also include the correction
factor derived in Chapter 2. It is very important to note that these calculations are inher-
ently optimistic, because in them the only source of energy to the electrons is Coulomb
friction with the fuel ions. In more realistic systems, the electrons would also receive
energy from external heating mechanisms, friction with the fusion products, etc., so the

electron temperatures and bremsstrahlung losses would be even higher.

Of course, a realistic system would also have other losses, such as synchrotron radiation
(see Appendix F) and particle losses, with which it would have to contend. Although
it is true that these losses might help cool the electrons and lower the bremsstrahlung
radiation power, that would simply be substituting one loss mechanism for another, so
the incorporation of such losses into the calculations would not result in a better energy

gain than is found here.

Because P is proportional to the Coulomb logarithm, In A, there will be some dif-
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ference in performance between reactor designs which have markedly different values for
the Coulomb log. To illustrate the range of performance which might be expected, the
calculations have been performed for the cases of InA = 5 (as in inertial confinement

fusion [ICF] reactors) and In A = 20 (as in typical magnetic confinement fusion systems).

Reducing the Coulomb logarithm all the way down to InA = 5 improves the perfor-
mance of the advanced fuels somewhat, but one should not be misled into optimism about
achieving a net energy gain from any of these fuels via ICF. In the implosion of an ICF
pellet, the electrons receive a considerable amount of energy in addition to energy they
siphon from the ions, so the electron temperatures and bremsstrahlung losses cf a realistic
system would be substantially larger than those calculated here for the “ideal” case with

InA =5.

It is also necessary to realize that the importance of the bremsstrahlung power loss may
actually be underestimated by simply considering the ratio Pyrem/Prus. It has recently
been shown [99] that most proposed types of direct electric conversion schemes, such as
electrostatic direct converters [100, 101], would not be suitable for directly converting
the kinetic energy of charged fusion products into electricity. This unfortunate fact arises
because of electrical arcing problems on the high-voltage conversion grids and also because
confinement systems designed to let the fusion products escape will generally allow large
numbers of the fuel ions and electrons to escape as well. Unless better methods of direct
electric conversion can be found (such as the possibility of using traveling waves to convert
the particle energy into electricity [102, 103, 104]), thermal conversion methods will have

to be employed to convert the fusion power into electrical power.

For a reactor in which both the fusion power and the bremsstrahlung power are con-
verted into electricity via thermal cycles with a typical efficiency of approximately 1/3, the
net power loss due to bremsstrahlung will be Piyss = (2/3) Pyrem. Similarly, the electrical
power generated by the fusion reactions will be Pyen & Pjys/3. Therefore the net impact

of the bremsstrahlung losses with respect to the electrical power generated by fusion will
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Thus unless the fusion power can be converted into electricity at very high efficiencies,
the actual severity of the radiation losses will be approximately twice as high as one might
be led to think by simply considering the ratio Pyrem/Pyyus which is calculated for various

fuels in this chapter and Chapter 7.

In order to utilize nearly 100% of the fusion power, one might contemplate confining
the fusion products enough that they could give essentially all of their energy to the fusion
plasma. This technique would not be beneficial, though, since it would greatly increase the
electron temperature and bremsstrahlung radiation losses in comparison with the results

given in this chapter.

Preferential fusion product heating of ions (without heating the electrons) via nuclear
elastic scattering [10, 55, 88, 89, 90, 91, 92] or other mechanisms does not improve these
calculations; it is already assumed that the ion energy distribution is held fixed and that
the only source of electron heating is Coulomb friction with ions. Furthermore, since
the fusion reactivity is nearly independent of the ion velocity distribution shape for a
given mean ion energy (as shown in Appendix A), enhancement of the fast tail of the
ion distribution due to nuclear elastic scattering would not substantially alter the results

given here.

For p-!!B and p-®Li, one is free to vary the ratio of the two ion species in the plasma
in order to minimize the relative severity of the bremsstrahlung losses in comparison with
the fusion power. With the protons denoted as the il species and the boron or lithium
ions designated as the 2 species, the fusion reaction rate per total number of electrons
will be maximized for a fuel ratio x = n;;/n;2 = Z; (see Eq. (1.3)). Provided that the
effects of modest changes in the fuel ratio upon the equilibrium electron temperature and

bremsstrahlung rate are not too severe, one would expect the ratio of bremsstrahlung
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power to fusion power to be minimized near x = Zj, or n,/n,_,, = 5 for p-!'B and

np/n,,_ = 3 for p-8Li. This will be shown in fact to be the case.

6.2 °3He-3He

Pure 3He has been proposed as the fuel for reactors based on the *He(*He,2p)*He reaction,
which would release 12.9 MeV in energy. The main problem with this fuel is that the
cross section for the reaction becomes significart only at very high ion temperatures
(T; ~ 1 MeV). At such ion temperatures, the electron temperature causes very large
bremsstrahlung losses, as revealed in Figure 6-1. Cross section data was not available for
T; > 1 MeV, but as that temperature is approached, the bremsstrahlung loss is clearly
leveling off at an intolerably large value. (Specifically, the bremsstrahlung losses for T; = 1
MeV amount to Pirem/Prys = 1.56 for InA = 20 and Pyrern/Prys = 0.86 for InA = 5.)
Also, at T; = 1 MeV, one is already putting 3 MeV of energy into each pair of ions in
order to get 12.9 MeV of energy out of them when they react, so it would not be advisable

to go to much higher ion temperatures.

Figure 6-2 graphically shows the equilibrium operating point at which the ion-electron
energy transfer rate and bremsstrahlung loss power achieve a balance. Using this figure,
one can see how much the electron temperature would have to lowered to bring the
bremsstrahlung losses under control. As was discussed in Chapter 4, when T, is low
enough that bremsstrahlung losses are manageable, the ion-electron energy transfer rate
is far too large to be counteracted by any known mechanism; this fact may also be seen

from Figure 6-2.
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Figure 6-1: Ratio of bremsstrahlung losses to fusion power for 3He-3He with various ion
temperatures. (T, determined from energy balance equation, P;e = Pyrem.)
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Figure 6-2: Ion-electron energy transfer and bremsstrahlung compared with fusion power
for 3He-He with various electron temperatures. (T; = 1 MeV.)
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6.3 p-!'B

Another long-time favorite candidate for advanced aneutronic fuel fusion reactors is the

11B(p,2a)*He reaction, which releases 8.7 MeV of energy.

As depicted in Figure 6-3, the performance is optimized for T; between 300 keV
and 400 keV, depending on the exact value of the Coulomb logarithm. The minimum
bremsstrahlung loss fraction for InA = 20 occurs for T; = 300 keV, at which point
Firem/Pjus = 1.88. For InA = 5, the minimum of Py.em/Ppys = 1.20 occurs at around
T; = 400 keV.

Figure 6-4 shows that when the fuel mixture is varied, the relative severity of the
bremsstrahlung losses is indeed minimized for n,/n,_,, = 5. Unfortunately, even at
this optimum operating point, and even taking the very optimistic InA = 5 results, the

bremsstrahlung loss power exceeds the fusion power.

Just as with the earlier figure for 3He, the graphical depiction of the equilibrium
between ion-electron energy transfer and bremsstrahlung radiation power shown in Figure
6-5 could be used to see how low T, must be in order to limit the bremsstrahlung loss to
a bearable value. The figure demonstrates that the ion-electron energy transfer for such

low electron temperatures would be far in excess of the fusion power.

6.4 p-SLi

The %Li(p,*He)*He reaction would produce approximately 4.0 MeV of energy. Because of
this low energy output per reaction, the unimpressive cross section of the reaction, and
the high temperatures that are required, p-5Li cannot even begin to approach break-even.
Although the product 3He could be used to generate additional energy through reactions
with the SLi or with added deuterons, even this measure would not enable break-even

against realistic losses. This fact may be seen by assuming complete burnup of the 3He
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Figure 6-3: Ratio of bremsstrahlung losses to fusion power for p-'!B with various ion
temperatures. (T, determined from Pie = Pyrem; np/ny_,, = 5.)
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Figure 6-4: Ratio of bremsstrahlung losses to fusion power for p-!'B with various fuel
mixtures. {T; = 300 keV; T, determined from P;e = Pirem.)
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Figure 6-5: Ion-electron energy transfer and bremsstrahlung compared with fusion power
for p-!'B with various electron temperatures. (T; = 300 keV; np/ng_,, =5.)

164



with exogenous deuterons (to release an additional 18.3 MeV of energy per reaction) and
optimistically assuming that there are no further power losses attendant in such schemes.
The values of Pyem/Pyys which are calculated here would then have to be multiplied by
a factor of (4.0 MeV)/(4.0 MeV + 18.3 MeV)= 0.18. The bremsstrahlung losses would

still be comparable to the fusion power, even in this very idealized case.

The outlook for p-®Li is illustrated in the graphs. Figure 6-6 shows that the opti-
mum ion temperature is around 800 keV, and Figure 6-7 confirms that the optimum fuel
mixture is in the vicinity of np/n,, . = 3, but even at these optimum parameters the
bremsstrahlung loss power is several times the fusion power. To cite specific numbers,
the minimum of the InA = 20 curve in Figure 6-6 is Pyrem/Prys = 5.36 and occurs at

T; = 800 keV; the In A = 5 curve levels off at a value of Pyrem/Prys = 3.00 at T; = 1 MeV.

&

In agreement with the results for the other advanced aneutronic fuels, if the electron
temperature is kept low enough to limit the bremsstrahlung losses to reasonable levels,
the ion-electron energy transfer will be far greater than the fusion power, as demonstrated

in Figure 6-8.

6.5 Summary

The outlook for the advanced aneutronic fuels is best summarized in Figure 6-9. In order
to limit the bremsstrahlung losses to theoretically bearable levels (less than half the fusion
power), it would be necessary to reduce the ion-electron energy transfer rate by at least
one order of magnitude for 3He-3He, two orders of magnitude for p-!'B, and three orders
of magnitude for p-®Li. Chapter 4 surveyed all known techniques for reducing the ion-
electron energy transfer or otherwise circumventing this problem, and no useful methods
were found. Furthermore, it is not possible to alleviate the bremsstrahlung losses for the
proton-based fuels by decoupling the energies of the two ion species in the plasma and
thereby boosting the fusion rate; the failure of such approaches was discussed in Chapter

5. Even if feasible techniques are eventually found, it is very unlikely that they will work
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Figure 6-6: Ratio of bremsstrahlung losses to fusion power for p-SLi with various ion
temperatures. (T, determined from P;e = Pyrem; np/np,_s = 3.)
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Figure 6-7: Ratio of bremsstrahlung losses to fusion power for p-SLi with various fuel
mixtures. (T; = 800 keV; T, determined from Pje = Pyrem.)
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Figure 6-8: Ion-electron energy transfer and bremsstrahlung compared with fusion power
for p-bLi with various electron temperatures. (T; = 800 keV; np/ny_e =3.)
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well enough to lower the energy transfer rate as drastically as is required. Therefore, it
appears highly doubtful that the advanced aneutronic fuels can ever serve as the basis for

power-producing reactors.
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Figure 6-9: Ratio of bremsstrahlung losses to fusion power versus the necessary reduction
of ion-electron energy transfer for 3He-3He, p-!!B, and p-SLi plasmas under approximately
optimum conditions (T; = 1 MeV for 3He-3He, 300 keV for p-!'B [with a 5:1 fuel mixture],
and 800 keV for p-Li [with a 3:1 fuel mixture]; In A = 20 throughout.)
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Chapter 7

Reduction of D-D Side Reactions

from D-3He Plasmas

If one were able to maintain a significantly nonequilibrium plasma, it might be possible
to operate D-3He reactors with substantially fewer D-D reactions (and hence neutrons
and tritium) than reactors employing equilibrium plasmas would have. This reduction
in D-D reactions could be accomplished by decoupling the electron energy to lower the
bremsstrahlung losses and permit net power production with more 3He-rich fuel mixtures
or by decoupling the two ion species so that the deuterons could be kept at very low en-
ergies. Yet to accomplish either of these tasks would require prohibitively large amounts
of recirculating power, as the previous chapters have shown. It therefore becomes of
interest to determine the maximum extent to which the D-D reactions and their conse-
quences (the production of neutrons and tritium) can be suppressed in a plasma which is

in thermodynamic equilibrium.

After examining in Section 7.1 the best performance which can be obtained from D-
3Me reactors, Section 7.2 will give the results of similar analyses for D-D and D-T reactors,

for the purpose of comparison.
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As with the results in Chapter 6, the In A = 5 results are inherently quite optimistic,
since the only source of heat to the electrons is collisional friction with the ions. The
electrons in realistic ICF plasmas would experience a great deal of additional heating
during the implosion process, so T, and Ppre,n would be substantially larger than the
values which have been calculated here. Thus these results serve to set a lower bound on

the power losses.

Although the results in this chapter are expressed in terms of the ratio Pyrem/Prus, one
should also recall the point made in Chapter b regarding the importance of bremsstrahlung
losses in reactors which use thermal cycles to convert the fusion power into electrical power.
If the fusion product energy and bremsstrahlung radiation are converted into electricity
by thermal cycles with efficiencies of approximately 1/3, the ratio of the net radiation loss

power to the fusion-generated electrical power will be Piogs/Pyen = 2Pprem/ Prus.

Preferential fusion product heating of ions (without heating the electrons) via nuclear
elastic scattering [10, 88, 89, 90] or other mechanisms does not improve these calculations;
it is already assumed that the ion energy distribution is held fixed and that the only source
of electron heating is Coulomb friction with ions. Furthermore, since the fusion reactivity
is nearly independent of the ion velocity distribution shape for a given mean ion energy
(as shown in Appendix A), enhancement of the fast tail of the ion distribution due to

nuclear elastic scattering would not substantially alter the results given here.

7.1 Results for Equilibrium D-*He Plasmas

Although one is constrained to operate with plasmas which are essentially in thermody-
namic equilibrium, at least theoretically one still has the luxury of removing the reaction
products before they undergo further reactions. This choice leads to D-3He reactors which
operate with or without burnup of the tritium produced via D-D reactions; these two types

of reactor designs will be considered separately below.
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While D-D reactions and the burnup of D-D reaction products would create a sizeable
number of neutrons, they would add comparatively little to the total fusion reactor power,
and so the bremsstrahlung power loss fraction is not greatly altered if only D-3He fusion
power is considered. Therefore, for simplicity in all of the D-3He graphs, Pyrem /Prus has
been computed by considering only D-*He fusion power. (In computing neutron power

fractions, however, all reactions are in fact taken into account.)

7.1.1 No Tritium Burnup

It is assumed that all of the tritium produced by D-D reactions is removed from the
plasma before it has a chance to react with the deuterons. The T could be stored in a
“wine cellar” and allowed to decay into *He for future use in the reactor. This method
offers the advantage that there would be no 14 MeV D-T neutrons produced in the reactor,
so the neutron power would represent a much smaller fraction of the total fusion power

than it otherwise would.

There are several ways in which the tritium removal might be accomplished, since the
tritons would have an energy of 1.0 MeV, far greater than the 150 keV mean energy of fuel
ions if T; = 100 keV. One method would be fairly similar to the migma configuration with
a ring magnet [25, 39]; a properly designed magnetic field configuration can theoretically
cause the orbits of particles within specific energy ranges to be unstable, leading to the
ejection of the particles from the confinement system. Another technique would be to use
electrostatic confinement [18] with a well depth that traps the fuel ions but allows the
fusion products, including tritons, to escape; separate means of confining the electrons

would also have to be present, of course. One might also devise other methods as well.

Bremsstrahlung and Neutron Power Fractions

Figure 7-1 indicates that the ratio of bremsstrahlung power to fusion power is minimized

for T; between 100 keV and 150 keV, depending on the exact value of In A. In particular,
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for In A = 20 the minimum of Pyrem/Prys = 18% occurs at T; = 140 keV, and for InA =5

the minimum is Pyrem/Prus = 13% and occurs at T; = 160 keV.

Assuming that there is no burnup of the D-D reaction products (T and 3He), the
fraction of the total power which is produced as neutron kinetic energy may be found

from the equation,

(Pneutrons )
Pf"s no T burnup
[(1 /22 (ov), (245 MeV)] x {npny. s (ov), , ,._, (18.3 MeV)

(/22 [(00) o s s (3:27 MeV) + (o) (4.03 Mev)]}

D+D—T+p

(7.1)

As shown in Figure 7-2, the neutron power fraction is minimized near the same
temperature as the bremsstrahlung loss fraction, specifically reaching a minimum of

Pneutrons/Pjus = 1.1% fOI’ 7} = 100 keV-

Clearly the neutrons can be reduced by burning with an excess of 3He, but the problem
is that then the bremsstrahlung losses will increase, since the fusion power density falls
and the effective Z of the plasma rises. Figure 7-3 illustrates this trade-off. If one makes
the restriction Pyrem/Prus < 0.5, the maximum allowable fuel ratio is n,,_,/n, = 5, at
which point the neutrons constitute about 0.2% of the total power, or roughly one order
of magnitude smaller than in a fission reactor. More realistically, bremsstrahlung losses
would almost certainly have to be kept much lower, and it is doubtful that the reactor
could produce net power under conditions where the D-D neutrons would constitute much

less than 1% of the total power.

The effect of electron temperature on ion-electron energy transfer and bremsstrahlung
losses is shown in Figure 7-4. It may be seen from the figure that if the electrons were
actively refrigerated to a temperature substantially below their equilibrium value, the

interspecies energy transfer rate (and necessary recirculating power) would become quite
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Figure 7-1: Bremsstrahlung power loss fraction for D-3He with various ion temperatures.
(T determined from Pje = Pyprem; np/n,,,_, = 1.)
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Figure 7-2: Neutron power fraction for D-3He with various ion temperatures. (T, deter-
mined from Pe = Pyrem; Np/Ny._5 = 1.)
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Figure 7-3: Bremsstrahlung power loss fraction and neutron power fraction for D-3He
with various fuel mixtures. (T; = 100 keV; T, determined from P = Pirem-)
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large; this observation confirms the findings discussed in Chapter 4.

Steady-State Tritium Inventory

The steady-state tritium inventory of the reactor may be calculated by noting that the
rate of tritium production from D-D side reactions must balance the rate of tritium decay
into 3He. Assuming that the reactor is in operation for a fraction 5 of the time (due to

down time for repairs, refueling, etc.), the time-averaged tritium production rate will be
dn,,.) 1,
—= = —n;n(ov) . (7.2)
( dt production b D+D=T+p

The tritium decay rate will be

dn., ) g
any =t 7.3
( dt decay T ( )

where the base-e time constant 7 may be found from the half-life 7, 0 T =Ty /In2 =

5.60 - 10® sec (since 7, ,, = 12.3 years).

Thus for the operation of a D->He reactor with a plasma volume of V, the steady-state

number of tritium atoms will be

N, = lnTVn% (ov)

: (7.4)

D+D—T+4p

Neglecting the relatively small amount of D-D fusion power in comparison with the

D-3He fusion power, the total power produced by the reactor will be

Prus =mpn,,_, (ov) , V(18.3-10°)(1.6022 - 107'%) Watts, (7.5)

D+ He—

so the steady-state total mass of tritium per GW of total reactor power can be expressed
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Figure 7-4: Ion-electron energy transfer and bremsstrahlung compared with fusion power
for D-3He with various electron temperatures. (7; = 100 keV; n,/n,,_; = 1.)
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ng, (UU)D+D_,T+,, kg tritium
Nye_s (OV), t Hes GW,

M, = 478y (7.6)

For T; = 100 keV, (ov) ~ 0.13 [33]. Taking realistic power

D+D—T+p / (UU)D + He-3
losses and conversion efficiency limitations into account, it seems highly probably that a
D-3He reactor which produces 1 GW, of net electrical power would have to have a total

power of at least 3 GW,.

For a 3 GW, reactor operating essentially full-time (y = 1), one finds that in the
steady-state there will be about 190 kg of tritium, or about 1.8-10° Curies of - adioactivity.
While the reactor may not actually be operating 100% of the time, if it is to “earn its
keep” for the electric utility company which operates it, the reactor will almest certainly
be in operation for the majority of the time (n > 0.5), so the tritium levels will be at
least half of the values just quoted for full-time operation. It is important to realize that
these levels of radioactivity are only one order of magnitude smaller than those found
in a fission reactor core shortly after shutdown [24], and yet only the tritium has been
taken into account. Other sources of radioactivity in the D-3He reactor (wall activation,
etc.) would also have to be considered in evaluating the total radioactive inventory of the
reactor. (Of course, the tritium would at least have the advantage that once the reactor
was permanently decommissioned, its levels would decay far more rapidly than those of
many of the radionuclides found in a fission core.) The presence of such large amounts of

tritium would also pose a serious proliferation hazard.

Clearly the tritium levels in this type of reactor are far higher than one would like,
but the alternative of burning the tritium to produce 14 MeV neutrons which will degrade

and activate the reactor structure does not appear to be particularly attractive either.
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7.1.2 Complete Tritium Burnup

In the calculations above, it was assumed that none of the tritium was burned up in the
plasma. An estimate of the opposite case, in which all of the tritium is burned up, will

serve to illustrate how much larger the neutron power fraction might be.

D-D reactions can directly produce either 2.45 MeV neutrons or tritium; if each triton
is reacted with another deuteron it will yield a 14.1 MeV neutron. Therefore, the fraction
of the total power which is produced as neutron kinetic energy if there is complete burnup

of the produced T (and 3He) is

(Pneutrons) —
Pf us complete T burnup
{17202 [(09) 5, s ey (245 MeV) (o0}, (141 MeV)| ]
x {17202 [(00) 5, 5.0 o oo (32T +183)MeV + (00) sy (403 + 17.6)MeV]
oy (0, (183MeV)} (7.7)

Because the average reactivities for the two possible D-D reactions are nearly equal
and because D-3He reactions will still produce che majority of the total power, one may

estimate the neutron power fraction with complete tritium burnup as

( Pne.,,,m) (14.1 MeV + 2.45 MeV) (P,w,,m,,,s)
Prus ] complete T burnup 245 MeV Prus /ot burmup
7 (Pncutrons) . (7.8)
Prus ) or burnup

Thus if the tritium is not promptly removed from the plasma, the neutiun power fraction

could be up to seven times larger than the values found without tritium burnup.

More precise calculations of the neutron production from D-3He plasmas in which all
of the trivium (and also 3He) resulting from D-D reactions is burned up were performed

by using the full form of Eq. (7.7), and the results are presented as additiunal curves in
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Figures 7-2 and 7-3. Specifically, for complete burnup of the D-D reaction products, the
minimum neutron power fraction occurs for 7; = 100 keV, at which point Peutrons/Prus =
5.3% for a 1:1 fuel mixture. The neutron production could be reduced by changing to
a more 3He-rich fuel mixture, but then the bremsstrahlung power loss fraction would

increase, as has already been discussed.

For a full-size power reactor with a total power of 3 GW,, a 5.3% necutron power
fraction would represent 160 MW of neutron power, most of which would be in the form
of very destructive 14.1-MeV neutrons. If the reactor is made to be large so that the
neutron power will be spread out over a large wall area, the power density will be very
low, and consequently (because of the sophistication and “price per cubic meter” of the
hardware components) the reactor will not be particularly attractive in economic terms.
On the other hand, if the reactor is designed to have a fairly high power density, the
extensive neutron damage to the first wall and other inner components of the reactor

will necessitate frequent replacement of many of the key reactor components. Because

these inmer-components will-be highly radioactive, techinologically very sophisticated; and
possibly quite difficult to access from the outside of the reactor, the costs will again be
very high. It is unclear at present whether a “happy medium” between these two extremes
can be found, and if so then what particular reactor design would embody those optimum

qualities.

7.2 Comparison with Results for D-D and D-T

For the purpose of comparisun with the other graphs presented in this chapter and in the
previous one, the bremsstrahlung calculations have also been performed for D-D and D-T

reactors.
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7.2.1 D-D

As shown in Figure 7-5, the bremsstrahlung losses in pure D-D reactors would be quite
sizeable. For In A = 20, the losses reach a minimum of Py.epn/ Pyys = 39%; this minimum
is quite broad and flat and extends from 7; = 300 keV up to T} = 600 keV. The minimum
bremsstrahlung power loss fraction for InA = 5 is Pyrem/Prus = 23%, which occurs over
the broad range T; = 500 — 1000 keV. As was stated in Table 1.1, without the burnup of

the D-D reaction products, the neutron power fraction for D-D is Ppeutrons /Prus = 0.36.

The energy gain could be improved considerably by burning the tritium and belium-3
produced by the D-D reactions, but burnup of the tritium would cause a large increase
in the neutron power fraction (and the added 14-MeV neutrons would be much more of a

problem than the 2.45-MeV D-D neutrons).

For these reasons, if one seriously wanted to build an attractive D-D fusion reactor, it
would be desirable to make do without tritivin burning by lowering the electron temper-
ature and bremsstrahlung losses. Figure 7-6 indicates how low the electron temperature
would have to be in order to reduce the bremsstrahlung losses by a certain amount. As
with all of the other fuels which have been analyzed so far, a reduction in the electron
temperature large enough to be truly useful would produce a power flow from the ions to

the electrons comparable to or greater than the fusion power.

722 D-T

Figure 7-7 makes it clear why the fusion research program has concentrated on D-T fuecl
despite all of its shortcomings in terms of radioactivity and neutron production. The
power-producing capability of D-T is staggeringly large in comparison with that of all the
other fuels, and it achieves this performance at far lower ion temperatures. Specifically,
for In A = 20, the minimum bremsstrahlung loss of Pyrem /Prus = 0.7% occurs at T; = 40 |

keV; for InA = 5, the minimum bremsstrahlung loss also occurs at T = 40 keV, and it
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Figure 7-5: Bremsstrahlung power loss fraction for D-D with various ion temperatures.
(Te determined from P;, = Pyrem-)
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Figure 7-6: Ion-electron energy transfer and bremsstrahlung compared with fusion power
for D-D with various electron temperatures. (T; = 500 keV.)
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is Pyrem/Prus = 0.6%. As was stated in Table 1.1, the neutron power fraction for D-T is

Pneutrans/Pfus = (.80.

It is sobering to realize the implications of the difference between the miniscule ideal
losses for D-T which are shown in Figure 7-7 and the large “rcal-world” losses which have
plagued the experimental controlled fusion program for the last half-century and kept
D-T from generating net power when all losses were taken into account. The reason this
difference is so important (and depressing) is that a similarly large gap will exist between
the (far greater) ideal losses calculated for the advanced fuels in Chapter 6 and 7 and the
realistic losses which would be found if a large-scale reactor-development program were

undertaken for any of these fuels.

7.3 Summary

As D-*He reactors appear to be constrained to operate with equilibrium plasmas, it is
fortunate that net energy gains can theoretically be attained with such systems. However,
the bremsstrahlung losses even in the ideal case are far from negligible, and the reactors

will have to contend with very appreciable levels of neutron and tritium production.

For the purpose of comparison, similar analyses of bremsstrahlung losses for D-D and
D-T reactors were also conducted. The results are summarized in Figure 7-8, which may

be compared with Figure 6-9 in the previous chapter.
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Figure 7-7: Bremsstrahlung power loss fraction for D-T with various ion temperatures.
(Te determined from Pje = Pyrem; 1y, = ny.)
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Figure 7-8: Ratio of bremsstrahlung losses to fusion power versus the necessary reduction
of ion-electron energy transfer for D-T, D-D, and D-*He plasmas under approximately
optimum conditions (T; = 40 keV for D-T [with a 1:1 fuel mixture], 400 keV for D-D, and
140 keV for D-3He [with a 1:1 fuel mixture]; In A = 20 throughout.)

188




Chapter 8

Conclusions

This work has derived several fundamental limitations that apply to plasma fusion sys-
tems which are not in thermodynamic equilibrium, specifically (1) systems which have
non-Maxwellian velocity distributions for the ions or the electrons, and (2) systems in
which two particle species, such as electrons and fuel ions or two fuel ion species, are at
radically different mean energies. The need to remove the entropy generated by collisions
in the plasma produces two minimum power values required to keep such a system out of
thermodynamic equilibrium. First of all, there is a theoretical minimum power loss which
is incurred by venting the generated entropy to room-temperature surroundings by way
of a Carnot cycle. For all systems which were considered, this power loss is small enough
that the plasma can be kept far from equilibrium without allowing the minimum loss to
exceed the fusion power. The second and much more stringent constraint is the minimum
recirculating power that must be removed from the plasma, after collisional scattering
events and returned to the desired region of plasma’s phase space in order to keep the

system out of thermodynamic equilibrium.

If the recirculating power becomes much larger than the fusion power, the reactor

design will be undesirable due to practical considerations, and unless the recirculating
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power is handled with extremely high efficiencies, the reactor will probably not even be
capable of producing net power. This recirculating power constraint was found to impose

severe limitations on all types of nonequilibrium systems which were examined.

It is very important to keep in mind that the calculations determined the minimum
recirculating power required of any mechanism for maintaining a nonequilibrium plasma.
There are few presently available mechanisms for recirculating the power at all, and most
of the mechanisms which exist will have recirculating power levels far higher and efficien-

cies far lower than those calculated here for an ideal system.

8.1 Main Results of the Thesis

The results which were obtained for specific types of nonequilibrium plasma systems will

now be summarized.

8.1.1 Modification of Ion-Electron Energy Transfer Rate For Large Ra-

tios of Ion to Electron Temperatures

Corrections to the classical Spitzer energy transfer rate between ions and electrons were
calculated for the case when the ion temperature T; is significantly higher than the elec-
tron temperature T,. It was found that slow electrons are partially depleted by their
interactions with the ions, resulting in a decrease in the energy transfer in comparison
with the Spitzer rate, which assumes perfectly Maxwellian electrons. Since a thorough
calculation of this effect had never been done before, it was hoped that the “passive”
depletion of slow electrons in this manner might lead to very sizeable decreases in the
ion-clectron energy transfer rate, especially for large values of T} /T,. Although the energy
transfer was in fact found to decrease steadily from the classical value as T; /T, increases,
the reduction did not prove to be large enough to be especially useful. For example, even

for T; /T, values of several hundred, the energy transfer rate is still around 60-80% of the
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Spitzer result.

Nevertheless, the calculation did at least result in a useful expression for the energy
transfer correction factor for use by future researchers. In the case in which all of the ion
species are at the temperature T3, the correction factor to the interspecies energy transfer

rate P, was found to be

2/3
(Pie)Spitzer m; T, 7 Ne My Te

This expression is quite accurate for values of 3;(Z2n;/n.)(mp/m;)(T;/Te) less than about
50 (where m, is the proton mass), although it underestimates the energy transfer rate
for larger values of T;/T,, and one must resort to the more accurate but more complex
analytical results derived and graphed in Chapter 2. It was shown that in the event that
the ion distribution is non-Maxwellian, T; in the correction factor should be replaced by

2(E;) /3, where (E;) is the mean ion energy.

8.1.2 Power Requirements for Maintaining Non-Maxwellian Velocity

Distributions

Chapter 3 presented a calculation of the minimum recirculating power required to keep
cither the electrons or the ions of a plasma in a non-Maxwellian state, and the chapter then
applied the calculation to a number of fuels ranging from D-T to the advanced aneutronic

fuels.

In order to reduce ion-electron energy transfer (and thus also bremsstrahlung radia-
tion) for D-3He and the more advanced fuels, it would be desirable to actively deplete
most of the electrons moving more slowly than the ions, while keeping the remainder of
the electrons in an essentially unperturbed Maxwellian distribution. However, the calcu-
lations of Chapter 3 showed that without requiring much more recirculating power than

fusion power, it is not pessible to maintain such electron distribution shapes.
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An even more difficult task would be to hold the entire electron distribution in a
substantially non-Maxwellian shape, such as the isotropic, beamlike distribution with a
thermal spread which was considered in Chapter 3. Barring prohibitively large amounts
of recirculating power, these types of modifications of the electron velocity distribution

cannot even be done for D-T, let alone the more advanced fuels.

Similarly, to maintain the fuel ions in a reasonably non-Maxwellian state would require
recirculating power levels at least on the order of the fusion power for D-T and significantly

greater than the fusion power for all other fuels.

Finally, virtually all methods of alleviating these problems, such as using anisotropic
velocity distributions or employing electromagnetic fields in an attempt to remove the

collisionally generated entropy from the plasma, were shown not to work.

8.1.3 Power Requirements for Maintaining Particle Species at Radically

Different Mean Energies

The other major type of nonequilibrium plasma system which was examined was that
in which two or more of the plasma’s major particle species are at radically different
mean energies. It was shown that if the two species (ions and electrons or two fuel ion
species) are somehow actively held at significantly different mean energies, the minimum
recirculating power for an ideal system will be the interspecies energy transfer rate, since
that power must be continually extracted from the less energetic species and returned to
the more energetic species. By applying the standard interspecies energy transfer rate to
fuels ranging from D-3He to the advanced aneutronic fucls (there is no reason to use D-T
in such systerns), the minimum recirculating power required to keep one ion species at a
much lower mean encrgy than the other was shown to be significantly greater than the
fusion power. In the same types of plasmas, the recirculating power needed to refrigerate
the electrons enough to reduce bremsstrahlung losses by a useful amount was also found

to exceed the fusion power by a significant margin.
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‘Numerous _methods._of reducing_ the interspecies energy transfer rate were explored.

One possible technique, primarily of use for ion-electron energy decoupling, would be
to make the velocity distributions of one or both particle species substantially non-
Maxwellian, but as has been discussed, this cannot be done to a useful degree. Anisotropy
and several other methods were also investigated, but all of these techniques were shown
to be inadequate or impractical. While it cannot be claimed that an exhaustive search of
all possible methods for reducing the energy transfer rate has been performed, at least all
presently known techniques have been investigated to no avail, and the outlook for finding
a new method which works well enough and can be implemented in a practical fashion

does not look at all promising.

8.1.4 Outlook for Advanced Aneutronic Fuels

The most important concern with advanced ancutronic fuels (*He-*He, p-''B, and p-SLi)
is the bremsstrahlung radiation loss which occurs when the mean electron energy becomes
too large; all other losses can at least in theory be held to manageable levels by choosing
an appropriate confinement system. It was shown that even by assuming that the only
source of energy to the electrons is Coulomb friction with the ions and by incorporating all
necessary corrections for relativistic effects, variations in the Coulomb logarithm, and the
ion-induced partial depletion of slow electrons derived in Chapter 2, the bremsstrahlung

losses exceed the fusion power for all three of the advanced aneutronic fuels.

In order to reduce the bremsstrahlung losses to theoretically bearable levels (say no
more than half of the fusion power), the ion-electron energy transfer rate would have to
be reduced by at least one order of magnitude for the case of 3He-3He, at least two orders
of magnitude for p-''B, and at least three orders of magnitude for p-8Li. Nonequilibrium
plasmas cannot be nsed to help in this matter because they would require too much
recirculating power to sustain. All other known methods of alleviating this problem
have also been shown to be insufficient or impractical. The reductions in ion-clectron

cnergy transfer which are required for break-even with the advanced aneutronic fucls
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are such stunningly large figures (especially since they were obtained by using extremely
optimistic assumptions and parameters) that even if some novel yet practical method
could be devised to help, it would almost certainly not be able to help as much as would
be required. Thus there is very little hope of ever being able to produce net power with

any of these fuels.

8.1.5 Minimum Neutron Output from Feasible D-3He Reactors

Although D-3He can theoretically produce net power when burned in plasmas which
are in thermodynamic equilibrium, there is a certain limi¢ to how effectively the D-D
side reactions (with their attendant neutron and tritium production difficulties) can be
suppressed in such a system without incurring prohibitive levels of bremsstrahlung and
other losses. It was hoped that nonequilibrium plasmas could be employed either to
lower the electron temperature and thereby permit more 3He-rich fuel mixtures to be
used without excessive radiation losses, or else to lower the D temperature below the He
temperature and thus directly suppress D-D reactions. However, the large amounts of

recirculating power which would be required for these schemes make them infeasible.

Therefore, neutron production is limited by the performance attainable with an equi-
librium plasma: with minimum bremsstralilung losses of at least half the fusion power,
D-D neutrons would constitute at least 0.2% of the total fusion power, which is about one
order of magnitude lower than the same figure for fission. Realistic systems would almost
certainly have higher electron temperatures and more bremsstrahlung radiation, as well as
other losses with which to contend, so it appears that at best they would be able to attain
Preutrons/ Prus = 1% (for a 1:1 fuel mixture). Even this figure is still optimistic, because
it assumes that the tritons produced in D-D fusion events are somehow removed from the
system before they can react with the deuterons to produce extremely unpleasant 14-MeV
neutrons. If the tritons do burn up in the plasma, the neutron power fraction would be
at least Pneutrons/Prus = 5%, which is equivalent to 150 MW of neutrons for a reactor

with a gross fusion power of 3 GW,. As a further complication, if the tritium is removed
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without burning it, it will build up to sizeable steady-state levels which must be stored
safely. For a reactor with a gross fusion power of 3 GW,, in the steady state there would
be approximately 200 kg, or 2-10° Ci, of tritium. This level of radioactivity is only about
one order of magnitude smaller than that found in a fission reactor core shortly after the

core has been shut down.

The bottom line is that realistic D-3He reactors will be limited to at best a neutron
power fraction of the same order as fission reactors, and the D-3He reactors will also
produce substantial amounts of tritium. Of course, this information must be considered
together with the other properties of such fusion reactors and compared with the properties
of fission reactors. As an advantage, the fusion reactors would not produce anything like
the level of very long-lived, high-level radioactive waste which current fission reactors
generate in the form of spent fuel rods. On the other hand, considering the complexity
of the fusion problem, as illustrated by the long history of fusion research, fusion reactors
will probably be much more technologically sophisticated than fission reactors, and as a

corollary they will almost certainly be more costly in economic terms as well.

8.1.6 Summary

In order to summarize the results of the thesis and to emphasize the broad extent and
powerful implications of these findings, some specific examples of fusion systems which
have been ruled out by this work should be given. In particular, the following systems
cannot operate without having to recirculate a prohibitively large amount of power in

comparison with the fusion power:

e Systems which attempt to maintain highly non-Maxwellian particle velocity dis-
tributions without explicit means of keeping the particles non-Maxwellian despite

Coulomb collisions (eg. inertial-electrostatic confinement [19] and migma [38]).

e Systems which attempt to maintain non-Maxweilian distributions through the re-

moval and direct conversion of particles with improper velocities and the reinjection
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of particles with the correct velocity (eg. multipolar traps with electrons removed

before they thermalize [37]).

Systems which attempt to maintain non-Maxwellian distributions through the se-
lective heating of slow particles, even if the heating energy comes from a direct

converter which selectively decelerates particles that are too fast.

Systems which attempt to keep two of the plasma’s major particle species (ions and
electrons or two different species of fuel ions) at radically different mean energies by
actively cooling one of the species in any way (synchrotron radiation, active particle

removal, ion loss to fusion events, etc.).

Systems relying on the effects of having anisotropic velocity distributions (for exam-
ple, counter-propagating beams, nearly radial velocity distributions [19], or beam-
plasma interactions) in order to facilitate the maintenance of non-Maxwellian ve-
locity distributions or energy decoupling between two particle species. (The sole
exception is that D-T is reactive enough that high-energy beams of D or T can
successfully be used to boost the fusion rates in D-T reactors without requiring too

much power input to maintain {70].)

Systems relying on the effects of spatial inhomogeneities in the particle density or
the electrostatic potential in order to facilitate the maintenance of non-Maxwellian

velocity distributions or energy decoupling between two particle species.

Systems which attempt to use electric fields, magnetic fields, electrostatic waves, or
electromagnetic waves to extract collisionally generated entropy from the plasma and
hold the plasma out of thermodynamic equilibrium (barring a very small number of

rather wild ideas which have not yet been ruled out and are discussed in Appendix

E).

¢ Transient nonequilibrium burning systems which try to produce enough fusion power

before the particle distributions equilibrate. (The power flowing to make the system
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equilibrate significantly exceeds the fusion power, so the system could never be

operated for a sufficiently short time to “win.”)

Reactors burning advanced aneutronic fuels (*He-*He, p-!'B, and p-%Li) in thermo-
dynamic equilibrium (10, 17}, even if the bremsstrahlung radiation could somehow be

collected and directly converted into electrical energy at relatively high efficiencies.

Reactors which attempt to burn advanced aneutronic fuels in a plasma which is not
in thermodynamic equilibrium, such as plasmas in which the electrons or ions are
non-Maxwellian, the mean electron energy is far lower than the mean ion enerzy, or
the mean energy of one fuel ion species is substantially lower than that of the other

fuel ion species.

D-3He reactors which attempt to make the neutron power fraction much smaller
than that found in fission reactors-for example, by operating particularly 3He-rich
or by attempting to make the mean energy of the 3He ions much larger than the

mean energy of the deuterons.

Many other examples could also be given, but those presented above should serve as

an indicator of the scope of the results which have been found in this work.

8.2 Proposed Directions for Future Research

There are several directions which should be explored in the course of future fusion re-

search. First of all, emphasis should be placed on the development of reactor designs

which are capable of burning D-3He in thermodynamic equilibrium and are as attractive

as possible; one of the main priorities of this research area should be the expansion of

the currently woefully deficient experimental knowledge base concerning conditions ap-

propriate for ignited D-3He plasmas. Workable and efficient direct electric converters

which could function with such reactors should also be seriously pursued. In addition, it

would be desirable to explore the few remaining approaches which, although admittedly
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quite speculative, may yet allow nonequilibrium plasma fusion and advanced aneutronic
fuel reactors to become a reality (see Appendix E for more details). Similarly, it would
be prudent to search for radical new physics ideas which could fundamentally improve
the fusion problem on a nuclear level (as has been attempted with proposals for muon-
catalyzed [105, 106] and antiproton-catalyzed [107] fusion, spin-polarized [106, 108] and
nuclear-shape-polarized [107] fusion, fusion in ultra-dense matter [109], and coherent neu-
tron transfer reactions in solid state lattices [110]) and yet would demonstrably work well

enough that they could serve as the basis for large power reactors.

As a final point, it is very important that the ultimate goal of this entire field of
research should not be forgotten. The stated goal of fusion for over half a century has
been to produce large quantities of clean, safe, affordable, and essentially limitless power
for the world. If, after a detailed examination of all foreseeable approaches to fusion, it
does not seem at all likely that the technologically feasible types of fusion reactors can
meet this goal, then energy research should instead concentrate on improving other power

generation methods such as fission reactors, solar energy conversion, and fossil fuels.
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Appendix A

Effect of Non-Maxwellian or
Anisotropic Ion Velocity
Distributions on Averaged Fusion

Reaction Rates

A.1 Comparison of Average Fusion Reactivity Values for
Maxwellian Ion Distributions and for Isotropic Mo-

noenergetic Ion Distributions

At several points in the thesis it has been stated that the average fusion reactivity (ov) fus
for a given mean ion energy is essentially the same regardless of the shape of the ion
velocity distributions, provided that the ion velocity distributions are isotropic and that
the two fuel ion species (if there are two) have the same mean energy. This assertion will

now be explicitly proved.
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First of all, an expression for the average fusion reactivity of a plasma with monoen-
ergetic, isotropic ion distributions will be derived. This case represents the extreme limit
of non-Maxwellian ion distributions. Then the average fusion reactivity as a function of
the mean ion energy will be evaluated for several fuels of interest and compared with the
results for purely Maxwellian ions. These two extremes should serve to give an idea of how
much variation in the reactivity one might find in examining a wide variety of plasmas

with different isotropic ion distribution shapes.

The fusion cross section as a function of energy can be written as [30, 33, 111]

, AN 4 111
0 fus(E) = 107 As + Aal( Ay AE_E) +1] cm?, (A1)
) E [exp(A1/VE) = 1]

in which E is the kinetic energy (in keV) of the lighter ion in the frame in which the
heavier ion is at rest, and the Duane coeflicients 4; through A5 for various fuels are given

in Table A.1.

" Reaction " 4, | Ao I A3 I Ay ] As "
T(d,n)*He || 45.95 | 50200 | 1.368-10~2 | 1.076 | 409
D(d,p)T 46.097 | 372 | 4.36-107% |1.220 | ©
D(d,n)®He || 47.88 | 482 | 3.08-10"7 [ 1.177 ] 0O
SHe(d,p)*He || 89.27 [ 25900 | 3.98-10~3 [ 1.297 | 647

Table A.1: Duane coefficients for calculating the fusion cross sections for T(d,n)*He,
D(d,p)T, D(d,n)*He, and 3He(d,p)*He reactions using Eq. (A.1). (Coefficients are from
Refs. [30, 33].)

In the laboratory frame of realistic plasmas, both ions are moving, so one must change
reference frames in order to find the proper value of E. If it is assumed that the 71 ions
are the lighter ions of the two species and that 6 is the angle between the velocity vectors

of colliding ions of the two species, then E is found to be

1 )
E = §mﬂ|vi1 - v52|2
1 .
= §m,~1 (v,-?, + vf? — 2vj1vi0 COS ()) . (A.2)
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By making the further assumpticn that both ion species are monoenergetic at the

same energy E; (in keV) and by defining u = cos 6, the energy becomes

E=E; (1 L R W s ) . (A.3)
mi2 m;2

The relative collision velocity Av between the two ions may be found from E:

Av=1/%=4.377-107‘/—E—'ﬂ o (A.4)
m; Hi1 sec

where the subscripts on E indicate the change of units and the ion mass has been written

in terms of the proton mass, p; = mj; /mp.

For monoenergetic but isotropic ions, the fusion reactivity (in cm3/sec) averaged over

all angles is

m
s = 3 /0 d8 $in0 0 1us(E) Av

1
_ .;. / du 0 jus(E) Av . (A.5)
-1

Using the Duane coefficients in Table A.1, Eq. (A.5) has been used to calculate the val-
ues of the average fusion reactivity for T(d,n)*He, D(d,p)T, D(d,n)®He, and 3He(d,p)*He
reactions. In each case, the results have been compared with the average reactivity of
a Maxwellian ion distribution with the same mean ion energy (or temperature T} =
(2/3) (E;)), as shown in Tables A.2 through A.5 and Figures A-1 through A-4. As may
be seen from the tables and graphs, for a given mean ion energy, the values of (ov) fus fOr
each reaction are very similar for Maxwellian ions and for monoenergetic ions (to within
roughly 10 — 30%) when the ion energies are in the regime of interest for fusion reactors.
The peak values of the reactivity for each case are even closer to each other. These results
are in agreement with those of similar calculations which have been performed by Nevins
[87) and Santarius [20]. The effect of these corrections on the calculations presented ear-

lier in the thesis is quite small in comparison with the magnitude of change which would
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be necessary to alter the fundamental conclusions about the inviability of nonequilibrium

fusion plasmas and very clean reactors.

The effects of non-Maxwellian ion distributions on other reactions have not been ex-
amined, since suitable Duane coefficients could not be found. (The fit for the p-!'B cross
section given in [33] does not appear to be that good, in light of more recent data [34, 35].)
However, an analysis of other reactions should lead to the same conclusion: for isotropic
velocity distributions in which the two ion species (if there are two) have the same mean
energy, even very drastic changes in the velocity distribution shape (eg. monoenergetic
vs. Maxwellian) caus ' only smail corrections (~ 10 — 30% at a given energy, even smaller
in terms of the maximum for each curve) in the average fusion reactivity for the temper-
ature regimes of interest. Such small corrections are not enough to alter the conclusions
stated earlier in this thesis, where the recirculating power for nonequilibrium plasmas and
the bremsstrahlung losses from advanced aneutronic fuels were shown to be too large by

factors of two or more.

The results which have been obtained thus far in this appendix should be used to clear
up one possible point of confusion. In the past, researchers have contended that nuclear
elastic scattering or knock-on processes could significantly improve the fusion reactivity by
transferring energy from fusion products to fuel ions and thereby making the ion velocity
distribution deviate somewhat from a Maxwellian shape [10, 12, 88, 89, 90]. Yet as has
been explicitly shown here, even drastic deviations of the ion distribution shape from
equilibrium (in the present case, a monoenergetic distribution) only affect the reactivity
for a given mean ion energy by a small amount. Presumably a distribution which is closer
to thermodynamic equilibrium would have a reactivity which deviates from the Maxwellian
quantity by an even smaller amount. Thus one is led to conclude that processes such as
nuclear elastic scattering enhance the fusion rate mainly by boosting the mean energy of
the fuel ions, not primarily by altering the ion distribution shape. Indeed, the literature on
nuclear elastic scattering generally compares the reactivity of Maxwellian ions with that

of an ion distribution which is the sum of a Maxwellian distribution at the same mean
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T; (00) 1,5 [cm®[sec] (00) fys [cm®/sec]
[keV] || for Maxwellian ions | for monoenergetic ions
1 5.484 - 10~21 3.359 - 10~23
2 2.628 - 10~ 19 1.460 - 10~20
3 1.713-1018 2.199 .10~ 19
5 1.289-1017 3.474-10718
7 3.980 - 10~ 17 1.563 - 10~ 17
10 1.089 - 10~16 6.195- 1017
20 4.243 - 10710 4.733-10"16
30 6.653 - 1010 8.620- 1016
50 8.705 - 10~10 1.020 - 10~
70 9.002 -10°16 9.437-10°16
100 8.488 - 1016 8.048 - 1016
200 6.278 - 1016 5.405 - 10~16
300 4.954 - 10716 4.280 - 1016
500 3.668 - 10~ 10 3.326 - 10716
700 3.087 - 1010 2.919.10°16
1000 2.672-10°10 2.620 - 1016

Table A.2: T(d,n)*He reaction: comparison of values of (ov) ,, vs. T; = (2/3) (E;) for a
Maxwellian ion velocity distribution {33] and for a monoenergetic, isotropic ion velocity
distribution. See also Figure A-1.

energy and a high-energy tail which is not included in computing the mean energy. If one
were to compare ion distributions in which the overall mean energy for each distribution

is the same, the fusion rates would be much more similar.

A.2 Fusion Reactivity Values for Systems Operating Pre-

cisely at the Peaks of the Reaction Cross Sections

It is also of interest to determine the effect of making essentially all of the ion collisions
occur at the optimum net collision velocity corresponding to the peak in the reaction
cross section. Hypothetically this situation might be arranged by having two linear,

counter-propagating ion beams collide with each other or by utilizing a plasma containing
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T; (00) 1y [cm®/sec] (ov) s [em® [sec]
[keV] || for Maxwellian ions | for monoenergetic ions
1 8.300- 1023 1.230 - 10—%4
2 2.820- 10721 2.939 - 10—%2
3 1.501-10~20 3.294 10721
5 8.774-10~%0 3.685-10~%0
7 2.346 - 10719 1.323-10°1°
10 5.816 - 10~ 19 4.111-10°1
20 2.434-10718 2.219-10°18
30 4.757-10"18 4.665 - 10718
50 9.660 - 10~ 18 9.894-10°18
70 1.444 - 1017 1.492.10°17
100 2.120 - 10°17 2.187 - 1017
200 4.136 - 10777 4.211-107"
300 5.850 - 10~ 17 6.086 - 10~17
500 8.178 - 1017 9.371-10"17
700 9.240 - 1017 1.087 - 10~ 16
1000 9.508 - 1017 1.029 - 10~ 16

Table A.3: D(d,p)T reaction: comparison of values of (ov);,; vs. Ti = (2/3) (E;) for a
Maxwellian ion velocity distribution [33] and for a monoenergetic, isotropic ion velocity
distribution. See also Figure A-2.
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Ti [ (o0}, emfsed] | (ov)y,, [cm®/sec]
[keV] || for Maxwellian ions | for monoenergetic ions
1 6.921 - 10~23 7.749 - 10~%°
2 2.600 - 102! 2.294 - 10~2%2
3 1.453 - 10~%0 2.825.10~21
5 8.942 -10~20 ~ 3.473-10~20
7 2.461-10~19 1.311.107 1
10 6.262 - 10~ 19 4.257-10"1°
20 2.725-10"18 2.447.1018
30 5.412-10"18 5.275-10"18
50 1.112- 10~ 1.141-10°17
70 1.663 - 10~ 17 1.730- 1017
100 2.431-10°17 2.533.10-17
200 4.625- 10717 4.746 - 10~17
300 6.498 - 10~17 6.641- 1017
500 9.466 - 10~ 17 1.013 - 10716
" 700 1.136 - 10716 1.295 - 1016
1000 1.267 - 10~16 1.469 - 10-16

Table A.4: D(d,n)*He reaction: comparison of values of (ov) fus V8- Ti = (2/3) (E;) for a
Maxwellian ion velocity distribution [33] and for a monoenergetic, isotropic ion velocity
distribution. See also Figure A-3.
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| T't (Uv)jus [cm3/'sec] (UU)]us [cm3/sec]
[keV] || for Maxwellian ions | for monoenergetic ions
1 3.023.10-% 2.622 - 10732
2 1.420-10~% 3.326 - 10~%7
3 2.751 - 10~%2 6.086 - 10~%
5 6.660 - 10~2! 1.140 - 10~%2
7 4.090 - 10~%0 1.863 - 102!
10 2.273.107 1 2.279 - 1040
20 3.791-10°1¢ 1.041-10°18
30 1.452 - 10°Y7 6.055-10~18
50 5.441 - 10~ 17 3.887-10"17
70 1.017 - 10-16 1.045- 1016
100 1.614-10°16 2.082-10°16
200 2.437-10°16 2.788 - 1016
300 2.500 - 1016 2.501 - 1016
500 2.258 - 1016 2.049 - 10°1°
700 2.029 - 10~1¢ 1.813-10°1¢
1000 1.805 - 1016 1.639 1016

Table A.5: 3He(d,p)*He reaction: comparison of values of {ou) fus V8- Ti = (2/3) (E;) for
a Maxwellian ion velocity distribution [33] and for a monoenergetic, isotropic ion velocity
distribution. See also Figure A-4.
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(ov) fus
[cm®/sec]

10~ (-15) 1

Maxwellian
4

107 (-16) 1

v .
monoenergetic

107 (-17) 1

10. 100. 1000.
T; [keV]

Figure A-1: T(d,n)*He reaction: comparison of plots of (ov) fus V8- Ti = (2/3)(E;) for a
Maxwellian ion velocity distribution [33] and for a monoenergetic, isotropic ion velocity
distribution. See also Table A.2.
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(av)jus

[cm3/sec]
10~(-16) t
10~ (-17) +
Maxwellian
10~ (-18) + )
¥ monoenergetic
107 (-19) -

10.

Figure A-2: D(d,p)T reaction: comparison of plots of (gv) s, vs. T;

100.

T; [keV]

1000.

(2/3) (E;) for a

Maxwellian ion velocity distribution [33] and for a monoenergetic, isotropic ion velocity

distribution. See also Table A.3.
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(av>fus

[cm? /sec]
10~ (-16) §
10~ (-17) ¢
Maxwellian
10~ (-18) } )
107 (-19) ¥ /~monoenergetic

10. 100. 1000.
T, [keV]

Figure A-3: D(d,n)®He reaction: comparison of plots of (ov) fus V8- Ti = (2/3) (E;) for a
Maxwellian ion velocity distribution [33] and for a monoenergetic, isotropic ion velocity
distribution. See also Table A.4.
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(av? fus
[cm?/sec]

10~ (-16) 1

Maxwellian
4

10~ (-17) }

»
monoenergetic

10~ (-18) ¢

50 100. 500. 1000.
T; [keV]

Figure A-4: *He(d,p)*He reaction: comparison of plots of (ov) ,,, vs. T; = (2/3) (E;) for
a Maxwellian ion velocity distribution [33] and for a monoenergetic, isotropic ion velocity
distribution. See also Table A.5.
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monoenergetic, high-energy ions of one fuel species and essentially motionless ions of the
other fuel species. (Except for D-T, which is reactive enough to permit a certain degree
of success with such schemes, these methods cannot be implemented because of the large
recirculating power requirements they would entail, as discussed in Chapters 3 and 5.
However, it is worthwhile to check how much the fusion rate could be enhanced if such

methods could be employed successfully.)

For D-T reactions with Maxwellian ions, the maximum value of (ov) fus 18 9.01- 10-16
cm®/sec and occurs for T; = 65 keV [33]. If the reactivity is computed for monoenergetic
deuterons interacting with essentially motionless tritons (or vice versa — interchange of the
two ion species does not affect the reactivity), then the maximum value of (ov) fus 18 1.67-
107! cm3/sec and occurs at a deuteron energy of 130 keV, which is also approximately

the energy corresponding to the peak in the fusion cross section [33].

Similarly, D(d,p)T reactions achieve a peak Maxwellian (ov) ,,, value of 9.53 - 10~!7
cm?®/sec for T; = 900 keV [33). For monoenergetic deuterons striking a target plasma of
essentially motionless deuterons, the maximum beam-plasma {(ov) fus value is 1.58 - 10~16
cm3/sec and occurs for an incident deuteron energy of approximately 3 MeV [33]. This
energy is only slightly higher than the energy corresponding to the peak in the reaction

cross section, which is about 2.5 MeV.

D(d,n)3He reactions have a maximum Maxwellian-averaged reactivity of (ov) fus =
1.27 - 107'% cm3/sec at T; = 1.5 MeV and a peak beam-plasma reactivity of (ov) fus =
2.08-107!% cm3/sec for 4-MeV deuterons striking a target plasma of motionless deuterons
[33]. Again the optimum beam-plasma energy lies near the energy corresponding to the

peak in the reaction cross section, which in this case is approximately 3.5 MeV.

For D-3He reactions with Maxwellian ions, the maximum value of (ov) fus 18 2,51 10-16
cm3 /sec and occurs for T = 250 keV [33]. If the reactivity is computed for monoenergetic
deuterons interacting with essentially motionless 3He ions (or vice versa), the maximum
value of (ov) fus 184.73- 10~'% cm?/sec and occurs at a deuteron energy of 450 keV, which

is also the energy of the peak in the fusion cross section [33).
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For p-'!B, the Maxwellian-averaged value of (ov) ,; at T; = 1 MeV (where the avail-
able graphs end [34, 35]) is 3.65 - 107!% cm3/sec and is still rising as the temperature is
increased further. According to Ref. [35], the maximum cross section is approximately
8-10~25 cm? and occurs for protons with an energy of roughly 620 keV striking a plasma of
essentially motionless boron ions. Based on the results for the other fuels discussed above,
this energy should also correspond to the approximate location of the peak beam-plasma
reactivity, yielding a maximum (ov) ;,,; = 8.7 - 107! cm3/sec for 620-keV monoenergetic

protons and very low-energy boron ions.

The 3He-3He Maxwellian-averaged reactivity is still rising with increasing ion temper-
ature at T; = 1 MeV (where the available graphs end [34, 35]), where it is (ov),; =
1.25 - 1076 cm3/sec. The peak beam-Maxwellian reactivity is difficult to compute, and
would be rather academic even if it were known, since the peak in the reaction cross
section occurs for 3He ions with an energy of greater than 30 MeV incident on a target
plasma of motionless 3He ions [35]. However, one may calculate the reactivity for two
monoenergetic linear beams of 3He ions colliding head-on such that the energy of each
beam is 1.5 MeV, the same value as the mean ion energy in the Maxwellian case just
discussed. Such a colliding beam arrangement is equivalent to a beam-target system with

a beam energy of 6 MeV, so the cross section is approximately 1.5-10725 cm? [35], yielding

a reactivity of (ov),, = 5.1 10716 cm3/sec.

From this analysis, one may conclude that if all of the ion-ion collisions in a system
could be made to occur at the peak in the reaction cross section, the value of (av) ,,
could be enhanced over that of the Maxwellian-averaged case by a factor of between
approximately 2 and 4, depending on the particular fuel involved. Unfortunately, the
exploitation of this mechanism for boosting the fusion rate would require the maintenance
of highly non-Maxwellian ion distributions, strong velocity anisotropy, and/or energy
decoupling between the two ion species. As has been shown in Chapters 3 and 5, these

things cannot be accomplished to even a moderate degree for fuels other than D-T.
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Appendix B

Useful Integrals

This appendix contains integrals which are useful at several points in the thesis, but
especially in Chapter 3. Although one might look them up in a table of integrals or work
them out by oneself, these integrals are used with such wild abandon in the thesis that
it has been decided to provide them here for the convenience of the reader who actually

feels inclined to check some of the calculations which have been presented.

B.1 Integrals from 0 to oo

00
/ dwe™" = 4 . (B.1)
0
[ o]
A dwwe™"" = % . (B.2)
(o e]
A dww?e " = ? . (B.3)
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B.2 Integrals from 0 to x

T
/ dwe™™" = 4erf(w) .
0

z 2 2
/ dwwe™ = —=[ —(e™")dw
0

:z: 2 —w? —w?
dwwe = —— [ w—(e")dw
0

T
A dwwde ™ = =2, w -‘-i;(e"‘” Ydw
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4 —w?

duww’e

0

B.3 Integrals from

dwe

dwwe

dwwie

T

—-w

—w?

2
—w=

I
—l/ wa-i- e ") dw

3e~% 2/ dww?e™ "’

2
% [ (x + ) / dwe™ "’2]
1 2 3 __2.2 3\/_ .
5 [ T (:r + 5) e " + Terf(a,)] . (B.10)
to oo
= / dwe™" — Idwe"”2
= % (1 —erf(z)] . (B.11)
= /oo dwwe™"" — /x dwwe™""
0 0
_ %e 2 (B.12)
0 2 z 2
= / dww?e™v --/ dww?e ™"
0 0
= 4 [1 —erf(z)] + %:zze-'t2 . (B.13)

o0 3 2 T 3 2
/ dww’e™™ —/ dww’e™?
0 0
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= -;— (:1;2 + 1) e = . (B.14)

00 A 2 1) 4 —w? T 4 2
/ dwwe™ = / dww®e ™™ — / dww’e™™
T 0 0

Wi —at@)+ e (4 3) e Bay)

B.4 Composite integrals

In the integrals below, the definitions u = v/, u, = v,/vt, and w = u — u, have been

made.

o0 2 0o
2 (v—w)* _ 3 2 o — r \2
/0 dvv exp{— 2 } = v} /0 duu exp{ (u— up) }

t

3% 2 —w
= dw(w + u,)°e

—u,
o0 2 Uo 2 o0 .2
=3 dww?e ™™ + dww?®e™" + 2u, dwwe™"
1o 0
Up
o0 2 Uo 2
+u§/ dwe™ +u3/ dwe“’]
0 0

_ _é:vt {(2u +1)[1 + erf(uo)] + j_uoe } . (B.16)

—v.)2 0o
/ dov? exp{ (v v") } = vf/ duu® exp{—(u—uo)z}
Uo
o0
= vf/ dw(w? + 2upw + u)e™?
0

= ?u? (2u§ 14y (B.17)

L),
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U
oo - 2 00 _ 2
= / dvv?exp { — (w ;O) dvv?exp{ — (v 200)
0 Ut Vo Ut
™ 2 -
= VT {(2u3 + Derf(ug) + =z (e - 2)} . (B.18)

(o ¢]
= vf’/ dw(w + u,)'e™v
5 [ 4 3, 62,2 1 43 4y, —w?
= v,/ dw(w® + du,w” + 6usw” + dujw + ug)e™ "
s 4 —w? (" 4w 3 —w?
= v} { dww®e™ +/ dww®e™ +4uo/ dwwe™"
0 0 Uy
o0 Uo (o ¢]
+6u2 ( / dww?e ™™’ + / dwwze_"’z) + 4ud / dwwe™"*
0 0 Uo
(o o] Uo
ul (/ dwe™™" + / dwe"“’z)}
0

=—-2\/Ev,5{<u + 3u? + )[1+erf(uo)]+\/— v (u‘2,+g)} '

(B.19)

00 — 2 00
dvv® exp {—(L,_,Lo)—} = v / duu? exp —(u - u,,)2}
Uo

[o o)
= v/ dw(w + u,)e”
0

2

[o.0]
= / dw(w* + du,w? + 6u2w? + 4udw + ul)e?
0

= gvf {(ug +3ul + %) + %uo(ug + 1)} . (B.20)
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= 41}? { (uﬁ + 3u? + %) erf(u,) +
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Appendix C

Algebraic Expressions for the

Collision Operators from Chapter

3, and Other Things That Go
Bump in the Night

In this appendix there will be presented rather ghastly looking but nonetheless analyt-
ical algebraic expressions for the collision operators and other functions relevant to the

calculations discussed in Chapter 3.

A number of model velocity distributions have been used to perform the calculations
for this thesis. Each distribution has a section in this chapter devoted to it, and the
sections go in order of increasing complexity of the distribution functions. The first
model distribution function to be considered is actually one which is simpler than any
of the distributions which were used in the main body of the thesis. As a result of this
relative simplicity, all of the work for this first distribution can be done by hand (up

to the point of the final numerical integrations to get the recirculating power levels and
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entropy generation rates). Maple was used to manipulate all of the more complicated

distributions.

The reader should note that all quantities such as K, (E), and (8f/8t)co must be
recalculated for each distribution function, so expressions given for them in the case of

one distribution should not be mistakenly applied to a different distribution.

C.1 Simple Isotropic Beamlike Distribution

C.1.1 Distribution Function

One of the simplest non-Maxwellian velocity distributions which could be considered is
an isotropic, beamlike distribution that has the same “thermal velocity” v; on each side
of the velocity v, of the peak and that does not include a term to account for the tail of

the unseen peak on the negative side of v = 0:

fv) =nkK, exp{—l(qz—;ov—m} = nkK, exp{—(v—:)—t;ﬁ—)—%} , (C.1)

in which K is a constant included to normalize the distribution, and the “thermal veloc-

e Lty (C.2)
m

In dealing with this distribution, it is frequently convenient to switch to dimensionless

ity” has been defined as

velocity variables u = v/v, and u, = v, /v;.

One may find K; from the normalization condition:

Ui

oo )2
n= / dvarv®nk exp {—@-—:L)} . (C.3)
0
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2 2
3/2,3 2 , e YA )
K- v {(2uo + 1)[1 + erf(u,)] + ﬁuoe } . (C.4)

It may be seen that in the Maxwellian limit, u, = 0, K reduces to its usual Maxwellian

value, yielding

m \%2 mu? n v?
f(v)_n(21rkB'I;,) exp T —_11'3/21)? exp —E . (C.5)

In the opposite limiting case, that of monoenergetic particles with u, > 1, one finds

that

1 —v,)2
f(v)=:1—1:)—g D exp{-i"—v;’—)}. (C.6)

As vy — 0 for truly monoenergetic particles, this expression for the distribution func-

tion assumes its proper limiting form,

n
2
4w}

f(v) = (v —1v,) . (C.7)

C.1.2 Mean Energy

The mean energy of the particles is defined to be:

%/ﬂw dvdmy? (—;-mv2> f(v)

1 [ 1 (v —1v,)?
= = dvdnv? [ = 2) = ol
n/o vdnv (2mv nKlexp{ o7 }

3 Up _y2 5
= T2r*’v}K, {(u;‘, +3ul + Z) (1 +erf(uo)] + —Ze™ <u§ + 5)}
{(w8 + 3 +3) (1 + erf(uo)) + 2e (u2 + 3)]

{(U?, + %) (1 + erf(u,)] + A\/‘#e““g}

Il

(E)

(C.8)

- o

It is satisfying to note that in the Maxwellian limit, u, = 0, the mean energy reduces

to its usual value, (E) = (3/2)T,. Similarly, in the monoenergetic limit, u, > 1, the mean
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energy also assumes its expected value, (E) = mv2/2 = E,

C.1.3 Depletion of Slow Particles

It is useful to note how heavily populated the slow-velocity region of the distribution func-
tion is compared with the case of a Maxwellian distribution with the same mean particle
energy. (In other words, the Maxwellian has a temperature Thsaz. = 2(E) /3, where
(E) is the mean particle energy of the non-Maxwellian.) Dividing the non-Maxwellian

distribution function by the Maxwellian one, it is found that

flv=0)

SMazwettian(v = 0)
_ V2e ¥ {(uf, + 3u2 + %) (1 + erf(u,)] + %e‘“g (uﬁ + %) }3/2
39/2 { (u3 + §) (1 + ext(uo)] + e} '

(C.9)

C.1.4 Collision Operator

The Fokker-Planck collision operator for this distribution function may be written (with

W= U— Uy, U =0/, and u, = v,/v4),

8f\ _ 16n%(Ze)* In An?K?
<§) = 3m2 C(u,uo) (C.10)

in which C(u,u,) has been defined as

Clu,u,) = 2 (2 2+——1) u3,/ du'ute"”

+2e_"’ (2 2—-22—1)/ du'u'e ™"

e 2 W 2 _
w 2/ dulul2e w +3e 2w?
u

= ¢’ {(zw + ; - 1) = [\/7? (u:‘, +3uj + %) (erf(w) + erf(u,))

3
- (w3 + dwu, + qug + -2—w + 4u2 + 4u,,> e v
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+ (ug + g) uoe_“gl
Bw (2, ] |

o (u?, + 5) Vi (erf(w) + erf(uo))

+ (2w2 o 1) o /7 (1 — erf(w))
u

+ (2102 + ﬁ + buow _ 2w + 2) e~ — 3u°we"“g} . (C.11)

u? u? u u?

For a Maxwellian distribution with u, = 0, C(u,0) = 0 for all u, so (8f/0t)car. = 0
for all u, as expected; a Maxwellian distribution is a stationary solution of the Fokker-
Planck equation. Even for non-Maxwellian distributions, it can be shown by numerical

integration that this collision operator conserves particles and energy, as required.

C.1.5 Minimum Recirculating Power

The minimum recirculating power required to maintain the non-Maxwellian distribution

may be found by using the method discussed in Chapter 3, so that

=™ 2) (L2) (&
Precire = /0 (dv47rv ) 2mv )., (C.12)
where the “dividing velocity” vq is defined as being finite and satisfying the relation:
U4 af
2 — =
/0 (dv47rv ) (at)wl 0. (C.13)

The usual definition of the like particle collision time is of use here:

vm < E >3/2
2V37(Ze)inln A
m*v}

4v/67(Ze)inln A

3/2
X (Ug + 3u? + %) (1 + erf(u,)] + %e_ug (u?, - %) / (C.14)
(w3 +5) [0 + erf(uo)) + Bze~d -

Teol
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Upon numerical integration of Eq. (C.12) for the particular non-Maxwellian distribu-

tion of interest, it is found that the recirculating power may be expressed as

Precire = Rll (Uo/'vt) (’U_o) ﬂ N (C°l5)

Ut Teol

where R} (u,) is a slowly varying function as given in Table C.1.

Luo | Riuw) ]| [ uo | Ri(uo) ]
0.01 | 0.0634 3 | 0.148
0.1 | 0.0657 4 | 0.168
0.5 | 0.0764 5 | 0.183

1 {00913 10 | 0.221
L5 | 0.107 30 | 0.253
2 | 0122 100 | 0.265

Table C.1: Selected values of the function Rj(u,) from Eq. (C.15) for the recirculating
power required to maintain an isotropic, beamlike velocity distribution.

Comparing this function R} with the analogous function R given in Table 3.2 for an
isotropic, beamlike function in which the tail from the distribution peak on the negative
side of v = 0 is taken into account, it may be seen that the two functions are essentially

identical except at small u,, where the additional term can actually make a difference.

C.1.6 Entropy Generation Rate

The rate of entropy generation per volume due to particle collisions is given in [63] as

% = —/Ooo dvdmv? In [ (v)] (%) L (C.16)

For the distribution function under consideration, the entropy generation rate is
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ds ® do? 3_f) (Chukc?) PR
i 47r‘/‘0 dvv (6t co[.[ 72 In(nkK,)

oo
= 411'1)?/ dun’w? (g)
0 ot col.

1.3 4.2 2,3 roo
64m%(Ze) n2ln AKjvy; / durw?C(u, uy) . (C.17)
3mn 0

The entropy generation rate can be cast in a dimensionless form:

3/2
ds/dt 23/2 {(uj + 3u2 + %) (1 + erf(u,)] + ﬁ\/‘;r—-e"‘g (ug + %)} /
- 7/2
n/Tcol 33/2\/7—‘- { (ug + %) [1 + erf(uo)] + %e—ug} /
oo
x / dun®w?C(u, u,) . (C.18)
0

This expression was integrated numerically with Maple. The result of the numerical

calculation is that the entropy production may be described by the equation,

ds

95 _ Ri(ve/wr) (ﬁ)zl (C.19)
dt T el Ut Tcol’ '

in which Rj(u,) is a slowly varying function whose values are given in Table C.2.

Except at small values of u,, where the presence or absence of the term corresponding
to the tail of the unseen distribution peak on the negative side of v = 0 makes a difference,

this function R} is essentially identical to the analogous function Ry given in Table 3.3.

C.2 More Complex Isotropic Beamlike Distribution from

Chapter 3

The beamlike but isotropic distribution which was considered in Chapter 3 was more com-

plex than the one which has just been examined. In particular, the beamlike distribution
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luo | Ro(uo) | | uwo | Rb(uo) |

0 | 0.117 4 0.310
0.1 | 0.123 ) 0.332
0.2 | 0.129 10 0.390
0.4 ] 0.142 30 0.447
0.6 | 0.156 100 0.471
08| 0.169 300 0479

1 0.183 1000 | 0.481
1.5 | 0.214 3000 | 0.482

2 | 0.241 10000 | 0.482

3 | 0.282 30000 | 0.482

Table C.2: Selected values of the function Rj(u,) from Eq. (C.19) for the entropy gener-
ation rate of an isotropic, beamlike velocity distribution.

in Chapter 3 included an extra term to account for the tail of the unseen peak on the

negative side of v = 0:

f(v) = nk, {exp [—(v—v#

t

+ exp 2
t

_M] } . (C.20)

This corresponds to the distribution in Eq. (3.11) for the special case of vy = vis = vyy.

Chapter 3 gave the normalization, mean energy, recirculating power, and entropy
generation rates for this distribution function. However, because of length constraints
that chapter did not give an explicit algebraic result for the collision operator appropriate

for this distribution, so the collision operator will be given here.

The collision operator has been expressed in an essentially dimensionless form (apart
from the dimensions of the velocities) by multiplying it by 7., /n. The results presented in
this section and in the following sections were obtained by using Maple. (The author was
not quite crazy enough to do these calculations by hand.) In Maple-ese, the subscripts are
not lowered, so one must make mental translations such as v0 = vy, vts = v, VEf = vy,
and vt = v;. The strange-looking factors like %1 stand for short expressions which are

given at the end of the equation.
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For the faint of heart who would rather look at pictures, graphs of this collision

operator for various parameters are given in Figures C-1 through C-3.

(50) (3) 5

(-2t) (-2e5t)

5—;300 (10 vt vle +10vt’v0e —8ut3 w03 %1
-9 (v+vo !2 _9 (v—v0 22
—20vt500%1+4vt3003e( vt ) -8 vte( vt )

—-6v vtse(-2 v:::zo 2) +8v° vte(‘2 "t‘:zo 2) — 16 vt® v3e(~2 m:‘%,g-ﬁ)
(v—-v !2 (v-v !2 v-u0)?
+6v ut5e(—2 i ) + 16 vt® v3e(_2 i ) +4 vt vOSe(—i’ LTP_)
(vt !2
+ Se(— t"o ) v8 /merf (v -;tUO)
+ 88(_ it 2) v® v0® /7 erf (v +vtvo)
+ 4e(- K 2) v3 v0 vt? merf (v -:tv{))

v0? v? vt? /7 erf (v ;tvO)

)
)
vl

- 36e(- gu_;::g_)i) v0% v? vt? /7 erf (v + vO)
+ 16e(' %gﬁ) 004 v? / erf ("’ + ”0)
- 16e(— Sv_;:!o'ﬁ) w04 02 /T erf (v +Utv0)
+ 6ve(— it’_J:ﬁ’o—ﬁ) vt v0 /7 erf (” ;t"o)
+ 163(" ‘"—tl’z"-ﬁ) 004 v? /T erf (v :)tvO)
+ 6e(— ‘u—ﬁ'gﬁ) 2 vt/ erf (v +vtv0)
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228



0.005

0 2 4 6 8 10 1 14

(0f/6t)col /(n/TCOI)

v [arbitrary units]

-0.005

-0.01¢

-0.015

Figure C-1: Collision operator appropriate for the distribution function of Eq. (3.11) with
v, = 10 and vy, = vgy = 1 (velocities in arbitrary units).

229



(0f/0t) o /(7] Teot)

0.067
0.047
0.02;

U f\\\_///////fﬁ 3 4

v [arbitrary units]

Figure C-2: Collision operator appropriate for the distribution function of Eq. (3.11) with
vo = 1 and vgs = vy = 1 (velocities in arbitrary units).
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0.03¢

(0f/at)col /(n'/Tcol)

o[ N 3 3

v [arbitrary units]

_ Figure C-3: Collision operator appropriate for the distribution function of Eq. (3.11) with

v, = 0.5 and vy = vy = 1 (velocities in arbitrary units).
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Complete Distribution Function of Eq. (3.11) with

Arbitrary Values of v,, v, and v, f

The distribution which was used in the previous section was a special case of the velocity
distribution given in Eq. (3.11). The collision operator can also be worked out for the

more general case in which v,, vy, and v,y have arbitrary values, so that the distribution
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is

nK {exp[—(v — v5)%/vZ] + exp[—(v + v5)? /v}]} for v < v,
flv) = (C.21)
nK{exp[—(v — v,)2/v};] + exp[—(v + v,)2/v}]} for v > v,,

A graph of the collision operator for the particular case in which v, = 3, v = 1, and
vy = 9 is shown in Figure C-4 to illustrate the qualitative appearance of the collision
operator for a class of distribution functions which is of particular interest, as described

in Chapter 3.
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-0.008
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Figure C-4: Collision operator appropriate for the distribution function of Eq. (3.11) with
Vo = 3, vgs = 1, and vy = 9 (velocities in arbitrary units).
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C.4 Improved Model Distribution from Chapter 3

Chapter 3 went on to consider an even more general distribution, Eq. (3.53), which is

repeated here for the reader’s convenience:

F(v) = nK exp[—(v — vo1)%/v3) for v < v,

- nK1{(1 — A)exp[—(v — vo1)?/v{;,] + Aexp[—(v — ve2)?[vi,]}  for v > v,
This improved distribution function was used in further optimizations of the electron
velocity distribution in He plasmas. The distribution has six independently adjustable
parameters: Vo1, Vo2, VUts, Vtf1, Vif2, and A. It is assumed that vy > v,. Based on the
optimization of the earlier model distribution function to minimize the recirculating power,
one can safely choose to set Vs to be as small as allowed by the numerical integration,

which turned out to be vy; = 0.1vy;, where vy; = /27 /m;.

Two local minima of the recirculating power have been found; for one A is small and
positive (corresponding to a relatively small positive perturbation of the model distribu-
tion function which was previously used), while for the other, A is small and negative
(corresponding to a small negative perturbation of the previously used distribution func-

tion).

Figures C-5, C-6, and C-7 show the distribution function, collision operator, and
collisionally induced“ve]ocity-space particle flux, respectively, for the case of the optimum
positive perturbation. One should recall that velocities corresponding to zero particle flux
are dividing velocitiesl., as discussed in Chapter 3. The graphs only show these functions for
velocities v such that v > vo1. Below the point v = v,, the distribution function drops
off precipitously to zero (with a width of v,z = 0.01vy;), causing spikes in the collision

\
operator and particle flux just below the point v = v,;; these spikes cannot be shown in
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a useful manner in graphs of the present scale.

For comparison, Figures C-8, C-9, and C-10 show the distribution function, collision
operator, and collisionally induced velocity-space particle flux, respectively, for the case of
the optimum negative perturbation. One should note the qualitative similarities between

these graphs and their counterparts for the case of the optimum positive perturbation.

What appears to be happening is that the electrons displaced from v < v, “prefer”
(energetically speaking) to remain relatively close to the velocity region from which they
have been removed; however, if the displaced electrons are trying to diffuse back downward
in velocity into the relatively small depleted region, there must also be a considerable
number of electrons which will diffuse upward in velocity into the (much larger) velocity
space volume which surrounds the perturbation. Thus it is reasonable that the optimum
of the new distribution function occurs when the perturbation is fairly concentrated at

small velocities and contains several times the number of displaced slow electrons.

The appropriate normalization constant is
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Figure C-5: Distribution function from Eq. (3.53) with parameters chosen to minimize
Precire for electrons in a pure He plasma (T; = 1 MeV and InA = 20) subject to the
constraints that A > 0, (E.) = 73.5 keV, and Pj¢/(Pic)spitzer = 0.01. Parameters are:
Vo1 R Vg2 = 1.923vy;, vps = 0.01vg;, vepy == 15.788vy, vepo = 8.8v4, and A = 0.0883 (where

v = 2T /my).
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Figure C-6: Collision operator corresponding to the distribution function from Eq. (3.53)
with parameters chosen to minimize Pjecirc for electrons in a pure 3He plasma (T} = 1
MeV and InA = 20) subject to the constraints that A > 0, (E.) = 73.5 keV, and
Pic/(Pic)spitzer = 0.01. Parameters are: v, = vo2 = 1.923vy, vys = 0.01vy, vy =
15.788wy, vyp2 ~ 8.8v4;, and A ~ 0.0883.
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Figure C-7: Particle flux in velocity space corresponding to the distribution function
from Eq. (3.53) with parameters chosen to minimize Pyecirc for electrons in a pure *He
plasma (T; = 1 MeV and In A = 20) subject to the constraints that A > 0. (E¢) = 73.5
keV, and Pi/(Pie)spitzer = 0.01. Parameters are: vo; = vo2 = 1.923vy, vy, = 0.01vy,
v = 15.788vy, vypo ~ 8.8vy, and A = 0.0883.
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Figure C-8: Distribution function from Eq. (3.53) with parameters chosen to minimize
Precire for electrons in a pure 3He plasma (T; = 1 MeV and InA = 20) subject to the
constraints that A < 0, (E.) = 73.5 keV, and Pi¢/(Pic)spitzer = 0.01. Parameters are:
Vo1 = 1.926v4, Vo2 = 1204, ves = 0.01vs, vepy = 15.683vy, vego = 10912y, and A =
—0.05.
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Figure C-9: Collision operator corresponding to the distribution function from Eq. (3.53)
with parameters chosen to minimize Precire for electrons in a pure *He plasma (T} = 1
MeV and InA = 20) subject to the constraints that A < 0, (E.) = 73.5 keV, and
Pi¢/(Pie) spitzer = 0.01. Parameters are: vy = 1.926v4, vo2 = 12v4, v = 0.01vy, vy =
15.683vy;, vepe = 10.912v4, and A = —0.05.
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Figure C-10: Particle flux in velocity space corresponding to the distribution function
from Eq. (3.53) with parameters chosen to minimize Pregirc for electrons in a pure *He
plasma (T; = 1 MeV and In A = 20) subject to the constraints that A < 0, (E,) = 73.5
keV, and P,/ (Pie)spitzer = 0.01. Parameters are: v, = 1.926vy;, vo2 = 12v4;, vps = 0.01vy,
Uef = 15.683’0;{, Utf2 = 10.912’0“, and A =~ —0.05.
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The mean particle energy for this distribution is
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The complete expression for the collision operator appropriate for this distribution
function would have been given here as well, but it was so long and unpleasant that even

LaTeX could not digest it.
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Appendix D

Raw Data from Numerical
Integrations for Properties of
Non-Maxwellian Distributions of

Chapter 3

This appendix contains some of the raw data from the numerical integrations which were
used to determine the minimum recirculating power and entropy generation rates of non-
Maxwellian velocity distributions for Chapter 3. The data is given in Tables D.1 through
D.4.

All quantities are expressed in dimensionless units. The recirculating power density
Precire and the entropy density generation rate dS/dt are written in terms of n (E) /7¢q
and n/7., respectively. Velocities are expressed in arbitrary units, since only their rel-
ative values matter here. The entry “N.D.” indicates that a particular quantity was not

determined.
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Some comments about the visible implications of these results (and the motivation for

choosing the particular parameters of each trial) are in order.

Trials 1-19 cover the case vy, = vy = . For v, < v, the dividing velocity vg
approaches an asymptotic value of roughly 1.37 v;; in the opposite limit, v, > v, vy
approaches the value of v,, but it is always slightly larger than v,. The dimensionless
recirculating power Precire/(n (E) /T.o1) generally scales like (v,/v)* for v,/vy < 1 and
like (v,/vt) for ve/vy > 1. The dimensionless entropy generation rate (dS/dt)/(n/7co1)

scales approximately like (v,/v;)? for v,/vy > 1.
Trials 20-28 cover the case in which v K v, K vy5.

The relative lack of sensitivity to the precise value of v, provided that vy, < v, K vyy,
is illustrated by the results of Trials 26-28.

Trials 29-32 serve as “sanity checks.” These trials show that the results only depend
on the relative values of the input velocity parameters v,, v¢5, and v, not on the absolute

magnitude of e velocities. This behavior confirms what was expected.

The purpose of Trials 33-46 was to check how sensitive the recirculating power was to
small chan\f;es in v4. In these trials the value of the dividing velocity used in computing
the recirculéting power was truncated by one digit in each successive calculation. Because
the recirculating power does not appear to be especially sensitive to the truncation of vy
by one or even two digits, one should not have to worry about whether the accuracy to

which v4 has been found will affect the results for Precirc.

In Chapter 3, the distribution function of Eq. (3.11) was optimized to minimize
the recirculating power for the particular case of a pure 3He plasma with T; = 1 MeV
and InA = 20, subject to the constraints that (E.) = (3/2) - 49 keV= 73.5 keV and
Pie/(Pie)spitzer = 0.01. This optimization was shown graphically in Figure 3-5. Trials
47-50 in Table D.3 give the data which was used to make that graph. Unlike the earlier
tables, where velocities were given in arbitrary units, Table D.3 gives the velocities in

multiples of the ion thermal velocity for 1-MeV 3He ions, v; = /2T; /mi.
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Finally, Table D.4 gives the parameters of the distribution from Eq. (3.53) which
specify local minima with respect to the recirculating power for electrons in a pure 3He
plasma with T; = 1 MeV, InA = 20, (E,) = 73.5 keV, and P;./(Pjc)spitzer = 0.01. As
with Table D.3, velocities here are expressed in multiples of the ion thermal velocity. For

these calculations, the value of vys was fixed at 0.01vy;.

rach local minimum in Table D.4 has several dividing velocities, which must be taken
into account in calculating the recirculating power, in accordance with the methods dis-
cussed in Chapter 3. These dividing velocities correspond to the zeros in the velocity-space

particle flux curves shown in Figures C-7 and C-10.

A third local minimum also exists but is not shown, since it is physically identical to
the distribution of Trial 51 with the trivial substitutions v;s; < vp2 and A & (1 — A).
Because the definition of the distribution in Eq. (3.53) is not fully symmetric under the
interchange of v,1 and v,2, there is no similar “mirror image” of the local minimum found

in Trial 52.
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“ Trial no. " Vo | Uts I Ut f " Ud I Precire/ (N (E) [Teot) I (dS/dt)/(n/7co) ”

1 001 [ 1|1 1.36904 5.81017 - 10~ 2.23307 - 10~ 14

2 003 | 1 1 1.36926 4.69423 - 10~ 4.90486 - 10~ 12

3 0.1 1 1 1.37175 5.62992 - 10—° 6.87249 - 1078

4 0.3 1|1 1.39394 3.58273-10~° 2.45074 - 10~*

5 0.5 1] 1 1.43952 1.82379 - 10~2 5.98831 - 103

6 1 1 [ 1 1.66200 8.53637 - 102 0.138279

7 1.5 1 | 1 [ 2.00409 0.159856 0.466585

8 2 1 | 1 [ 240128 0.244401 0.963270

9 3 1 | 1 | 327534 0.445065 2.53780

10 4 1| 1 [ 4.20563 0.672513 4.96789

11 5 111 [ 516298 0.914655 8.29900

12 10 1| 1 | 10.07882 2.20761 39.0448

13 30 1| 1 [ 30.02545 7.59835 402.142

14 100 [ 1] 1 N.D. N.D. 4711.27

15 300 | 1] 1 N.D. N.D. 4.30724 - 10*

16 1000 | 1 [ 1 N.D. N.D. 4.81249 - 10°

17 3000 | 1 | 1 N.D. N.D. 4.33815 - 10°

18 100600 | 1 | 1 N.D. N.D. 4.82285 - 107

19 30000 [ 1 | 1 N.D. N.D. 4.34126 - 10°

20 10 1 | 10 || 13.4015 0.183356 N.D.

21 10 1 | 30 || 33.6106 3.19056 - 102 3.23869

22 10 1 | 60 || 66.8951 1.24848 - 10~2 2.02711

23 10 1 [ 100 || 110.779 6.86938 - 10~3 1.34608

24 10 1 ]300 [ 327.620 2.14724 - 1073 N.D.

25 10 1 [ 600 | 651.662 1.06223 - 1073 N.D.

26 3 1 | 30 |[ 33.4922 6.72447 - 1079 N.D. |
27 10 1 | 100 || 110.779 6.86938 - 1079 1.34608 I
28 30 1 [300 [ 331.256 6.93049 - 1U~3 N.D. I

Table D.1: Minimum recirculating power and entropy generation rates for non-Maxwellian
velocity distributions described by Eq. (3.11).
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[[Trial no. " Vo I Uts I Ui f " Ud | Precirc/(n (E) /Tcol)' I (ds/dt)/(n/Tcol) "

29 1 1] 1 1.66200 8.53637 - 102 0.138279
30 2 [ 21 2 | 3.32400 8.53637 - 102 0.138279
31 311 3.27534 0.445065 2.53780
32 6 | 2] 2 || 6.55069 0.445065 2.53780
33 101 1 [[10.07882 2.20761 39.0448
34 |11 10.0788 2.20714 39.0448
35 101 [ 1 10.078 2.18836 39.0448
36 01 ] 1 10.07 2.00048 39.0448
37 10|11 10.0 0.367930 39.0448
38 0511 [ 1 1.43952 1.82379 - 10~2 5.98831 - 10~
39 0511 | 1 1.4395 1.82367 - 10~* 5.98831 - 103
40 05 1 [ 1 1.439 1.82069 - 10~2 5.98831 - 1073
41 051 1 [ 1 1.43 1.76688 - 10~2 5.98831 - 1073
42 0511 | 1 1.4 1.58530 - 10~2 5.98831 - 10~3
43 10| 1 [100 || 110.779 6.86938 - 1079 1.34608
44 10| 1 [100 [ 110.77 6.86769 - 10~3 1.34608
45 10| 1 | 100 110.7 6.85454 - 10~ 1.34608
46 10 1 |100 110 6.72255 - 10~3 1.34608

Table D.2: “Sanity checks” of minimum recirculating power and entropy generation rates
for non-Maxwellian velocity distributions described by Eq. (3.11).

|| Trial no. || Vo | Vs | Vs || Uy | Precire/ (N (E) [Teat) "
47 3 0.962 | 15.240 || 17.4194 1.44557 - 10~2
48 2.5 0.5745 | 15.448 || 17.4140 1.16796 - 10~2
49 2 0.11 15.646 || 17.3332 9.16803 - 10~3
50 1.9094 | 0.01 15.683 || 17.3024 8.74258 - 10~9

Table D.3: Optimization of v,, v, and vy from Eq. (3.11) for electrons in a pure 3He
plasma (7; = 1 MeV and InA = 20) to minimize Pyecire Subject to the constraints that
(Ee) = (3/2) - 49 keV= 73.5 keV and Pi./(Pic)spitzer = 0.01. Velocities are given in
multiples of v; = /2T;/m;. These points are graphed in Figure 3-5.
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" Trial " Uol I Vo2 l Utf1 I Vtf2 | A " Ud I Precirc/(n (E) /Tcol) II
51 1.9232 | 1.9232 | 15.788 8.8 0.08832 || 10.1196 3.39050 - 10~
15.6592
21.1837
52 1.926 12 15.683 | 10.9117 | -0.05 11.1491 3.83160 - 1073
22.6637
29.4762

Table D.4: Parameters of the distribution from Eq. (3.53) which specify local minima
with respect to Precire for electrons in a pure 3He plasma (T; = 1 MeV and InA = 20)
subject to the constraints that (E,) = 73.5 keV and Pi./(Pie)spitzer = 0.01. Velocities are
given in :nultiples of vy; = /2T;/m;. The value of v;; was fixed at 0.01v;. Note that each
local minimum has several dividing velocities.
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Appendix E

Potential New Approaches for
Nonequilibrium and Aneutronic

Fusion Reactors

Mark-Twain-once-offered-some-advice-about-the -potential-pitfalls-of-being—part

“Consensus” and saying that something cannot work:

1 have been a Consensus more than once myself. and I know the business-
and its vicissitudes... Thirty-five years ago I was an expert precious-metal
quartz-miner. There was an outcrop in my neighborhood that assayed $600
a ton-gold. But every fleck of gold in it was shut up tight and fast in an
intractable and impersuadable base-metal shell. Acting as a Consensus, I
delivered the finality verdict that no human ingenuity would ever be able to
set free two dollars’ worth of gold out of a ton of that rock. The fact is, I
did not foresee the cyanide process... These sorrows have made me suspicious
of Consensuses. Do you know, I tremble and the goose flesh rises on 1ny skin

every time I encounter one, now. I sheer warily off and get behind something,
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saying to myself, “It looks innocent and all right, but no matter, ten to one

there’s a cyanide process under that thing somewhere.” [112]

After demenstrating that there are very rigorous limitations on fusion schemes which
attempt to operate out of thermodynamic equilibrium or with very small neutron power
fractions, it would be wise to examine the issue of whether these limitations could be
circumvented by some radical “cyanide process” which has not been taken into account.
Therefore, in this appendix will be presented several new approaches which may be suit-
able for nonequilibrium or aneutronic fusion reactors. The ideas which will be discussed
are put forward solely as a guide to the types of directions one might want to consider
if further research on this topic is performed. The list of ideas is not intended to be

exhaustive, and those which are discussed are still far from being proven feasible.

Assuming that any of these techniques can truly lead to a practical method of extract-
ing entropy from the plasma in order to maintain non-Maxwellian velocity distributions or
to keep particle species at widely differing mean energies, the final product might be used
in the manner illustrated in Figure E-1. As shown in the figure, particle beams collide in
the dense central region, resulting in fusion events for a few of the ions and appreciable
amounts of phase-space scattering (at least in comparison with the fusion rate) for all of
the other particles. Therefore, after each pass (or perhaps every few passes), the parti-
cles are run through entropy extraction devices which restore the desired nonequilibrium
character to the plasma. Although it would be preferable to have the entropy extraction
devices operate directly on the dense, bulk region of the plasma, if there are practical
limitations (density, proximity of effect, etc.) on the entropy extraction devices, they can

at least be used in the fashion illustrated in Figure E-1.

Section E.1 will investigate the possibility of using waves to recirculate power and
remove entropy from a plasma which is not in thermodynamic equilibrium. Then Section
E.2 will outline some ideas regarding how electromagnetic fields might affect the collisional
process in a useful fashion without the fields’ actually having to extract entropy directly

from the plasma particles. Other methods for attacking the entropy problem will be
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discussed in Section E.3. Since one of the main problems with aneutronic fusion is the
bremsstrahlung radiation power loss, Section E.4 will address the issue of directly reducing
the bremsstrahlung, rather than simply reducing the ion-electron energy transfer rate (as
described in Chapters 2-4). Some of these ideas might also be applied to the design of
new direct electric converters; this will be the topic of discussion in Section E.5. Finally,
Section E.6 will use the formalism of the Fokker-Planck calculational techniques from
Chapter 2 in order to analyze the behavior of particles in systems which use velocity-

dependent forces to maintain nonequilibrium plasmas.

E.1 Wave-Based Systems for Maintaining Nonequilibrium

Plasmas

In Section 3.5, it was shown that quasilinear interactions between particles and electro-
magnetic or electrostatic waves cannot extract entropy from a plasma. This prevents the
use of such wave-particle interactions for maintaining non-Maxwellian velocity distribu-
tions or for decoupling the mean energies of two of the plasma’s major particle species.
However, there might be other types of wave-particle interactions which could success-
fully keep a plasma out of thermodynamic equilibrium. Two examples are highly nonlinear

phenomena and coupled cyclotron radiation emission and absorption.

If entropy could actually be transferred from the plasma to a wave, this ability might
be used in the following manner. A wave with a certain energy might be injected into
the plasma, and after interacting with the particles and removing their entropy, the wave
would have the same energy but a broader frequency linewidth. The wave could then be
direct-converted to recover nearly all of its energy, but due to the linewidth broadening a
small fraction of the wave's energy could not be converted back into electrical energy and

would have to be dissipated as heat in the wave-receiving system.
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Intersecting '
beams

Velocity-space
conditioning
devices extract
entropy from
the particles

Figure E-1: Idealized system for maintaining a nonequilibrium plasma. The entropy
extraction devices counteract the effects of collisions and restore the particle distributions

to the desired state.
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E.1.1 Cyclotron Radiation Emission and Absorption

As was discussed in Section 3.5, synchrotron or cyclotron radiation by itself would not
be a useful mechanism for extracting entropy from a plasma, since the power removed by
the radiation would have to be replaced by some other mechanism, leading back to the

recirculating power arguments which were made in Chapter 3.

This objection could be overcome, however, if the cyclotron radiation itself were used
to “close the loop” and recirculate the necessary amount of power at very high efficien-
cies. In other words, it might be possible for particle species or subpopulations of particle
species which have acquired too much energy via collisions to be induced to emit cy-
clotron radiation; the emitted radiation would have the right frequency so that it would
be efficiently reabsorbed via cyclotron absorption processes by particle species or subpop-
ulations thereof which have lost energy due to collisions. It might be necessary for the
emission and reabsorption to take place in different spatial regions of the plasma with dif-
ferent local properties (magnetic field strength, density, electron energy, etc.). Iz principle
this technique could be used for maintaining non-Maxwellian distributions, ion-electron

decoupling, or decoupling between ion species.

Further work should be done to investigate whether this or similar techniques could

actually succeed.

E.1.2 Highly Nonlinear Phenomena

Since the derivation in Section 3.5 was only a quasilinear treatment of the problem, it
may still be possible that highly nonlinear wave-particle interactions could allow waves to
remove entropy from a plasma. More sophisticated types of wave-based nonequilibrium
plasma devices are also imaginable. For instance, one might use not only the wave’s qual-
ities but also the configuration of externally applied electric or magnetic fields to control

the effect of interactions with the wave for particles in various regions of phase space. Mul-
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tiple waves with different frequencies or other properties might also be coupled together by
nonlinear processes within the plasma to help maintain the desired particle distributions,
the internal recirculating power, or the degree of energy coupling or decoupling between

particle species.

E.2 Useful Effects Which Might Be Induced by Electro-
magnetic Fields Without Requiring the Fields Them-
selves to Carry Entropy

Although it was shown in Section 3.5 that hardly any type of electromagnetic field is
capable of extracting entropy from a plasma in a particularly useful manner, methods of
potentially circumventing this proof were noted there. At least hypothetically, fields might
be able to modify the rate of collisional entropy generation or the process of transferring
entropy between different groups of particles without the fields themselves actually having

to carry the entropy at any point.

E.2.1 Background — The Magnetic Corkscrew

One concept which could possibly prove useful for the present purpose is the technique
of using electric and/or magnetic fields which are resonant with particles of particular
velocities, so that particles with different velocities would respond to the fields in different
ways. A bit of explanation about velocity-resonant fields is in order, as this concept may

not seem immediately clear.

The prototypical example of a velocity-resonant plasma system is the aptly named
“magnetic corkscrew” [113, 114, 115, 116, 117]. Basically, the magnetic corkscrew is a
device for creating a helical magnetic field of increasing or decreasing spatial periodicity,

or in other words with a pitch angle which varies along the length of the corkscrew. Due to
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interactions between its helical magnetic field and gyrating particles which pass through
the system, the corkscrew is able to exert a net effect on particles with the velocity
for which the corkscrew was designed, while on average not altering the velocities of
nonresonant particles. Specifically, the corkscrew can transfer a resonant particle’s energy
from the transverse direction to the longitudinal direction (v? to vﬁ) if the corkscrew is
of the accelerating type, or in the opposite direction (vﬁ to v2) if the corkscrew is of
the decelerating type. Uniike the interconversion between parallel and perpendicular
particle kinetic energy which occurs in a conventional magnetic mirror, in a corkscrew the
conversion between the two components of the kinetic energy occurs in a unidirectional
manner. The original purpose for such systems was to facilitate the trapping of particles

injected into mirror machines by “herding” particles out of the mirror’s loss cone.

The fundamental problem with the corkscrew was found to be that while on average
it exerts no net effect on nonresonant particles, the standard deviation of the corkscrew’s
effect on nonresonant particles is appreciable. Thus, although the corkscrew actively herds
resonant particles out of the mirror loss cone, it also substantially enhances the velocity-
space diffusion of nonresonant particles and scatters many of them into the loss cone.
This phenomenon may prove a fatal flaw for other types of velocity-resonant systems as
well, but as this has not yet been determined for certain, such systems should at least be

examined.

The basic idea of velocity-resonant fields will now be utilized to propose a specific
new type of device which may be useful for altering the collisional velocity-space diffusion

properties of a plasma.

E.2.2 Closed-Orbit, Highly Velocity-Resonant Device

As a simple but concrete example of a potentially useful system of the type under discus-
sion, a device which at least naively appears to keep particles highly non-Maxwellian and

focused around some optimun velocity is shown in Figure E-2.
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Electrons spiral
around toroidal

magnetic field
lines
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Electrostatic plates ~g
M=+

Figure E-2: Closed-orbit, highly velocity-resonant device for possibly maintaining non-
Maxwellian particle distributions. Particles of the proper velocity and phase follow closed
orbits which keep the particles at the bottom of the electric potential well for each set of
electrostatic plates that the particles pass.
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| While the electron motion in this type of system is manifestly classical, it possesses

In this particular system, the electric field is held static. Particles (say electrons for
the sake of argument) spiral around an applied toroidal magnetic field. Those electrons
with the optimum velocity v, have orbits which precisely close on themselves; in other
words, resonant electrons follow the exact same spiraling trajectory on each trip around
the torus. The spiraling motion of the electrons affects their relative positions in the
electric potential gradient between each set of electrostatic plates which they pass. The
spacing of the electrostatic plates around the torus is arranged so that electrons with
velocity v, are the same distance from the positive plate for each set of plates that they
pass. Obviously it will be energetically favorable for the particles to have a phase which
minimizes this distance. Particles which do not have the optimum velocity, or at least
follow closed trajectories, will be at random positions between each successive set of
electrostatic plates which they pass, so on average they will experience no net effect from

the electric fields.

many striking parallels with the quantum-mechanical behavior of electrons in solid lattices

such as in semiconductors. Among these parallels are:

e The electrons undergo periodic oscillations (analogous to the oscillating quantum

wavefunction of the electrons in solids).
e There is a periodic electric potential perturbation (like that created by lattice ions).

e The entire system possesses translation symmetry [around the loop] (analogous to

Born-von Karman boundary conditions and Bloch’s theorem in solid state lattices

[118)).

e There is a net reinforcement or cancellation of effects on each pass of the electrons
through the system (analogous to constructive and destructive quantum interference
between the forward-propagating and backward-propagating reflected components

of an electron’s wavefunction in solid lattices).
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Because of these many parallels with the physics of electron behavior in solid state
lattices, it is conceivable that devices of the type described above might be able to create
useful modifications of the velocity-space diffusion or the effective electron mass. In fact,
it may even be possible for this system or other such systems to create energy bandgaps,
which could serve as strong impediments to collisional diffusion into undesirable regions

of phase space.

It is very important to realize that one could produce further potentially beneficial
effects by increasing the electric field strength so that for the resonant (v = v,) particles,
the magnitude of the electric potential energy would exceed the particles’ kinetic energy;
resonant particles would thus have even less energy than very slowly moving particles.
It might then be possible to inject all of the electrons at the optimum velocity and keep
them “trapped” at that velocity in spite of electron-electron collisions, for they would not

have enough energy to slow down or speed up.

In reality it would probably be preferable to use a time-varying electric field in order
to prevent particles from being drawn to the wall of the vacuum chamber. The discussion
here has centered on static fields in order to simplify matters and focus on the basic idea

behind these systems.

More elaborate types of closed-orbit, velocity-resonant systems also come to mind
when examining this concept. As an example, an additional segment could be inserted in
the toroidal loop of the system shown in Figure E-2. At one end of the segment would
be an accelerating magnetic corkscrew, and at the other end would be a decelerating
corkscrew of the same (but opposite, since it is decelerating) pavameters; between the two
corkscrews would lie a drift tube without any resonant fields of note. Particles with the
desired values of vy and v; would enter this segment, have their relative ratio of vﬁ/v?,_
temporarily altered and then restored, and finally exit the segment with their original
velocity components unchanged and still with the proper phase relative to the resonant
electric fields. On the other hand, particles without the desired v; (even if they have the

correct v and phase to be resonant with the electric fields) would undergo a net phase
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change in the drift tube, which would affect their behavior on their next pass through
the resonant electric fields. If implemented properly this sort of method might ensure

phase-space “confinement” in vy, v, and phase.

If these techniques for closed-orbit, highly velocity-resonant systems work at all (which
they may not, in the sober light of reality), it cannot be because entropy is transferred
out of the system, since naively they appear to function even when the fields are static.
The only apparent explanation for how they might work is that they might suppress the
rate of entropy generation by altering the ground state energy, and hence the preferred
stationary minimum-entropy-generating state, of the particles. (Note that this shift ap-
pears to be accomplished in a non-irivial way which at least naively could hold true even
if the device contains colliding, counter-propagating beams. In contrast, the entropically
favored velocity distribution profile of a collection of particles could be shifted in a trivial
manner by simply beosting the velocity of a beam which has been sufficiently isolated
from collisions and other outside influences.) This behavior would be in accordance with

one of the potential loopholes which has been mentioned in Section 3.5.

These types of devices might also be useful for purposes other than those which have

been discussed here.

E.2.3 Inducing Soliton-Like Behavior in the Distribution Function

A different and potentially useful manner of viewing the effects induced by the closed-
orbit, velocity-resonant device described above is that the perturbing field could cause
the stationary (or “solitary”) solution of the Fokker-Planck equation to become non-
Maxwellian. Mathematically this situation would be quite analogous to the creation of
solitons (80, 119], in which nonlinear perturbations added to the wave equation allow the
production and maintenance of distinctively shaped waveforms which are not affected
by the usual dispersive phenomena. The realization of this analogy may allow the de-

velopment of other plasma systems in which perturbing fields (and possibly also tailored
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density profiles and other techniques) alter the Fokker-Planck equation into a soliton-type
equation (for instance, an equation similar to the Korteweg-DeVries equation, nonlinear
Schroedinger equation, or sine-Gordon equation [80, 119, 120]), so that certain properly
designed non-Maxwellian distributions become stable, solitary solutions, despite the dis-

persive effects of collisional velocity diffusion.

E.2.4 Forcibly Restricting the Particles’ Allowed Phase Space Expan-

sion

The possibility of energy band gaps was briefly mentioned in the context of the closed-
orbit, velocity-resonant device discussed above. This general approach, modifying colli-
sional processes by forcibly restricting the region of phase space which the particles are
allowed to occupy or to expand into due to collisions, could prove to be a powerful idea.
It would be advisable to examine whether this approach could be applied to classes of

systems other than the one currently under discussion.

E.2.5 Debye Shielding of Applied Electric Fields

If systems with velocity-resonant electric fields are to operate as intended, it is necessary
that the applied electric potential not be screened out too rapidly. In particular, the
Debye screening length must be no less than the smaller of the electron gyroradius and

the spacing between the alternating electric field plates.

The electron Debye length is [30]

_ T, i _ Te, eV
ADe = 1/41”34"3 =743 e cm. (E.1)
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For T, = %— (Ee) = 40 keV and n, = 10'° cm™3, the Debye length is

ADe == 1.5 cm. (E-2)

As this is probably the smallest theoretically tolerable Debye length, it would appear
that velocity conditioners or velocity-space focusing devices with resonant electric fields

are limited to operate at densities n, < 10'° cm™3.

While such densities are far too low for local fusion reactions to be of interest, there
are possible solutions. One potentially useful approach would be to use time-varying fields
which have a frequency high enough that the fields would not be screened out. Another
solution might be to place low-density velocity conditioners at the edge of a spherically

converging/diverging plasma of the sort shown in Figures E-1 and E-3.

The core density of the plasma system shown in Figure E-3 may be determined from
the radii of the core (r¢.re) and the entire plasma (Regge). Assuming that the plasma flow

converges at constant velocity, one finds [18, 86]:

R 2
Ncore = ( edge) Nedge - (E.3)

Tcore
Thus for Negge = 10'® cm=3 and Zed2e 5 100, the core density is
9 Teore ’ Yy

Neore > 101 cm™3 . (E.4)

Therefore low-density velocity conditioning devices at the edge of the spherically con-
vergent plasma might be able to keep velocity distributions in the high-density core non-

Maxwellian and create useful amounts of fusion power in the core.

However, devices placed at the edge of such a plasma would actually have to extract
entropy, rather than merely suppress its generation locally. Otherwise entropy generated

by collisions when the particles transit the dense core would build up and the plasma
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Figure E-3: Spherically convergir.g/diverging plasma with a low-density edge and high-
density core.
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would rapidly thermalize.

If spherically convergent plasma systems were to be seriously considered further, one
would also have to deal with practical limitations such as the maintenance of the central

focusing effect (86, 87].

Just as Debye shielding of applied electric fields is a problem, diamagnetic shielding

of applied magnetic fields is also a concern, and it would have to be examined further.

E.3 Other Possible Approaches for Keeping Plasmas Out

of Thermodynamic Equilibrium

There are other methods which might be investigated as well; some of these are briefly

described below.

E.3.1 Transfer of Entropy to Lower-Energy Particles

As has already been mentioned, one potentially useful and feasible approach would be to
transfer the collisionally generated entropy of the main plasma particles to a much lower-
energy group of particles, which could then be “sacrificed” to a direct electric converter
with as little net energy loss as possible. This possibility should be explored further in

the future.

F.3.2 Transfer of Entropy to Other Degrees of Freedom

A related idea would be to find other degrees of freedom (not just other particles) to which
the collisionally generated entropy could be transferred (in preparation for the eventual

remcval of the entropy by some mechanism).

278



This idea is quite similar to the method of adiabatic demagnetization which is em-
ployed in cryogenic devices operating near absolute zero [121]. In such systems, the
entropy associated with thermal motion in a substance is given to particle spins, resulting
in an increased disorder of the alignments of particle spins in the material but a lower

temperature due to thermal motion.

If the collisionally generated entropy in the plasma could be transferred to some extra
degree of freedom (spin, spatial distribution, ion charge states, etc.) whose increased
disorder would not adversely affect the operation of the reactor (and from which the
entropy could eventually be extracted and completely removed from the system), the

outlook for nonequilibrium plasma systems might brighten considerably.

E.3.3 Stochastic Cooling

An important technique used to cool beains in particle accelerators is stochastic cooling
[76]. Although it is unclear whether this method could be implemented with the compar-
atively high particle densities required for fusicn plasmas, this is an issue which should

certainly be considered further.

E.4 Direct Reduction of Bremsstrahlung Radiation

Another possible avenue for future work would be to investigate whether bremsstrahlung
radiation itself could be directly reduced. For example, this might be accomplished by
somehow “artificially” stimulating the inverse bremsstrahlung process (without requir-
ing prohibitively large densities, plasma radii, or reaction energy yields, as discussed in
Chapter 4) or by applying electromagnetic fields in some fashion that suppresses the

bremsstrahlung emission process.

The net effect of directly reducing the bremsstrahlung radiation is graphed in Figures
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E-4 and E-5 for a variety of fusion fuels. These graphs have been calculated by using the
methods outlined in Chapters 1, 6, and 7 and assuming that the right-hand side of the

usual bremsstrahlung formula, Eq. (1.2), can be reduced by a certain factor.

As shown in Figures E-4 and E-5, a given fractional reduction in the bremsstrahlung
power could be more beneficial than the same fractional reduction in the ion-electron

energy transfer rate (see Figures 6-9 and 7-8).

E.5 Novel Ideas for Direct Electric Conversion

If the types of devices discussed in the previous sections of this appendix can be con-
structed, modified versions of them may also be useful as direct electric converters to
turn the kinetic energy of charged fusion products into electrical energy. Recent work has
indicate  .hat there are considerable problems with previously proposed direct conversion
schemes [99]. One of these problems is that magnetic fields which would permit the fusion
products to cross and enter a direct converter would also cause intolerably large losses
of fuel ions and electrons; another serious problem is that converters for especially high-
energy fusion products would suffer from severe arcing problems. These findings secem
to rule out the use of some previously developed direct converter designs [100, 101]. By
contrast, the advantages of the devices discussed below as direct converters are that they
could potentially remove energy from particles in very selective regions of phase space and
that they could theoretically act at some reasonable distance so as not to cause problems
with arcing or particle losses. Such devices could also be operated in reverse as particle

accelerators, if so desired.

E.5.1 Energy Exchange Between Particles and Electric Fields

Before examining specific devices, one should consider the fundamental nature of energy

exchange between particles and fields.
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Figure E-4: Ratio of bremsstrahlung losses to fusion power versus the necessary reduction
in the usual formula for bremsstrahlung radiation for D-T, D-D, and D-*He plasmas under
approximately optimum conditions (T; = 40 keV for D-T [with a 1:1 fuel mixture], 400
keV for D-D, and 140 keV for D-3He [with a 1:1 fuel mixture]; InA = 20 throughout.)
Compare with Figure 7-8.
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Figure E-5: Ratio of bremsstrahlung losses to fusion power versus the necessary reduction
in the usual formula for bremsstrahlung radiation for 3He-3He, p-!!B, and p-8Li plasmas
under approximately optimum conditions (T; = 1 MeV for 3He-3He, 300 keV for p-!'B
[with a 5:1 fuel mixture], and 800 keV for p-SLi [with a 3:1 fuel mixture]; InA = 20
throughcut.) Compare with Figure 6-9.
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While magnetic fields will prove to be useful tools for restricting the accelerating or
decelerating forces to certain regions of phase space, electric fields are the only technique
for actually applying the accelerating or decelerating forces. The power transferred from

an electric field E to a particle with velocity v and charge Ze is

P=2ZeE- v. (E.5)

The best way to ensure that field-particle energy exchange will be confined to particles
in a specific location in velocity space is to let the electric field be periodic with respect to
time and also make the particle’s velocity component parallel to the electric field periodic
with time. Specifically, one could choose the time variations of the field (as seen by the

particle) and the corresponding parallel velocity component v, to be the following:
E = E exp(—iw,t) ; (E.6)
Vg = Vg, exp(—iwyt —i¢) . (E.7)

The time-averaged power input to the particle will then be

$ZeEqv,, cos(¢) for w, = wy
(P) = (E.8)

0 otherwise.

If w, and/or w, is a function of the magnitude of the total velocity, only particles in

certain regions of velocity space will be able to exchange energy with the electric field.

It would appear that only particles in an infinitesimally small portion of phase space
will be resonant with the electric field (w, = w,). However, in reality various effects
such as the limited physical length or time duration of the perturbing field and the field’s
spectral purity will produce a certain finite value for the resonance width in phase space;

these effects and the resonance width will of course depend on the exact nature of the
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system.

Note that the sign of the power input depends on the particle phase; particles within
+7/2 of being in phase with the field are accelerated and out-of-phase particles are de-
celerated. The system should either be designed so that most of the particles have the
desired phase relationship with the field (which seems infeasible at densities of interest for
fusion reactors) or else provided with an additional mechanism for ensuring that particles

of the wrong phase will not stay resonant with the field for long.

E.5.2 Magnetic Corkscrew with Electric Field Wiggler

Electric Field Wiggler System

As a concrete example of a device of the type described above, consider a linear system
in which the particles move through a series of spatially alternating transverse electric
fields, as shown in Figure E-6a. (The electric fields would ultimately probably have to
be time-varying to achieve useful effects, but for the time being it is simpler to think of
them as static.) If the spatial period of the alternating electric fields is L, then from the

viewpoint of a particle moving through the system, the temporal angular frequency of the

fieldis

We = —L—‘U” y (EQ)

in which v is the velocity component of the particle along the longitudinal direction of
the system. Such a configuration will be referred to as an electric field wiggler, in analogy

with the so-called wiggler magnetic ficld systems used in free electron lasers [78).

As depicted in Figure E-6a, a static magnetic field in the longitudinal direction is used
to produce transverse oscillations of the velocity in the form of cyclotron motion, These
motions will have a velocity-independent angular frequency of the usual value [30],

_|Ze|lB
T ome

(E.10)
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The system shown in Figure E-6a has the desired property that only particles in a

certain region of velocity space, specifically particles for which

|ZelB L
mec 2w’

v" = (Ell)

will be resonant with the electric field and exchange energy with it.

Now one must add a mechanism that will prevent particles of the wrong phase from
staying resonant for long enough to be significantly displaced the wrong way in veloc-
ity space. The specific device which has been chosen for this purpose is the magnetic

corkscrew, for reasons which will become apparent in a moment.

Device for Acce'ecating Slow Particles

Before considering devices for deceleration and direct electric conversion, the principles of

the systems under discussion will be explored by considering an accelerating device.

In order to accelerate slow particles, one may combine an accelerating corkscrew with
an electric field wiggler in which the spatial period L of the clectric field oscillatiors is

initially small and then increases as a particle proceeds through the device.

Only particles whose longitudinal velocity v) increases sufficiently rapidly as they move
through the system will stay in resonance with the electric field. If a particle is in phase
with the electric field, it will gain transverse velocity v, which will then be continually
transformed by the corkscrew into additional longitudinal velocity, satisfying the condition

to keep the particle in resonance with the electric field wiggler.

A particle which is momentarily resonant with the electric ficld but of the wrong phase
will lose a certain amount of its v, ; having less transverse energy to be converted into
longitudinal energy by the corkscrew, the particle will not be able to meet the resonance
requirement of a rapidly increasing vy, so it will very quickly drop out of resonance with

the electric field, and its energy will become constant. If necessary, particles may be
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Figure E-6: Particle accelerating devices; similar systems can be used as direct electric
converters to decelerate particles. The devices can ve designed to interact with a specific
particle species (electrons, fuel ions, or charged fusion products). a) Electric field wiggler
system (surrounded by a magnetic corkscrew, not shown). b) Magnetic field wiggler
system (surrounded by a magnetic corkscrew, not shown).
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cycled through the system more than once in order to give them repeated opportunities

to have the proper phase and be accelerated.

Particles of the same species which pass through the system in the opposite direction
will be gyrating in the wrong direction to be in resonance with the corkscrew. Thus they
can be in resonance with the electric field for at most a brief moment, and their energy

will therefore be essentially constant.

If other species of particles are present in the device, their different charge or mass
will prevent them from resonantly interacting with either the corkscrew or the electric

field wiggler.

By designing the system so thaf the spatial periodicity at its entrance corresponds
to a velocity somewhat lower than is expected to be found among the particles and also
so that the resonant velocity increases up to a final value of the desired velocity v,, the
device can effectively form a “bucket lift” to sweep slow particles of all initial velocities

up to the desired velocity.

Device for Decelerating Fast Particles

The principles just outlined may be used in reverse to create a device which will decelerate
fast particles passing through it and directly convert the particles’ energy into electrical
energy. At the entrance of the device the electric field wiggler has a long spatial period,
corresponding to a large resonant particle velocity. The spatial period steadily decreases
down the length of the device until the resonant velocity at the exit is the desired value, v,.
Only particles whose v decreases sufficiently rapidly (and which have the desired phase)
will stay in resonance with the wiggler electric field, which removes transverse energy from
the particies. A decelerating corkscrew replenishes the particles’ transverse energy at the
samne rate by drawing on their store of longitudinal energy, thereby slowing them enough
to satisfy the electric field’s resonance condition. As in the case of the accelerating device,

particles which are of the wrong phase, are traveling in the wrong direction, or are of a
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different species should at most only momentarily experience a net effect by the electric

field, so their energies will remain essentially constant.

E.5.3 Magnetic Wiggler with RF Electric Field and Corkscrew

It is a rather simple task to come up with variations on this general idea. For instance,
one could consider a device in which the frequency of the electric field variation is not
velocity-dependent but the frequency of transverse velocity oscillations does depend on the
longitudinal velocity—-this situation corresponds to the opposite case from that considered

in the previous section.

For this particular system, the transverse velocity oscillations can be caused by having
the particles pass through a free-electron-laser-type magnetic wiggler, as shown in Figure
E-6b. Static but spatially alternating transverse magnetic fields cause particles passing
longitudinally through the system to wiggle back and forth in a direction perpendicular

both to the direction of longitudinal motion and to the alternating magnetic field. If L

now-denotes-the-spatial-period-of the-magnetic-wiggler;-then-the-angular-frequency-of-the

transverse velocity oscillations will be

27
Wy = TU" . (E12)

If one applies a transverse radio-frequency electric field whose frequency is w,, only

particles with the corresponding resonant value of v,

L
‘U” = %ws y (E.13)

will be able to exchange energy with the field.

As with the device described in the previous section, by varying L to increase the

resonant velocity as a particle proceeds through the system and by adding an accelerating
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corkscrew to convert "’_21_ to vﬁ, this system can be made to accelerate slow particles of the
desired species and phase while having a minimal effect on all other particles. Conversely,
a device with a continually decreasing resonant value of v which is accompanied by a
decelerating corkscrew may be used to decelerate fast particles and directly convert their

energy into electricity.

E.6 Fokker-Planck Equation with a Velocity-Dependent

Force

The most obvious way to hold a non-Maxwellian velocity distribution function in the
desired shape despite collisional effects is to provide a force which focuses the particles
in velocity space. At least hypothetically, such a force might be provided by resonant
cyclotron emission ard absorption in certain regions of velocity space or by other means.
It is therefore of inter?:st to derive the effect of a general velocity-dependent force F(v)
on a particle distribution. This can be done by using the mathematical tools discussed in

Chapter 2.

E.6.1 Equilibrium Particle Distribution Function

In order to simplify matters, it will be assumed that the plasma is in a steady state
(0f /0t = 0) and that spatial diffusion may be neglected (Vxf = 0). With these assump-

tions , the Fokker Planck equation, Eq. (2.10), becomes

P(Y) gy f = (Qf_s)wl _ (E.14)

Ma ot

As a further simplification, the system will be considered to be isotropic; it will be
assumed that F(v) only acts in the “radial” direction ¥ in velocity space and that the dis-

tribution functions involved in calculating the collision operator are spherically symmetric
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with respect to velocity. While this choice may seem grossly inadequate to describe the
systems which are under consideration, it should be a fairly reasonable approximation for
studying the behavior of the plasma in the system as a whole, not just in any one section
of the device (see for example Figure E-1). Moreover, the velocity-space calculations are

made much more tractable by this assumption.

From Chapter 2, one recalls that the Fokker-Planck collision operator due to collisions

with multiple particle species is given by
0
( f") Zc,,g =-Vy- ZJa[, , (E.15)

where the terms J,g have been defined as

1672e* InAZ2Z% (9f, 11 [* . oo
_ a”p all 4
Jag = w2 {av 3[ 3/ dufs(u)u +/ dufg(u)u]
mﬂ 02/ dufg(u)u } (E.16)

Using Equation (E.15) in Equation (E.14) and integrating both sides with respect to

velocity, it is found that

/d3vF(v) -Vevfa = —ma/dst‘,-Ja(v)

e / In(v) - dv, (E.17)
S

where the definition Jo = Y5 Jap has been made and Gauss’s theorem has been used to

rewrite the right-hand side of the equation as an integral over surface S in velocity space.

In a similar fashion, the left-hand side of this equation may be rewritten by using

Green’s first identity, so that

/ PVEW) - Vofa = /S fa(VIF(v) - dv — / Bvfa(v)Vy - F(v).  (E.18)
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Therefore the Fokker-Planck equation becomes

/S fa(V)F(V) - dv — / Pvfa(V)Vy -F(v) = —mq /S Jo(v)-dv, (E.19)
which for an isotropic system reduces to

—maJa(v) . (E.20)

fa(v)F(v) - viz /(;v dv’ fo(v') [2U'F(v’) 402 dF(”')]

dv’

By using the expression for the collisional velocity-space flux J, it is found that

fa(W)F(v) — 515/01, dv' fo(v') [2U'F(v') +”'2%(1:I)]

1672¢? In AZ2Z2
- Z *mg v2/ du g (u)u’

Mg

%{,ag [ 3 /ov du fg(u)u’ +/v dufg(u)u]} . (E.21)

By specifying a particular velocity-dependent force and using Equation (E.21), the

equilibrium particle distribution function may be found.

E.6.2 Power Input from Field to Particles

The power per volume delivered to the particles of the a species by the force F(v) is

Pinput = /d3vfa(V)F(V) V. (E.22)

For isotropic functions of velocity, this input power density is

P = [ dodmo® fa(w)F (@) (E.23)

Provided that the various possible modes of energy loss are neglected, the required
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input power needed to maintain a non-Maxwellian distribution should be zero; the power
given to slow particles is compensated by the power extracted from fast particles. Of
course, the necessity of pumping collisionally generated entropy out of the system will
requirc that a small amount of heat energy be continually extracted from the plasma (and

replaced by work input).

E.6.3 Evaluation for Particular Forms of Velocity-Dependent Forces

If the desired optimum velocity of the particles is v,, the force should obey the relations,

>0 forv<uw
F(v) ? (E.24)
<0 forv > v,.

One could consider various possible velocity-dependent forces which might be approx-
imately realized by physical systems. As examples, two of the simplest possible functional
forms for the force are a step function which jumps from positive to negative at v = v,

and a linear function,

F(v) = (v, — v)F,, (E.25)
where F, is a positive constant.

These methods could be employed if one wished to explore further the remaining

potentially feasible methods of maintaining nonequilibrium plasmas.

E.7 Summary

This appendix has discussed several broad categories of mechanisms by which electro-
magnetic fields might be used to maintain nonequilibrium plasmas or to improve the
performance of aneutronic fusion systems. These proposals for new types of plasma sys-

tems have not yet been explored in any depth, and indeed there may be fatal flaws lurking
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under the bed just about to spring on them. However, it is hoped that these ideas may
at least serve as a starting point for future explorations of the few remaining potential
pathways to nonequilibrium and aneutronic plasma fusion reactors. There may also be
other, currently unforeseen uses for these types of devices, even if they should prove to be

incapable of fulfilling any of their originally intended purposes.
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Appendix F

Relative Importance of
Synchrotron Radiation Losses

and Bremsstrahlung Losses

In calculating the electron temperature and bremsstrahlung losses in this thesis, the effects
of synchrotron radiation have been optimistically assumed to be negligibly small. While
there are measures (such as the use of multipolar configurations [10], ring magnets [25],
and plasna diamagnetism [18]) which can be taken in order to minimize the synchrotron
losses, a realistic reactor will still have to cope with a certain amount of synchrotron
radiation. Therefore, it is impqrtant to gain an understanding of the relative importance
of synchrotron radiation as opposed to bremsstrahlung radiation in a variety of fusion

reactor types.

The power density of emitted synéhrotron radiation is given in [98] as:

4e*B?n, [ T, 5/( Te
P, = 2 . .
VT 3m2c3 (mec2) [1 t3 (mec2)] (F-1)
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Evaluating the constants, defining V,, to be the plasma volume which is under the
influence of the magnetic field and emitting synchrotron radiation, letting f represent
the fraction of the radiation which is actually lost (nct reflected back into the plasma
and reabsorbed there), and putting the electron temperature and rest energy in eV, the

synchrotron power becomes

T,
Pgyn = 6.21- 10728 B, T, [1 + > (—“2)] fVsyn Watts. (F.2)
2 \mec

With the aid of Eq. (1.2), the ratio of the total synchrotron radiation power to the

total bremsstrahlung power may be estimated from the expression

Psyn 4 Vsyn Bz\/ T
— ~ 3.67-10 —_, F.3
Porem f Vv Zi Zi2ni ( )

in which V is the total plasma volume and the temperature is in eV. (For this estimate the
relativistic corrections to the synchrotron and bremsstrahlung losses have been neglected,

since they are roughly comparable.)

Of course, if properties such as the electron temperature, density, and magnetic field
strength are not uniform, the above formula must be rewritten in terms of integrals over
the plasma volume. The result has been written in the manner above in order to simplify

its appearance and emphasize its physical meaning.

As has been shown in Chapters 6 and 7, the minimum bremsstrahlung losses are
already quite considerable for all fuels other than D-T, so it would be best not to allow
the synchrotron radiation to become a substantial additional loss. In order to ensure that
the relationship Psypn/Pirem < 1 will be satisfied, one should choose a particular plasma
confinement system which maximizes the density but minimizes B, T, and V,y, /V (the
fraction of the volume in which a strong magnetic field is present) and which allows a
large majority of the synchrotron radiation to be reflected from the walls and reabsorbed

in the plasma (f <« 1).
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Because of the characteristic frequency range of synchrotron radiatior, any of the
radiation which does escape from the plasma system can quite possibly be directly con-
verted into electrical energy at high efficiencies. However, it is still desirable to minimize

the synchrotron radiation in order to avoid the unpleasant necessity of recirculating an

amount of power which is substantial in comparison with the fusion power.

Energy losses due to the escape of electrons or fuel ions from the confinement sys-
tem are clearly another important concern, but since they are entirely dependent on the

particular configuration which is chosen, they have not been addressed in this thesis.
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Vita

The author is one of Arkansas’s few exports, along with Bill Clinton and Tyson chicken.
(He is not to blame for Bill Clinton.) In 1986 he was found to be a nerd and was therefore
promptly institutionalized at MIT as a freshman, and he didn’t manage to escape until
June 1995. During his internment, he passed the time by cranking out this tome and
collecting three minors for the Ph.D. program: biomedicine, solid state and optical physics,
and relativistic quantum field theory. He also picked up a Master’s degree in nuclear
engineering, took several classes in mechanical engineering, moseyed over to Harvard for
various and sundry medical school, physics, and humanities classes, and haunted the
foreign languages department for some time, studying French, German, Japanese, and
Chinese.

In his free time, the author spent approximately 150 hours as a volunteer in public
school classrooms teaching physics to eighth- and ninth-grade students (much to their
horror), and as a result of these experiences he produced over 250 pages of physics cur-
riculum material presenting everything from Newton’s laws to quantum mechanics on
a junior high school level. The author is also rather partial to writing poetry, reading
literature, and eating pizza.

Now that he has escaped out into the real world, the author aspires to become a mad
scientist. Accordingly, his first major career goal is to be the sinister cause of one of the
cases in The X-Files.

“As a child I had not been content with the results promised by the modern professors
of natural science. With a confusion of ideas only to be accounted for by my extreme
youth and my want ot a guide on such matters, I had retrod the steps of knowledge along
the paths of time and exchanged the discoveries of recent enquirers for the dreams of
forgotten alchemists. Besides, I had a contempt for the uses of modern natural philosophy.
It was very different when the masters of the science scught immortality and power; such
views, although futile, were grand; but now the scene was changed. The ambition of the
enquirer seemed to limit itself to the annihilation of those visions on which my interest in
science was chiefly founded. I was required to exchange chimeras of boundless grandeur
for realities of little worth... [SJoon my mind was filled with one thought, one conception,
one purpose. So much has been done, exclaimed the soul of Frankenstein-more, far more,
will I achieve; treading in the steps already marked, I will pioneer a new way, explore
unknown powers, and unfold to the world the deepest mysteries of creation.”

- Mary Shelley’s Frankenstein, Chapter III (1818) [122]
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