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Course outline: lecture 1+2
 Relativistic Quantum Chemistry

 Special Relativity
 The Dirac equation

• Free particles
• Second quantization and QED : a short detour
• Hydrogenic atom

 Approximate Hamiltonians
 Breit-Pauli perturbation theory
 The regular approximation (ZORA)
 The Douglas-Kroll-Heß method
 Four-component methods
 Direct perturbation theory
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Course outline: lecture 3
 Effective Core Potentials

 Basic assumptions
 Ab initio Model Potentials
 Energy-Consistent Pseudopotentials
 Shape-Consistent Pseudopotentials

 Computational aspects
 All-electron or valence-only ?
 Wave Function Theory or Density Functional Theory ?
 Spin-orbit or scalar relativistic ?

 Relativistic effects in chemistry
 Dissociation energies
 Bond lengths and bond strengths
 Dipole moments
 NMR shieldings
 Electric Field Gradients
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Coordinate transformation
 Galilean transformation

 Simple addition of velocities, no speed limit
! 

w =
dx

dt
=

d( " x + vt)

dt
=

d " x 

dt
+ v = " w + v

! 

x = " x + vt

y = " y 

z = " z 
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Maxwell

137
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Thought experiment 1
 Two rotating double stars A and B

 Does their light reach earth at different times ?
 Do we observe one star at two positions ?
 NO -> The speed of light (c) does not depend on the

motion of the emitting stars
 Is there some immobile substance (ether) that transmits

the radiation? NO -> Need better theory of mechanics



8

Thought experiment 2
 Take two observers inside and outside a moving train
 The train passes the stationary observer, waiting for the

railroad sign, on its way to a nearby tunnel...
 They both know the speed of light and wonder when the

light of the railroad sign will illuminate the tunnel

 The observer outside has an easy job : t = distance / c
 The observer inside needs to correct for the fact that the

tunnel is moving towards him (and the light) and gets a
slightly smaller t

 Their conclusion: with c constant, t needs to be relative
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Special relativity
 c constant and t variable gives

Galileo We need a new transformation

! 

x = " # x + v # t ( )

y = # y 

z = # z 

t =$ # t + % # x ( )

! 

x = " x + vt

y = " y 

z = " z 

! 

x
2

+ y
2

+ z
2

= c
2
t
2

" x 
2

+ " y 
2

+ " z 
2

= c
2 " t 

2

Scaling factor

No dependence on y and z
since clocks in the yz plane
would disagree (reciprocal
relation between the frames)
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Lorentz transformation
 Substitute this ansatz in the unprimed equations and solve

 Lorentz transformation

 Time and spatial coordinates transform into each other
 4-dimensional space-time coordinate system
 Nonrelativistic limit (c → ∞) gives Galileo transformation! 

x = " # x + v # t ( )

y = # y 

z = # z 

t = " # t +
v # x 

c
2

$ 

% 
& 

' 

( 
) 

! 

r = " r + v
v # " r ( ) $ %1( )

v
2

+ $ " t 

& 

' 
( 

) 

* 
+ 

t = $ " t +
v # " r ( )
c
2

& 

' 
( 

) 

* 
+ 

Generalize to 3d

! 

" = # = (1$
v
2

c
2
)
$1/ 2 % =

v

c
2
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Relativistic Quantum Mechanics

 1905 : STR
 Einstein : “E = mc2”

 1926 : QM
 Schrödinger equation

 1928 : RQM
 Dirac equation

 1949 : QED
 Tomonaga, Schwinger &

Feynman
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Quantization

! 

H = T +V =
" 2

2m
+ q# r( )

" = p$ qA

  

! 

H " ih
#

#t
 ; p"$ih%  

ˆ H &(r, t) = ih
#

#t
&(r,t)

ˆ H = $
h

2m
ˆ % 2 +

iqh

2m
ˆ % ' ˆ A + ˆ A ' ˆ % ( ) +

q
2

2m
ˆ A 2 + q ˆ ( (r)

Non-relativistic quantization
The nonrelativistic Hamiltonian function
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Spin and non-relativistic quantization 1

We can also write the the Hamiltonian function as

Quantization

! 

E = q" +
# $ %( )

2

2m

# i# j = &ij + i'ijk# k

  

! 

ˆ H = q ˆ " +
1

2m
# $ %ih ˆ & + q ˆ A ( ){ }

2

= q ˆ " %
h

2

2m
# $ ˆ & ( )

2

+
q

2

2m
# $ ˆ A ( )

2

+
iqh

2m
# $ ˆ & ( ), # $ ˆ A ( )[ ]

+

Kronecker delta and Levi-Civita tensor



! 

ˆ " #A r( ) f (r) = ˆ " # f (r)A r( )( )

= ˆ " f (r)( ) #A r( ) + f (r) ˆ " #A r( )

= $ ˆ A # ˆ " f (r)( ) + Bf (r)

  

! 

ˆ H = "
h

2m
ˆ # 2 + q ˆ $ +

q
2

2m
ˆ A 

2

+
iqh

2m
ˆ # % ˆ A + ˆ A % ˆ # ( ) "

qh

2m
& % ˆ # ' ˆ A + ˆ A ' ˆ # ( )

Spin and non-relativistic quantization 2
! "u( ) ! " v( ) = u " v( ) + i! " u # v( )

! 

ˆ H = ˆ T + q ˆ " + iq ˆ A # ˆ $ +
q

2

2

ˆ A 
2 %

q

2
& #B

A is a multiplicative operator

chain rule

Use definition of B

in atomic units
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Spin in NR quantum mechanics
The Pauli Hamiltonian in two-component form

Second derivatives w.r.t. position, first derivative w.r.t. time
Linear in scalar, quadratic in vector potential
→ Can not be Lorentz-invariant

 Ad hoc introduction of spin.The anomalous g-factor
(ratio magnetic moment to the intrinsic angular
momentum) is not well explained

 No spin-orbit coupling

! 

"
1

2
#2 + q$ + iqA % # +

q
2

2m
A
2 "

q

2
Bz "

q

2
Bx " iBy( )

"
q

2
Bx + iBy( ) "

1

2
#2 + q$ + iqA % # +

q
2

2m
A
2 +

q

2
Bz

& 

' 

( 
( 
( 

) 

* 

+ 
+ 
+ 
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Relativistic quantization 1
Take the classical relativistic energy expression

! 

E " q# = m
2
c
4 + c 2$ 2[ ]

1/ 2

Quantization recipe gives

After series expansion of the square root this could
provide relativistic corrections to the Schrödinger Equation

Disadvantage : Difficult to define the square root operator
in terms of a series expansion (A and p do not commute).
Not explored much.

! 

"E = mc
2
"

  

! 

ih
"#

"t
= m

2
c
4

+ c
2$ 2 # % q&#

Without EM-fields



17

Relativistic quantization 2
Eliminate the square root prior to quantization

! 

E " q#( )
2

= m2
c
4 + c 2$ 2

Quantization

Klein-Gordon Equation

 Lorentz invariant
 No spin


The KG-equation is used for mesons (that have no spin)

  

! 

ih
"

"t
# q ˆ $ 

% 

& 
' 

( 

) 
* 

2

+ = m
2
c

4 + c 2
ˆ , 2( )+

! 

"*
r( )" r( )# dr = f (t) Charge is conserved, particle number is not
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Relativistic quantization 3
Define a new type of “square root”

Quantization

The Dirac equation

Suitable for relativistic description of electrons

  

! 

ih
"#

"t
= $mc 2 + c% & ˆ ' + q ˆ ( ( )#! 

E " q# = $mc 2 + c% & '

% i,% j[ ]
+

= 2(ij ) % i,$[ ]
+

= 0 ) $ 2 =1
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The Dirac equation

  

! 

"mc 2 + c# $ % + q&( )' r,t( ) = ih
(' r,t( )
(t

 First derivatives with respect to time and position
 Linear in scalar and vector potentials

 Can be shown to be Lorentz invariant

Alpha and Beta are conventionally represented by
the following set of 4-component matrices

! 

"x =
0 # x

# x 0

$ 

% 
& 

' 

( 
)  "y =

0 # y

# y 0

$ 

% 
& 

' 

( 
)  " z =

0 # z

# z 0

$ 

% 
& 

' 

( 
)  * =

I 0

0 +I

$ 

% 
& 

' 

( 
) 
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The Dirac Hamiltonian

! 

ˆ H = "mc
2

+ c# $ ˆ % + q&

=

mc
2

+ q& 0 c% z c(% x ' i% y )

0 mc
2

+ q& c(% x + i% y ) 'c% z

c% z c(% x ' i% y ) 'mc
2

+ q& 0

c(% x + i% y ) 'c% z 0 'mc
2

+ q&

( 

) 

* 
* 
* 
* 

+ 

, 

- 
- 
- 
- 

Four component wave function : why ?

1) Spin doubles the components

2) Negative energy solutions : E < -mc2
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Densities

! 

" r, t( ) = q#†
r, t( )# r, t( )

• Charge density

• Current density

• Conservation relation
! 

j r,t( ) = q"† r,t( ) c# " r,t( )

! 

"# r, t( )
"t

+$ % j r,t( ) = 0
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Time-independent Dirac equation
 The nuclei do not move with relativistic speeds with

respect to each other
 Take a stationary frame of reference (Born-

Oppenheimer approximation)
 Separate the time and position variables

  

! 

ˆ H "(r, t) = ih
#"(r,t)

#t

"(r, t) = $(r)%(t)

ˆ H $(r) = E $(r)

%(t) = e
Et / ih

Time dependent Dirac equation

Time independent Dirac equation
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Free particle Dirac equation
 Take simplest case : φ= 0 and A = 0
 Use plane wave trial function

  

! 

"(r) = eik#r

a1

a2

a3

a4

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

E *mc2( )a1 * chkza3 * chk*a4 = 0

E *mc2( )a2 * chk+a3 + chk
z
a4 = 0

*chk
z
a1 * chk*a2 + E + mc2( )a3 = 0

*chk+a1 + chk
z
a2 + E + mc2( )a4 = 0

! 

k± = kx ± iky

Non-relativistic functional form with constants ai
that are to be determined

After insertion into time-independent
Dirac equation
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Free particle Dirac equation

 Two doubly degenerate solutions

 Compare to classical energy expression

 Quantization (for particles in a box) and prediction of
negative energy solutions

  

E
2

!m
2

c
4

! c
2

h
2

k
2( ) = 0

E+ = + m
2

c
4

+ c
2

h
2

k
2

E! = ! m
2
c
4 + c2h2k2

E = m
2

c
4

+ c
2

p
2
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Free particle Dirac equation
 Wave function for E = E+

 Upper components are the “Large components”
 Lower components are the “Small components”

  

! 

a2 = 0  ; a3 = a1

chkz

E+ + mc
2

 ; a4 = a1

chk+

E+ + mc
2

h k " p << mc

a3 = a1

cpz

mc
2

+ m
2
c

4
+ c

2
p

2
# a1

pz

2mc

a4 # a1

p+

2mc

For particles moving with “nonrelativistic” velocities
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Free particle Dirac equation
 Wave function for E = E-

 Role of large and small components is reversed
 Charge conjugation symmetry
 Can we apply the variational principle ?
 Variational Collapse

  

! 

a
4

= 0

a
1

= a
3

chkz

E" "mc
2

 # a
3

pz

"2mc

a
2

= a
3

chk+

E" "mc
2
# a

3

p+

"2mc
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Dirac sea of electrons
 All negative energy

solutions are filled
 The Pauli principle

forbids double
occupancy

 Holes in the filled sea
show up as particles
with positive charge :
positrons (discovered
in 1933)

 Infinite background
charge

Electronlike continuum solutions

Positronlike continuum solutions

Electronlike bound solutions
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Second Quantization
 Introduce a m-dimensional Fock space F(m)

 States are defined by the occupation number vector n

 The vacuum has all n=0

 We use an orthonormal basis

  

n = n
1
, n
2
,K,n

m

n
i
= 0,1

  vac = 0, 0,K, 0

n k = !
nk

vac vac = 1
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Second Quantization
 Second quantized operators

 Creation operator

 Annihilation operator

 Define all operators in terms of these elementary operators

  

a
i

†
n

1
,K, n

i
,K,n

m
= 0 (n

i
=1)

a
i

†
n

1
,K, n

i
,K,n

m
= C

i
n

1
,K,1,K, n

m
 (n

i
= 0)

a
i

†
vac = 0,K,1,K, 0

  

a
i
n

1
,K, n

i
,K, n

m
= C

i
n

1
,K, 0,K,n

m
 (n

i
= 1)

a
i
n

1
,K, n

i
,K, n

m
= 0  (n

i
= 0)

a
i
vac = 0

ˆ ! = !
kl

ˆ a 
k

†
ˆ a 

l

k ,l =1

m

"
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Fock space Hamiltonian
Positive and negative energy solutions define a Fock space Hamiltonian

! 

ˆ H 
Total

= ˆ H 
++

+ ˆ H 
+"

+ ˆ H 
"+

+ ˆ H 
""

ˆ H 
++

= H pq
ˆ a p

† ˆ a q
p,q

E#E
+

$                ˆ H 
""

= H%&
ˆ a %

† ˆ a &
% ,&

E#E
"

$

ˆ H 
+":pair creation

= H p%
ˆ a p

† ˆ a %
%

E#E"

$
p

E#E +

$

ˆ H 
"+:pair annihilation

= H%p
ˆ a %

† ˆ a p
p

E#E +

$
%

E#E"

$
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Renormalization
1. Subtract energy from the occupied negative energy

states

2. Re-interpretation

3. Normal ordered Hamiltonian

ˆ a p
† = ˆ b p

†
      ˆ a p =

ˆ b p

ˆ a !
† = ˆ b !       ˆ a ! =

ˆ b !
†

! 

ˆ H 
QED = H pq

ˆ b p
† ˆ b q

p,q

electrons

" + H p#
ˆ b p

† ˆ b #
† + H#p

ˆ b #
ˆ b p( )

#

pos.

"
p

el.

" $ H#%
ˆ b #

† ˆ b %
# ,%

positrons

"

! 

ˆ H 
QED

= ˆ H 
Total

" E
0

= ˆ H 
Total

" ˆ H 
Total

Due to the anticommutation relation
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Quantum Electro Dynamics

 Positive energy for positrons

 Total charge is also redefined

! 

Qvac
QED

= "e vac ˆ N QED vac

= "e vac bp
† bp " b#

†b#
#

positron
states

$
p

electron
states

$ vac = 0

  

! 

E(1p;0e) = K, 1,K;K ˆ H 
QED

K,1,K;K

= K,1,K;K " H#$b#
†
b$

#,$

positron
states

% K,1,K;K = "E& ' mc
2

Neg. Pos. Neg. Pos. 

γ 
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Dressed particles
 The QED Hamiltonian depends on the positive and

negative energy solutions of the Dirac equation. The
Dirac equation depends on the external potential

 Common choices
 Free particle solutions (Feynman,1948)
 Fixed external potential (Furry,1951)
 External + some mean-field potential (“fuzzy”)

 Particles in one representation are quasiparticles
(dressed with ep-pairs) in another representation

 Different no-pair approximations possible
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Electron-electron interaction
 Add quantized EM-field and interaction term

 Electron-electron interaction is automatically
retarded by the finite velocity of light

 Corrections to the Dirac equation and the
instantaneous Coulomb interaction can be derived
 Feynman (NP 1965) diagrams

• Breit interaction (1929) (Order c-2)
• Vacuum Polarization + Self Energy = Lamb shift (NP 1955) (c-3)

= p ! states;e! states; photons

ˆ H QED , full = ˆ H e+ p + ˆ H photons+ ˆ H e+ p, photons
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Electron-electron interaction
 Three terms up to order c-2

 Coulomb, Gaunt and retardation terms
 First correction describes the current-current interaction
 Second correction describes retardation

! 

g
Coulomb"Breit

1,2( ) =
1

r12

"
1

c
2
r
12

c#1 $ c#2

"
1

2c2
c#1 $%1( ) c#2 $% 2( )r12
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Dirac-Coulomb-Breit Hamiltonian
 Second quantization is merely convenient for our

purposes, but becomes essential when going
beyond the No-Pair approximation

 Page 68 of Book 1 has everything we need:

 Matrix elements are complex and (therefore) have
less permutational symmetry

 We want to compute these matrix elements, so we
need to go back to first quantization and basis set
expansion techniques.....

! 

ˆ H = hij

D

i, j

" ai

†
a j +

1

2
gijkl

C + gijkl

B( )
i, j ,k,l

" ai

†
ak

†
ala j
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MO-integrals in quaternion form
L. Visscher, J. Comp. Chem. 23 (2002) 759.

Gµ! ,"#
VW ,XY =

$µ
V †

(r1 )$!
W (r1 )$"

X †
(r2 )$#

Y (r2 )

r12

dr1dr2%%

Bµ! ,pq
XX,&1 2e&1 2

= cµp
X,&1 c!q

X,& 2e&1

* e&2

&1 =0

3

'
&1 =0

3

'

Gpqrs
Dirac(Coulomb &1 2&3 4 = Bµ! , pq

XX ,&1 2G
µ!"#
XXYYB

"#,rs

Y Y,& 3 4

" ,#

NY

'
µ ,!

NX

'
Y

L ,S

'
X

L,S

'  &12,&34 = 0,1,2,3( )

Gpqrs
Lévy(Leblond = Bµ!,pq

LL ,0 G
µ!"#
LLLLB

"# ,rs

LL,0

" ,#

NL

'
µ ,!

NL

'

Gpqrs
spinfree = Bµ!,pq

XX ,0 G
µ!"#
XXYYB

"#,rs

Y Y,0

" ,#

NY

'
µ ,!

NX

'
Y

L ,S

'
X

L ,S

'

Gpqrs
Two( spinor&1 2&3 4 = Bµ! ,pq

LL ,&1 2G
µ!"#
LLLLB

"# ,rs

LL,&3 4

" ,#

NL

'
µ ,!

NL

'  &12,& 34 = 0,1,2, 3( )
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Discussed in Lecture 1

! 

"mc 2 + c# $ ˆ % + q&( )' r( ) = E' r( ) Dirac equation 

Electronlike continuum solutions

Positronlike continuum solutions

Electronlike bound solutions

Lorentz invariance

Renormalization (QED)

Choosing the reference Dirac
Hamiltonian in QED: we need
orbitals

No-Pair approximation and
second quantized Hamiltonian

Breit interaction
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One more exact solution of the Dirac equation

 The hydrogenic atom

 This equation can be solved exactly by
separating the radial and angular variables

 The derivation and energy is found in
various textbooks.

! 

mc
2 "

Z

r
c# $ p

c# $ p "mc 2 "
Z

r

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

+ L
r( )

+ S
r( )

% 

& 
' 

( 

) 
* = E

+ L
r( )

+ S
r( )

% 

& 
' 

( 

) 
* 
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The hydrogenic atom
 The exact energy expression

 Scalar relativistic corrections :

 Spin-orbit couping :

! 

E = mc
2
/ 1+

Z /c

n " j "
1

2
+ ( j +1/2)

2 "
Z
2

c
2

# 

$ 

% % 

& 

% 
% 

' 

( 

% % 

) 

% 
% 

2

j = l ± s

! 

E
NR

= "
Z
2

2
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Orbital stabilisation
Alkali metals

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150

Nuclear Charge 

nonrelativistic

relativistic

H, Li, Na, K, Rb, Cs, Fr, 119
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Spin-orbit splitting
Group 13

0.0

0.1

0.2

0.3

0.4

0 50 100 150

Nuclear Charge 

nonrelativistic

relativistic

relativistic

B, Al, Ga, In, Tl, 113
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Orbital destabilisation
Group 12

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150

Nuclear Charge 

nonrelativistic

relativistic

relativistic

Zn, Cd, Hg, 112
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Orbital contraction
 <r> of the outermost s-orbital

Alkali metals

1

2

3

4

5

6

7

8

0 50 100 150

Nuclear Charge 

nonrelativistic

relativistic



46

Orbital contraction
 <r> of the outermost p-orbital

Group 13

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 50 100 150

Nuclear charge

nonrelativistic
relativistic
relativistic
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Orbital expansion
 <r> of the outermost d-orbital

Group 12

0.8

1.0

1.2

1.4

1.6

1.8

2.0

20 70 120

Nuclear Charge

nonrelativistic
relativistic
relativistic
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The hydrogenic atom
 The exact energy expression

 Can be expanded to
! 

E = mc
2
/ 1+

Z /c

n " j "
1

2
+ ( j +1/2)

2 "
Z
2

c
2

# 

$ 

% % 

& 

% 
% 

' 

( 

% % 

) 

% 
% 

2

! 

E = mc
2 "

Z
2

2n
2

+
Z
4

2n
4
c
2

3

4
"

n

j +
1

2

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 

+O
Z
6

c
4

* 

+ 
, 

- 

. 
/ 

  

! 

1+ x( )
"
1

2 =1"
1

2
x +

3

8
x
2
"K
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Approximate Hamiltonians

 Find operators that can describe these scalar relativistic and spin-
orbit coupling corrections in molecular systems

 Start by decoupling the large and small component equations

 Rewrite the lower equation as

! 

V" L + c# $ p" S = E" L

c# $ p" L + V % 2mc 2( )" S = E" S

! 

" S
r( ) = 1#

E #V

2mc
2

$ 

% 
& 

' 

( 
) 

#1
* + p

2mc
" L

r( )

= K E,r( )
* + p

2mc
" L

r( )

! 

K E,r( ) = 1"
E "V

2mc
2

# 

$ 
% 

& 

' 
( 

"1
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Approximate Hamiltonians

 Substitute in the upper equation

 Unnormalized Elimination of the Small Component

! 

1

2m
" # p( )K E,r( ) " # p( ) +V

$ 
% 
& 

' 
( 
) 
* L

r( ) = E* L
r( )

! 

K E,r( ) = 1"
E "V

2mc
2

# 

$ 
% 

& 

' 
( 

"1
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Pauli Hamiltonian

 Crudest approximation :

 Take K=1 but keep the magnetic field

! 

1

2m
" # p( ) " # p( ) +V

$ 
% 
& 

' 
( 
) 
* L

r( ) = E* L
r( )

p
2

2m
+V

$ 
% 
& 

' 
( 
) 
* L

r( ) = E* L
r( )

! 

K E,r( ) =1

! 

1

2m
" # $( ) " # $( ) +V

% 
& 
' 

( 
) 
* 
+ L

r( ) = E+ L
r( )

Schrödinger equation

Pauli equation
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Breit-Pauli Hamiltonian

 Find an operator that normalizes the wave function :

 Multiply the UESC equation by N-1

! 

" = N" L

N = 1+
1

4m
2
c
2
# $ p( )K 2 # $ p( )

! 

N
"1 1

2m
# $ p( )K E,r( ) # $ p( ) +V

% 
& 
' 

( 
) 
* 
N

"1
N+ L

r( ) = N
"1
E+ L

r( )

! 

N
"1 1

2m
# $ p( )K E,r( ) # $ p( ) +V

% 
& 
' 

( 
) 
* 
N

"1+ r( ) = EN
"2+ r( )



53

Breit-Pauli Hamiltonian

 Use series expansions and keep terms up to order c-2
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Breit-Pauli Hamiltonian

 Expansion of K

 Subsitute and keep only terms to order c-2
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 The energy dependent term on the lhs was cancelled by the rhs

 Further simplify the equation using

 Result : The Breit-Pauli equation
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Expectation values for the hydrogen atom
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Approximate relativistic Hamiltonians

Can we improve upon the Breit-Pauli Hamiltonian ?

A short wish list :

1. The Hamiltonian should resemble the Schrödinger
Hamiltonian as much as possible

2. It should describe the scalar relativistic effects
3. It should describe the spin-orbit coupling effect
4. It should be variationally stable
5. It should be easy to implement
6. Errors relative to the Dirac solutions should be small

and systematically improvable

7. It should be well-named....
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Regular approximations
 What did we do wrong ? Check the expansion parameter

 E should be small relative to 2mc2

 Orbital energies vary over a range of -0.1 to 5,000 au
 Twice the rest mass energy is 37,558 au
 This difference should be large enough

 V should be small relative to 2mc2

 The potential is dominated by the nuclear attraction close to the nuclei

 Take r = 10-4 au and Z=6 (carbon) : V = 60,000 au
 Is this inside the nucleus ? No : the RMS radius is 4.7 10-5 au for C.
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Regular approximations
 Can we find a better expansion parameter ? Yes !

 E should be small relative to 2mc2 - V
 V is negative which improves the expansion close to the nuclei

 Zeroth order in this expansion

 Zeroth order equation does describe SO-coupling and scalar
relativistic corrections

 Gauge dependence of the energy
 Affects ionization energies, structures
 Gauge independence can be achieved various ways
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Approximations to K(E,r) for the 1s orbital of Fm99+
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Foldy-Wouthuysen transformations
 Use an energy-independent unitary transformation to

decouple the large and small component equations

 Exact expressions are only known for the free particle
problem
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Douglas-Kroll-Hess method
 Idea

 Transform “bare-nucleus Hamiltonian” with the known free-particle
tranformation matrix, followed by additional transformations to reduce size of
remaining off-diagonal elements to some order in the potential

 Assumptions
 The transformation is based on the Furry picture : potential does not include

mean-field of electrons
 The conventional implementations neglect the transformation of the two-

electron interaction and often also the SO-coupling terms

 Advantages-Disadvantages
 Method is variationally stable
 Slight modification of existing code required (replacement of one-electron

nuclear attraction integrals), fast implementation
 Good results in practice, significant improvement over Breit-Pauli
 Complicated operators, matrix elements can not be calculated analytically
 Two-electron terms are hard to evaluate
 Interactions with external field need to be represented by transformed operators

(picture change)
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 The second-order Hamiltonian

 The Douglas-Kroll-Hess Hamiltonian
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 General operator transformations
 Barysz-Sadlej-Snijders (1997)
 Reiher (200X)
 van Wüllen (200X)

 Higher order two electron effects
 Samzow, Hess, Jansen (1992)
 Park and Almlöf (1994)
 Hirao (2003-present)

 Infinite order via matrix representations
 Ilias and Jensen (2005)

Higher order approaches
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Four-component methods
 Idea

 Expand Dirac equation in separate basis sets for the large
and small components

 Use kinetic balance condition to prevent “variational
collapse”

 Advantages-Disadvantages
 No approximations made
 Matrix elements over the operators are easily evaluated
 Many more two-electron integrals need to be handled
 The Fock matrix is twice as large
 No picture change problems
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Hartree-Fock Self Consistent Field

1. Construct Fock operator

2. Find eigensolutions

3. Check convergence

4. Compute energy
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Basis set expansion
 Use different expansion sets for the large and small

component parts of the wave function

 Kinetic balance condition

 Recovers the non-relativistic limit
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Choice of expansion functions
 Large component

 Atoms : Sturmians, Slaters or Gaussians
 Molecules : Spherical or Cartesian Gaussians

 Small component
 Same type as large component
 Should fulfill kinetic balance relation

! 

"
P

S{ } = # $p( )"P

L{ }

! 

"P

S{ } =
#"P

L

#x
,
#"P

L

#y
,
#"P

L

#z

$ 
% 
& 

' 
( 
) 

Restricted KB Unrestricted KB



72

Condition : (! . p)(! . p) = p2

Kinetic Balance

Schrödinger equation

Dirac equation

c !

Cartesian Gaussian basis

Large Component

Small Component

s p d

s p d f
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 The large component wave function resembles the
non-relativistic wave function

 Exact relation between large and small component
wave functions

The small component density

 Small component wave function is related to the first
derivative of large component wave function

 The small component density is an
embarrassingly local quantity !
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Spinfree Dirac equation
 Define an auxilliary function

 Transform the Dirac equation accordingly

 Separate scalar and spin-dependent part and
neglect the spin-dependent terms if desired

! 

" S =
1

2mc
# $p( )% L

! 

V T

T
" #p( )V " #p( )
4mc

2
$T

% 

& 

' 
' 

( 

) 

* 
* 
+ L

, L

% 

& 
' 

( 

) 
* = E

1 0

0
T

2mc
2

% 

& 
' 
' 

( 

) 
* 
* 
+ L

, L

% 

& 
' 

( 

) 
* 

Relation holds by definition



76

Direct perturbation theory
 Consider the modified Dirac equation

 Non-relativistic limit is related to the Lévy-Leblond equation

 Define a perturbation theory with as first (or second) order
perturbations
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Discussed in Lecture 2

Two-component methods 

Breit-Pauli perturbation theory

Regular approach (ZORA)

Douglas-Kroll-Hess method

4-component methods

Direct Perturbation Theory
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Valence-Only approaches
 All-electron calculations are not always feasible or necessary

 Hierarchy of approximations for “core” electrons
1. Correlate the core electrons at a lower level of theory (e.g. MP2)
2. Include core electrons only at HF level of theory
3. Use atomic orbitals for core electrons (Frozen Core)
4. Model frozen core by a Model Potential
5. Model frozen core by a Relativistic Effective Core Potential

 Error correction and additional features
1. Estimate higher order correlation effects in another basis set
2. Use a core correlation potential
3. Use a core polarization potential
4.
5. Include valence relativistic effects in RECP
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 Consider the Fock operator

 Identify localized (atomic) core orbitals and partition

 Coulomb potential goes to zero at large distance, contains correction
due to imperfect screening of nuclei at short distance

 Exchange contribution depends on the overlap : short range
 Approximation made : atomic core orbitals are not allowed to change

upon molecule formation
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Core polarization and overlap
 Polarizability of the core can modeled by a classical core

polarization potential (see also book II, formula 45.9)

 Need a cut-off factor in the field since the multipole expansion
is only valid outside the core

 Can be extended to model core-correlation and core-valence
correlation as well

 The overlap between cores is assumed to be zero and thus
neglects the exchange repulsion and nuclear attraction
between neighbour cores

 For “large core” calculations this requires a correction
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Ab Initio Model Potentials
Replace the exact, non-local, frozen core potential by a model
potential plus a projection operator

Density fit of spherical density, can be done to
arbitrary precision
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 Ab Initio Model Potentials

 No freely adjustable parameters
 Keeps nodal structure of the valence orbitals
 Core orbitals in the virtual space
 Relativistic effects can be included in the reference

Fock operator
 Cowan-Griffin Hamiltonian
 Wood-Boring Hamiltonian
 Douglas-Kroll-Hess Hamiltonian

 Can also be used to generate “no-valence” MPs
 Improves description of ions in crystals
 May require iterative generation scheme
 See example from the work of Seijo in the green hand-out
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Effective Core Potentials
Reduce the basis set used to describe the valence orbitals

These pseudopotentials are determined via a fitting procedure. They
take care of Coulomb and Exchange and core-valence orthogonality.
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 Shape consistent ECPs
 “American school” : Christiansen, Ermler, Pitzer
 “French school” : Barthelat, Durand, Heully, Teichteil
 Make nodeless pseudo-orbitals that resemble the true valence

orbital in the bonding region

 Absolute correlation energy may be overestimated relative to
correlation calculations done with the real orbitals

 Fit is sometimes done to the large component of Dirac wave
function (picture change error)

 Reasonable accuracy for bond lengths and frequencies
 Available in many program packages
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 Energy consistent ECPs
 “German school” : Stoll, Preuss, Dolg
 Semi-empirical or ab initio approach that tries to reproduce the

low-energy atomic spectrum (using correlated calculations)

 Provides good accuracy for many elements and bonding
situations
 Difference in correlation due to nodeless valence orbitals is

automatically included in the fit
 Small cores are often necessary to obtain stable results
 Available in many program packages
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 Methods to treat relativity
 “Best” method depends on system studied
 See exercise (and answer) 10

 Closed shells and simple open shells
 Use a size-extensive and economical method
 SOC-inclusive method may be required

 Complicated open shells, bond breaking
 MCSCF, Multi-Reference CI or  MR-CC
 SOC-inclusive methods are usually required
 Mean-field description of SO (AMFI) is usually sufficient

 Use “best practice” and experience from calculations on light
elements
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 Non-relativistic gold is silver
 The 5d-6s transition is shifted from the UV to the visible part of the

spectrum by scalar relativistic effects

 Phosphorescence
 Singlet-triplet transitions are allowed because the non-relativistic

quantum numbers are not exact

6s

Visible Relativistic Effects

5d

6s

5d

Non-Relativistic Relativistic
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Mercury: Dipole polarizability
 Calculation via 4-

component time-dependent
Hartree-Fock (4c TD-DFT
is nowadays also possible)

A. Relativistic
B. Nonrelativistic
C. Breit-Pauli Pert. Theory

 6s→6p transitions
 “Forbidden” 1S0 → 3P1

 “Allowed” 1S0 → 1P1

Relativistic

Nonrelativistic

BP PT

Experiment
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Closed shell molecules
 Some studies with all-electron single

reference methods

 Analyze relativistic effects for diatomic
molecules
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Atomization energies
• Example: Halogen molecules
• Molecular energy is hardly affected by SO-

coupling (SO quenching)
• First order perturbation theory
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Atomization energies
• Atomic asymptotes are lowered by SO-coupling
• First order perturbation theory

Nonrelativistic

px py pz

Relativistic

p1/2 p3/2 p3/2

SO-splitting

2P

2P3/2



Relativistic effect on atomization energies (kcal/mol)

Mainly SO-coupling : relativistic effect on atomization
energies can be estimated by correction to the asymptote



Relativistic effect on harmonic frequencies (cm-1)

Bond weakening due to admixture of the antibonding sigma 
orbital. This is a second order spin-orbit effect



Relativistic effect on equilibrium distances (Å)

Note the underestimation by Hartree-Fock in At2
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Atomization energies
• Example: Hydrogen halides
• SO-coupling is again mostly quenched
• First order perturbation theory
• Strong sigma-pi mixing in ultra-relativistic H117
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π
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σ1/2
∗

π1/2

RelativisticNonrelativistic

π3/2



Dissociation Energies
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Mainly SO-coupling : a good estimate for atomization
energies can be obtained by correcting only the asymptote



Vibrational Frequencies
aug-pVTZ
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sigma orbital



Bond Lengths
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Competition between scalar and spin-orbit effects
Total effect is small (< 0.01 Å) in this case
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Groundstate of thalliumhydride
K. Faegri Jr.. and L. Visscher, Theor. Chem Acc. 105 (2001) 265.

 Goal : Provide benchmark values for this standard testcase
 Hamiltonian : Dirac-Coulomb-(Gaunt)
 Correlation space : up to 36 electrons (6s, 6p; 4f, 5s, 5p, 5d)

Method and
# electrons corr.

Re
(pm)

Ke
(N/m)

!

(cm-1)
De

(eV)

MP2* 14 186.2 121 1437 1.83

DC-CCSD(T)* 14 188.5 111 1376 2.07

DC-CCSD(T) 14 187.6 113.3 1385 2.00

DC-CCSD(T) 20 187.4 112.1 1378 1.98

DC-CCSD(T) 36 187.4 111.1 1371 1.98

DCG-CCSD(T) 36 187.7 111.9 1376 2.06

experiment 186.8 114.4 1391 2.06

*Seth, Schwerdtfeger and Faegri (1999) calculations with contracted basis sets.
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Open shell molecules
 Two studies with all-electron single and

multireference methods

 Analyze relativistic effects



Fine structure splitting in radicals

Fine structure splittings XO molecules 
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• Valence iso-electronic systems O2
–, FO, ClO

• Breit interaction and correlation should be included
  for accurate results
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Platinumhydride
 PtH molecule : jj-coupling instead of LS-coupling scheme
 Pt (5d96s1) + H (1s1) → PtH (5d9σ2)
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Molecular properties
 Relativistic effects on some molecular

properties
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Dipole moment of HI

Relativistic effects
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NMR: 1H shielding trends
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NMR: 13C shielding trends

Data from Malkina et al., Chem. Phys. Lett. 1998
Mean-field SO method employed.
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Extracting nuclear structure information from
Spectroscopy & Quantum Chemistry

Nuclear Quadrupole Moments

 The coupling between the nuclear
quadrupole moment Q and the electric
field gradient (EFG) at the nucleus q
gives an energy splitting that depends
on the orientation of the nuclear spin.
This can be observed with high
precision in microwave (rotational)
spectroscopy on diatomic molecules.

 Quantum chemistry gives q and can
thus be used to obtain accurate values
of Q or to predict and rationalize NQR
or NMR observations.

EQ =
e2qzz Q 3mI

2 ! I(I +1)[ ]
4I(2I !1)

Molecular
rotation

Nuclear spin
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Iodine

Spread in Nuclear Quadrupole Moments (mbarn)
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Further reading
 Relativistic Quantum Mechanics

 R. E. Moss, Advanced molecular quantum mechanics.
(Chapman & Hall, London, 1973).

 P. Strange, Relativistic Quantum Mechanics. (Cambridge
University Press, Cambridge, 1998).

 Relativistic Quantum Chemical methods
 Relativistic Electronic Structure Theory - Part 1 :

Fundamentals, ed. P. Schwerdtfeger (Elsevier, A’dam, 2002).
 Theoretical chemistry and physics of heavy and superheavy

elements, ed. U. Kaldor and S. Wilson (Kluwer, Dordrecht,
2003.

 Relativistic Effects in Heavy-Element Chemistry and Physics,
edited by B. A. Hess (Wiley, Chichester, 2003).

 Applications
 Relativistic Electronic Structure Theory - Part 2 :

Applications, ed. P. Schwerdtfeger (Elsevier, Amsterdam,
2004).
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Typographical errors

 Page 601 & Formula 4 (answer to question 3) : c missing

 Page 604 : division symbol missing

 Answer to question 2
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