
 
 
 

Super-Tasks, Accelerating Turing Machines and Uncomputability 
 

Oron Shagrir 
Philosophy Department, The Hebrew University, 

 Jerusalem 91905, Israel 
E-mail address: shagrir@cc.huji.ac.il 

 
 
Abstract 
 
Accelerating Turing machines are abstract devices that have the same computational 
structure as Turing machines, but can perform super-tasks. I argue that performing 
super-tasks alone does not buy more computational power, and that accelerating 
Turing machines do not solve the halting problem. To show this, I analyze the 
reasoning that leads to Thomson's paradox, point out that the paradox rests on a 
conflation of different perspectives of accelerating processes, and conclude that the 
same conflation underlies the claim that accelerating Turing machines can solve the 
halting problem.   
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1. Introduction 
 

A super-task involves carrying out infinitely many actions during a finite interval of 

time. One sort of super-tasks is implicit in Zeno's paradoxes. Another is suggested by 

Blake [3], Weyl [27], and Russell [20], who all consider the same form of temporal 

pattering. Weyl, for example, conceives a machine that would complete "an infinite 

sequence of distinct acts of decision within a finite time; say by supplying the first 

result after 1/2 minute, the second after another 1¼ minute, the third 1/8 minute later 

than the second, etc." (p. 42). Our concern here is with accelerating Turing machines. 

These are abstract devices that have the same static and operational structure as 

Turing machines, but perform super-tasks by exhibiting the same temporal pattering 

described by Weyl. They are discussed in Boolos and Jefferey [4], Copeland [7,8,9], 

Hamkins and Lewis [15], and Stewart [22].  

 Unlike the 'ordinary' Turing machines, accelerating Turing machines can 

complete infinitely many steps within a finite span of time. But do they have more 

computational power? Do they solve, for example, the halting problem? I argue that 
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they do not. There are accelerating devices that compute the halting function, but 

none is a Turing machine.  

 

2. Accelerating Turing machines 

 

The notion of a Turing machine, introduced by Turing [25] in his classic 1936 paper, 

is often taken to be the model of a computing machine. The details of the machine are 

well-known, but a statement of Turing is useful for our forthcoming polemic: 
[The machine] is only capable of a finite number of conditions q1,q2, …,qR which will be 
called "m-configurations". The machine is supplied with a "tape"…running through it, and 
divided into sections (called "squares") each capable of bearing a "symbol". At any moment 
there is just one square, say the r-th, bearing the symbol ξ(r) which is "in the machine". We 
may call this square the "scanned square". The symbol on the scanned square may be called 
the "scanned symbol"…. The possible behaviour of the machine at each moment is 
determined by the m-configurations qn and the scanned symbol ξ(r). This pair qn,ξ(r) will be 
called the "configuration": thus the configuration determines the possible behaviour of the 
machine… If at each stage the motion of a machine… is completely determined by the 
configuration, we shall call the machine an "automatic machine" (or a-machine)… In this 
paper I deal only with automatic machines, and will therefore often omit the prefix a-. (pp. 
117-118). 
 

According to this characterization, a computational process is a sequence of stages, 

and the machine's configuration – i.e., the condition of the machine, the position of 

the scanner and the contents of the tape – at any stage α + 1 is completely determined 

by the machine's configuration at the previous stage α. Similarly, we can see the 

process as a sequence of state-transition actions (see, e.g., Gandy [13]), whereas 'state' 

is taken in a broad sense, referring to the machine's configuration. I will henceforth 

use the terms 'configuration' and 'state' interchangeably.   

 As Copeland [9, p. 282] observes, there is not much mentioning of time in 

Turing's 1936 characterization of the machines. There is a listing of the primitive 

operations, but no specification of their duration. The implicit assumption in the 

literature on computation is that there is a lower bound on duration of a primitive 

operation. In particular, it is assumed that a process that consists of infinitely many 

stages – in those cases when the machine never halts – requires infinite time. I will 

refer to the machines that satisfy this assumption as ordinary Turing machines. 

Accelerating Turing machine are ordinary Turing machines save one difference. Their 

sequence of stages exhibits the temporal pattering mentioned above. Copeland [9] 

who coined the name accelerating Turing machines describes them as "Turing 

machines that perform the second primitive operation called for by the program in 
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half the time taken to perform the first, the third in half the time taken to perform the 

second, and so on" (p. 283). This pattering enables the accelerating machines to 

complete the same sequence of actions within a finite time, and so to perform super-

tasks that ordinary, non-accelerating, machines cannot perform. There are, of course, 

many devices that can do things that no Turing machine can compute (for a useful 

survey see Copeland and Sylvan [10]). Even Turing [26] conceives such devices, 

which he calls machines with oracles, or o-machines. Accelerating Turing machines 

are of special interest because they preserve the computational structure of a Turing 

machine, and yet seem to perform tasks that no ordinary Turing machine can do.   

 One such task is generating the infinite decimal expansion of π: "Since a 

Turing machine can be programmed to compute π, an accelerating Turing machine 

can execute each act of writing that is called for by this program before two moments 

of operating time have elapsed. That is to say, for every n, the accelerating Turing 

machine writes down the nth digit of the decimal representation of π within two 

moments of operating time" (Copeland [9, p. 284]). Another task would be to arrive at 

the truth-values of open questions in mathematics such as Wittgenstein's question of 

whether or not there exist three consecutive 7s in the decimal representation of π, or 

the question of whether or not Goldbach's conjecture is true (Pitowsky [19]; Copeland 

[9]). Consider the latter conjecture, which asserts that every even number larger than 

two is the sum of two primes. The accelerating machine would operate as follows: its 

first action is to print on the designated output square the symbol 1 (TRUE). This 

action requires one minute. It then systematically and successively examines whether 

an even number is a sum of two primes. Simplifying matters, we could assume it 

takes 1/2 minute to test out 4, another 1/4 minute to test out 6, 1/8 minute to test out 8, 

and so forth. If the machine finds a counterexample, i.e., an even number that is not a 

sum of two primes, it would replace the 1 with 0 (FALSE). If it does not find one, 

exhausting, as it were, all natural numbers, the machine would never alter the 1 in the 

output square. One way or another, the machine would complete its task within two 

minutes, providing the truth-value of Goldbach's conjecture.  

 Our focus here is on accelerating Turing machines whose task is to compute 

functions that cannot be computed by any ordinary Turing machine! A classic 

example is the halting function H(x,y), which characterizes the halting states of 

Turing machines. H(x,y) returns 1 if the machine whose index is x (in some 

enumeration of the set of Turing-machines) halts when operating on input y, and 
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returns 0 if the machine never halts. Turing [25] proved that no ordinary Turing 

machine computes this function; no Turing machine, that is, solves the halting 

problem. But here is an accelerating device that does. The device is a universal 

machine that operates as follows. Its first action is to print 0 in the designated output 

square. Operating as a universal Turing machine, our device then mimics the actions 

of the xth Turing machine operating on input y. The actions are performed in an 

accelerated fashion, such that after each operation our device tests whether the 

mimicked machine arrived at a halting state. If arrived at a halting state, the device 

replaces the 0 with 1 at the output square and halts. If not, the device keeps working 

ad infinitum, never replacing the 0 in the designated output square. Either way, the 

device would tell within two minutes whether the xth Turing machine, operating on 

input y, halts or not for any given x and y. For a more detailed description of the 

machine, see Copeland [8, p. 31].  

 There are arguments, however, against the physical and conceptual possibility 

of super-tasks in general and accelerating machines in particular (for a critical survey, 

see Laraudogoitia [18]). On the physical side, Benacerraf and Putnam [2, p. 20] point 

out that super-tasks are physically impossible because relativity theory sets the 

velocity of light as a limit on the speed at which the machine's parts can move. This 

point is echoed in Gandy [13] who argues that there is a bound on the speed of signal 

propagation in any physical computing device. But it turns out that there are 

spacetime structures consistent with Einstein’s equations, where superasks are quite 

easy to come by (Pitowsky [19]; Hogarth [16,17]; but see also Earman and Norton 

[11]). In these spacetime structures we can devise a non-accelerating o-machine that 

computes functions that are not Turing machine computable, including the halting 

function (see also Shagrir and Pitowsky [21]). Yet Benacerraf and Putnam's point 

does apply to the accelerating machines, whose processes seem to be kinematically 

impossible. There must be an n, for which it is physically impossible to perform an 

action in less than 1/2n of a minute. Even in the context of Newtonian mechanics, 

where the equations enable the body's velocity to increase without bound, this body 

would disappear from the universe. So in the best case scenario, the accelerating 

machine would disappear by the end of the process, leaving behind the correct results 

written on the memory tape alone (see also Copeland [9, p. 289]).  

 On the conceptual side, Thomson [23] argues that super-tasks are conceptually 

impossible or at least that "the concept of super-task has not been explained" (p. 6). 
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We shall immediately turn to discuss the argument in length, in section 3. Another 

conceptual puzzle concerns the accelerating device that computes the halting function. 

On the one hand, this device is, seemingly, "a Turing machine fair and square" 

(Copeland [9, p. 295]). On the other hand, it computes a function that cannot be 

computed by any Turing machine. This certainly looks like "a blatant contradiction" 

(Copeland [9, p. 295]). I return to discuss this puzzle in section 4. My aim here is to 

show that the two conceptual paradoxes are linked, and that their resolution proceeds 

along the same lines.  

 

3. Thomson's paradox 

 

Thomson [23] argues that there are "reasons for supporting that super-tasks are not 

possible of performance" (p. 5). The gist of his argument is that we cannot intelligibly 

determine what would be the state of the system after the completion of the super-

task. Thomson's main example involves a reading lamp, but it can easily be extended 

to accelerating machines (Thomson himself applies it to π-machines). Consider an 

accelerating machine that produces, successively, the partial sums of the infinite 

series 1,-1,1,-1,… At the end of the first stage, which lasts one minute, the machine 

prints out 1. At the second stage, lasting 1/2 minute, the machine replaces the 1 by 0. 

At the third stage, lasting 1/4 minute the machine prints 1 instead of the 0, and so 

forth, ad infinitum. In short, the machine alternates from 0 to 1 and back again 

unboundedly. What would be printed on the tape after two minutes, when the machine 

completes its super-task? Is it 1 or 0? It cannot be 1, because the machine always 

prints 0 immediately after. And it cannot be 0, because the machine always prints 1 

immediately after. So, on the one hand, the printout after two moments must be either 

1 or 0. But, on the other, the printout can be neither 1 nor 0. What is the way out of 

this paradoxical situation? The assumption that there is a non-halting machine that 

computes the partial sums of the diverging series is surely innocent. We must 

therefore blame the idea of a super-task which seems to be self-contradictory, or at 

least has to be explained. 

 Thomson's argument looks neat and convincing. But, as Benacerraf [1] 

demonstrates, it is invalid. Thompson specified the logical setup of the machine at 

every stage before two minutes have elapsed. Given this specification, we can tell 

what would be the actions of the machine during that time period, when the super-task 
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is performed. Yet nothing follows from this specification about the state of the 

machine at the two moments point and after. It is like the function that is specified to 

be continuous in the segment [0,2), but is not specified at 2. The function might 

preserve its continuity at 2, but might lose it as well. All values at 2 would be 

consistent with that specification. Likewise, the printout on the machine's tape after 

two minutes can be 0, 1, 17, or nothing at all. Each printout is consistent with the 

specification of the machine.  

 It is widely regarded that Benacerraf's critique is successful; even Thomson 

[24] later admitted that his own argument is worthless. But the critique is hardly 

relieving. Given how simple Benacerraf's reply is, we might wonder why Thomson's 

argument looked so neat and convincing in the first place; "why so many naturally 

conclude otherwise and as a result believe that a contradiction is straining to emerge" 

(Earman and Norton [12, p. 238]). Furthermore, we are still puzzled about the state of 

the accelerating machine after the super-task is accomplished. As Copeland [9] puts 

it, "Thomson's query as to what state an infinity machine may consistently be 

supposed to be in after it completes its super-task is a good one" (p. 286). It is a good 

query because we are still convinced that the printout on the machine's tape after two 

minutes depends on the prior history of the machine, even if we haven't specified 

what the machine would do after two minutes. So we wonder what could be printed 

out on the tape given that the previous printouts form the diverging infinite sequence 

1,0,1,0,….  

 I suggest that we are puzzled because we are still drawn in by a picture that 

conflates different perspectives of the accelerating machine. One is the Turing 

machine (TM) perspective. According to this perspective, the accelerating machine is 

just a Turing machine that computes, by executing a suitable program, the partial 

sums of the diverging infinite series, and thus alternately prints 1 and 0 and back 

unboundedly. From that point of view, this acceleration process is an infinite 

sequence of stages, whereas the machine's configuration (state) at each stage is 

completely determined by the configuration of previous stage. According to a 

different perspective, which I call the physical perspective, we view the machine in 

terms of its physical makeup. From that perspective, the machine produces physical 

tokens of 1s and 0s because its dynamics, governed by the laws of physics, dictate this 

behavior. From this point of view, too, each state of the machine depends on the prior 

history of the machine, only that here the relevant history is the physical one. In 
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particular, if the machine (or just the tape) somehow survives the acceleration process, 

its state at the two-minute stage is dictated by its prior physical states.1   

 Thomson's paradox emerges when we conflate the two perspectives. Taking 

the physical perspective, we assert that the machine is in some state after two minutes. 

Taking the TM perspective, we assert that any machine's state – its configuration at 

this stage – is completely determined by the previous state. We thus conclude that the 

machine's configuration after two minutes is dictated by the previous Turing 

machine's configuration. Yet we cannot intelligibly tell what configuration precedes 

the two-minute stage. For, as Thomson convincingly shows, if it printed 1, the 

machine prints 0 immediately after, and if it printed 0, the machine prints 1 

immediately after. We thus cannot tell what would be the printout on the tape after 

two minutes either. Thomson concludes that the fault is to be found in the assumption 

such a machine is conceptually possible. And since the idea of a non-halting machine 

surely makes sense, Thomson concludes that the "talk of super-tasks is senseless" [23, 

p. 9]. 

 But the argument is flawed. The flaw is in taking the machine's state, at the 

second minute, to be not only a physical state, but also a Turing machine's state, 

whereas, the Turing machine at that time is no longer specified. The device, as a 

Turing machine, completes all its actions before the second moment. Even if the 

device survives the acceleration, its physical state after two minutes is no longer a 

Turing machine's state. All the infinitely many states of the pertinent Turing machine 

were implemented at the time period prior to the second minute. But if the machine's 

state, after two minutes, is not a Turing machine's state, it need not be dictated any 

longer by the previous state of the (Turing) machine we specified. From the TM 

perspective, any machine's state after two minutes would be perfectly consistent with 

the accelerating Turing machine that was in action during the time segment [0,2). 

Inconsistency emerges nowhere.  

 Setting the physical and TM perspectives apart, we see that no paradox 

emerges. But we still wonder about the machine's physical state after two moments, 

after the super-task had been accomplished. We wonder whether we can consistently 

retain all the following assertions about the physical setting of the machine: (1) that 

the machine is in some physical state after completing the super-task; (2) that each 

state is dictated by the prior physical history; and (3) that this physical history consists 

of alternating printing 1's and 0's on the tape. But as Earman and Norton [12, pp. 237-
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239] point out, inconsistency emerges only when we implicitly introduce another 

assumption, about persistence. The assumption is that the information on the 

machine's tape is left unchanged until the next printing (physical) operation. In 

particular, the printout on the designated output square would be 0 as long as it was 

not replaced by 1, and vice versa. This persistence property amounts to requiring that 

the information in the designated output square after two moments is the limit of 

printouts in that square prior to the second moment [12, p. 238]. Assuming that, there 

cannot be an answer as to what would be printed on that square after two minutes, 

simply because there is no limit to the series consisting of the states of the tape, prior 

to that time. Any attempt to construct an accelerating device that successively 

produces 1's and 0's and that uses the persistence property must fail. "The machine 

must be constructed to satisfy an inconsistent specification. This is clearly impossible 

in any consistent physical setting." [12, p. 239]. However, we certainly cannot 

conclude that all other specifications of super-task machines are also inconsistent. We 

can certainly specify, as we did in section 1, other accelerating machines that, 

arguably, satisfy persistence. And we can specify an accelerating machine that 

alternately prints 0's and 1's, unboundedly, yet does not satisfy persistence at the two-

minute stage. What would be the printout on the tape after two minutes, after the 

super-task is accomplished? It is certainly an interesting empirical question. But given 

that persistence is not satisfied, it is no longer a puzzling one.  

 

4. Computing the uncomputable 

 

Let us now turn to the other paradox: that of accelerating Turing machines that 

compute functions that no Turing machine can compute. How are we to solve this 

paradox? One way out of the conundrum is to deny that such a machine computes at 

all. Another is to distinguish between different senses of computing. Thus Copeland 

[9] argues that the halting problem refers to computation in the internal sense, and that 

the accelerating Turing machine computes the halting function only in the external 

sense. I do not contest these solutions but offer another instead. I urge that the same 

reasoning that led to Thomson's paradox – a conflation between TM and physical 

perspectives – also creates the current paradox, and so that the same reasoning that 

liberated us from Thomson's paradox also applies in the current case. In particular, if 

we accept Benacerraf's critique of Thomson's paradox, as we should, we must give up 
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the idea that the machines that compute the halting function, generating the infinite 

expansion of π, etc., are Turing machines.  

 Consider again the accelerating device that computes the halting function. 

Recall how it works: it first prints 0, then simulates the acts of the nth machine 

receiving m as an input, and replacing the 0 by 1 just in case the simulated machine 

halts at some point. When the super-task is completed, after two minutes, we have at 

our disposal the halting status of the simulated machine. But who is computing the 

(Turing) incomputable halting function? If we take Benacerraf's critique seriously, 

then the answer is that it is certainly not a Turing machine. We did specify an 

accelerating Turing machine that simulates the acts of the nth Turing machine (for 

any n and m), yet all the acts of this Turing machine take place before the second 

minute. Nothing follows from this specification about the state of the device after two 

minutes, when the super-task is completed. Any printout on the machine's tape after 

two minutes, be it 0, 1, or 17, is perfectly consistent with the halting program that the 

machine executed before that. If the accelerating Turing machine does not halt, there 

is no point during the acceleration, at the time segment [0,2), at which the super-task 

has been accomplished. And after two minutes, when the super-task has been finally 

completed, the state of the (Turing) machine is no longer specified.  

 So why do we take the device to compute the halting function? The reason, I 

maintain, is that we also look at the device from another, most commonly a physical, 

perspective. From that perspective, we assume, rightly or wrongly, that the device 

exists after two minutes, and we also assume, rightly or wrongly, that the device's tape 

persists in its current physical state as long as there is no printing operation. Taken 

together, we assume that the printout on the tape after two minutes is the limit of the 

prior printouts on the tape, at the time of acceleration. And given that these printouts 

represent the halting state of the nth machine acting on input m, we take this limit to 

be no less than the (physical) representation of the solution of the halting problem.  

 A paradox emerges only when we conflate the TM and the physical 

perspectives. Taking the TM perspective, we conceive the device as an accelerating 

Turing machine that executes the program described above. Taking the physical 

perspective, we maintain that the device is in some state after two minutes. We thus 

conclude that the device's state after two moments is a Turing machine's state that 

represents the value of a function that no Turing machine can compute. We are 

relieved when we realize that the device's state after two minutes is, at best, a physical 
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state, and not a Turing machine's state. We thus should conclude that if anything 

computes the halting function, it is the physical device, not the Turing machine. The 

accelerating Turing machine computes exactly the same function computed by a non-

accelerating Turing machine. It returns 1 if the simulated nth machine halts, and never 

returns a value if the nth machine never halts.  

 The same reasoning applies to the other accelerating machines. Assuming that 

Goldbach's conjecture is true, the (accelerating) Turing machine will systematically 

check out every even number. Yet nothing about the specification of this Turing 

machine dictates what would be the state of the device after two minutes. Any 

printout on the tape, be it 1 (TRUE) or 0 (FALSE) or nothing at all, is consistent with 

the specified Turing machine. No Turing machine generates the infinite decimal 

expansion of π either. The accelerating Turing machine prints on the tape any digit of 

the infinite decimal expansion. But at no point during the acceleration the task is 

completed, and when the task had been accomplished, after two minutes, the device is 

no longer the specified Turing machine.  

 Of course that we can extend the Turing machine concept so that it will 

encompass the second-minute stage. We can specify the value of the designated 

output at that moment to be the limit of the previous values that this cell has 

displayed. Such specification is offered by Hamkins and Lewis [14,15], who 

introduce the concept of an infinite time Turing machine. This machine preserves the 

static structure of an ordinary machine. Its successive steps of computation also 

proceed in the classical manner: "the classical procedure determines the configuration 

of the machine… at any stage α + 1, given the configuration at any stage α" [14, p. 

256]. What is new is the behavior of the machine at the transfinite domain. At any 

limit ordinal stage, "the machine is placed in the special limit state, just another of the 

finitely many states; and the values in the cells of the tapes are updated by computing 

a kind of limit of the previous values that cell has displayed" [14, p. 526]. We can 

thus have an accelerating infinite time Turing machine that computes the halting 

function. The machine operates like a universal machine before two minutes have 

elapsed. After printing 0 at the output square, it simulates the operations of the nth 

machine operating on input m, replacing the 0 with 1 just in case the simulated 

machine halts. During this period the machine behaves in the classical manner, 

meaning that the configuration of each stage is completely determined by the 
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configuration of the previous stage. So far there is not much difference from the 

accelerating Turing machine described above. But there is a difference. The infinite 

time machine also encompasses the two-minute stage. This stage is a ω1 limit stage, in 

which the value at the designated output cell is the limit of the previous values in that 

cell, namely, displaying the halting state of the nth machine, acting on input m.2  

 I do not deny that this infinite time Turing machine computes the halting 

function. I also do not mind the name infinite time Turing machine. Rather, my point 

is this. If accelerating Turing machines have exactly the same computational structure 

as ordinary Turing machines, then they compute exactly the Turing machine 

computable functions. Performing super-tasks enables the accelerating machines to 

complete infinitely many steps in a finite interval of time, but it does not enable to 

compute functions that the ordinary machines cannot compute. And if accelerating 

Turing machines differ from ordinary Turing machines in computational structure, as 

is the case with infinite time Turing machines, then they might have more 

computational power. But here too, the difference in computational power is not due 

to performing super-tasks alone. Performing a super-task only ensures that the 

computation terminates in a finite real time, even if it requires infinitely many 

computation steps. The difference in computational power owes to the difference in 

computational end structure. Either way, no paradox emerges. If the accelerating 

Turing machine has the same computational structure as the ordinary machine, it does 

not compute the halting function. And if we extend the concept of the Turing 

machine, redefining the end structure, it should come as no surprise that the newly 

specified Turing machines compute functions, e.g., the halting function, that Turing's 

machines – the machines that Turing specified – fail to compute.  
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Notes 
 
1 I would like to emphasize that we could easily replace the physical perspective by any other which 
asserts that the machine is in some state after accomplishing the super-task. I refer to the physical 
perspective both because many (see, e.g., Earman and Norton [12]; Copeland [9]) discuss the 
accelerating processes from that perspective, and because it is easy to conflate the physical and TM 
perspectives. It is easy because, along the acceleration process, the physical device implements the 
Turing machine. Similarly, we could replace the TM perspective by any other which implies that the 
machine is a rule-following device, namely, that each machine's state is determined by the previous 
one. In Thomson's main example – with the reading lamp – the 'TM perspective' implies that each 
OFF-state is followed by an ON-state, and vice versa. The 'physical perspective' implies that the lamp 
is in some state after two minutes. 
2 Other constructions, which retain the static structure of Turing machines, modifying only the end 
structure, can be made in terms of inductive Turing machines (Burgin [6]) and limit Turing machines 
(Burgin [5]). These machines, too, can compute the halting function.  


