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Summary 
 
Just before the discovery of penicillin by Fleming, reports in the literature appeared that 
described potent antimicrobial substances produced by lactic acid bacteria. It was found that 
these substances were specifically active against a wide range of other gram-positive bacteria. 
These characteristics meant that these compounds were attractive candidates for application in 
either food preservation e.g. by preventing food spoilage or by inhibiting growth of food 
pathogens, or for pharmaceutical use, e.g. to prevent or fight infections in humans or animals. 
 
In the late sixties and early seventies, it was shown that part of the inhibitory activity of some 
lactic acid bacteria was due to the production of a special class of antimicrobial peptides today 
called lantibiotics. After the finding that lantibiotics are ribosomally synthesized peptides, a 
wealth of novel information was generated in the late eighties and early nineties by sequencing 
several of the gene clusters involved in the biosynthesis of various lantibiotics including the 
gene clusters for nisin. The biological system behind production, secretion and self-defence of 
nisin has proven to be both extensive and delicately regulated, requiring the interplay between at 
least eleven genes, namely nisA/Z/QBTCIPRKFEG. 
 
In this work regulation and biosynthesis of nisin was studied and the role of NisI in nisin 
immunity evaluated. In order to analyse the biosynthesis of nisin, mutations in the nisZ, nisB and 
nisP genes of the nisZBTCIPRK operon were made by gene replacement or with the integration 
of a plasmid. The mutations caused a drastic decrease of the transcription from the promoters 
upstream of the nisZBTCIPRK and nisFEG operons resulting in loss of nisin production and 
nisin immunity. Adding nisin externally to these mutant strains partly restored the transcriptional 
activity and the tolerance to nisin, but not the ability to produce active nisin. Our results show 
that the nisZBTCIPRK operon and the nisFEF operon are positively autoregulated via nisin and 
are in the same regulon. 
 
The role of NisI protein in the nisin immunity was studied by protein expression, labelling, 
immuno blotting and in vitro interaction methods. The results showed that NisI could exist in 
two forms i.e. a membrane-bound and a soluble form. NisI can interact in vitro with purified 
nisin and might have two biological functions - as an immunity protein and as an enhancer of the 
activity of nisin.  
 
The function of NisP for the maturation of nisin was studied by analysing the nisP mutant strain. 
It was shown that NisP is needed to cut the leader part of prenisin to attain the biologically 
active nisin.  
 
The posttranslational modifications of nisin biosynthesis were studied by analysing the 
maturation of a His-tagged nisin precursor in nisB and nisC mutant strains. Mass analysis of the 
purified precursor showed that no modifications of the nisin precursor occur in the nisB mutant 
strain, whereas dehydration seems to occur in the nisC mutant strain, which does contain an 
intact NisB enzyme. This suggests that NisB is responsible for the first step in nisin maturation, 
e.g. dehydration of the nisin precursor and NisC is involved in the formation of thioether 
bridges. 
_____________________________________________________________________________ 
Key words: nisin, lantibiotic, immunity, biosynthesis, bacteriocin, gene function, food 
preservation 
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A.  REVIEW OF THE LITERATURE 
 

1. Bacteriocins 

 

Pathogenic bacteria permanently threaten the health of animal and human. Microorganisms are 

the major cause of food-related diseases and spoilage in the production and storage of food and 

beverages. Antibiotics and food preservatives, such as nitrate, are generally used to combat these 

pathogens. However, because of the potential danger of selection of antibiotic resistant bacteria 

and the demand by consumers for purer and safer food, i.e. food with less chemical additives, 

there is a growing interest to replace these substances by natural products that are easily 

degradable and harm neither the individual nor the environment. One interesting group of 

biomolecules in this respect are bacteriocins, which are produced by both gram-positive and 

gram-negative bacteria (Klaenhammer, 1993; de Vuyst and Vandamme, 1994; Dodd and 

Gasson, 1994). Bacteriocins are oligo- or polypeptides, which have a bactericidal (bacteria-

killing) activity (Tagg et al., 1976). 

 

Two well-known representatives of bacteriocins produced by the gram-negative bacteria are 

colicins and microcins. First bacteriocin produced by Escherichia coli was found about 60 years 

ago (Gratia, 1925) and later they were named as colicins (Fredericq P, 1948). Colicins have been 

studied for over six decades and are well characterized (Akutsu et al., 1989; James et al., 1992; 

James et al., 1996; Pagie and Hogeweg, 1999). They are plasmid-encoded bacteriocins and 

classified into groups on the basis of the receptor to which they bind. Microcins, produced by the 

gram-negative bacteria enterobacteriaceae, are post-translationally modified. They are active 

against other gram-negative bacteria and act via inhibition of DNA replication or protein 

synthesis (Bacquero et al., 1984; Yorgey et al., 1992). 

 

One interesting group of bacteriocins produced by gram-positive bacteria are those produced by 

lactic acid bacteria (LAB). They are an important group of bacteria due to their usage as starter 

cultures in the food industry. The first antibacterial polypeptide discovered in lactic acid bacteria 

was reported by Rogers (1928) who observed an inhibitory substance, later named nisin, from 

Streptococcus lactis strains (classified later as Lactococcus lactis, Schleifer et al., 1985). During 

recent years, a large number of novel bacteriocins have been identified from many different 
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LAB. Based on their amino acid sequences, stability to heat, size, mode of action, biological 

activities, secretion mechanisms and the presence of modified amino acids, LAB bacteriocins 

have been classified into three classes of which the first two classes have further been subtyped 

(Jung, 1991a, b; Klaenhammer et al., 1992; Klaenhammer, 1993; de Vuyst and Vandamme, 

1994; Dodd and Gasson, 1994; Nes et al., 1996). 

 

 

 

Class I.                Lantibiotics 

 

                             I a: nisin-like, elongated screw shaped, cationic molecules 

                             I b: duramycin-like, globular molecules with low net negative charge 

 

Class II.               Non lantibiotics, small heat stable peptides 

 

                             II a: pedocin-like bacteriocins with strong antilisterial effects 

                             II b: two-peptide bacteriocins 

                             II c: sec-dependent secreted bacteriocins 

 

Class III.              Large heat-labile proteins 

 

The class I and II bacteriocins have been the most intensively studied, since they are the most 

common ones, and also the most promising candidates for industrial applications (Nes et al., 

1996; Parente and Ricciardi, 1999). 

 

2.   Lantibiotics 

 

A number of antimicrobial peptides (bacteriocins) that are produced by bacteria have been found 

to contain, in addition to a few other unusual amino acids, the uncommon thioether-bridged 

residues lanthionine (Lan) and 3-methyllanthione (Melan). Therefore, these bacteriocins have 

been called ´lantibiotics´ from lanthionine containing antibiotic (Schnell et al., 1988). These 

lantibiotics are plasmid-mediated or chromosomally encoded, ribosomally synthesized, peptides 

that form pores in cellular membranes or inhibit enzymes. They are mainly active against gram-
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positive bacteria. Interesting aspects of lantibiotics include (1) their mode of biological action, 

(2) their biosynthesis, which involves unique enzymes, (3) autoimmunity i.e. how the producer 

protects itself and (4) their (potential) applications. Examples of lantibiotics described to date 

are listed in Table 1. 

 

Table 1: Lantibiotics 

 
Lantibiotic 

 
Producing species 

 
Molecular
mass 
(dalton) 

  
Modified 
residues  
    (%) 

  
Ring number 

Type-A lantibiotics     
Nisin A Lactococcus lactis     3353     38     5 
Nisin B Lactococcus lactis     3350     38     5 
Nisin Q Lactococcus lactis     3327     38     5 
Subtilin Bacillus subtilis     3317     40     5 
Epidermin Staphylococcus 

epidermidis 
    2164     41     4 

Gallidermin Staphylococcus 
gallinarum 

    2164     41     4 

Mutacin B-Ny266 Streptococcus mutans     2270     41     4 
Pep5 Staphylococcus 

epidermidis 
    3488     26     3 

Epicidin 280 Staphylococcus 
epidermidis 

    3133     27     3 

Epilancin K7 Staphylococcus 
epidermidis 

    3022     32     3 

Lactocin S Lactobacillus sake     3764     24     2 
SA-FF22 Streptococcus pyogenes     2795     27     3 
Lacticin 481 Lactococcus lactis     2901     26     3 
Salivaricin A Streptococcus salivarius     2315     27     3 
Variacin Micrococcus varians     2658     28     3 
Type-B lantibiotics     
Cinnamycin Streptomyces 

cinnamoneus 
    2042     47     4 

Duramycin Streptomyces 
cinnamoneus 

    2014     44     4 

Duramycin B Streptoverticillium sp.     1951     47     4 
Duramycin C Streptomyces griseoluteus     2008     47     4 
Ancovenin Streptomyces sp.     1959     37     3 
Mersacidin Bacillus sp.     1825     42     4 
Actagardine Actinoplanes sp.     1890     45     4 
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Based upon their structure and biological function, the lantibiotics have been subdivided into 

two subclasses: type-A and type-B (see Table 1) (Jung, 1991; Jung and Sahl, 1991; Bierbaum 

and Sahl, 1993; Entian and Klein, 1993; Hansen, 1993; Sahl et al., 1995). Type-A lantibiotics 

are elongated cationic polypeptides, which exert their bactericidal funtion primarily via 

membrane perturbation. Well-known members of this group are nisin (Gross and Morell, 1971), 

subtilin (Gross et al., 1973, Pep5 (Kellner et all., 1989),) epidermin (Allgaier et al., 1986), 

gallidermin (Kellner et al., 1988) and epilancin K7 (van de Kamp et al., 1995). There are three 

variants of nisin – nisinA, nisinZ and recently discovered nisinQ (Graeffe et al., 1991; Mulders 

et al., 1991; Zendo et al., 2003). NisinA and nisinZ differ only with one amino acid; nisinA has 

histidine and nisinZ asparagine at the position 27 of the amino acid sequence (Graeffe et al., 

1991; Mulders et al., 1991). NisinQ and nisinA differ with four amino acids in the mature 

peptide: valine instead of alanine at the position 15, leucine instead of methionine at the position 

21, asparagine instead of histidine at the position 27 and valine instead of isoleucine at the 

position 30, respectively. NisinQ and nisinZ differ from each other similarly, except that they 

both have asparagine at the position 27 of the amino acid sequence (Zendo et al., 2003). Also 

epidermin and gallidermin are variants; epidermin contains isoleucine and gallidermin leucine at 

position 6 of their amino acid sequence (Sahl, 1994). 

 

Type-B lantibiotics are globular, have a low net charge, and are enzyme inhibitors. 

Representatives of this group are the duramycins (Fredenhagen et al., 1991), cinnamycin 

(Benedict et al., 1952), ancovenin (Wakamiya et al., 1985), mersacidin (Kogler et al., 1991) and 

actagardine (Kettenring et al., 1990; Zimmermann et al., 1995). The amino acid sequences of the 

duramycins, cinnamycin and ancovenin are almost identical. They thus can be regarded as 

natural variants. The grouping of actagardine and mersacidin together with the duramycin-like 

lantibiotics as belonging to type-B is based on similarities between their prepeptide sequences 

(Bierbaum et al., 1995). Model structure of type-A lantibiotic and type-B lantibiotic is presented 

in the figure 1. 
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Fig.1 :  Model structures of type-A and type-B lantibiotics. A: type-A lantibiotic gallidermin; B: 
type-B lantibiotic mersacidin. Special structure – thioether bridge (-S-) and some typical amino 
acid modifications (Dha = dehydroalanine; Dhb = dehydrobutyrine) for lantibiotics are seen. 
Typical ring structures with the essential thioether bridges, Ala-S-Ala = lanthionine and Abu-S-
Ala = β-methyllanthionine, are also shown. 
 

 

2.1.   Genes and biosynthesis of type-A lantibiotics 

 

2.1.1. Organisation of the gene clusters 

 

 

In the following section the genes for the type-A lantibiotics and how these genes are organized 

will be briefly discussed. Two classes of genetic organisation have been identified: nisin, 

epidermin, subtilin and Pep5 (nisin group) are grouped on the basis that they are modified by 

separate LanB and LanC enzymes, whereas this function is performed by a single LanM enzyme 
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in the subclass containing lacticin 481, lactocin S, and cytolysin (lacticin group) (McAuliffe et 

al., 2001).  

 

A.

lanB lanT lanC lanI lanP lanR lanK lanF lanE lanG

structural
gene

chemical modification

secretion

immunity

processing of
prepeptide

r
e

regulation

lanA

lanT lanF lanE lanGlanA lanM

structural
gene immunityprocessing of

prepeptide

secretion
andchemical

modification
B.

Figure 2:  Genomic organization of the two classes of lantibiotic-A described in the text. A: 
nisin group;B: lacticin group. Putative function of the genes is also signed.  lan is an 
abbreviation of the word lantibiotic and the letter to certain gene is according the general 
nomenclature for lantibiotics (de Vos et al., 1995). 
 

 

 

According to a common nomenclature the genes for lantibiotics (lan) is denoted with a lan added 

with a symbol for the gene in question (de Vos et al., 1995). Thus the gene for the immature 

precursor peptide is called lanA. Nisin (nis), subtilin (spa), epidermin (epi) and Pep5 (pep) gene 

clusters contain lanB and lanC genes that are presumed to code for two types of enzymes that 

have been implicated in the modification reactions characteristic to all lantibiotics, i.e. 

dehydration and thioether-ring formation. Cytolysin (cyl), lactocin S(las) and lacticin 481(lct) 

clusters do not have these genes, but they do contain a much larger lanM gene which is the lanC 

gene homologue. Most lantibiotic gene clusters contain a lanP gene encoding a serine protease 
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that is presumably involved in the proteolytic processing of the prelantibiotics. All clusters 

contain a lanT gene encoding an ABC transporter likely to be involved in the export of the 

lantibiotics. The lanE, lanF and lanG genes encode another transport system that is possibly 

involved in self-protection. Also, the lanI gene, that encodes a lipoprotein, is involved in 

immunity – self-protection. In the nisin and subtilin gene clusters two tandem genes, lanR and 

lanK have been located. These code for a two-component regulatory system. Finally, non-

homologous genes are found in some lantibiotic gene clusters such as epiD that encodes an 

enzyme involved in a post-translational modification forming a special kind of ringstructure, 

unsaturated (S)-[(Z)-2-aminovinyl]-D-cysteine at the C-terminus of the mature epidermin 

(Kupke and Götz , 1997).  

 

 

2.1.2.   Biosynthesis 

 

All the lantibiotics for which the structural genes have been sequenced so far, are ribosomally 

synthesized as so called prepeptides (Jung, 1991a; Sahl et al., 1995). These prepeptides consist 

of an N-terminal leader peptide and a C-terminal propeptide domain, which is modified to 

become the mature peptide. The propeptide undergoes post-translational modifications including 

dehydration of specific hydroxyl amino acids and formation of thioether bridges via addition of 

neighboring cysteines to didehydro amino acids (Sahl et al., 1995). It was proposed (Schnell et 

al., 1988) and subsequently proven (Weil et al., 1990) that in the first modification step, the Ser 

and Thr residues are dehydrated to Dha (didehydroalanine) and Dhb (didehydrobutyrine), 

respectively. (2S, 6R)-meso-lanthionine and (2S, 3S, 6R)-3-methyllanthionine residues are 

formed subsequently by addition of the thiol-groups of the Cys residue to the didehydroamino 

acids.  

 

 LanB protein is the putative enzyme that catalyzes the dehydration of the Ser and Thr residues 

in the propeptide domain of type-A lantibiotics. In certain cases, the serine residue, at position 

33 of nisin, does not undergo dehydration to Dha33. This feature of nisin biosynthesis was 

exploited in an investigation of the role of NisB protein in prenisin maturation. Overexpressing 

the plasmid-encoded nisB gene resulted in a fourfold increase in the level of NisB protein that 

significantly increased the efficiency of the dehydration reaction at Ser33 (Karakas et al., 1999). 
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This result represents the first experimental evidence for the direct involvement of the NisB 

protein in the maturation process of nisin.  

 

LanC is assumed to be the thioether bridge forming enzyme. Deletion of the pepC gene in 

Staphylococcus epidermis resulted in production of incorrectly modified Pep5 fragments, which 

contained only one out of the three expected lanthionine residues (Schnell et al., 1992). 

Overexpression of NisC protein did not appear to influence dehydration of nisin prepeptides, and 

therefore may have a role in thioether formation (Karakas et al., 1999).  

 

In gene clusters for biosynthesis of cytolysin, lacticin 481, lacticin S and mutacin II lanB gene is 

missing and instead gene named lanM is found (Gilmore et al., 1996; Rince et al., 1994 and 

Woodruff et al., 1998). The C-terminal part of LanM protein is homologous to LanC proteins 

(Siezen et al., 1996). It is supposed that LanM is able to catalyze both of the reactions thought to 

be catalyzed by LanB and LanC. 

 

The lanT gene encodes a protein that is involved in transport of the prepeptides across the 

cellular membrane to the outside of the cell (Kuipers et al., 1993; Qiao et al., 1996). Some type-

A lantibiotic gene clusters like lacticin 481, cytolysin and SA-FF22 possess LanT transporters, 

which cleave the leader peptide concomitant with export (Rince et al., 1994; Dougherty et al., 

1998; McLaughlin et al., 1999). All known lantibiotic gene clusters were found to contain a lanT 

gene (Siezen et al., 1996), although some of the proteins such as EpiT (Peschel et al., 1997) and 

PepT (Meyer et al., 1995) seem to be dispensable. In these cases, host cell transporters probably 

complement the specific transporter deficiency.  LanT proteins share homology with a large 

family of transport proteins, characterized by the presence of a cytoplasmic ATP-binding 

domain and a membrane-spanning domain (Fath and Kolter, 1993). 

 

By use of the yeast-two-hybrid system and co-immunoprecipitation techniques, it was shown for 

nisin (Siegers et al., 1996) and subtilin (Kiesau et al., 1997) that the LanB, LanC and LanT 

proteins can interact with each other and form a multimeric protein complex located on the 

cytoplasmic membrane. Thus biosynthesis of lantibiotics might occur via this kind of multimeric 

protein complexes.   
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The final step in the biosynthesis of lantibiotics is the removal of the leader part from the 

prepeptide. LanP, which is a serine protease, is responsible for this step (van de Meer et al., 

1993). However, in the biosynthesis of some lantibiotics like lacticin 481, LanT can undertake 

this proteolytic cleavage as well as secretion of the lantibiotic (Havarstein et al., 1995). NisP, 

produced in E. coli, could cut purified nisin prepeptide and consequently lead to the formation of 

the active nisin molecule (van de Meer et al., 1993). The location at which processing of the 

leader peptide occurs, varies with the lantibiotic (Siezen et al., 1996). In the case of nisin, NisP 

is secreted by the host cells and anchored to the cellular membrane on the outside of the cells 

(van de Meer et al., 1993). Pep5, epilancin K7 and lacticin 481 were reported to be cleaved 

intracellularly (Siezen et al., 1996). In contrast to the gene clusters mentioned above, the subtilin 

gene cluster does not contain a gene encoding a protease, and it is assumed that processing of it 

occurs by a general serine protease of the host Bacillus subtilis (Siezen et al., 1996). 

 

 

2.1.3 Regulation of biosynthesis 

 

It has been reported that apart from displaying a strong antimicrobial activity, lantibiotics can 

also play an important role in the regulation of its own biosynthesis (Kuipers et al., 1995; Ra et 

al., 1996). Regulation is supposed to occur via the two-component regulatory proteins, LanK 

and LanR. To date, these regulatory proteins have been identified in the gene clusters of nisin, 

subtilin and SA-FF22 ( Engelke et al., 1994; Klein et al., 1993 and McLaughlin et al., 1999). 

Indeed, nisin and subtilin have been shown to act as a signalling molecule of its own 

biosynthesis via NisRK and SpaRK proteins, respectively (Ra et al., 1996; Stein et al., 2002). 

Such lantibiotics can be regarded as peptide pheromones, which are sensed by the histidine 

kinase LanK, whose input domain resides on the outer side of the membrane, probably by a 

direct protein-peptide interaction. By analogy with other known two-component regulatory 

systems (Parkinson et al., 1992; Kleerebezem et al., 1997; Kuipers et al., 1998) LanK will 

autophosphorylate at a specific histidine residue when it senses a certain threshold lantibiotic 

concentration in the medium and subsequently transfers the phosphate moiety to the response 

regulator LanR. The response regulator is thought to become phosphorylated at a specific Asp 

residue, which is considered to trigger its binding to regulated promoters in the lantibiotic gene 

clusters thereby activating transcription of the structural gene lanA and the downstream genes 

(Kuipers et al., 1995; Ra et al., 1996; de Ruyter et al., 1996).  
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Transcription start sites have been identified at three positions in the nisin operon, preceding the 

nisA, nisRK and nisFEG genes (Kuipers et al., 1995; de Ruyter et al., 1996). These studies have 

shown that transcription from the nisR promoter is independent of nisin, while the nisF promoter 

is under similar NisRK mediated control as the nisA promoter. Correspondingly subtilin operon 

comprehends three promoters: spaS, spaBTC and spaIFEG that are controlled by subtilin (Stein 

et al., 2002). In addition to autoinduction subtilin biosynthesis seems to be controlled via sigma 

factor H. It was shown to regulate positively transcription of spaRK genes (Stein et al., 2002). 

Also, nisin biosynthesis seems to be controlled independently without nisin autoinduction. It was 

shown that the nisA promoter could be induced independently of NisRK system by lactose and 

galactose (Chandrapati et al., 1999). Thus there seems to be different ways to regulate the 

biosynthesis of lantibiotics.    

 

Another known interesting case of regulatory proteins of type-A lantibiotics is EpiQ, which 

regulates production of epidermin. EpiQ possesses some similarities to LanR proteins at the C-

terminus, but lacks the highly conserved phosphoryl acceptor Asp residue (Schnell et al., 1992). 

In addition, no corresponding LanK protein, histidine kinase, has been identified in the 

epidermin gene cluster. However it has been proposed that EpiQ may direct epidermin 

biosynthesis following phosphorylation by an intrinsic histidine kinase (Augustin et al., 1992). 

The regulator EpiQ activates the expression of most of the genes encoded in the epidermin gene 

cluster. The genes responsible for the synthesis of the epidermin precursor peptide (epiA) and its 

post-translational modification (epiBDC), for producer self-protection (epiFEG and epiH), and 

for secretion (epiH and epiT,) are controlled by EpiQ (Peschel et al., 1993; Peschel et al., 1997). 

However, there is no evidence for a potential signal-transduction via epidermin leading to the 

activation of the EpiQ and to the expression of epidermin (Kies et al., 2003). Instead, it was 

lately suggested that the activity of epidermin is regulated at the level of precursor peptide 

processing. It was claimed that the EpiP protease, that cuts the leader part of epidermin, is 

controlled by the accessory gene regulator quorum sensing system (Kies et al., 2003).   
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3.  Nisin 

 

3.1. Foreword 

 

The best-known example of a lantibiotic is nisin. Not only was nisin the first lantibiotic to be 

discovered, it also is the only one, which has so far found substantial commercial applications. 

In addition, nisin is also the most extensively studied and best known of all lantibiotics. It is 

considered not toxic to mammals including man. The toxicity of orally applied nisin as tested in 

rats, was estimated to be very low (LD50 7 g/kg of animal body weight), similar to that of 

common salt (Hurst, 1981). Nisin was the first of these agents to be introduced commercially as 

a food preservative in the UK, approximately 30 years ago. Its first established use was as a 

preservative in processed cheese products and since then numerous other applications in foods 

and beverages have been identified (Table 2). Nisin is currently used as food preservative (food 

additive number E234) in over 50 countries including the EU, the USA and China. There is also 

an increasing interest to use nisin for medical applications as an antibiotic, because of the 

emergence of bacterium resistance against `classical` antibiotics (Hancock, 1997; Hoffmann et 

al., 2002).  

 

 
 Table 2: Applications of nisin 

 
 
Food 
 

     
 Bacteria inhibited by nisin 

 
References 

Cheese products        
Processed cheeses Clostridium butyricum 

Clostridium tyrobutyricum 
 

       1     
       2  

Hard and semi-hard cheeses Clostridium botulinum 
Listeria monocytogenes 
Staphylococcus aureus 

       3 
       4 
       5 

Milk   
Pasteurised milk Clostridium botulinum        6 
Canned evaporated milk Clostridium thermosaccharolyticum        7 
Dairy dessert thermophilic heat-resistance spores         8 
Acidic canned food   
Mushrooms, peas, potatoes Clostridium thermosaccharolyticum        9 
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Table continued   
Beer and wine         
 Lactobacilli sp       10      
 Pediococci sp.       11 
Meat    
 Listeria monocytogenes       12                
 Staphylococcus aureus       13. 
Medical therapy   
Peptic ulcer disease Helicobacter pyroli       14. 
Atopic dermatis Staphylococci sp.       15. 
Bovine mastitis Staphylococci sp.       16. 

 References within this table 1) Fowler et al., 1979; 2) Fowler et al., 1991 3) Somers et al., 1987 4) Lipiska, 
1977 5) Hugenholtz et al., 1991 6) Fowler et al., 1979 7) Gregory et al., 1964 8) Heinemann et al., 1965  
9) Vas et al., 1965 10) Ogden et al., 1985 11) Radler et al., 1990 12) Taylor et al., 1985 13) Calderon et al., 
1985 14) Hancock et al., 1997 15) Valenta et al., 1996 16) Serieyes and Poutrel, 1993.   

 

 

 

3.2   Primary structure of nisin  

 

The molecular weight of nisin is 3353 Da (Jung, 1991). It is both soluble and stable in aqueous 

solutions at low pH, but at high pH it is inactivated by chemical modification (Liu and Hansen, 

1990). It consists of 34 amino acid residues, several of which are modified residues such as 

lanthionine, 3-methyl lanthionine, dehydroalanine and dehydrobutyrine (Figure 3). Nisin can 

exist not only as a monomer (3350 Da) but also as dimers (6700 Da) or tetramers (13400 Da), 

which suggests that the dehydroamino acids and amino groups of two or four nisin molecules 

can interact (Liu et al., 1990).  The lanthionines in positions 3 and 7, 8 and 11, 13 and 19, 23 and 

26, and 25 and 28 form five ring structures in the nisin molecule, these rings are designated A, 

B, C, D and E, respectively.  The lanthionine rings D and E are intertwined. D-amino acids are 

found in positions 3, 8, 13, 23 and 25. The total chemical synthesis of nisin has been published 

(Fukase et al., 1988). The primary structure of nisin is similar to that of subtilin, the lantibiotic 

produced by Bacillus subtilis ATCC 6633 (Jansen et al., 1944; Gross et al., 1973). The sequence 

identity between these lantibiotics is 60% and their ring structures are identical. 
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Figure 3: The primary structure of nisin. Special amino acid modifications are marked with Dha 
and Dhb, five ring structures with thioether bridges (Ala-S-Ala = lanthionine , Abu-S-Ala = β- 
methyllanthionine) are signed with letters A, B, C, D and E and the amino acids for the start and 
end of the ring are numbered based on their position in the amino acid sequence of nisin. 
 

 

3.2.1 Primary structure of epidermin, gallidermin, Pep5 and epilancin K7 

 

 

Epidermin, Pep5 and epilancin K7 are three lantibiotics that are produced by Staphylococcus 

epidermidis Tu 3298 (Allgaier et al., 1985; Allgaier et al., 1986), S. epidermidis 5 (Sahl and 

Brandis 1981), and S. epidermidis K7 (Pulverer and Jeljaszewicz 1976), respectively. 

Gallidermin, which is 6L-epidermin, was isolated from S. gallinarum DSM 4616 (Kellner et al., 

1988). 

 

The structure of epidermin was elucidated in 1985 (Allgaier et al., 1985; Allgaier et al., 1986). It 

is composed of 22 amino acid residues and is the smallest type A lantibiotic. Epidermin has a net 

charge of +3 with a free N-terminus and two Lys residues. It is a four-ringed peptide, which 

contains one Melan and two Lan residues. Interestingly, the second ring of epidermin is identical 

with the second ring of the lantibiotic nisin, which is produced by L. lactis (Mattick and Hirsch, 

1944). The fourth ring at the C-terminus of epidermin is formed by the unusual amino acid S-
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aminovinyl-D-cysteine. Gallidermin has the same structure as epidermin except that there is Leu 

in position 6 instead of the Ile of epidermin. 

 

Pep5 was first isolated in 1981 (Sahl and Brandis 1981). It has a molecular mass of 3488 Da (34 

amino acids) and is the largest of those lantibiotics for which the complete primary structure is 

known. Pep5 has only three rings and carries 8 positive and one negative charge on its C-

terminal carboxy group. The structure elucidation of Pep5 was impeded by the N-terminal 

dehydrobutyrine residue (Dhb), which spontaneously deaminates into an oxobutyryl residue and 

prevents Edman degradation (Kellner et al., 1989; Kellner et al., 1991). 

 

Although epilancin K7 had been discovered as early as 1976 (Pulverer and Jeljaszewicz 1976), 

its structure was elucidated only recently (van de Kamp et al., 1995). Epilancin K7 consists of 

31 amino acids (3032 Da) including three ring structures. It contains 6 Lys residues and a free C-

terminal carboxy group. The N-terminus of epilancin K7 carries a hydroxypropionyl residue, 

which derives from a serine in the propeptide (van de Kamp et al., 1995). Though the latter 

structural features of epilancin K7 are reminiscent of Pep5, the C-terminal double ring of 

epilancin K7 is very closely related to the C-terminal double rings (ring 4 and 5) of subtilin and 

nisin. The second ring of epilancin K7 is identical to the fourth ring of subtilin and these features 

place epilancin K7 in a ” missing link ” position between Pep5 and subtilin (Sahl et al., 1995). 

 

 

3.3  3D-structure of nisin  

 

 

Three different groups reported simultaneously of the NMR assignments of nisin. Slijper et al. 

(1989) focused on nisin in aqueous solution. Chan et al. (1989) used both water and dimethyl 

sulfoxide (DMSO) as the solvent. The latter was also used by Palmer et al. (1989), who studied 

the individual rings A and B, obtained via chemical synthesis. The 3D-structure of nisin in 

aqueous solution was subsequently reported by van de Ven et al. (1991) and Lian et al. (1992). 

The NMR data did not indicate a well-defined over-all folding of the molecule; rather it appears 

that nisin is quite flexible in solution. There is a good consensus on the structures of the three 

small rings B, D and E; these are essentially B-turns, which are fixed by the thioether bond 
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joining the first and the fourth residue of the rings. The A and C rings show some structural 

variability and are not so well defined. 

 

Although nisin molecule is quite flexible, two amphipathic structured domains can be found in 

aqueous solution. The first domain consists of residues Ala3 – Ala19 containing the first three 

lanthionine rings, A, B, C with the hydrophobic side chains of Ile4, Dha5, Leu6, Ala15, Leu16 

and Met17 on one face and  lanthionines and hydrophilic Lys12 on the opposite face. The 

second domain consists of residues Ala23 – Ala28, including the intertwined lanthionine rings D 

and E, and the hydrophobic face is formed by the residues Met21 and Ala 24, while the 

hydrophilic, positively charged side chains of Lys22 and His27 protrudes from the opposite face. 

The N- and C-termini, as well as the ” hinge ” region around Met 21, which joins the two 

domains ” ABC ” and  “ DE “, appears to be quite flexible. The molecule is also amphipathic 

from another point of  view; the hydrophilic and charges of nisin are mainly located in the C-

terminal half of the molecule, whereas the majority of the residues in the N-terminal half are 

hydrophobic and only a single charged residue, Lys 12, is present (Figure 4). 
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Figure 4. Drawing of the 3D-features of nisin molecule. Grey balls demonstrate hydrophobic and 
black ones hydrophilic amino acids. It can be seen that hydrophobic amino acids form one face 
of the molecule and hydrophilic another on the opposite side of the molecule. Structured 
domains I and II with the thioether rings and the flexible hinge region of the molecule are 
signed. 
 

 

 

 

Van den Hooven et al. (1993) proceeded to determine the structure of nisin when it was bound to 

micelles of sodium dodecyl sulphate (SDS) or dodecyl phosphocholine (DPC). The binding to 

micelles is considered to model the binding of nisin to the cytoplasmic membrane, which is the 

first step in the execution of its antimicrobial activity. These studies showed that the 

amphipathicity is retained when nisin binds to the micelles, but that these membrane mimetics 

induced a conformational change in a ring A. Upon elucidation of the 3D-structure, it was found 

that this conformational change entailed the concerted “flipping” of the two peptide bonds 

flanking Dha5 (van den Hooven et al., 1995).   
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3.3.1.  3D-structure of subtilin, gallidermin and Pep5 

 

 

Of the type-A lantibiotics, subtilin is most closely related to nisin. A detailed description of the 

subtilin 3D-structure is not yet available, but the first results (Chan et al., 1992) indicate that the 

similarity of a primary structure to nisin also extends to the tertiary structure. 

 

The solution structure of gallidermin has been reported (Freund et al., 1991). The 3D-structure 

was calculated on the basis of data obtained in a mixture of trifluoroethanol (TFE)/water (95:5). 

Thus, the conformation obtained could represent the membrane-bound state, rather than the one 

in aqueous solution. Gallidermin consists of two structured domains, the first domain being 

formed by the two lanthionine rings in the segment 3-11, and the second domain consists of the 

intertwined rings constituting the segment 16-21. A more flexible region ranging from Ala 12 to 

Gly 15 connects the two domains. Just how flexible this region is, remains somewhat unclear; 

the molecular dynamics protocol used in the calculations yielded a rather elongated screw-like 

overall shape for this molecule. This motif, of two domains fixed by lanthionine rings joined by 

a flexible ” hinge ” also occurs in nisin (van de Ven et al., 1991), and might be common to type-

A lantibiotics. Gallidermin has a similar amphipathic character as nisin, except that the charged 

C-terminal fragment is absent.  

 

A preliminary account of NMR studies, leading to a structure determination of Pep5 has been 

presented (Freund et al., 1991). The data indicate a transition from a rather flexible, unordered 

structure in water, to a more helical conformation in TFE. A similar observation has been made 

for epilancin K7. This molecule has been studied, both in aqueous solution and complexed to 

DPC micelles. This complexation with DPC micelles indicated a generally more ordered, 

possibly helical structure, for the DPC bound state. 

 

Thus, rather little is still known about the 3D-structure of the type-A lantibiotics. Nisin and 

gallidermin are the only two examples for which more detailed 3D-structure do exist currently.   
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3.4.   Mechanism of the biological action 

 

Nisin exerts its bactericidal activity primarily via its interaction with the membrane of sensitive 

cells. It has been postulated that the membrane function is disturbed by pore formation and not 

by general destabilization of the bilayer. Addition of nisin to cells of several gram-positive 

bacteria leads to a rapid efflux of amino acids, ATP and monovalent cations (Ruhr and Sahl, 

1985; Kordel and Sahl, 1986). The efflux velocity was for example as rapid for Rb+ as for larger 

positively and negatively charged amino acids, indicating that there is no selectivity for charge 

and size (up to 500 dalton) in the nisin mediated efflux (Ruhr and Sahl, 1985).  

 

Furthermore it has been found that the addition of nisin leads to a rapid decrease of the 

membrane potential (ψ) in sensitive cells (Ruhr and Sahl, 1985) and to a dissipation of the pH 

gradient (pH) in artificial liposomes (Gao et al., 1991; Garcia Gancera et al., 1993). In fact, 

nisin-induced dissipation of the membrane potential and loss of the pH gradient in liposomes 

both display the same concentration dependence, which suggests that the two components of the 

protonmotive force are equally effective in promoting insertion and pore formation of nisin in 

the membrane (Gao et al., 1991). It has been hypothesized that bacteriocins from lactic acid 

bacteria share a common mechanism of action, this being the dissipation of the protonmotive 

force of the target bacterium (Montville and Bruno, 1994). The activity of nisin depends on a 

sufficient electrical transmembrane potential (Sahl et al., 1987). Energy is required for both 

formation and opening of the pores. The threshold potential for intact cells is between -50 and -

80 mV at pH 7.5 and below -50 mV at pH 5.5 (Sahl et al., 1987). The membrane potential has to 

be inside of the cell negative (transnegative) and the pH gradient inside of the cell alkaline (Sahl 

et al., 1987; Gao et al., 1991; Garcia Garcera et al., 1993). Single channel recordings on black 

lipid membranes demonstrated the presence of transient multistate pores with diameters of 0.2 to 

1 nm with lifetimes of a few to several hundred milliseconds (Sahl et al., 1987). 

  

 

A variety of other experiments has been performed, the results of which are all consistent with 

the conclusion that the membrane is the target site of nisin. The gram-negative bacteria E. coli 

becomes sensitive to nisin when the outer membrane is made permeable by osmotic shock 

(Kordel and Sahl, 1986; Stevens et al., 1991). The disruption of the membrane function helps to 

explain the general inhibition of macromolecule synthesis noted in Micrococcus luteus (Henning 
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et al., 1986). The antimicrobial activity of nisin is dependent on the phospholipid composition of 

the liposomal membrane (Gao et al., 1991; Garcia Garcera et al., 1993; Driessen et al., 1995). 

Nisin associates with the anionic surface of PG liposomes and disturbs the lipid dynamics near 

the phospholipid polar head-group water interface. Anionic liposomes are affected to a greater 

extent than neutral membranes, reflecting the primarily electrostatic nature of the interactions of 

nisin with negatively charged phospholipid head-groups (Kordel et al., 1989). Recent studies 

have confirmed that nisin inserted into lipid monolayers in an anionic lipid-dependent way 

(Demell et al., 1996). Thus data above suggests that nisin exerts its antimicrobial activity via an 

interaction with the phospholipid components of the cytoplasmic membrane followed by pore 

formation and interference with membrane function. 

 

However, very current results have changed the picture of the mechanism of nisin activity. It was 

shown that nisin binds to the so-called docking molecule, lipid II (Brötz et al, 1998; Breukink et al., 

1999). Lipid II is a precursor of the bacterium cell wall synthesis. It seems that nisin at micro molar 

concentrations disrupts the membrane in a non-targeted fashion, described in the earlier research, 

but at nano molar concentrations nisin acts via target-mediated, i.e.via lipid II pore formation (Hsu 

et al.; 2002; Heusden et al., 2002). Recently it has even been proposed that nisin might have two 

killing mechanisms: one is pore formation into the membrane and the other inhibition of cell wall 

biosynthesis by preventing incorporation of lipid II into the peptidoglycan chain (Wiedemann et al., 

2001).   

 

In addition to the inhibition of bacterial growth, nisin also inhibits the outgrowth of bacterial 

spores. Evidence has been obtained that nisin interferes with the membranes of germinated 

spores. It has been speculated that nisin becomes covalently attached to the membrane 

sulfhydryl groups by reacting with one or more dehydro residues in the nisin molecule, although 

no covalent adduct has been identified (Morris et al., 1984). The inhibition of growth of 

vegetative cells and outgrowth of bacterial spores most likely occurs via different mechanisms. 

A mutant of the peptide antibiotic nisin in which the dehydroalanine residue at position 5 has 

been replaced by an alanine has been produced and structurally characterized (Chan et al., 

1996). It was shown to have activity very similar to that of wild-type nisin in inhibiting growth 

of L. lactis and M. luteus but was very much less active than nisin as an inhibitor of the 

outgrowth of spores of B. subtilis. 
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Although the primary structure of several type-A lantibiotics has been known for some years, the 

mechanism of their action has only recently been clearly elucidated. Type-A lantibiotics seem to 

form  potential dependent, ion-permeable channels in energised bacterial membranes. This 

action leads to the loss of membrane potential, concomitant cessation of energy production and 

efflux of essential low molecular mass, cytoplasmic components into the surrounding media. 

Thus the action of other type-A lantibiotics is quite similar to that of nisin.  

 

However, there are differences in the details how the different type-A lantibiotics act to kill 

cells. Subtilin, epidermin and gallidermin have been found to produce relatively large (1-2 nm in 

the case of subtilin), stable pores with a lifetime up to tens of seconds. Nisin and Pep5 form 

relatively unstable pores (hundreds of milliseconds) and with slightly smaller diameters (1.2 

nm). SA-FF22 produces pores approximately 0.5-0.6 nm in diameter and with lifetimes of only 

milliseconds, considerably smaller than those of other type-A lantibiotics and perhaps of shorter 

duration. SA-FF22 like the other type-A lantibiotics requires a certain threshold membrane 

potential that gives energy for pore formation. However, the threshold potential for SA-FF22 (> 

100 mV) is somewhat higher than that required for pore formation by nisin or Pep5 (-70 to -80 

mV), subtilin (70 to 80 mV) and epidermin or gallidermin (40 to 50 mV) (Benz et al., 1991). 

Depolarisation of the membrane is not so severe following SA-FF22 treatment as that observed 

for other type-A lantibiotics (Sahl et al., 1987; Kordel et al., 1988; Schuller et al., 1989). There 

is also a difference in the speed of efflux of amino acids, ATP and ions. The efflux of those 

molecules is more rapid with other A-lantibiotics than SA-FF22. Therefore, it has been 

suggested that death of SA-FF22 affected cells results not so much from immediate loss of 

metabolites, as is the case with other type-A lantibiotics, but from the disruption of the 

membrane potential which would lead to energy exhaustion (Jack et al., 1994). It has been 

shown previously that nisin (Sahl et al., 1987) and Pep5 (Kordel et al., 1988) form pores only 

with the application of trans-negative membrane potentials, while subtilin (Schuller et al., 1989), 

epidermin and gallidermin (Bentz et al., 1991) can act with voltages in either orientation.  In this 

feature, SA-FF22 apparently resembles the latter substances since it can affect membranes 

regardless of the orientation of the potential (Jack et al., 1994). 

 

The discovery of lipid II as a docking molecule of nisin and as an essential part of the targeted 

nisin bioactivity will probably also change the view of the action of other type-A lantibiotics. It 



29
 
 

has been already shown that epidermin interacts with lipid II (Brötz et al.; 1998). In the future 

most probably similar kind docking molecules will be find also for other type-A lantibiotics. 

 

3.4.1.   Models for pore-formation 

 

The small size of the 34 residue peptide nisin, with a length of maximally 5 nm, excludes the 

possibility that one molecule could span a membrane several times, which would be needed for 

the formation of a channel from one single molecule. Therefore one has to assume that several 

molecules participate in channel formation, for instance forming a ” barrel-stave-pore ” or some 

other structure in order to form the channel. 

 

Several models have been proposed to explain the pore-forming ability of nisin. The ” insertion 

model ” assumes that the molecules are initially bound at the lipid surface, and subsequently in the 

presence of ψ, they may flip into a membrane-spanning orientation. The membrane-inserted 

molecules may form a cluster around a central pore as in the above mentioned  ” barrel-stave model 

”. In all likelihood, the order of events will be first insertion and subsequently aggregation (Sahl, 

1991; Benz et al., 1991). Another model called the  ” wedge model ” assumes that nisin molecules 

bind tightly to the anionic membrane surface leading to a high local concentration and disturbance 

of the lipid dynamics. In the presence of a membrane potential (-100 mV), the nisin molecules 

insert into the membrane, whereas anionic phospholipids result in bending of the lipid surface 

forming a wedge-like, non-specific pore (Driessen et al., 1995). An important aspect of this model 

is that the actual pore is formed by an array of nisin molecules that temporarily force the lipids into 

a thermodynamically unfavourable non-bilayer conformation. Such pores are intrinsically unstable, 

since the lipid will try to rearrange into a bilayer structure. Moreover, since the association and 

dissociation of nisin oligomers is likely to be a dynamic event, lowering of the magnitude of ψ 

below the threshold of insertion, will result in a relaxation of the nisin molecules to the surface-

bound state and disassembly of the pore (Driessen et al., 1995). Figure 5 shows the wedge-like 

model of nisin induced pore-formation. The latest feature for this model comes from results of van 

Kraaij et al. (1998), which showed that at least the C-terminus of nisin translocates across the 

membrane and actually reaches the inner leaflet of the membrane. It is also possible that the entire 

nisin molecule might translocate across the membrane as has been proposed for the mechanism of 

action of α-helical peptides like magainin (Matsuzaki et al., 1995). 
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Figure 5: Wedge-model for nisin pore-forming. (1) Binding of nisin to the membrane. Positive 
charges in the C-terminal part of nisin electrostatically interact with negatively charged 
phosphor lipids. (2) Insertion into the membrane. Nisin takes an orientation parallel to the 
membrane surface, with the N-terminus slightly deeper inserted than the C-terminus. (3) The 
pore is formed, when the interaction of nisin with the anionic phospholipids results in bending of 
the lipid surface forming a wedge-like, non-specific pore. It is likely that this step is preceded by 
aggregation of nisin molecules. The lifetime of the pore is short, milliseconds and the nisin 
rapidly flips to the orientation parallel to the membrane (Driessen et al., 1995). 
 
 
 
 
 
Models described above do not take into account specific interactions with an integral membrane 

component. There have been contradictions between the observed nisin activity results in vitro and 

in vivo. First, in vivo nisin is active at nM concentrations, which is 1000-fold more active than its 

effects on membranes composed of solely phospholipids. Second, it was observed for many mutant 

species that their activity on model membrane systems was almost equal to wild-type nisin, while 

their antimicrobial activity towards bacterial strains was significantly reduced. Third, the analysis 

of the phospholipid composition of bacterial strains showed that nisin sensitive and resistant strains 

both contain high amounts of negatively charged phospholipids. The small differences in the level 

of these lipids are unlikely to account for the large variations in their nisin sensitivity. Current 

research has indeed shown that nisin interacts with a precursor component of bacterium cell wall 
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synthesis, namely lipid II (Breukink et al., 1999; Wiedemann et al., 2001; Hsu et al.; 2002). So the 

model of nisin pore forming has been revised and lipid II has been taken as an essential factor to it. 

Very recent report suggested that lipid II is not only a docking molecule for nisin, but might even 

be part of the nisin pore; lipid II would most likely be situated at the outer boundaries of the pore 

complex (Breukink et al., 2003). It was also suggested that the pore is composed of five to eight 

nisin molecules and an identical number of lipid II (Breukink et al.; 2003). Figure 6 shows the latest 

pore-forming model of nisin.  
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Figure 6: The lipid II model for the nisin pore-forming. (1) Nisin first binds to the outwardly 
orientated carbohydrate moiety of lipid II in a 1:1 stoichiometry. The N-terminal segment of the 
nisin is essential for the binding and a negative surface charge is not necessary. (2) The C-terminal 
part of nisin is then assumed to translocate across the membrane in accordance with the 
translocation found in the absence of lipid II (Kraaij et al., 1998). Several nisin/lipid II complexes 
are presumed to assemble the pore. Recent preliminary results with lipid II-doped artificial lipid 
bilayers indicated that the pore stability increases from the milliseconds range to several seconds 
and that the pore formation process becomes voltage-independent (Wiedemann et al., 2001). 
 

 

While the overall mechanism of the cell death induced by a type-A lantibiotics has been 

characterised, details of the mechanism involved in the formation of the pores remain still 
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enigmatic. The model for nisin presented in the figure 6 is the latest and best view for the 

mechanism of pore-formation of the type-A lantibiotics. Studies made with Pep5 have shown that 

the mechanism of non-targeted pore-formation by nisin and Pep5 are very similar (Sahl et al., 

1987). Thus it seems likely that the mechanism of pore-formation for other type A-lantibiotics will 

prove to be similar to that of nisin; that is including also the docking molecule as it already has 

been shown for epidermin (Brötz et al.; 1998).  

 

 3.5.  Immunity  

 

Immunity is here defined as the ability of the bacterial cell to protect itself from a particular 

bacteriocin that it produces itself. Immunity might be achieved by several strategies against the 

pore-forming bacteriocins like nisin. Adsorption of the bacteriocin to the membrane could be 

inhibited, membrane adsorbed bacteriocins could be translocated back to the environment or 

taken into the cytoplasm for degradation or transport. Several molecules of the bacteriocins are 

required to form a pore into the membrane of the target bacteria. This assembly process of the 

pore could be inhibited by specific interactions of the bacteriocin with the membrane associated 

immunity proteins. Secondly the assembled pore could be destabilized or the pore could be 

blocked by an immunity protein (Saris et al.; 1996) 

 

There is no cross immunity between producers of lantibiotics. Nisin producers are sensitive to 

subtilin and vice versa, even though the structures of these lantibiotics are rather similar. This 

reveals that the interactions resulting in immunity are very specific. Cross immunity has been 

observed between strains producing natural variants such as nisin A and nisin Z (de Vos et al., 

1993) or epidermin and gallidermin (Peschel and Götz, unpublished). 

 

Inhibition by protein interactions at the surface of the cytoplasmic membrane seems to be a 

potential immunity mechanism of nisin producers. Recently it has been shown that nisin 

interacted with NisI (Stein et al.; 2003). This supports the idea that NisI intercepts nisin at the 

membrane surface giving immunity to the producer against nisin. In the case of nisin it was 

shown first that the peptide NisI, a putative hydrophobic lipoprotein that is considered to be 

attached to the outside of the membrane, is involved in the immunity process (Kuipers et al., 

1993 ; Engelke et al., 1994). Overexpression of nisI in the cells that do not possess the lantibiotic 

biosynthesis machinery gave protection against nisin, although the protection levels was quite 
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low; only 1-4 % of that of the immunity level of the natural nisin producer (Kuipers et al., 1993; 

Engelke et al., 1994). A nisI mutant strain (no NisI production) still produced a significant 

amount of nisin (Siegers et al., 1995) and an in-frame disruption of nisI in Lactococcus lactis 

yielded a strain that could still produce nisin, albeit at levels five times lower than wild-type (Ra 

et al., 1999). Thus those nisI mutant strains still tolerated nisin indicating that additional factors 

are required for full self-protection. Also, the result that even very high expression of NisI in L. 

lactis  gave only 25 % of the wild type immunity level against nisin supports the idea that there 

must be other immunity determinants (Takala et al., 2002).    

 

 

 The nisFEG genes downstream to the nisZBTCIPRK operon have been cloned and sequenced 

(Siegers et al., 1995; Immonen et al., 1998). The hydrophilic protein NisF and the hydrophobic 

proteins NisE  and NisG  show a very  strong similarity to the ATP-binding cassette (ABC) 

transporters. These NisE and NisG proteins contain six potential transmembrane domains with 

structural homology to importers and exporters. Disruption of genes nisF, nisE and nisG 

respectively resulted in a decrease of nisin production and an increase in the sensitivity of the 

cells to the addition of nisin. Inhibition of translation of nisEG-mRNA and nisG-mRNA by 

antisense RNA produced from expression plasmids, also lowered the level of nisin immunity 

(Immonen and Saris, 1998). It has been also shown that a L. lactis strain initially sensitive to 

nisin can obtain about 20 % resistance of the wild type when it received a plasmid containing the 

nisRKFEG genes (Duan et al., 1996). Recently it was shown that NisF/E/G give immunity 

against nisin when expressed in the surrogate host B. subtilis. It was suggested that NisF/E/G 

system transported nisin back into the environment (Stein et al., 2003). In the same report it was 

indicated that maximum immunity level against nisin, about 30 % of that of the nisin producer, 

was achieved when expressing both NisI and NisF/E/G proteins (Stein et al.; 2003). These 

results imply that the NisF/G/E, a putative ABC-transporter, is involved in immunity to nisin. In 

Figure 7, a model of nisin immunity is presented. 
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Figure 7:  Mechanism of nisin immunity. According to the binding-protein hypothesis, external 
nisin is bound to the lipoprotein NisI (1), which might promote subsequent expel of nisin via 
NisFEG, the ABC-translocator (2) back to the environment (3). (Out = outside of the cell; In = 
inside of the cell.) 
 

Inhibition of pore formation by protein interactions at the surface of the cytoplasmic membrane 

also seems to be a potential immunity mechanism of subtilin producers like that of nisin 

producers, as suggested by the location of the lipoprotein SpaI. The difference between these 

lantibiotics is that the SpaI lipoprotein is encoded in the same operon as the ABC transporter 

system. Lipoproteins encoded in the same operon as ABC transporters (Gilson et al., 1988; 

Russell et al., 1992, Sutcliffe et al., 1993; Tynkkynen et al., 1993) are gram-positive bacteria 

counterparts of the periplasmic binding proteins present in gram-negative import systems. By 

analogy to that one might speculate that the transporter system encoded by spaFEG genes is an 

importer. However, the results of Stein et al. (2003) suggest that that SpaFEG might be an 

exporter. The strains with the non-functional regulatory SpaR and SpaK proteins were also 
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sensitive to subtilin, indicating that they are needed in the signal transduction system to turn on 

the immunity genes. Thus the expression of immunity genes, in the case of subtilin and nisin, is 

also regulated by the concentration of the lantibiotic in the medium, which means that by 

sensing low (subinhibitory) amounts of the antimicrobial peptide in the medium, cells can 

rapidly increase their immunity level, concomitant with or even faster than the biosynthesis rate 

(de Ruyter et al., 1996). Recently it was shown that the spaRK two-component regulatory 

system, and hence subtilin biosynthesis and immunity, is under dual control of two independent 

regulatory systems; autoinduction via subtilin and positive transcriptional regulation via sigma 

factor H (Stein et al., 2002). Thus subtilin immunity seems to be more complex with respect to 

the regulation of the spaRK two-component regulatory system than that of nisin.   

 

So far, there is no evidence for a lipoprotein-mediated immunity for epidermin or gallidermin 

producers. Therefore their producers appear to protect themselves with the putative ABC 

transporters like nisin and subtilin producers. It has been shown for epidermin that the ABC 

transporter acts by expelling the lantibiotic from the cytoplasmic membrane into the surrounding 

medium (Otto et al., 1998). The biosynthetic gene clusters of epidermin and gallidermin are 

distinguished by the presence of the unique genes epiH and gdmH, respectively. They encode 

accessory factors for the ATP-binding cassette transporters that mediate secretion of the 

peptides. Currently it was shown that GdmH protein of gallidermin gene cluster improved the 

immunity against gallidermin and was suggested to act synergistically with the GdmFEG system 

(Hille et al., 2000). Thus, like the nisin and subtilin gene clusters, the epidermin and gallidermin 

systems also seem to contain a second specific immunity system, H proteins. In contrast to the H 

proteins, however, NisI and SpaI are lipoproteins, and there is no evidence that they are involved 

in the secretion of nisin and subtilin, respectively (Klein et al., 1994; Kuipers et al., 1993).   

   

 

The mechanism of Pep5 immunity seems to differ from that of nisin, subtilin and epidermin. It 

involves an interaction of the PepI protein with Pep5 at the outer surface of the cytoplasmic 

membrane. The structure of PepI does not indicate that any transport event would be involved in 

Pep5 immunity. Rather it is thought that the mechanism involves inhibition of pore formation by 

interactions on the outer surface of the cytoplasmic membrane. The elements needed for the 

immunity of Pep5 seem to be the pepI immunity gene and the pepA structural gene (Reis and 

Sahl, 1991). One striking feature of the Pep5 system seems to be the apparent coupling of the 
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immunity phenotype with the production of Pep5. However, Pag et al. (1999) have now 

demonstrated that pepI is sufficient for expression of Pep5 immunity. Coupling to Pep5 

production is achieved at the transcriptional level through the stabilization of pepI-containing 

transcripts by means of an inverted repeat, which is located downstream of pepA . The presence 

of the terminator element rather than its position in the transcript was found to be important for 

mRNA stabilization, permitting the construction of hyper immune and eventually hyper 

producer strains (Pag et al., 1999). 

 

 

Other mechanisms of immunity to type-A lantibiotics are also possible. An immunity 

mechanism involving inhibition of membrane adsorption or pore assembly of the lantibiotic 

might also contribute to the total level of immunity. Potentially all of the proteins in the 

biosynthetic machinery have affinity for the lantibiotic produced by the biosynthetic pathway in 

question and could therefore have direct interactions with the corresponding lantibiotic. The 

biosynthetic proteins form most likely a complex located in the membrane as in the case with 

NisBTC proteins, which have been shown to form a complex (Siegers et al., 1996; Kiesau et al., 

1997). A wild type level of immunity might require a functional biosynthetic complex. This 

could be the situation in nisin immunity, because a wild type level of nisin immunity has been 

achieved only when all of the components of the biosynthetic machinery are present and 

production is evident. Additional proteins taking part in immunity might still be found. 

However, Ra et al. (1999) showed, by using a consensus sequence of nisin inducible promoter as 

a probe, that no other potentially nisin inducible promoters other than nisA and nisF appear to 

exist in L. lactis. 

 

 

3.6.  Structure/function relationships 

 

 

Interest for detailed structure/function of lantibiotics comes from the possibility that knowledge 

of it would give tools for protein engineering. Thus the properties of lantibiotics could be 

improved or even artificially transported to other proteins that could be then used commercially. 

Structure/function relationships of lantibiotics can be evaluated from (1) the mode of action, (2) 

immunity, (3) biosynthetic pathway and (4) induction of operons. Almost nothing is known yet 
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about the structures on the molecular level affecting immunity whereas some data exists about 

those structures, which can affect induction. It is known that the first three lanthionine rings A, 

B and C are essential for induction (Kuipers et al., 1995; Dodd et al., 1996). Knowledge about 

the structures involved in the mode of action and the biosynthetic pathway are also in their 

infancy. Although membrane depolarization is generally accepted as the primary mode of action 

of nisin, little is known about the structural features responsible, and the contribution of 

individual amino acids is even less understood. Not much is known, except which amino acids 

are modified, about the structural signals that are essential for the nisin biosynthetic machinery 

in order to modify nisin. 

 

Recent studies concerning the structures of the biological activity of nisin have indicated that 

primarily the N-terminal part (residues 1-22) penetrates into the lipid phase. Reduction of the 

flexibility at positions 20 - 21 has a negative effect on monolayer interaction and activity, and 

the C-terminal part is probably responsible for ionic interactions of nisin in a monomeric or 

oligomeric form with anionic lipids (Demel et al., 1996; Giffard et al., 1997; Breukink et al., 

1997). In the N-terminal portion, the amphiphilicity seems to be an important aspect. Thus 

MeLan and Lan structures, which are ring structures, could be important in stabilizing the spatial 

structure of nisin (Sahl et al., 1995). The hydrophobic residues in this part of the molecule 

appear to interact with the membrane, while the hydrophilic residues are orientated outwards 

(van den Hooven et al., 1996). The importance of ring A of nisin for the biological activity has 

been most clearly shown.  The integrity of ring A and the modified amino acid Dha5 as a 

hydrophobic moiety in an amphipathic region seem to be essential factors (Rollema et al., 1996). 

Recently, it has also been demonstrated that the ring C is important for the biological activity of 

nisin by replacing this Lan ring with a disulfide bond (van Kraaij et al., 2000). A study 

examining the interaction of lipid II  and a number of mutant nisin species to identify structural 

elements of the nisin molecule involved found that mutations affecting the conformation of rings 

A through C led to reduced binding of  lipid II and increased the concentration needed for pore 

formation (Wiedemann et al., 2000). The positive charges of the C-terminus (Lys 22, Lys 34, 

His 27, His 31) are important for the initial interaction of nisin with the target membrane, i.e. 

binding. The N-terminal portion charges, i.e. the terminus itself and the lysine at position 12, 

seems to have a minor effect on the initial binding of nisin (Breukink et al., 1997). The flexible 

hinge structure between rings C and D has been shown to be essential for the biological activity 

of nisin (Bierbaum et al., 1996). Two mutations at positions 20 and 21 (N20P/M21P) have been 
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made to restrict the mobility of the hinge and the results showed that those two prolines indeed 

reduced the activity of nisin (van de Ven et al., 1991). Recent studies have given hints for the 

function of individual amino acids, namely the lysines, in nisin pores (pores mean here holes that 

nisin makes into the bacterium membrane.) Those studies indicated that when the nisin molecule 

is in the pore-forming state, the positively charged lysines are probably situated such that this 

results in anion selectivity (Breukink et al., 1997). Furthermore lysine-12 appears to have a role 

in gating (i.e. regulating) the flow of charge through a nisin pore (Giffard et al., 1997).  

 

The biosynthesis of lantibiotics of type-A seems to be a complex process. It is quite difficult to 

make changes in the sequence of the prepeptide that do not effect on the biosynthetic pathway; i.e. 

residues important for the interaction with the modification, export and processing systems and as 

well as in the regulation of expression. For example, the Phe-Asx-Leu-Asp/Glu motif in the leader 

peptide of nisin has been identified as being essential for nisin biosynthesis (van der Meer et al., 

1994). However, not only the leader peptide, but also the propeptide part of nisin influences 

expression and/or maturation of the peptide. The Ser5 - Thr8 mutant of nisin Z was not expressed 

by a strain of L. lactis that did not contain an intact nisin gene (van de Meer et al., 1994; Kuipers 

et al., 1992, 1993). The same was found for mutants in the protease cleavage site of the leader 

peptide (Asp-4)nisinZ and (Gln-1)nisin Z; although mRNA transcripts of these peptides were 

present in the cell, the prepeptides could not be found. As the latter two peptides and (Thr5)nisin Z 

are recognized and processed by the modification system when the nisin A gene is present, one 

could speculate that biosynthesis of the modification system is regulated to some extent by a 

characteristic structural feature of the nisin precursor peptide (van de Meer et al., 1994).  

 

 Even less is known about the structures of other type-A lantibiotics than nisin concerning the 

detailed knowledge of structure/function relationships. Some examples are reviewed in the 

following text, which refer to the biological activity or the biosynthesis of the lantibiotics. 

Partially deleted epilancin K7 (4-33) is almost as active as the complete peptide indicating that 

the first three amino acids of the N-terminus might not be crucially important for the activity of 

epilancin K7 (van de Kemp et al., 1995). In contrast, a naturally occurring fragment of 

bacteriocin SA-FF22, devoid of the first four amino acids (i.e.SA-FF22 5-27), had no 

demonstrable biological activity (Jack and Tagg, 1991), suggesting that the N-terminal region of 

streptococcin SA-FF22 is necessary for activity. Naturally occurring subtilin with a succinylated 

N-terminus has also been reported to be less active (Chan et al., 1993). Also the succinylated 
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Pep5 showed reduced activity against intact gram-positive bacteria (Kordel et al., 1988). The 

experiments have focused so far on the importance of the dehydroamino acids and it has been 

suggested that these residues might interact with the sulfhydryl groups of the cell envelope of 

susceptible bacteria (Liu and Hansen, 1993). This interaction seems to be essential at least for 

sporicidal activity (ability to kill bacterium spores; spores are the resting stage of the bacterium) 

of subtilin, which might be mediated by an interaction with the sulfhydryl groups of the spore 

coat (Liu and Hansen, 1992). In subtilin the exchange of Dha5 to Ala led to the total loss of the 

inhibition of the outgrowth of  B. subtilis spores, but the bactericidal activity, i.e. pore-formation 

in the cell membrane of vegetative cells of the same strain, seems to be independent of the 

dehydro residue (Liu and Hansen, 1993). Thus it seems that no generalizations can be made of 

the importance of certain structures for the function of all type A lantibiotics. However the 

flexible hinge between the amphiphilic N- and C-terminus, does appear to be important for the 

biological activity of all type A- lantibiotics. A mutant in the hinge region of Pep5 (K18P) and 

also a mutant of gallidermin (Dhb14P) showed decreased activity against their indicator strains 

(Bierbaum et al., 1994; Freund et al., 1991). 

 

 

 There are also examples of the effects of individual amino acids or structures on the 

biosynthesis of other type-A lantibiotics. The cysteine residues have been replaced in the 

primary sequence of Pep5 in order to prevent ring formation. The mutant C33A was 

overproduced, although the main peptide produced consisted only of amino acids 1-29, probably 

generated by proteolytic degradation behind position 29 (Bierbaum et al., 1994). One can 

speculate that one of the functions of the third ring is to protect the peptide against this 

proteolytic degradation. The B ring of this peptide was shown to be present. Another mutant of 

Pep5, C27A, was devoid of ring C in addition to the expected lack of ring B, which indicated 

that formation of ring C is hampered in the absence of ring B  (Bierbaum et al., 1994 b). The 

results obtained by the study of mutants of epidermin indicated that formation of rings A and B 

is important for completion of epidermin biosynthesis and production. Two epidermin EMS-

mutants, i.e. S3N and G10E could not be produced, probably because the mutations prevented 

the correct formation of ring A and ring B, respectively (Augustin et al., 1992). Also the amino 

acid changes that affect the thioether bridge formation at rings C and D, such as the deletion of 

the last two cysteine residues as well as the change of the Ser-19 residue into Ala-19 residue, 

resulted in the complete loss of epidermin production (Ottenwälder et al., 1994). These results 
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strongly indicate that formation of all thioether amino acids is important for the completion of 

type-A lantibiotic biosynthesis and secretion.   
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B. AIMS OF THE STUDY 
 
The biological system behind nisin production, secretion and producer self-protection has 

proven to be both extensive and delicately regulated, requiring the interplay between at least 

eleven genes, namely nisA/Z/QBTCIPRKFEG. In spite of the wealth of novel information the 

exact function of the individual genes is so far not very well known. Therefore, the main goal of 

this study was to characterize the function of certain nisin genes by analysing their effects on the 

protein level and secondly the regulation of nisin operons.  

 

1.  to characterize the role of NisI in producer self-immunity,  its distribution and interaction                

     with nisin 

2. to characterize the function of nisP, nisB and nisC  genes in the biosynthetic pathway of nisin    

3. to characterize the regulation of  the nisin operons  
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C. MATERIALS AND METHODS 
 

 

1. Bacterial strains, plasmids, media and growth conditions (I-IV) 

 

 

The bacterial strains and plasmids used in this doctoral thesis are listed in the following tables. 

Escherichia coli strains were used as the primary gene cloning and expression host and were 

cultured at 37 °C in LB broth with shaking or on LB agar plates (I-IV). Lactococcus lactis 

strains were incubated at 30 °C in M17GS medium without shaking or on M17GS agar plates (I-

IV). Micrococcus luteus was used as a nisin sensitive indicator and was grown at 37 °C in LB 

broth with shaking or on LB agar plates (I-IV). Bacterium strains used in the work IV on a nisin 

bioassay test were grown in LB medium at 37 °C or on LB agar plates except Lactobacillus 

plantarum, which was grown at 30° in MRS medium or on MRS agar plates. The media were 

supplemented with antibiotics, if needed, at the following concentrations: ampicillin 30 µg/ml or 

100 µg/ml (for E. coli), erythromycin 200 µg/ml (for E. coli) and 5 µg/ml (for L. lactis), 

kanamycin 50 µg/ml (for E. coli) and chloramphenicol 10 µg/ml (for E.coli) and 5 µg/ml (for L. 

lactis) (I-IV). 

 

 
       Strains used in this work. 

 
 
Strain 
 

 
Relevant phenotype/genotype 

 
References 

 
Used in
 

L. lactis N8 Nis+ Immunity+  1) I-IV 
L. lactis MG1614 Nis-  Immunity-  2) I-IV 
L. lactis LAC34 Producing NisI  IV 
E. coli Eco395 Producing GST-NisI fusion  IV 
E. coli BL21 (DE3) HsdR17 recA1 gyr A96 thi-1 relA1 

F+ opmT r-B m-B(DE3) 
4) I -II 

M. luteus AL 
NCIMB 86166 
   

Nisin sensitivity National collection of 
industrial and marine 
bacteria 

IV 

S. faecalis strain N Nisin sensitivity ARS Culture Collection IV 
B. subtilis BRB1 Nisin sensitivity American Type culture 

collection 
IV 
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Table continued    

B. megaterium ATCC 
13632 

Nisin sensitivity American Type culture 
collection 

IV 

B. stearothermophilus 
ATCC 12980 

Nisin sensitivity Collection of the Finnish 
state Technological 
center 

IV 

B. amyloliguefaciens 
VTTE 18 

Nisin sensitivity Collection of the Finnish 
state Technological 
center 

IV 

B. coagulans DMS 459 Nisin sensitivity Deutsche Sammlung von 
Mikroorganismen 

IV 

B. natto BGSC27A1 Nisin sensitivity Bacillus Genetic Stock 
Center 

IV 

 
Mutations in L. Lactis 

   

LAC53 nisB mutation This thesis II 
LAC67 nisZ mutation This thesis II 
LAC71 nisP mutation This thesis II 
LAC104 nisC mutation This thesis III 
LAC212 nisC mutation This thesis III 
LAC214 nisB mutation This thesis III 
NZ8940 nisA, nisI and nisP mutation  5) IV 

References within this table 1) Graeffe et al., 1991 2) Gasson, 1983 3) Hanahan, 1983 4) Studier & Moffatt, 1986. 
5) Ra et al., 1999  
 

The plasmid DNA of E. coli strains was isolated by alkaline lysis and purified further using the 

Magic miniprep kit (Promega, Madison, WI, USA) or silica particles (Carter et al., 1993) (I-II) 

and L. lactis plasmid DNA was isolated by the method of O`Sullivan (1993) (I-II). The 

molecular cloning protocols used were essentially according to Maniatis et al. (1982) (I-II). 

Plasmids were electroporated  into L. lactis using the method of Holo et al. (1989) (I-II):   
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 Plasmids used in this work. 

 
Name of plasmids 
 

 
Resistance 
marker 

 
Relevant feature 

 
References/ used in 

 
E. coli plasmids 

   

pBluescript Amp LacZ, T7, T3 Stratagene 
pBAT-1 Amp T7 promoter 1) 
pCR II Amp, Km T/A vector Invitrogen 
pGX-2T Amp, Km GST Pharmacia LKB 
pGB301 Cm cat gene 2) 
pPUC6S Ap vector 3) 
pLEB21 Ap, Em ery gene 4) 
pLEB379 Ap nisI expression (sense) I 
pLEB381 Ap nisI expression (antisense) I 
pLEB423 Ap nisI-gst fusion gene I, IV 
 
E. coli and L. lactis 
plasmids 

   

pLEB384 Em, Cm nisZ expression vector II 
pLEB415 Em nisI expression vector I 
pLEB561 Em nisZ with His-tag III 
pLEB563 Em, Cm nisZwith His-tag III 
pLEB 124 Em expression vector P46 promotor III 
pTCluxHb Em nisC complementation plasmid III 
pLEB507   Em nisC complementation plasmid III 
pLEB544 Em His-tagged nisZ III 
pKTH1984 Em nisZ III 
 
E. coli and L. lactis 
mutant constructions 

   

pLEB281 Em nisP gene mutation II 
pLEB320 Em nisZ gene mutation II 
pLEB329 Em nisB gene mutation II, III 
pLEB406 Em nisC gene mutation III 

 References within this table 1) Peränen et al., 1987 2) Behnke et al., 1981 3) Viera and Messing ,  1991 4) Axelsson et al. 1988 
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2. Methods 

 

 

The methods used in this thesis are listed in the table with the reference to the work in which 

they have been used. 

 
 

Methods used in this work. 
 
 
Method 
 

 
Purpose 
 

 
Used in 

DNA and RNA techniques:   
Cloning Plasmid constructions I-IV 
PCR Amplification of DNA I, II 
Southern blotting Analyses of DNA II 
Northern blotting Analyses of RNA II 
In vitro transcription Producing of mRNA I 
In vitro translation Production of protein I 
Protein techniques:   
SDS-PAGE Analyses of protein I-IV 
Tris-Tricine SDS-PAGE Analyses of protein II-IV 
Western blotting Analyses of protein I-IV 
HPLC-RP Purification of nisin I-IV 
HPLC-MonoQ Purification of NisI IV 
Hydrophobic chromatography Purification of nisin IV 
His Trap chromatography Purification of His-Tag nisin III 
Gel filtration chromatography Purification of NisI I, IV 
Affinity chromatography Purification of GST-NisI protein I, IV 
Lipoprotein labelling NisI I 
N-terminal sequencing NisI II, III 
MS-spectrometry NisI III 
Nisin bioassays:   
Nisin activity test Nisin activity II-IV 
Immunity test Nisin immunity of bacterial strains I, II, IV 
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D. RESULTS  AND  DISCUSSION 
 

 

  

1.  Characterization of the NisI polypeptide 
 

1.1.   Localization of the NisI 

 

1.1.1   The cellular location of NisI lipoprotein 

 

Since the amino acid sequence of NisI contains a consensus lipoprotein-processing site (von 

Heijne 1989), it is assumed to be located on the outer surface of the bacterial membrane. There 

were no experimental data of the location of NisI. Therefore, experiments were done in order to 

show that NisI is truly located on the outer surface of cell membranes.   

 

The expression plasmid pLEB379 containing the nisI gene in sense orientation under the 

inducible T7 promoter was used for in vitro transcription and translation of the nisI gene, and for 

labeling of the lipoproteins with [3H] palmitic acid (I). Analysis of the proteins produced by in 

vitro translation using SDS-PAGE and autoradiography showed two bands (32 kDa and 33 

kDa). Kuipers et al. (1993) have reported bands of similar size for NisI produced and labeled in 

vivo in E. coli. Labeling of the lipoproteins in E. coli strain ECO395 under IPTG induction also 

showed two bands. Since the labeling was done in palmitic acid, only those proteins with the 

fatty acid tail attached to the cytoplasmic membrane could be detected (I). One explanation for 

the two sizes of the NisI lipoprotein is that one represents the form with the signal sequence still 

attached. Western analysis of the amount of NisI in the cytoplasmic membranes of ECO395 and 

LAC34 harboring the nisI gene expression plasmid showed that the NisI protein was located in 

the cytoplasmic membrane both in the E. coli ECO395 cells grown with IPTG induction and in 

the L. lactis strain LAC34 (I). These results demonstrated that the NisI protein is a lipoprotein 

and that it is located on the cytoplasmic membrane. 
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1.1.2.    The soluble NisI protein 

 

If the signal sequence of a polypeptide aimed for lipid modification is cleaved before the lipid 

modification, then the polypeptide can escape the lipid modification and be secreted out into the 

growth medium. Recently it has been shown that in the heterologous bacterium, B. subtilis, 

where the nisI gene was removed under the control of the inducible promoter Pspac, half of the 

produced NisI was secreted into the medium (Stein et al., 2003).  The extent to which this occurs 

in the nisin producer, L. lactis N8 was analysed. The location of NisI in different growth stages 

of the L. lactis N8 was analysed by growing the cells, taking samples from different growth 

stages and analysing the amount of NisI in the cells and the cell-free growth medium by Western 

analysis (IV). The results showed that during the first hours of growth almost all of the produced 

NisI was cell membrane associated but in the later stages of growth an increasing amount of NisI 

was released and found in the growth medium. After growth for seven hours, there were almost 

equal amounts of the membrane-bound and soluble NisI. Thus it was demonstrated that NisI is 

secreted similarly in the natural nisin producer N8 as in the heterologous B. subtilis. This would 

refer that the secretion of NisI is a biological phenomenon and not only a result of over 

expression as it could be in the B. subtilis host. Thus we have shown that NisI can exist in two 

forms; i.e. membrane-bound lipoprotein and secreted, lipid-free soluble protein, named here LF-

NisI (I, IV).   

 

1.2.  The biological function of NisI protein 

 

1.2.1   Nisin immunity 

 

Bacterial strains producing antibiotic substances have to protect themselves from their own 

product. Among bacteriocin producers, the protection mechanism is typically based on dedicated 

peptides or proteins, so called immunity proteins, which specifically antagonise the bacteriocin 

(Konisky, 1982; James et al., 1992). NisI has been proposed to be such an immunity protein for 

nisin (Kuipers et al., 1993; Saris et al., 1996; Stein et al., 2003). 

 

We studied the effect of NisI on nisin immunity by expressing it in two different bacterial strains  

- E. coli ECO395 and L. lactis LAC34. These strains produce NisI but none of the other proteins 

encoded by the nisin operons. The results of the Western analysis showed that the amounts of 
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NisI in the cytoplasmic membrane were comparable to that of the nisin producer L. lactis N8 (I). 

Expression of NisI was not able to protect the cells against the lethal effect of nisin in E. coli 

ECO395 and only 1 - 2 % of the immunity level of the wild type strain N8 could be achieved by 

expressing NisI in the strain L. lactis LAC34 (I). Kuipers et al. (1993) reported that the L. lactis 

MG1614 strain harbouring nisI expression plasmids showed only 1-4 % of wild type nisin 

immunity. Engelke et al. (1994) also reported an increase in the immunity level of the MG1614 

strain containing the nisI gene under the control  of the constitutive promoter P32.  In those 

reports the level of expression and the cellular location of the NisI protein was not studied. 

Recently Takala et al. (2002) achieved 25% immunity level of that of nisin producer N8 while 

expressing high levels of NisI in nisin sensitive lactococci. These results are showing clearly 

that additional immunity determinants are needed for wild-type level of nisin immunity. 

   

Stein et al. (2003) have showed that NisI and nisin interacted physically with and without the 

lipid anchor of NisI. They suggest that membrane bound NisI would intercept nisin at the 

surface of the cytoplasmic membrane and by sequestering nisin, prevent it from inserting into 

the membrane and/or prevent high local density of nisin molecules necessary for pore formation. 

We have also shown that lipid-free NisI interacted with nisin using CD-spectroscopy and surface 

plasmon resonance analysis (Qiao, 1996). According to surface plasmon analysis the interaction 

is rather weak and NisI seems to interact with nisin aggregates. Interestingly the molecular ratio 

of NisI:nisin on the cell membrane of L. lactis N8 is during the growth of bacterium about 1:10 

(IV). This result supports the assumption that NisI interacts with nisin aggregates. Thus the 

immunity mechanism could be that NisI intercepts rather with nisin aggregates than single nisin 

molecules on the membrane surface. 

 

We have shown that nisin producer N8 secreted considerably amounts of NisI into the growth 

medium (IV). Thus it could be postulated that secretion of NisI would be part of the immunity 

mechanism. LF-NisI had no affinity to cells, nor self-aggregated to such extent that it would 

have precipitated in the conditions used for precipitation of the cells (IV). Therefore, one 

potential immunity mechanism of LF-NisI could be to bind nisin after secretion through the 

membrane and transport nisin away from the cellular surfaces.  

 

However, even so, soluble and membrane bound NisI are clearly not enough for development of 

full immunity. Therefore, other determinants are needed for the wild type level of nisin 
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immunity. One possible candidate for NisI to co-operate with is the putative transport system 

encoded by the nisFEG genes (Siegers and Entian, 1995; Immonen et al, 1998; Ra et al., 1999), 

which has been shown to give a certain degree of resistance to nisin in the initially nisin 

sensitive L. lactis strain (Duan et al., 1996). Most probably both NisI and NisFEG proteins are 

needed for development of full nisin immunity. Recent report of Stein et al. (2003) supports this 

hypothesis. They achieved maximum immunity, about 30 % of the nisin immunity level of nisin 

producer L. lactis 6F3, when they expressed together NisI and NisFEG in the surrogate host 

Bacillus subtilis. However, it is possible that to achieve the wild type level of immunity, co-

operation of NisI and NisFEG with other proteins encoded by nisin operons is needed. Thus the 

challenge still exists to unravel the complete mechanism of immunity at the molecular level.   

 

 

1.2.2.  Enhancement of the activity of nisin 

 

Since NisI is an immunity protein we analysed if the activity of nisin could be inhibited with the 

purified LF-NisI polypeptide. Therefore, nisin and LF-NisI were incubated together and the 

nisin activity of the mixture was measured using the nisin sensitive indicator strain Micrococcus 

luteus. Remarkably incubation of soluble LF-NisI with nisin actually enhanced the effect of 

nisin against indicator bacteria instead of inhibiting the bacteriocidal effect of nisin (IV). This 

was a totally new and unexpected observation. Not only did LF-NisI stimulate activity of nisin 

against M. luteus and L. lactis but also against several other gram-positive indicator bacteria. 

Addition of LF-NisI to nisin resulted at best in a twenty-fold increase of the activity of nisin. 

However, LF-NisI could not stimulate the killing effect of nisin on gram-negative bacteria. 

These bacteria are sensitive to nisin only if their outer membrane has been destabilized, for 

example by EDTA (Stevens et al., 1991; Stevens et al., 1992). The NisI-nisin complex might be 

too large to pass through even a deformed outer membrane. Interestingly enhancement of the 

nisin activity was also not seen against L. lactis strain NZ9840, which contains active NisFEG 

immunity system (IV). Thus it might be concluded that NisFEG can handle similarly nisin and 

possible complex of nisin and NisI. If the LF-NisI:nisin ratio in the mixture was lower than 0.2, 

no stimulation of nisin activity could be observed and on the other hand the stimulation was not 

enhanced further by increasing the LF-NisI: nisin ratio above 2 (IV). This could imply that one 

molecule of soluble LF-NisI could bind up to five nisin molecules closely together and that 

might then enhance the nisin activity, e.g. by promoting the aggregation of nisin molecules 
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which is potentially one step of the mechanism of nisin action. A high salt concentration and 

addition of detergent decreased the interaction of nisin and LF-NisI, as judged from loss of 

stimulatory effect of NisI on nisin activity (IV).  This indicates that the nisin-NisI interaction 

involves both electrostatic forces and an interaction with the hydrophobic parts of the 

amphiphilic nisin polypeptide.  

  

In order to further study the biological significance of the LF-NisI enhancement for the nisin activity 

we determined the ratio of NisI:nisin in the growth medium. The ratio was on the avarage 1:50 NisI 

molecules per nisin. Thus in the biological system the ratio is quite low and so the significance of 

NisI enhancement of nisin activity might be minor. At least the amount of nisin has to be locally 

decreased; for example nisin can be adsorbed to the particles of the growth medium. Nisin is known 

to be a very sticky molecule. Depending on concentration, volume and pH up to 75 % of nisin 

content in the plastic tube can be lost because of the adsorption to the surface (Joosteen and Nunez; 

1995). 

 

However, our result could indicate that secretion of NisI by the nisin producer has a biological 

function and that NisI has a dual role as a membrane bound immunity protein and in the soluble 

form as a factor that enhances the nisin activity. LF-NisI might also take part into the nisin 

immunity. The mechanism by which NisI stimulates nisin activity is unknown and requires 

further study. As it has been shown LF-NisI can interact with nisin and thus it might concentrate 

nisin molecules in vivo and this way enhances the bioactivity of nisin. 

 

 

2. The biosynthetic pathway of nisin 
 

 

2.1. The nisin operons 

 

 

The biosynthesis of nisin is encoded by the operons nisA/ZBTCIPRK and nisFEG (Kuipers et al., 

1993; van der Meer et al., 1993; Engelke et al., 1994; Immonen et al., 1995; Siegers and Entian 

1995; Immonen et al., 1998).  In order to evaluate the biological function of the polypeptides 
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encoded by the genes nisZ, nisB, nisC  and nisP, mutations in  those genes of the biosynthetic 

nisZBTCIPRK nisin operon were made by gene replacement or integration of a plasmid. 

 

The nisZ mutation in the nisin Z operon of the nisin producer strain L. lactis N8 was made by 

replacing the 3`-part of the nisZ gene with the erythromycin resistance marker (Axelsson et al., 

1988) of plasmid pLEB320 (II). In this plasmid, the erm gene was flanked by a DNA region 

upstream (-970 to -27 bp) and downstream (+57 to +162 bp) of the nisZ gene (Immonen et al., 

1995) in order to provide homology for recombination. The nisZ mutant strain was named 

LAC67 (II). 

 

The nisB, nisC and nisP mutations in the nisin Z operon of L. lactis N8 were constructed by 

integration of the plasmids pLEB329, pLEB406 and pLEB281 respectively, which contain a 

replicon from gram-negative bacteria (not replicating in L. lactis), an erythromycin resistance 

marker and an internal fragment of the gene to be knocked out as the homology region for 

intergration (II). The nisB, nisC and nisP mutant strains were named LAC53 (II), LAC104 (III) 

and LAC71 (II).  

 

The results showed that mutant strains did not secrete active nisin (II, III). This was quite 

expected and supported the idea that all of these four genes are truly needed for the production 

of active nisin. The nisin immunity level of the LAC67, LAC53, LAC104 and LAC71 strains 

with mutations in the nisin biosynthetic operon was strongly reduced (II). In addition, 

immunodetection with NisI antisera showed that the level of the lipoprotein NisI located on the 

cytoplasmic membrane of these mutant strains was low (II, III). Thus the mutation in the genes 

of nisZ, nisB, nisC and nisP seemed to have an effect on the expression of NisI, which is one 

factor of the nisin immunity system of L. lactis. Northern analysis was carried out in order to 

evaluate potential polar effects. Northern analysis of total RNA from these strains showed that 

the transcription level of the nisin operons nisZBTCIPRK and nisFEG was reduced (II). Thus 

this result as well as the results of Ra et al. (1996 and 1999) indicated that mutations that knock 

out nisin synthesis, i.e. maturation, modification or translocation of nisin also affect negatively 

the transcription of the nisin operons. Therefore, it is likely that the decrease in the immunity 

level of these strains was due to a lowered transcriptional activity and that the regulatory circuit 

was broken, resulting in a low expression level of the nisin immunity proteins.   
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2.2.  Induction of the nisin operons 

 

 

In the presence of externally added nisin, the nisin immunity level of our mutant strains was 

increased (II).  Western analysis using the anti-NisI antisera KH 1422 showed that the level of 

NisI protein located on the cytoplasmic membrane was also increased compared to the situation 

when no external nisin was added to the growth medium of mutant strains (II). Northern blot 

analysis using total RNA from various mutant strains using nisZ, nisI and nisE gene fragments as 

probes showed that transcription of the nisin operon was activated when external nisin was 

provided (II). The size of the detected transcripts indicated that the nisZBTCIPRK gene cluster 

forms one transcriptional unit and the nisFEG gene cluster forms another. These results suggested 

that the nisin operons are positively autoregulated by the external nisin and that they create a 

single regulon. Kuipers et al., (1996) have shown independently that the nisA promoter is also 

autoregulated by nisin. This autoregulation is probably mediated by the two-component regulatory 

pair NisR/NisK encoded by the two last genes in the biosynthetic nisin operon as shown by 

several studies (van de Meer et al., 1993; Engelke et al., 1994; Immonen et al., 1995).  In two-

component signal transduction, the histidine kinase recognizes an environmental signal and 

phosphorylates a cytosolic factor, which stimulates the transcription of specific genes by binding 

to specific sequences close to the promoter to be activated (Albright et al., 1989). The results 

presented here suggest that nisin is the environmental signal recognized by NisK, thus regulating 

its own production.   

 

 

2.3.    The function of NisP 

 

The nisP gene encodes a putative protein of 682 amino acids with a molecular mass of 74.7 kDa. 

NisP belongs to the group of lantibiotic proteins that show strong homology to an exocellular 

membrane bound subtilisin-like serine protease (van de Meer et al., 1993; Engelke et al., 1994). 

Furthermore, when compared to other serine proteases, the enzyme is characterised by a C-

terminal extension, which might act as a membrane anchor. This suggests that NisP may be 
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transported out of the cell and then anchored in the cytoplasmic membrane (van de Meer et al., 

1993).  NisP is a protease and most likely cuts off the nisin leader of the prepeptide as the last 

step of biosynthesis producing active, mature nisin (van der Meer et al., 1993).  

 

Van der Meer et al. (1993) showed that a cell extract of E. coli overproducing NisP could cleave 

the nisin leader from the precursor but that the expression of the nisABTCP genes in L. lactis 

MG 1614 resulted in the secretion of a 6 kDa nisin precursor with the leader still attached in 

spite of the precence of the nisP gene in the plasmid. This raised the question if some other 

protease was responsible for the cleavage of the nisin leader in nisin producers. In order to verify 

the function of the nisP gene, we constructed a nisP mutant strain, LAC 71(II).  The strain with a 

mutation in the nisP gene secreted fully modified nisin with the leader peptide still at the N-

terminus. The lack of NisP activity, however, could be compensated by treatment with trypsin or 

an incubation of the growth culture of LAC71 with heat-killed cells of the wild type strain N8 

(II). The LAC71 was cured from the pLEB281 plasmid by growing the cells for 100 generations 

without selection. Curing of the plasmid resulted in wild type nisin production and immunity 

(II). This result indicated that the phenotype of strain LAC71 was not due to any secondary 

mutation elsewhere in the chromosome (II).  Our result strongly suggested that NisP is the nisin 

leader protease and supports van der Meer`s observation (1993) that NisP cleaves the leader of 

the modified nisin precursor resulting in biologically active nisin. 

 

2.4.       The function of NisB and NisC 

 

The nisA/ZBTCIPRKFEG gene cluster in L. lactis encodes biosynthesis, regulation and 

immunity of nisin. NisB and NisC are regarded as potential enzymes carrying out the 

dehydration reactions and lanthionine formation during nisin maturation because polypeptides 

homologous to NisB and NisC are encoded only by operons required for the biosynthesis of 

other lantibiotics (Siezen et al., 1996). The NisB protein, which is a protein of 993 amino acid 

residues in size, is the putative enzyme that catalyzes dehydration of the Ser and Thr residues in 

the propeptide domain of nisin (Jack et al., 1995). NisC, a 418 amino acid residue protein, is 

assumed to be the thioether-forming enzyme (Kuipers et al., 1993). It was currently shown that 

NisC might be a member of a growing family of proteins that utilize zinc for activation of thiol 

substrates (Okeley et al., 2003). Both NisB and NisC are bound to the membrane (Engelke et al., 

1992; Siegers et al., 1996).  However, their function is not completely understood and no 
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conclusive evidence for their putative function has been presented. Knocking out the nisB or 

nisC genes results in loss of nisin production (Siegers et al., 1996; Ra et al., 1999).  Gene 

deletions within spaB and spaC of subtilin totally abolished subtilin synthesis, whereas similar 

deletions in pepB and pepC caused an accumulation of unmodified Pep5 prepeptides. The pepC 

mutant secreted completely dehydrated (serine and threonine) Pep5 peptides. Only one of the 

Pep5 fragments secreted by the pepC mutant contained a single lanthionine residue instead of 

the three expected, whereas the remaining cysteine residues were unmodified. These results are 

convincing evidence that LanB proteins are responsible for the dehydration reaction, and that the 

LanC proteins are needed for correct formation of the lanthionine rings (Meyer et al., 1995).  

Recently, Karakas et al. (1999) showed that the dehydration level of a mutant nisin could be 

increased by overexpressing NisB, supporting the proposal that NisB seems to be involved in the 

dehydration process. 

 

In order to study the function of NisB and NisC gene products of the nisin Z producer L. lactis 

N8, a plasmid encoding a His-tagged nisin precursor was constructed (III) and introduced to nisB, 

nisC and nisA mutant strain resulting in strains LAC214, LAC212 and LAC208, respectively. The 

LAC208 (nisA) strain did not produce any nisin activity, but if the cells were induced with native 

nisin, then nisin activity could be detected from the growth supernatant (III). This suggested that 

the C-terminal His-tag affected the inductive capacity of the fusion protein. An intact C-terminus 

seems to be important for nisin to be able to cause induction. The fact that nisin activity could be 

produced into the growth medium indicated that even if the His-tag impaired the inductive 

potential, the His-tagged precursor was still a functional substrate for the NisB and NisC enzymes 

and the His-tag did also not inhibit transport of the modified precursor.  Therefore, the His-tagged 

nisin precursor can be used to monitor the effects of the nisB and nisC mutations on nisin 

modification. For this purpose, the His-tagged precursor was purified from nisin induced LAC214 

and LAC212 cells, since no His-tagged prenisin could be detected in the growth medium. This 

indicated that in contrary to the effect of pepB and pepC mutations, which resulted in secretion of 

partially modified Pep5 polypeptides and fragments, secretion of prenisin was inhibited by a lack 

of either NisB or NisC activity. The purified His-tagged prenisin was analysed by N-terminal 

sequencing and SDS-PAGE (III). The result of these studies showed that the leader sequence was 

not cleaved and that no modification of serine, threonine and cysteine residues in the leader 

sequence had occurred. In normal nisin biosynthesis, no modification of these residues in the 

leader that potentially could be modified, occur. Clearly, knocking out the function of either one 
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of the putative modification enzymes does not upset the system, since at least the specificity of the 

putative dehydration still remains. Dehydration of serine and threonine residues results in a 

decrease of the molecular weight by 18 Da per dehydration. Since SDS-PAGE analysis cannot 

discriminate such small differences in the molecular mass, the purified His-tagged nisin 

precursors were analysed using a mass spectrometer. The molecular mass of the His-tagged nisin 

precursor isolated from the nisB mutant LAC214 corresponded to the calculated mass of an 

unmodified His-tagged nisin precursor (III), whereas the molecular mass of the majority of the 

His-tagged nisin precursor from the nisC mutant LAC212 corresponded to an almost completely 

dehydrated (all Ser and Thr residues except for those residues in the leader) His-tagged nisin 

precursor. Part of the polypeptides analysed from strain LAC212 had a slightly larger molecular 

mass (18 Da, 36 Da, 54 Da, etc) potentially representing partly dehydrated His-tagged nisin 

precursors. These results strongly suggest that NisB is the enzyme required for dehydration of 

serine and threonine residues in nisin maturation. Lanthionine formation does not change the mass 

(condensation). Therefore, other methods have to be used in order to determine if the modified 

His-tagged nisin precursors isolated from the LAC214 strain also contain lanthionine residues. 

Fully modified nisin with the leader has almost no activity and cleavage of the leader by trypsin 

activates nisin (II). The His-tagged nisin precursor from the LAC214 strain was treated with 

trypsin and potential nisin activity was analysed. Trypsin treatment did not activate the potentially 

dehydrated nisin precursor suggesting that lanthionine formation in the LAC214 strain is affected 

in a way that at least wild type lanthionine formation does not occur. We cannot exclude the 

possibility that some of the lanthionines are formed as in the case of the pepC mutant (Meyer et 

al., 1995). Additional experiments are needed for analysis of the extent of lanthionine formation 

in the His-tagged nisin precursor isolated from strain LAC214. 

 

 

  

 
. 
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E. Concluding remarks 
 

 

The role of NisI protein as a determinant in the self-immunity of nisin producers was studied. It 

was shown that NisI cannot confer alone the wild type level of immunity and that other factors 

are also needed. Most probably, the lipoprotein NisI together with the transporter composed of 

proteins NisFEG assembles the immunity system of nisin producers. Expression of only NisI 

and NisFEG proteins in a nisin sensitive L. lactis in a wild type level would be needed in order 

to see if they can together produce a wild type level of nisin immunity. However, before such an 

experiment is done the possibility of unknown factors affecting nisin immunity level still exist, 

for example complete immunity against nisin might need ongoing nisin biosynthesis. 

 

Based on sequence information NisI had been proposed to be a membrane-bound lipoprotein. 

Our results proved that this assumption was true. In addition, it was also shown that there is a 

soluble form of NisI, which is secreted out into the bacterium growth medium. Taking together 

our results indicated that NisI can exist in two forms e.g. a membrane-bound form and a soluble 

form and that these two forms of NisI seem to have different functions – the membrane-bound 

NisI is a factor involved in the self-immunity of nisin producers whereas the soluble NisI can act 

as an enhancer of the activity of nisin.  In our in vitro assays it was shown that the biological 

activity against indicator bacteria of the incubation mixture of purified soluble NisI and nisin 

was enhanced compared to that of pure nisin alone. This was an unexpected discovery, as an 

immunity protein should potentially have inhibited the biological activity of nisin.  

 

A gene cluster, nisZBTCIPRKFEG, encodes nisin production. It is known that the nisRK gene 

products are essential for regulation of nisin biosynthesis, but the nature of the environmental 

stimulus activating the regulatory pathway was not known. Mutations in the nisZ, nisB, nisC and 

nisP genes of the biosynthetic nisZBTCIPRK nisin operon were made by gene replacement or 

integration of a plasmid. The mutations caused a drastic decrease of the transcription from the 

promoters upstream of the nisZBTCIPRK and nisFEG operons resulting in loss of nisin 

production and nisin immunity. The transcription of the nisin operons and nisin immunity could 

be partially restored by adding nisin to the growth medium of the bacterium. Thus our results 
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indicated that nisin is the environmental stimulus and the nisin operons are positively 

autoregulated via nisin and are in the same regulon.  

 

The functions of nisP, nisB and nisC in the biosynthetic pathway of nisin were studied. The nisP 

mutant strain, LAC71 secreted inactive nisin in which the leader part of the molecule was still 

attached. This result supported information in the literature that the role of the NisP protein is to 

cleave the leader part of nisin to produce active nisin as the final step of nisin maturation. 

 

Analysis of a His-tagged nisin precursor isolated from the nisB and nisC knock-out strains 

showed that no dehydration occurred if NisB was lacking whereas if NisB was functional but 

NisC was missing, then dehydration occurred but normal lanthionine formation was disturbed. 

This clearly suggested that NisB is responsible for dehydration and NisC for lanthionine 

formation in nisin maturation.   
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