Summarizing Order Statistics over Data Streams with Dupli@ates

Ying Zhang Xuemin Lin' Yidong Yuart
Masaru Kitsuregawa Xiaofang Zhod Jeffrey Xu Yu'

The University of New South Wale & NICTA 2University of Tokyo
{yingz, Ixue, yyidong t@cse.unsw.edu.au kitsure@tkl.iis.u-tokyo.ac.jp
3University of Queensland “4Chinese University of Hong Kong
zxf@itee.uq.edu.au yu@se.cuhk.edu.hk

) than a given value. It is also interesting to know the to-
1 Introduction tal price (of a deal) ranked as a median26th percentile,
or 10th, or 5th percentile, etc. among all different types

A rank query is essentially to find a data element with f deals. Th i £ rank . alent
a given rank against a monotonic order specified on data®! d€als. These two types of rank queries are equivalen

elements. Rank queries have several equivalent variationd® 131; we focus on the later form in this paper. To accom-
[6, 13, 22] and play very important roles in many real data modate processing such queries, each deal transaction (TID

stream applications [2, 4, 5, 12, 11, 20, 21], including mon- V‘?I’ ay) is prqjepted on (vol, av) and Fhen summarize_the dis-
itoring high speed networks, trends and fleeting opportuni- tribution of distinct (vol, av)s according to a decreasing (or

ties detection in the stock market, sensor data analysis, We Increasing) order of vol*av; thatis, (TID, vol, av) is maphe
ranking aggregation and log mining, and summarizing data© (vol, av). Clearly, any generated duplicates (vol, avtmu
distributions viaequal-depth histograms. It has been shown € removed while processing such rank queries. Moreover,
in [16] that an exact computation of rank queries requires rglauve (or biased) rank error metrics need to be u.sed to pro
memory size linearly proportional to the size of a dataset by V'de more accurate res_ults tOW?“dS heads (or tails depend-
any one-scan technique; this may be impractical in on-line N9 ON which monotonic order is adopted). Note that the

data stream computation where streams are massive in sizﬁ]e_neralllt_y of rank queries éqf?antlles) remz?gs ulnchanllged !
and fast in arrival speed. is application since two different types of deals (i.eql{

; ; : av)s) may also have the same value vol*av. The unique
Stréggrsoﬁgaéggn i(r:1c\)/r:sptiu$:;gd Irg r;l; e ?our?trqllf;ntiloev gcr)md ata challenge is to detect and remove the effect of duplicated

putation. A ¢-quantile (¢ € (0, 1]) of a collection ofN data elemen_ts without keeping every element.

elements is the element with rafkN| against a mono- Duplicates may also occur when data elements are ob-
tonic order specified on data elements. The main paradigmserved and recorded multiple times at different data sites.
is to continuously and efficiently maintain a small space For instance, as pointed out in [5, 7] the same packet may
data structure (sketch/summary) over data elements to bde seen at many tap points within an IP network depend-
on-line queried. It has been shown in [1, 10, 12, 18] that a ing on how the packet is routed; thus it is important to
Space-efﬁcient-approximate quant"e sketch can be main- d_lSCOUﬂt those dup_llcates Wh_l'e summarizing data dlS{rIbU
tained so that, for a quantitg, it is always possible to find ~ tions by rank queries (quantiles). Moreover, to deal with
an element at rank’ with the uniform precision guaran- Possible communication loss TCP retransmits lost packets
tee|r’ —r| < eN (r = [¢N]). Observe that many real and leads to the same packet being seen even at a given
datasets often exhibit skew towards heads (or tails dependmonitor more than once. In such applications, continuously
ing on a given monotonic order). Relative rank error (or Maintaining order sketches for processing rank queries may
biased) quantile computation techniques have been rgcentl be conducted either centrally at one site or at a set of co-
developed in [5, 6, 22], which aim to give finer rank er- ordinating sites depending on the computing environment
ror guarantees towards heads; that iS, enforce the preciand the avallablllty of software and hardware devices. Nev-

sion|r’ — r| < er instead of a uniform precision guarantee ertheless, in either situation a crucial issue is to effityen
|r’ —r| < eN for each rank-. and continuously maintain a small space sketch with a pre-
In many data stream applications, duplicates may oftenCision guarantee, at a single site, by discounting duplzat
occur due to the projection on a subspace if elements have While most existing quantile approximate computation
multiple attributes. For example, in the stock market a deal techniques are duplicate-sensitive (i.e. cannot discdunt
with respect to a particular stock is recorded by the trans- plicates appropriately), the techniquesin [7, 14, 17] can p
action ID (TID), volume (vol), and average price (av) per vide a duplicate-insensitive approximate quantile sohuti
share. To study purchase trends, it is important to estimatewith the uniform rank precisioan and confidenceé — ¢, by
the number of different types of deals (i.e. deals with the spaceO(Z% log § logm). Here,n is the number of distinct
same vol and the same av are regarded as the same type elements andh is the maximal possible number of distinct
deal) with their total prices (i.e. vol*av) higher (or loer elements. Nevertheless, the techniques do not provide rel-

ative rank error guarantee unless linear spacé@(n) is
used.

Motivated by this, in this paper we present novel, space-
efficient algorithms to continuously maintain order sketch
over data streams, in the presence of arbitrary data du
plicates, with relative rank error guarantee They re-
quire spaceD (= log +logm). They significantly reduce
the space requirementin [7, 14, 17] frani; log $ logm)
to O(% log § logm), while also improves rank error preci-
sion guarantee froman in [7, 14, 17] toer for any given
rankr. To the best of our knowledge, this is the first work
regarding such a problem.

The rest of the paper is organised as follows. Section

e-approximate estimatiod of n; thatis,|A — n| < en
(Ve > 0). Consequently, we usgA in the corresponding
rank query instead afn. Immediately, we can verify that a
relativee-approximate answer (with rank) to RQ regard-
ing ¢ A leads to &' (¢’ = r’/n) such that‘d’%/‘ < 2.5¢if
€< %; that is,¢’ is relative2.5¢-approximate t@.

Problem Description. We investigate the problem of con-
tinuously maintaining a sketch (consisting of several sub-
sketches) over a data strea#nsuch that at any time, the
sketch can be used to return a relativ@pproximate answer
to a RQ againsDg. The aim is to minimize thenaximum
memory space required in such a continuous computation.

2 presents problem definitions and related work. Section 33 FM Algorithm

presents preliminaries. In Section 4, we present our algo-

rithms. This is followed by conclusions and remarks.

2 Problem Statement

In our problem setting, an elemeatmay be either an
original element in data streams or the “image” of a projec-
tion on an original element (e.g. (vol, av) in the example
in section 1). Each elementis augmented tdz, v) in our
computation where f(z) (called “value”) is to rank
elements according to a monotonic ordervpfand f is a
pre-defined function; for instancg could be specified as
vol * av (Or justav) regarding the example in section 1.
Without loss of generality, we assume> 0 and a mono-
tonic order is always an increasing order.

In a collectionS of elements, there may be madypli-
cated el ements; Dg denotes the set of distinct data elements
in S. In this paper, we study the following rank query over
a data streansy.

Rank Query (RQ) : Given a rankr, find the the rank
element inDg.

We investigate the problem of processing RQ queries

with ranks to be approximated where ranks are obtained

from Dg rather thans. Suppose thatis the givenrankin a
RQ query, and” is the rank of an approximate solution. In

this paper, we enforce the relative error metr@. An
answer to a RQ regardingis relative e-approximate if its
rankr’ has the precisiof’ — r| < er.

In Dg, there are no duplicates; however, many different

elements may happen to have the same values. With th&ach data element is hashed ihteM sketches "M,
presence of duplicated element values, the rank of an ele£'M(5), ...

ment against its value is not well defined; it can take any
rank in ["minvs Tmazw]- HEre, rimin,o aNdr,q, , denote
the minimum rank and the maximum rank of an element
in Dg with valuewv, respectively, against a monotonic or-
der (the increasing order as assumed above). Consequentl
the definition of relative-approximate may be equivalently
stated as follows. An answer(with valuev) to RQ regard-

ing r is relativee-approximate iff:

[Pmin,vs Tmaz,o] N [(1 = €)r, (1 + €)1] # 0 ()
Quantile Computation VS RQ. Without loss of general-
ity, we assume that @-quantile is an element with rarka
againstn distinct elements. Although is not pre-known

Suppose that is a collection of elements whose domain
is D. FM algorithm [9] proceeds as follows.

Let B be a bitmap of lengtt with subindexed0, k& —

1]. Suppose that() is a randomly generated hash function
D — B, such thatvz € D, 1) for each bit,i(z) has the
equal opportunity to havéor 1, 2) h(x) is enforced to have
one and only one bit with valug, and 3)h(x) assigns the
last bit (the bit with subindek — 1) with valuel iff the first

k — 1 bits (from left) take valué). To enforce property 2),
h(z) may be interpreted as a serial binary hash functions
that start from the first bit and terminate once the current bi
is assigned by valug It can be immediately shown [3] that
on average() runsin timeO(1) (two calls of a binary hash
function) per data element and the probability of having the
ith bit with valuel is 2% In our implementation, we use
the public code from Massive Data Analysis Lab [19] to
randomly generate such hash functions.

A FM sketch onS is defined ag'M (S) = \/ ¢ g h(z),
where FM (S) is a bitmap with lengttk and theith bit of
FM(S) takes valud iff 3z € S such that:(x) assigns the
valuel to theith bit. We definet"M,,,;,,(S) as follows:

e If i is the least bit (from left) with valu8, F'M,,,;,,(s)

is defined as.

e Otherwise,F'M,,,;,(S) is defined aso (in our imple-

mentation, we defing M,,,;,,(S) ask).

To improve the accuracy of FM algorithm, multiple
copies (sayl) of FM sketches are constructed. Therefore,
(5),

, FM;(S), respectively. The numberg of
distinct elements iy’ is estimated by:

AS — 1221:1 FMi,nLin(S)/l-
¥

(@)

Yiere, o 2 2EFMymin(9)) /gt and eachF M; in(S)
related to F'M;(S) is defined in the same way as
FMpin(S) related to FM(S). As shown in [9],
From Theorem 2 in [9] and th€entral Limit Theorem (pp
229 in [8]), the following lemma can be immediately veri-
fied using the independence assumption.

1As E(FMji,min(S)) cannot be explicitly represented ang is un-
known, in our implementation we approximately chogs@s0.775351

in a data stream, our techniques can always guarantee agccording to the approximate results in [9].

Lemma 1. Suppose that Ag is returned by FM algorithm
asshown in (2). Then, the probability P(|As —ng| > eng)
is smaller than ¢, for any given0 < 6 < 1,0 < € < 1,
and L = 1, if k = O(logm + loge™! + logd~!) and
I =0(X%logé™ '), wherem = |D|.

4 Relative Error Sketches

Below is a key observation. For a datasktif we first
select the data elements frofhwith element values not
greater than a given (the result is denoted by|,-) and
apply FM Algorithm onS]|,-, then the obtained estimation
Ag,,, of the numbemsg , of distinct data elements ifi|,-
follows Lemma 1. Recall that,, ., is the maximum rank
of the data element with value in Dg against the non-
decreasing order af. Consequently;,,qz ., = N5 v-

Intuitively, we can get a good approximate solution if for
eachv, ng, may be estimated accurately. Note that main-
taining sketches with the presence of every valus not
only expensive in space but also expensive in running time
in case that the total number of distinct value$2i$Ds]|).

Algorithm 1 RQ-FM SketchesRQ-FM)

Input: [, k, L, a strean® of (z,v).
Output: L: the set ofL smallest distinct elements;
{s; : 1 <14 <l}: eachs; is an array witht elements.
Description:
1: Initialize {s; : 1 <i <1}; L — 0; j < 0;
2: Generaté hash functiongh;() : 1 <1i <l};
3: for each newr with valuev do

4 if (x,v) € L then

5: if 7 < Lthen

6: L—LU{(x,v)};j—ji+1

7: else ifv < vaq then

8: replace(,,az, Umaz) IN L DY (2,v);
9. for i=1tol do

10: p — p(hi(z));

11: if si[p] > v ors;[p] = 0then

12: si[p] < v;

13: ReturnL & {s; : 1 <i < }.

To estimaten s, for a givenv, our query algorithm pro-
ceeds as follows. I§ < v,4, then we only quent. Oth-

Below, we present a novel, space-efficient data structureerwise, in the light of key observation we first select the
(sketch) to be continuously maintained to achieve a réativ elements ins; with positive values (corresponding to data
e-approximation. We also present a theoretic analysis to-elements inDs) but not greater than; the result is denoted

wards space complexity, time complexity, and correctness. py s;|, . Then, we return the location of the left-most ele-

4.1 Algorithm

In our approach, we follow the framework of FM algo-
rithm. To effectively keep values information, we map a
bitmap into an array by replacing the bit with hashed value

1 by its corresponding data element value. At each element

of such an array, we keep only the smallest data value if
multiple data elements have been hashed into this element

Below, we present our continuous sketch construction
and maintenance algorithm in Algorithm 1. We maintain
larrays{s; : 1 < i < [} each of which is generated, as
described above, by a randomly picked hash functign
and hag: elements with subindexes frofrto £ — 1. Recall

that without loss of generality, we assumed each element

takes positive values. Thus, each aregycan be initial-
ized t0(0,0,...,0). For everyh;(z) (1 < i <), p(hi(x))
denotes the position (subindex) of the bit, with valyen
h;(z). Note thats;[p] is thep-th element ins;. Moreover,
to ensure relative rank errors for a give rank % precise
answers are the only possibility; consequently, we always
keep thel smallest distinct elements (i.e, distinct ele-
ments with the smallest element values)iin addition to
{s; :+ 1 < i < 1},% so that RQ with ranks smaller than
can be answered exactly. We usg,.. to denote the max-
imal data element value ifi andz,,,... is the element with
maximal value. Note that if we keep each elememntin
its augmented form ¢z, v). In each s;, we link every non-
zero valueto the corresponding data element so that we can
return a data element by a RQ.

The following theorem is immediate.

Theorem 1. Algorithm 1 requires the space of L + [x k
elements.

2All duplicates for the elements if are removed according to the al-
gorithm.

ment ins; that is not included im;|,-. If such a left-most
element does not exist, we retukn(corresponding to the
situationoo when we presented FM Algorithm). Lét de-
note a subset of elements in an array d&(d) denote the
set of subindexes of the elementdinOur query algorithm
is presented in Algorithm 2.

Algorithm 2 Approximatingns,,

Input: v, £,{s; : 1 <i <1} generated by Algorithm 1,
Output: Ag,;
Description:

1: getv,g, from L;

2: if vimaes > v then

3 AS,U — |£|v_|,
4: else
5 fori=1toldo
6: if [0,k —1] — I(s5]y_) # 0 then
7: five—min{j:j €0,k —1] —I(silv—)};
8 else
9 fi,v =k;
10: ASU — l222:1 fi,v/l;
' ¥

11: ReturnAg,,.

From Lemma 1, the following Lemma immediately
holds.
Lemma 2. For a given v, €, and 6, Ag,,, returned by Al-
gorithm 2 against the output of Algorithm 1 has the prop-
erty that P(|As, — nsw| > ens,) < 6if L = 1
l=0(%log3)andk = O(logm +logé~* +loge™).

€’

4.2 Space VS Accuracy

We first present our rank query algorithm against the
sketches generated by Algorithm 1. To retain relative
approximation, the basic idea is that for a given rantnd

the maximalAg , but not greater than by invoking Algo-
rithm 2 multiple times. IflAs, — r| < e1r (1 = €/3 for

0 < € < 1), then returnr with valuev otherwise return’
with valuev’ wherev’ is the value in the sketch immediately
greater than.

Remark 1: Clearly, ifr < L, then we only need to get a
data element it with therth smallest value. It is the exact
solution. Therefore, below we only discuss> L; that is,
we only query{s; : 1 <i <}.

Our query algorithm is presented in Algorithm 3. It is
based on the following monotonic property that can be im-
mediately verified according to Algorithm 2.

Lemma 3. Applying algorithm2to {s; : 1 <14 <} (gen-
erated by Algorithm 1), As,, < As., for any v; < vs.

Algorithm 3 Processing a Rank Query

Input: r > L,0< € < 1,{s;} generated by Algorithm
1;
Output: z/;
Description:
L a+—max{v:Ag, <r&veu_ s}
2: getz’ such that its value' is a;
3: if |a — r| < €17 then
Returnz’;
else
if a is the maximum value in)_, s; then
Returnr > ng; (outside solution range)
else
a+—min{v:Ag, >r&veU_s};
Returnz such that its value’ is q;
Now, we show the precision guarantee of Algorithm 3.

Theorem 2. Forany0 < 6 < 1,0 <e < landr > L,
suppose that the element 2’ is returned by Algorithm 3 with
valuev’. Then,

P([Fminw s Tmaz,o] N [(L =€), (L+€)r] =0) < o

CoN2aR

i
e

if | = O(%log3), k = O(logm + logd~" + logey "),

1
L= %, ande; = %
Proof. The proof is quite lengthy and we omit it here due
to the space limit. The basic idea is to prove that for two
“consecutive” valuesy; andus, occurred in the sketch, the
difference of their correspondings ., andng ,, is within

£ max{ns.,, nsu, }- O

Theorem 2 states that with the set of parameters, the

data element returned by Algorithm 3dspproximate with
probability at leastl — §. It can be immediately veri-
fied that another output,r“> ng”, has the probability at
leastl — 4 to be correct with this set of parameters. The-
orems 2 and 1 immediately imply that to ensure the rel-
ative e-approximate property for rank queries against dis-

tinct elements in a data stream, the space requirement i

O(}2 logd~tlogm)if m > e~ andm > 6 1.
Remark 2: In Algorithm 3, the outputr > ng (i.e.

in our other techniques presented in the paper this property
also holds. Therefore, without loss of generality we assume
thereafter, that in arank queryl < r < % whereAg is

an estimation of.s by the corresponding query algorithm
to estimated . Consequently, we no longer need to handle
the situation that no element is returned.

Remark 3: To accommodate quantile queries, it is im-
mediate thatD (2 log % logm) space is required to ensure
relativee-approximate with the confidende— ¢.

4.3 Time Complexity

In Algorithm 1, it runs in timeO(log 1) per element to
dynamically maintairC if we maintain a search tree ah
As discussed earlier, eadh)() (1 < j < [) takes constant
time on average to hash a data element. Thus, Algorithm
1 runs in timeO(Z log 6—') on average per data element,
given there ar«@(}2 log §~1) such arrays.

Algorithm 3 can be implemented as follows. We sort
Ul_,s; on element values, and then scan the sorted list, by
calling Algorithm 2 iteratively, till find such/’. Note that
in each iteration, we do not run Algorithm 2 from scratch;
instead we incrementally update the result from last itera-
tion. Clearly, the dominant costs appear in the sorting pro-
cess; consequently Algorithm 3 run in tin@(K log K)
whereK = O(Z% logd~'logm) (assumingn > ¢~' and
m > 6~ 1) if subsketches have not been pre-sorted.

4.4 PCSA-based

Note that in Algorithm 1, each element is hashed into
Q(}2 log 5~ 1) arrays (subsketches). This potentially makes
the algorithm less efficient. Our experiment demonstrates i
can only handl800-400 elements per second.

In this section, we modify the algorithm based on the
PCSA technique [9] to our algorithm, Algorithm 1. The
basic idea is to hash each data element randomj\atoays
(subsketches) among tharrays (subsketches). Algorithm
1 may be modified as follows.

e First, we pick at random another hash functions:
{H; : 1 <1 < ¢} besides thé hash functions in Al-
gorithm 1, where eacli/; hashes the element domain
Dto[1,1].

e Then, in Algorithm 1 instead of the iteration (in line
9) fromi = 1 to [, we do the iteration for each €
{Hi(z), Ha(z), ..., H¢(x)}. The others in Algorithm
1 remain the same.

We call such a modified Algorithm 1 “Algorithm RQ-
PCSA”. Suppose that all the parameters are selected as
those in Theorem 2. It is immediate Algorithm RQ-PCSA
runs in timeO(log £ + () for each data element.

In the light of PCSA technique, Algorithm 2 is modified
accordingly as follows to estimatera; ,. We change line

9.0 in Algorithm 2 toAg,,, < #223:1 fiw/t Then, Algo-

rithm 3 remains the same to answer a rank query but calls
the modified version of Algorithm 2. It can be implemented

the answer is outside solution range) implies the condition jn the same way as what we described in Section 4.3 with

> % whereAg is an estimation ofis by Algorithm 2.

the same time complexity. These, together with the facts in

According to the discussions above, such an answer (out{9], immediately imply that the expected accuracy of Algo-

put) is correct with probability at leadt — §. Similarly,

rithm RQ-PCSA is relative-approximate. Note that in our

implementation, we use pairwise independent hash func-high speed data streams with an element arrival rate up to
tion for H, and our performance study indicates that when 75K/second. We also report that our performance evalu-
¢ > 10, its accuracy remains quite stable. ation against various synthetic datasets have very similar

5 Conclusions and Remarks ZeEds' o - ’ ca ed b
In this paper, we investigated the problem of approx- cknowiecgement. 1he work was partially supported by
imately processing rank queries against distinct data ele-2N ARC discovery grant (DP0666428) and UNSW FRG

ments in a data stream with the presence of duplicated dat RGP, PS08709). The work was partially done when the

elements. Novel space and time efficient techniques are de- nd author visited Tokyo University as a JSPS fellow and

veloped for continuously maintaining order statisticsheat t visited the Chinese University of Hong Kong.

rank queries can be answered with a relative error guaranfReferences

tee. This is the first work providing the space and time ef- [1] A. Arasu and G. S. Manku. Approximate counts and quan-
ficient data stream techniques to process approximate rank tiles over sliding windows. 1fiPODSDA.

ueries withrelative error guarantees againdistinct data [2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
glements g g Models and issues in data stream system$0DS 02.

. [3] J. Considine, F. Li, G. Kollios, and J. Byers. Approxiraat
We have also done a thorough performance evaluation ™ 544reqgation techniques for sensor databaselCIiE’ 04.

of our sketch techniques and the corresponding query al- [4] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R.-Ras

gorithms. Due to the space limit, we only present the fol- togi. Holistic aggregates in a networked wqud: Distrilaite
lowing results regardingpace ratio (i.e., the number of tu- tracking of approximate quantiles. §GMOD'05.
ples in sketches over that in a data streamyuracy (i.e., [5] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava

Effective computation of biased quantiles over data steeam

the relative error), and efficiency. They are based on a real In ICDE’ 05.
dataset WCH (World Cup 98's HTTP request data) down- [6] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava
loaded from the Internet Traffic Archive [15]. It consists of Space- and time-efficient deterministic algorithms fosbid

i uantiles over data streams.RODS 06, 2006.
17 million records of requests made to the 1998 World Cup [7] g Cormode and S. Muthukrishnan. Space efficient mining

Web site between April 30, 1998 and July 26, 1998. There of multigraph streams. IRODS 05.
are total more thah.53M duplicated data elements and the [8] W. Feller. An Introduction to Probability Theory and Its Ap-
maximum duplication number of an elemengis. plications. John Wiley & Sons, Inc., 1966. _

All experiments have been carried out on a PC with Intel [9] P. Flajolet and G. N. Martin. Probabilistic counting aig

: rithms for data base applicationgournal of Computer and
P4 2.8GHz CPU and 1G memory. In our experiment, we System Sciences, 31(2):182-209, 1985,

chooser = 0.02,d = 0.05,1 = Zlogd~", andL = tin [10] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Straus
both RQFM and RQPCSA. We also set= 32 in both How to summarize the universe: Dynamic maintenance of
algorithm because we use the public code from Massive quantiles. InvLDB2002.

Data Analysis Lab to generate hash functions [19] 2fid ~ [11] {V' Grfeer(‘jwaldtatr.“i.s- Khanna. Powetr-col?sgi[;\g gfmp”ta'
: : - ion of order-statistics over sensor networks P :
is large enough to accommodate massive number of distinc{12] M. Greenwald and S, Khanna. Space-efficient online com-

data elements. We assign= 10 in RQPCSA. putation of quantile summaries. \5GMOD’ 01.
Figure 1(a) shows the space ratio; note that both algo-[13] A. Gupta and F. Zane. Counting inversions in lists. In

rithms always have a same pre-defined sample size if other

SODA'03.
: £}4] M. Hadjieleftheriou, J. W. Byers, and G. Kollios. Robus
parameters are the same. Figure 1(b) shows the accuracy ™ syetching and aggregation of distributed data streams-Tec

where we report the average relative error. It shows that nical report, Boston University, 2005.
the actual average error is much smaller than the designate?lS] Internet Traffic Archivehttp://ita.ee.lbl.gov L
error 002, |n fact’ |n the expenment we have no query re- 16] J.I.Munro and M.S.Paterson. Selection and SOI’tInQ \irt-

; : : ited storage. IMCS12, 1980.
sult with the relative error larger than02. Figure 1(c) re- [17] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and

ports the average time of processing each element in con=""* ye|tas: Efficient and robust aggregation in sensor network
tinuous maintaining sketches. Our experiment shows that streams. Irf8IGMOD’ 05.)
RQFM can only proces300-400 elements per second while [18] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random

. sampling techniques for space efficient online computation
RQPCSA can process abdliK elements per second. Fi of order statistics of large datasets.2GMOD’ 99.

nally, Figure 1(d) reports the average query processing tim [19] Massive Data Analysis Lab. http:/www.cs.

of processing a batch dfd00 quantile queries randomly rutgers.edu/"muthu/massdal.html)
generated. [20] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Syn
3 0003 102 . opsis diffusion for robust aggregation in sensor netwohis.
§ 2 E 0.002 5 10° @ oae SenSys' 04.
& 2 2 10 @ 4ao” [21] N. Shrivastava, C. Buragohain, D. Agrawal, and S. SU#-
g 5 o 0% = 2a0* dians and beyond: new aggregation techniques for sensor
o RQFM RQPCSA RQFM RQPCSA w0° RQFM RQPCSA 0 RQFM RQPCSA networks. Ir&n&ls’ 04’ pages 239_249’ 2004.
(a) Space (b) Accuracy (c) Sketch (d) Query [22] Y. Zhang, X. Lin, J. Xu, F. Korn, and W. Wang. Space-

) efficient relative relative error order sketch over dataatns.
Figure 1. Experiment Results In ICDFE’ 06.
The experiment demonstrates that besides proven ac-
curacy and space guarantees, both algorithms are very
space efficient and highly accurate in practice. RQPCSA
is efficient enough to support on-line computation of very

