
The IBM family
of APL systems

The developmental history of IBM subfamilies of
APL systems is traced in this paper, focusing on
the inter-relationships among them and the
methods of implementation used by the various
groups involved. The language itself, and the way
its evolution was mana ed, are also considered
as factors influencin tfe development process.
A chart is included tfat illustrates the evolution
of mainframe and small machine programming
products supporting APL, beginning in 1964 up
to the present time.

I n the 25 years since the first viable APL system
was introduced outside of IBM, offerings of APL

systems spanning most of the significant hardware
families have been produced at a rate of more than
one per year. These systems have been produced by
small groups of designers and developers; at no
time have there been more than about 20 people,
company-wide, working on APL implementations at
the same time. It is worth asking how this high
productivity came about: the methods of imple-
mentation, the language itself, and the manage-
ment of its evolution must have all been factors. In
this paper, each of these factors is discussed as the
history of the various subfamilies of APL systems is
traced.

Figure 1’ is provided to visually aid the reader in
following this history. In this chart, shown later, the
entries shaded in blue are systems that achieved
some form of product status; the others are devel-
opmental or experimental systems, which in many
cases had significant IBM internal usage. The ver-
tical coordinate is a time line, starting with 1964 at
the top. On the horizontal axis there are six col-
umns. In general, each column is devoted to a major
subfamily of APL systems, or to the work of a par-

41 6 FALKOFF

by A. D. Falkoff

ticular implementation group. The fourth column
does not fit this description; it shows work per-
formed by different groups on two different sub-
families of systems, but they are connected in an
interesting way that is described later. The directed
lines on the chart indicate significant design influ-
ences or transport of code. Of course, they do not
tell the whole story, as the actual transactions were
usually more complex than can be so simply dia-
grammed.

Mainframe systems

The earliest work on APL and its forerunners, PAT
and another called IVSYS, was done in IBM’s Re-
search Division. As has been reported elsewhere,’
PAT (for Personalized Array Translator) was an in-
teractive interpretive system using a limited set of
array operations, coded for the IBM 1620 processor.
It made clear that such a system could successfully
be built, and it helped to motivate the design of the
APL type element for the IBM Selectric* typewriter
mechanism. IVSYS (for Iverson system) was the first
attempt at a mainframe system.3 It was an inter-
preter written in FORTRAN to run in batch mode
on the IBM 7090 series of machines, and was ren-
dered interactive by running it under an experi-
mental time-sharing monitor4 (TSM) on an IBM
7093 processor.

Wopyright 1991 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

APL\360. No sooner did the original APL group
have IVSYS running in late 1965, but they were told
that the TSM project, which was not under their
control, would be dismantled. If they were to con-
tinue experimenting with Iverson’s ideas,5 the only
recourse was to undertake the development of a
time-sharing system of their own, along with an in-
terpreter, for the recently announced IBM Sys-
tem/360* line of machines. This work went remark-
ably well, resulting in an integrated system,
APLp60,6 with excellent performance characteris-
tics.’ The system was operational about three
months after work was started, and the three im-
plementers who did the bulk of the programming
were later to receive an industry award for their
work.8 It is worth looking at the factors that con-
tributed to this success.

First, although this was a new system, there were
some important design decisions regarding the lan-
guage, as well as some coding experience, carried
over from the IVSYS project. Second, the design and
development group was small and enthusiastic.
This attracted help, both in the form of direct con-
tributions to the coding and thoughtful feedback
from early users. Third, the group did not try to do
it all themselves. Mathematical functions were bor-
rowed from the FORTRAN I v subroutine library, and
ideas from other sources were adopted if consid-
ered useful. Fourth, the systematic nature of the
language lent itself to a clean internal design of the
interpreter. Fifth, the system was designed to be
independent of the host operating system. The han-
dling of input and output, management of user stor-
age, and time-sharing functions were all built into
the supervisor, which was tailored to the specific
needs of the language processor, thus avoiding
some of the complexities of more general systems.
And last, even at that early stage, APL itself was
used as a design tool. The supervisor, for example,
was modeled in APL, and as the interpreter code
progressed, the model was run on it for validation.

Starting in November of 1966 an APLV~O system op-
erating on an IBM Systed360 Model 50 was providing
regularly scheduled service to users in the IBM Re-
search Division in Yorktown Heights, New York.
Soon thereafter copies were started up in other IBM
locations, notably Endicott and Poughkeepsie, New
York. The next evolutionary step was the develop-
ment of systems to run under the two extant operating
systems, DOS/360 and OS/360, and this was accom-
plished with help contributed by knowledgeable users
in Poughkeepsie.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

The first publicly available APL system was the cost-
free “Type 111” program (available without formal
support) released in 1968. It was followed in 1969
by the two program products (PPS) shown in the
chart. These were among the very first programs
offered when IBM unbundled programs and hard-
ware. An important decision taken then, which
would influence the progress of APL in ways that
even now are not completely understood, was to
hold back the source code and release only object
code to customers. This was done deliberately, to
discourage proliferation of language variants and to
give the original designers a better chance of di-
recting the further evolution of APL along a coher-
ent and consistent path. A positive effect of this
policy was to facilitate formal standardization of
APL later on, and the ad hoc standardization that
resulted from having a single control point simpli-
fied the development of other APL products along
the way. A possible negative effect was the discour-
agement of interest in APL as a subject of university
research.

CMS/APL. An early variant of APLp60 was pro-
duced in IBMS Cambridge Scientific Center, where
pioneering work on virtual systems was in progress.
A small team there’ adapted the APLp60 DOS code
to make use of virtual storage under the Conver-
sational Monitor System (CMS), running in the spe-
cialized hardware of the IBM System/360 Model 67.
This CMS/APL system, which was made available as
IBM‘s first installed user program (IUP), was also the
first to explore two significant variations in the de-
sign of APL systems.

One such variation had to do with workspace size,
which, in APL\360, was fixed at a constant value (of
32K bytes) for all workspaces in the system. By
means of a relatively small modification to the in-
ternal structure of the workspace, CMS/APL enabled
operation in the memory paging environment of
the control program of CMS (CP/CMS) and enabled
the use of variable-sized workspaces up to the ca-
pacity of the virtual storage available. An issue
here, which was to be argued at length for a long
time after, was the difference between swapping
complete workspaces (in effect, paging logical
units), and the paging of fixed segments of memory
having no necessary relationship to the computa-
tional process occurring. It is probably fair to say
that with the state of the art then, and for some time
thereafter, swapping was more efficient, although it
did require a uniform, fixed workspace size in the
system. With modem hardware and programming

FALKOFF 417

Y Y

77

418

NOTE: EWE ENTRIES REPRESENT IBM PRODUCTS.
GREEN ENTRIES REPRESENT DEVELOPMENTAL
OR EXPERIMENTAL SYSTEMS, SOME OF WHICH
HAD SIGNIFICANT IBM INTERNAL USAQE.

APL2/PC v n

41 9

techniques, paging problems such as thrashing (in-
efficient paging into and out of real memory) have
been reduced or eliminated. Present-day main-
frame APL systems all use paging, and workspaces
do not have to have a fixed size.

The other variation, which is not unrelated techni-
cally to the first, but which had greater significance
for the marketing of APL, was that CMS/APL sepa-

Shared variables work well for
communicating with any facility
outside of the APL workspace.

rated the APL interpreter from the rest of the
APLj360 system and used it as a language processor
in a different supervisory environment. APLj360 was
a complete subsystem having minimal dependency
on the host operating system. Its supervisor and
user interface management were tailored and re-
fined to optimize the use of APL and were never
applied directly to other processors, whereas CMS,
Time-sharing Option (TSO), and the Customer In-
formation Control System (CICS) were built to be
hosts to many different processors. In its time,
CMSIAPL did not make a strong impression in the
marketplace, but in the longer run the more general
type of system that it represented turned out to
have greater market acceptance, and nowadays APL
products are marketed as language processors
rather than as subsystems like APLj360 or APLSV
(discussed below). However, with the powerful
means of access to other host facilities provided by
modern A P L ~ systems, this distinction has become
less compelling.

APLSV. Although A P L ~ ~ ~ O was complete, in the
sense that it implemented the entire APL language
as it was then defined and it could be used for sig-
nificant applications, it nevertheless lacked certain
practical facilities. There was no way for a user to
import or export information except through a
typewriter terminal, and there was no means of file
access. Work to rectify this situation was started in
1969 when the original APL group moved from IBM’S

Research Division to IBM’S New York Scientific Cen-

420 FALKOFF

ter, and continued when the group subsequently
moved to IBM’s Philadelphia Scientific Center.

There was a vigorous debate within the APL group
on the choice of a direction for providing the nec-
essary communication facilities, lo and ultimately it
was decided to use shared vuriubles with a formal-
ized protocol.” The consensus was that this ap-
proach was the one least likely to compromise the
integrity and generality of the language, as it
avoided the introduction of special functions just
for manipulating files. It was considered that the
APL array functions already encompassed the usual
file operations-for example, appending a record
to a file is an instance of catenation-and elabo-
ration of them just for files was not desirable.”

Under the shared-variable paradigm, access to an
external file system would be provided by means of
relatively simple auxiliary processors (A P S) having
an interface to a shared-variable processor (SVP) on
one side and an interface to the host file system on
the other. The APL processor would, of course, also
have an interface to the SVP. Thus, any of the op-
erating system’s file operations could be specified
by an appropriate character string that was gener-
ated in APL as a character vector and passed as a
shared variable to the AP, which then put it into a
form understood by the host file system.

This paradigm of shared variables was shown to
work as well for communicating with any facility
outside of the APL workspace, including the APL
interpreter itself. The same facility that was intro-
duced to provide file access thus turned out to be
a rational basis for the solution of the problem of
how to incorporate into the language dynamic con-
trol of primitive-function parameters such as index
origin and print precision. This took the form of
system variables, which were formally a subclass of
shared variables having distinguished names, and
system functions, which in principle implicitly uti-
lized system variables. l37I4 The shared-variable in-
terface to APL is itself represented by a set of such
system functions and system variables.

The shared-variable facility was completely mod-
eled in APL, including the system functions that
were intended to manage it. Other enhancements
to the APL interpreter were also modeled; the new
primitive format function, for example, was based
upon format functions written in APL that had been
provided in the A P L ~ ~ ~ O product. In general this
method of programming, starting with APL models,

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

was a multistage process. A functionally correct
model was first written without regard to machine
considerations, and when this was deemed to be
correct, another version was produced using only
APL primitives that could be easily mapped to ma-
chine code. Since both versions were executable, it
was not too difficult to validate their functional
equivalence, after which the second version could
be used as a model for the final machine language
program.

Experimental APLSV systems were produced for the
then current Systed360 operating systems in 1971
and 1972, as shown in Figure 1. Again, the job was
accomplished in a relatively short time by a small,
highly motivated team. An internal IBM announce-
ment and a technical seminar on APLSV and shared
variables was held in 1971, after which the Phila-
delphia Scientific Center made available on-line
APLSV service to other IBM locations. This service
was well received, and the high rate of usage con-
stituted very effective testing for the product offer-
ing, which was made publicly available in 1973 in
the form of a specially priced and contracted prod-
uct, or programming request for price quotation
(PRPQ).

The APL standard. Although questions were raised
at the time, particularly in response to the seminar
in 1971, regarding the wisdom of the shared-vari-
able approach-as contrasted, for example, with
building specific file and input/output facilities into
the language-it does appear in retrospect that it
was the proper direction. At the very least, by es-
tablishing a clear boundary between the language
and the system facilities, it ultimately made it easier
for the industry to agree on an APL standard. And
by the same token, it has made it easier to build new
APL systems, and to port APL systems between ma-
chines with dissimilar architectures.

The first official IBM standard for APL, put in place
as an interim document in 1974, was the language
as defined by the APLSV implementation.15 Work
on a formally written standard had already been
started in the Philadelphia Scientific Center, but
was still a long way from completion and adoption.
Over the course of several years and many itera-
tions, the work product and the responsibility was
transferred to IBM'S Santa Teresa Laboratory in
California. FiEally, after undergoing the formal rat-
ification process in IBM, this formal document be-
came the IBM APL standard in late 1977.16 In 1979
the technical portion of this standard was published

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

in its entirety as an appendix to a paper describing
its ev01ution.l~ This appendix was later adopted as
the first draft APL standard by a committee of the
International Organization for Standards (ISO). It
was not accepted as wholeheartedly by the Amer-
ican National Standards Institute (ANSI) commit-
tee, which insisted on rewriting the document in a
different style altogether. Nonetheless, the APL lan-
guage definition finally embodied in the standard
adopted by all parties in 1987 is essentially that of
APLSV.

Internal APLSV systems. By the time that the Phil-
adelphia Scientific Center closed in mid-1974, IBM
in general, and certain key sites in particular, had
developed a strong dependency upon the APLSV
service for running daily business. By this time also,
the product direction had taken a turn, as discussed
later, and there was not yet a fully supported APL
product that could sustain the necessary mainte-
nance and service level required. The affected sites
therefore banded together to form an internal AFT
support group for the purpose of maintaining the
APLSV program while they waited for a product to
which they could satisfactorily migrate.

Some language development was included in the
work of the support group, but their major activity
was more in the nature of systems work-keeping
up with evolving operating systems, and developing
new or enhanced auxiliary processors for file man-
agement and other purposes. Notable among the
latter was a processor, AP19, that enabled one active
user to activate another user account under pro-
gram control from inside the first user's work-
space." The first version of this worked only in a
single machine, but a later version worked between
machines not even necessarily in the same location.
The primary motivation for this facility was the
practical need to run long jobs in batch mode un-
attended, but it also made it possible to easily
model and simulate general forms of cooperative
and parallel processing.

APWCMS and VS APL. While the original APL
group was working on the design and development
of APLSV in Philadelphia, a rather different line of
inquiry was going on in IBM'S Palo Alto Scientific
Center in California. Here, the interest was in per-
formance and the possibilities inherent in building
a hardware APL machine. As shown in the first
column of Figure 1, this work first resulted in a
microcoded APL system for the Systed360 Model
25. This was a single-user dedicated APL system in

which the control code that emulated the System/
360 was replaced with code that emulated APL.’~

APLp60 was used as the model of how an APL ma-
chine should appear to a user, and some pieces of
code were used from existing systems, but overall
the implementation was basically new. It intro-
duced the use of arithmetic progression vectors
(APV), which conserved both time and storage in
many common situations, and facilitated more ef-
ficient evaluation of certain array transforma-
tions;” it made use of a very fast syntax analyzer
that required a new internal representation of APL
statements; and it used a different storage alloca-
tion method. Not all of APL was implemented at the
microcode level, but this being an APL machine, the
part not so implemented was necessarily written in
the subset of APL that was microcoded. The super-
visor program was also written in APL and executed
that way without further translation.

The next step along this line of development was
APL microcode for the Systed370* Model 145. By
this time (1972) APLSV had seen heavy use inter-
nally, and the shared variable concept had been
generally accepted as the proper direction for man-
aging system-related operations in APL systems.
This technology was transferred, and other aspects
of the work planned for the Model 145 were dis-
cussed, at a week-long workshop set up by the
teams from Palo Alto and Philadelphia.

Also by this time, CMS as a time-sharing host was
gaining in market acceptance, and a decision was
taken by the Palo Alto group not to make a dedi-
cated APL machine, as was done for the Model 25.
Instead, they concentrated on an APL interpreter
that would run under CMS and optionally use mi-
crocode to enhance its performance.’l Two product
offerings came directly out of this work: the inter-
preter with microcode assist, which could run only
on the Systed370 Model 145, and an independent
interpreter named APWCMS, which could run on any
machine running CMS.

The microcode assist did indeed provide customers
with a significantly more powerful APL processor
than the Model 145 could provide without it, but its
marketing was hampered by the fact that there was
no similar upgrade available for the more powerful
machines in the System/370 family. Although the
design of the APL assist was quite general, the code
itself could not be ported to other machines be-

422 FALKOFF

cause they had a different underlying processor or
did not use microcode at all.

While this work was going on in the Scientific Cen-
ters, plans were being made in the IBM Program-
ming Center in Palo Alto for a new interactive time-
sharing system to be called Virtual Systems
Personal Computing (VSPC), and a principal lan-
guage processor under that system was to be APL.
Because of the marketing considerations noted pre-
viously in the discussions of CMS/APL and APWCMS,
this type of general time-sharing system, with in-
dependent language processors, was preferred over
integrated systems like APLj360 or APLSV. As a con-
sequence, when APLSV was made available as a
product in 1973, it was given the more tentative
status of a PRPQ, rather than full program product
status, and the stand-alone interpreter developed in
Palo Alto to run under cMS was chosen as the base
for vs APL, the processor planned for VSPC. How-
ever, as an interim product of the type anticipated,
the APWCMS interpreter produced in the Palo Alto
Scientific Center was also released then as a PRPQ.

In its original form and before it was actually put on
the market, the APLICMS interpreter had incorpo-
rated some language changes in addition to the
changes in the internal design. Several of these
were considered to cause problems in the language
definition, and were opposed by the APL group in
the Philadelphia Scientific Center where, as de-
scribed earlier, work on an APL standard was al-
ready under way. The disagreement was escalated
and resolved expeditiously under pressure of the
need to get on with product plans. In addition to
settling the issues of the moment, this resolution of
the problem had the beneficial effect of accelerat-
ing the adoption of an APL standard within IBM,
which, as noted earlier, has been an important fac-
tor in the continuing high productivity of APL de-
velopment groups.

Eventually, the vs APL interpreter was produced by
the APL product development group in the General
Products Division of IBM as their first major prod-
uct. They had previously (while still part of the Sys-
tems Development Division) taken over mainte-
nance of APLSV when the Philadelphia Scientific
Center closed in mid-1974. Over the course of the
next several years, as shown in Figure 1, successive
releases of vs APL added support for additional IBM
mainframe time-sharing environments until all
four-CMS, vsPc, CICS, and “so-were included. A
still extant final release was made in 1983.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

An ongoing use of vs APL is the hands-on network
environment (HONE) system, where APL has long
been the vehicle for delivering configurators and
financial analysis programs to the IBM marketing
and support teams. This use posed two system
problems that were not addressed by the APL prod-
uct systems until the most recent release of APL~,
described below. These problems arise in a situa-
tion in which large numbers of people must use
identical programs but also maintain individual
workspaces to hold their own data. First, if each
person copies the programs into an individual
workspace, and then saves it, the file storage system
will be flooded with redundant material. Second,
the common programs change over time as new
products and new plans evolve. This information,
which comes from centralized responsible sources,
would somehow have to be propagated to all the
copies in the individual workspaces.

The HONE solution to these problems was to de-
velop a system facility where the individual users
are given only use access to the common programs,
which are held in a privileged storage area. The
parties responsible for maintaining the programs
can then upgrade as necessary the single copy held
in common.

APL2. The evolution of A P L ~ is an interesting il-
lustration of how a small group of people with a
shared vision can maintain the continuity of their
technical work and bring it to a successful conclu-
sion, even over a time span of more than 15 years.
During this time, people were transferred between
three or four divisions and made several cross-
country moves, all while producing other results of
value to the company.

Thus, the desirability of breaking out of the con-
straints of rectangular arrays was recognized very
early in the course of the work on APL, and some
background work on the subject was steadily main-
tained in the Research Division while APL\360 was
being developed. The group was then transferred to
the Philadelphia Scientific Center, where definitive
work, leading to an implementation of some form
of generalized arrays, was started after the APLSV
program was well along. When the center was
closed in 1974, most of the APL group was trans-
ferred, as a group, to the West Coast, where they
became part of the APL development organization.
The work on a new APL interpreter-dubbed
“APL~” at this point-was kept going there for a
while, along with maintenance of APLSV, but the

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

pressures of producing the vs APL products even-
tually reduced this to a crawl. However, language
studies had been continued by the small contingent
of the Philadelphia group that had remained on the
East Coast, and the design of a new interpreter was
resumed in earnest in 1978 after they and others
were reassigned to the Research Division in York-
town Heights, New York. The transfer of A P L ~ tech-
nology was completed later (1982), when the peo-

The evolution of APL2 illustrates
how a small group with a shared

vision can be successful.

ple directly working on the interpreter were again
transferred to the APL development group in Cal-
ifornia.

In keeping with the usual method of doing things in
the APL development milieu, the initial work on
A P L ~ did not start as a blank slate, but as a variation
of the working APLSV interpreter. Actual coding
started in Philadelphia in 1971, a comprehensive
paper on the principal ideas was published in
1973,” and by 1974 an interpreter with general ar-
ray operations was available for experimentation,
first running under APLSV in the Philadelphia sys-
tem, later running in Palo Alto, and later still in IBM
Kingston, New York, as an alternative interpreter
on their APLSV service system. As this evolved, new
functions unrelated to general arrays were picked
up from the APLSV internal releases.

The first A P L ~ product was an interpreter running
under CMS, which was announced as being some-
what experimental and was marketed as an in-
stalled user program (IUP). In addition to the func-
tions necessary for the accommodation of general
arrays, it incorporated numerous language en-
hancements. These ranged from simply making the
primitive mathematical functions work with com-
plex numbers, through several new and- extended
primitive functions such as eigenvalues, picture for-
mat, and replication, to simple-sounding but far-
reaching changes in APL operators, which were now
able to accept defined functions as operands, and
could themselves be user-defined. w,24

The A P L ~ IUP included an important new system
function, OTF, which either generated a transfer
form-a system-independent representation-of
an APL object, or established an object in a work-
space from the transfer form. It also included two
new system commands,)OUT and)IN, which gen-
erated and accepted host system files composed of
collections of objects in transfer form. Although the
primary motivation for these operations was to fa-
cilitate migration between different APL systems, in
time these collections of APL objects in transfer
form have come to be regarded as another form of
saved workspace with its own useful characteristics,
even where migration is not an issue.

A full-fledged A P L ~ program product, which em-
phasized system facilities for integration with other
IBM programs as much as new language features,
was released in 1984. The code was a further de-
velopment of the IUP, with some emphasis on
speeding up execution, some language changes, and
a full complement of auxiliary processors. Many of
these were inherited from vs APL, with or without
enhancements. This use of existing code was facil-
itated by resolving some differences between APLSV
and vs APL in the internal design of the shared
variable processor to ensure portability of existing
auxiliary processors. Notable among these were a
full-screen session manager and a processor for ac-
cess to database products such as DATABASE 2*
(DB2*) and System Query LanguageData System
(S Q W D S *) . Communication with A P L ~ from the In-
teractive System Productivity Facility (ISPF) prod-
ucts was provided by an auxiliary processor distrib-
uted with ISPF. Other system facilities included
national language support for system commands
and messages, a new internal character type of four
bytes per character for supporting large character
sets such as Kanji, and various utilities to facilitate
migration from older APL systems.

Carried over from the APL IUP was the use ofprim-
itive defined finctions-functions written in APL
rather than machine language that are nonetheless
part of the language processor and are invoked by
the use of primitive function symbols or system
commands. First used to facilitate experimentation
with language changes, primitive defined functions
have been retained in the later releases of APL~,
where they are used for a variety of system oper-
ations and primitive functions, or portions of prim-
itive functions, for which high performance is not a
requirement. There is also a complementary facility
in A P L ~ that uses ordinary user-type names to in-

424 FALKOFF

voke machine coded functions. This is a device that
goes back to the first version of A P L ~ ~ O , where it was
used to provide useful functions, variously called
keyword functions or workspace functions, for
which special-character names were not available.
In the case of A P L ~ it was used for the eigenvalue
and polynomial functions that were included as
primitives in the IUP but were felt to be somewhat
premature for inclusion as such in the program
product.

The second release of A P I ~ , which followed the first
by little more than a year, continued the trend
toward closer integration of APL with its environ-
ment. There were improvements in the support for
database products and graphic display devices, and
direct access was provided to system editors outside
of APL. Of possibly greater significance, however,
was the introduction of a new facility known as
name association, where routines written in
FORTRAN, assembler, or Restructured Extended
Executor (REXX) could be called from APL appli-
cations.25 This facility works by providing dynamic
linking between the active workspace and other
namespaces, allowing different parts of a process to
be sequentially executed by different processors, as
may be appropriate. Although inspired in part by a
shared variable auxiliary processor developed many
years earlier at the IBM Heidelberg Scientific Cen-
ter in Germany,% it differs from the use of the
shared variable facility in that the parts of the proc-
ess are never executed in parallel or asynchro-
nously, the associated names may refer to external
objects of any kind (not just variables), and the
name association is preserved across working ses-
sions.

The third release of APL~, in late 1987, included two
major extensions to APL:! system capabilities. One
was the automatic utilization of hardware vector
processing when available, an obvious exploitation
of the natural array properties of APL. The other
was the inclusion of an encapsulation mechanism
for APL workspaces, which transformed them into
load modules, known aspackages, which could then
be accessed by a name association processor.
Among other applications, packages have the po-
tential to solve the problems addressed by use
access on the HONE API, system previously men-
tioned. The existing primitive defined function fa-
cility, which already depended upon isolation of
namespaces for its operation, was used as an inte-
gral part of the implementation of the package fa-
cility. The associated processor was also extended

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

to support FORTRAN function calls in addition to
calls to subroutines; and a complementary facility
was provided to allow routines written in other lan-
guages to request execution of APL expressions.

In recognition of the greater availability of personal
computers and workstations with versatile displays,
and their use as terminals and for running native
APL systems, this release of A P L ~ allowed the use of
lowercase alphabetics as an alternative to under-
scored alphabetics, and provided a system com-
mand for setting the mode.

In earlier times of APL design and development
there was a strong effort made to reach consensus
on new ideas, and an equally strong emphasis on
the importance of testing by users. As the devel-
opment center shifted about and the development
process itself became more formalized this was not
lost sight of, although some aspects of it have been
hard to maintain. Since about 1982, however, with
the popularization of electronic conferencing, the
IBM internal computer network has been used quite
effectively to gather together user experience with
developmental systems, and publicize opinions on
new ideas. User testing of new systems has been
formalized at the same time, with selected sites
within IBM undertaking responsibilities as virtual
extensions of the regular development test group.

Small machines

The first implementation of an Am-like system on
a small machine was the PAT system on the IBM
Model 1620, done in 1964. APL has had a presence
of small machines ever since. In fact, as is detailed
below, the first portable desktop personal computer
marketed by IBM was designed as an ApL machine.

APL\1130. In 1965-1966 the IBM Los Gatos Lab-
oratory in California was working on the design of
a very small, low-cost (hence LC or “Elsiey’) ma-
chine. It was to have a relatively simple instruction
set and an internal memory of only 1024 words,
supplemented by an external magnetic disk, about
eight inches in diameter, which used grooves on one
side for mechanically indexing to the magnetic
tracks. Science Research Associates, then a subsid-
iary of IBM, was interested in the educational po-
tential of such a machine, and commissioned a
study to produce an APL system for it. Two of the
three people who conducted the study had previ-
ously worked on IVSYS.” Drawing on this experi-
ence, the group proposed a modified architecture

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

for Elsie, better suited to implementing APL. An
emulator for this machine design, and an assembler
for programming it, were written for the IBM Model
7090, and design of the APL system proceeded from
there. The result was then successfully transferred
to a real Elsie prototype, so that in due course an
APL system was running in Los Gatos.

Unfortunately, business considerations kept Elsie
from ever becoming a product, but the work on it
was not wasted. By 1967 APL\360 was becoming
widely known within IBM, and the Research APL
group was approached by an IBM branch office in-
terested in the possibility of having an APL system
available for the IBM Model 1130, a midsize “sci-
entific” machine. To quickly produce a prototype
and show feasibility, an Elsie emulator was written
for the Model 1130 and the APL system was in-
stalled on it. It ran successfully. To improve per-
formance, one additional instruction was added to
the Elsie emulator, an escape to the native 1130
architecture, which was used as the path to more
efficient coding of successive parts of the inter-
preter. As shown in Figure 1, an upgraded APL\1130
was later produced as an IBM Type I11 program.

Not shown in the figure is a more formal APL\1130
product that had a very short life. It was a time-
sharing upgrade of the Type I11 program, produced
by the APL development group in Palo Alto, which
was then still part of the Systems Development Di-
vision. It was shipped to one or two customers be-
fore being withdrawn from the market. But it, too,
was not wasted. Indeed, it figured importantly in
the early development of the modern personal
computer.

APL 5100. In late 1972 the Palo Alto Scientific Cen-
ter was asked by IBM’s General Systems Division
headquarters in Atlanta, Georgia, to suggest an APL
product suitable for production by their division. In
response, the Scientific Center proposed an entry-
level machine that could fit on a desk. This sug-
gestion was accepted, and they proceeded to as-
semble a team composed of people with hardware
knowledge from Los Gatos and people with soft-
ware knowledge from the Scientific Center to work
on the design. The team selected a processor engine
known internally as “Palm” for the machine’s cen-
tral processing unit, in preference to another, called
uC.5, that was also available at the time.

Once again, the quickest way to show feasibility and
produce a prototype was to emulate an existing ma-

chine that already had APL programmed for it. In
this case, the Model 1130 was chosen. Thus,
APL\1130, a system that had its origins in Elsie, the
earlier Los Gatos machine, and that had been
ported by emulation to the Model 1130, where it
was eventually converted to native 1130 architec-
ture code, was now ported to a new machine in
which Los Gatos was also involved in the hardware
design. The functioning prototype, know as SCAMP
(Special Computer APL Machine Portable), was
produced in the short time of six months, and was
successful in persuading the General Systems Di-
vision to proceed with a production machine.%

At present the SCAMP prototype, an APL machine
that was the unique forerunner of the first produc-
tion personal computer, resides in the collection of
the Smithsonian Institution in Washington, D C z 9

The production machine was designed at IBM’s
General Systems Division laboratory at Rochester,
Minnesota, and was made available as a product,
the IBM 5100 machine, in 1974-less than a year
and a half from the start. This remarkably short
development cycle for such a complex new product
can be attributed in large part to the fact that em-
ulation was used again, even in the final product.
This time, however, although the same Palm inter-
nal engine was used, System/360 architecture was
emulated rather than 1130 architecture, so that the
up-to-date APLSV product system could be used as
the APL facility with virtually no modification.
There were some changes, however, that antici-
pated later developments in personal computers.
For example, the primary input/output device was
a cathode ray tube with an associated keyboard that
included an extra shift, named “CMD,” and a num-
ber pad; there was a software switch to enter a
communication mode to enable the machine to act
as a terminal on a host system; and another switch
to automatically copy input and output to an at-
tached printer.

The later models, the IBM 5110 and 5120, which had
a different internal processing engine and also used
a later version of APLSV, carried these forward-
looking changes considerably further. Where the
IBM 5100 had only a tape cartridge for nonvolatile
storage of files and workspaces, the later machines
included an eight-inch diskette facility, separately
available in the IBM 5110 and integral in the IBM
5120. Whereas the CMD key in the IBM 5100 was
used very modestly to generate APL system com-
mands from six keys in the top row, the IBM

426 FALKOFF

guished names of system variables and system func-
tions, with a single shifte,d keystroke. The CMD key

The SCAMP prototype, an APL
machine, resides in the collection

of the Smithsonian Institution.

was also used to switch the entire keyboard from an
APL character mode to a standard lowercase and
uppercase character mode in which the single APL
characters were still available as a third shift. All the
models had a shared variable facility for commu-
nicating with the tape drive and the printer, and in
the later models this was extended to include the
diskette drives, the display screen, and the serial
input/output port.

There is considerable family resemblance between
these early APL machines and the personal com-
puter (PC) line of machines IBM produced a few
years later. The IBM Portable Personal Computer,
in particular, with its built-in small screen looks a
lot like the IBM 5110, and its part number of 5155
is clearly in the sequence of the earlier machines.
(The early PC itself is model number 5150, and the
PC/XT* and PC/AT* have model numbers 5160 and
5170.) This is not really surprising, since the IBM
Rochester development group that produced the
5100 and 5120 machines was later transferred to the
IBM laboratory at Boca Raton, Florida, where they
constituted the beginning of the Entry Systems Di-
vision of IBM, which developed the IBM PC.

APL\1500. Returning for a moment to the 1960s,
a variant of the IBM 1130 machine was the IBM 1500,
a system intended for the educational market. This
system used a faster version of the 1130 processor,
known as the 1800. The IBM 1500 was an early ex-
ample of a multimedia machine, featuring a cath-
ode ray tube display and a film projection unit in
addition to the usual typewriter input and output.
In 1965 the Service Bureau Corporation wrote a
program called MAT/1500 for the IBM 1500, whose
primary software was a computer-aided instruction
program called “Coursewriter.” MAT/1500 was in-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

tended to augment this mostly verbal system with a
mathematical capability, including elementary
functions and some array operations.

Some three years later, Science Research Associ-
ates undertook to write a full APL system for the IBM
1500. They modeled their system after APLj360,
which had by that time been developed and seen
substantial use inside of IBM, using code borrowed
from MAT/1500 where possible. It is interesting to
note that in their documentation they acknowledge
their gratitude to “a number of high school students
for their compulsion to bomb the system.”30 This
was an early example of a kind of sportive, but very
effective, debugging that was often repeated in the
evolution of APL systems.

DPPX APL. At about the same time that the Palo
Alto Scientific Center was working on SCAMP, an-
other APL system design was under way at IBM in
Poughkeepsie, New York, using the uc .5 engine
that had been considered as an alternative to Palm
when Palo Alto selected its processor engine. When
nearly completed, the project was moved to King-
ston and the target machine became the IBM 8100,
which had the uc1 as its internal engine, an upgrade
of the uc.5. This was to have been a complete APL
system, including its own supervisor, but work on it
was halted before it reached product level. The
project was subsequently moved again, this time to
the Lidingo laboratory of IBM Sweden. The tech-
nology transfer was effected in part by the tempo-
rary assignment of one, and then another, of the
original developers. It was brought to product sta-
tus running under the Distributed Processing Pro-
gram Executive (DPPX) operating system of the IBM
8100, rather than its own supervisor.

DPPX APL was a multiuser time-sharing system that
made innovative use of the shared variable proces-
sor in its internal operations. (Work on its design
also led to suggestions for broadening the function-
ality of shared variables, which, though not imple-
mented at the time, are still worth ~onsidering.~~)
Motivated by an absolute limit of 64K bytes for the
workspace size, the designers consigned as much
function as possible to the shared variable proces-
sor, so as to free up space in the workspace that
would otherwise be taken up with the interfaces to
other parts of the system. Thus, for example, com-
munication to the keyboard and display input and
output was mediated by the same shared variable
processor as was available at the user level. Also, to
facilitate the use of shared variables between work-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

spaces-a means of overcoming the workspace size
limitation as well as a way of functionally segment-
ing programs-the system provided support func-
tions to start and control secondary sessions from
inside an active workspace, much in the manner of
the AP19 processor on the internal APLSV systems
described earlier.

The system emphasized the utilization of DPPX fa-
cilities from inside APL programs. Sets of support
functions, which had the same appearance as the
workspace functions mentioned previously in the
discussion of APL~, were provided, for example, to
facilitate the use of the DPPX Presentation Services
(PS). Alternatively, these operations, and others,
could be effected by means of explicit shared var-
iables using an auxiliary processor connecting di-
rectly to DPPX input/output and command pro-
grams. This gave the APL programmer willing to
work at that level access to the operating system
commands and macros.

Another innovation, at the APL language level
(which was otherwise essentially that of vs APL),
was the introduction of a system variable, OCMD,
to which a character string depicting an APL system
command could be assigned. Thus, it was possible
to imbed in a running program an order to save the
workspace at that point, while the program contin-
ued to run. Though sometimes controversial, this
feature of dynamic execution of system commands
was well thought out, as were the other innovations
in DPPX APL. It is unfortunate that the system did
not see enough real use for a body of opinion to
build upon the value of these innovations. Still,
there is little doubt that with its emphasis on com-
munication and integration with the environment,
DPPX APL was a step in the right direction, as evi-
denced by subsequent developments in the two
major current APL systems, A P L ~ and the derivatives
of IL APL, discussed next.

ILAPL. In 1974 the Computer Science Department
of the IBM Madrid Scientific Center started an APL
system for the IBM System/7, a small sensor-based
machine intended for use in applications such as
process control and laboratory automation. The
APL system was modeled after A ~ L S V in the expec-
tation that the use of shared variables would sim-
plify both the design and the subsequent operation
of the sensor input/output, but the APLSV code itself
was not used. In order to accommodate an APL
time-sharing system to a machine that had as little
as 16K of two-byte words in its main memory, the

interpreter was modularized so that its parts could
be swapped into memory much the same way as the
workspaces. The system was coded in assembly lan-
guage. 32

Systern/7 APL was never made into an IBM product,
but it saw some use in several research laboratories
both inside and outside of IBM, and was used by the
Madrid Scientific Center itself to control the envi-
ronment in an experimental agricultural project. Its
major significance, perhaps, was that it was the first
implementation of APL by a team that went on to
develop a portable APL system that has been the
basis for the IBM implementations of APL on per-
sonal computers and workstations.

In 1976 the Scientific Center was asked to write an
APL system for the IBM Series/l*, the successor to
the IBM Systeml7. Reluctant to simply repeat the
same work in another low-level language, the team
conceived the idea of writing a portable APL system
in a systems programming language intermediate
between assembler and a high-level language such
as APL. The language they designed, known as IL
(for Intermediate Language), has a simple syntax,
somewhat resembling APL, and a semantics closely
related to that of assembly languages, but tailored
to the requirements of an APL system.33 An APL
system written in this language can be ported to
different machines by writing compilers from IL to
each. Since each compilation is essentially a one-
time affair, the execution speed of the compilers is
not an issue, but the time to produce one is, and
therefore they have been written in A P L . ~ ~

The IL approach was first tested by writing an in-
terpreter only, and compiling it to System/370,
where it could be compared to APLSV and de-
bugged. Once this was successful, the IL implemen-
tation was expanded to include an APL system com-
mand handler, an input editor and scanner, and a
shared variable processor. 35 Nearly all of the coding
for IL APL was new, taking only a few algorithms
from APLSV and vs APL. Others were based on pub-
lications, some of which were also the source for
APLSV and other mainframe APL s y ~ t e m s . ~ ~ , ~ ~

Seriedl APL. After the validation of IL APL on the
IBM Systend370, the first download porting was to
the Seriedl. It was still necessary to code machine-
dependent parts of the system, such as the APL
time-sharing supervisor and library management
operations, by other means. The IL interpreter was
also modified for the Seriedl. The architecture

428 FALKOFF

of this machine placed severe limitations on the size
of the APL workspace, and to mitigate this problem
the IL APL designers developed the idea of a two-
part workspace: a main workspace of the maximum
size, where APL objects were created and modified,
and an elastic workspace, which used a secondary
memory to swap out APL objects not currently ref-
erenced, when more execution space was needed.

A choice had to be made between two operating
systems on Seriedl: Realtime Programming Sys-
tem (RPS), which was the official IBM offering, and
Event-Driven Executive (EDX), which was then be-
ing developed informally by interested groups in
the company. The Madrid Scientific Center did not
have resources to do both machine-dependent sub-
systems. RPS was selected, on the basis that it was
the mainline offering, while internal interest in an
APL system on EDX was probably strong enough to
generate its own separate support. In fact, this
proved to be the case, and a support group for an
EDX version was formed under the aegis of the APL
Design Group in Research. A viable EDX system
was produced,38 which was used in about 40 inter-
nal IBM sites. Neither version was ever offered as an
IBM product.

APWPC. The second download porting of IL APL
was to the IBM Personal Computer (PC), in 1982.39
One requirement placed on the design was that it
should be usable in a PC with only 128K of random
access memory, a configuration that was considered
generous at that point in the evolution of the per-
sonal computer market. But even with larger mem-
ories, in order to achieve acceptable performance it
was necessary that the workspace size stay within
the 64K primary addressing capability of the ma-
chine. To reduce the severity of this limitation, the
elastic workspace concept was carried forward from
the Series/l design.

The language level of APUPC was essentially that of
the APLSV internal system, which included picture
format, ambivalent defined functions, and the ex-
ecute alternative system function. All of these were
also in the A P L ~ IUP, which became available at
about the same time as the zero-level of APWPC, but
not in vs APL, the principal mainframe product at
the time. APWPC also included OTF and) I N and
)OUT, as found in the APL:! IUP. In addition to fa-
cilitating communication and migration between
different APL systems, especially between main-
frames and PCS, the use of the transfer form also

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

served to overcome the absence of the APL copy
command in APWPC.

An important aspect of the design of APL for the PC
was the deliberate effort made to bring as much of
the underlying machine as possible under control of

APL2 supports 32-bit addressing
for the PS12 and runs on the AIX

platform for the IBM RlSC
System16000.

the APL programmer. This took two forms. First, a
new system function, OPK, was introduced to allow
access to any part of the machine memory for both
reading and writing, and to execute machine-code
subroutines. Second, auxiliary processors were pro-
vided to interface with the Basic Input/Output
System (BIOS) and Disk Operating System (DOS)
interrupts, with the DOS file system, and with pe-
ripheral devices, including the display.

The development versions of APLPC were tested by
the APL Design Group in Research, using scripts
and programs first constructed in connection with
work on APL~. A preproduct-level program was
then made available for testing by interested parties
in many different parts of the company, before the
first product offering was released in 1983. This was
the beginning of an iterative process-upgrading or
changing the IL APL, subjecting the resulting PC pro-
gram to widespread internal use and testing, and
product release-a process that is still going on,
through several versions of APUPC, APL~PC, and
A P L ~ for workstations.

The next use of IL APL was the porting to the IBM
5550, the personal computer available in Japan,
done in collaboration with the IBM Tokyo Scientific
Center. This resulted in a product known as Ni-
HonGo APL. For this version the internal data types
were expanded to include two-byte characters, and
the keyboard and display operations were elabo-
rated, so as to accommodate the much larger Kanji
character set. Otherwise, NiHonGo APL and APLPC
were the same.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

In the period from 1984 to 1986, a second IL APL
interpreter was developed and also ported to the
IBM 5550 machine. The main changes affected
memory management, and many of the implemen-
tation limits of the first version were markedly in-
creased. There were also some performance im-
provements, and a substantial increase in the
number and scope of the auxiliary processors. Most
significant among the latter was AP~ , an interface to
non-APL programs, which made it possible to
dynamically load and run DOS programs or pro-
grams written in FORTRAN or assembly language.
This processor was under development at about the
same time as the name association facility in APL~,
and represents an alternative approach to solving
the same problems.

There was one more refinement of APWPC, a ver-
sion intended for internal use only, which included
support for IBM Personal System/2* (PS/2*) Model
80, and a workspace packaging program. Although
the same term is used, the resulting APLPC package
is quite different from that of the mainframe APL~.
In this case, a separate program, running directly in
DOS, uses the name of an APL workspace and the list
of auxiliary processors it uses, and produces a DOS
(.EXE) program that contains the workspace and
the necessary parts of the APL system and can there-
fore run independently.

APUPC. Over the period from 1986 to 1990, an IL
implementation of A P L ~ was produced, and succes-
sively enhanced, by the Madrid Scientific Center in
collaboration with the IBM United Kingdom Scien-
tific Centre in Win~hester.~' There have been two
releases of this system and several field upgrades.
The first release, in 1988, was a 16-bit version that
can run on any of the IBM PC or PS/2 machines, and
requires only 256K of real memory. It retains most
of the implementation limits of APUPC version 2,
which derive from the 16-bit addressing structure of
the underlying structure, but the workspace size can
be as large as 440K bytes. Except for complex num-
ber arithmetic and some minor language refine-
ments, it is a full-function A P L ~ system with a com-
prehensive set of auxiliary processors, a full screen
manager modeled after the mainframe A P L ~ ver-
sion, and direct invocation of DOS operations by
means of a)HOST system command.

The 32-bit version, released in 1989, was generated,
downloaded, tested, and debugged in 13 man-
weeks, an impressive confirmation of the effective-
ness of the IL approach. In this version there is no

practical limit on workspace size, which can be as
large as 15 megabytes, for example, on a 16-meg-
abyte PW, and there are no separate limits on the
size of APL variables. It has all of the language and
system features of the 16-bit version, and both may
be used to produce running packages of ML ap-
plications, as described previously.

APL2/6000. The most objective test of the IL APL
approach was the most recent one, the porting to an
Advanced Interactive Executive* (AIX*) platform
on the IBM RISC System/6000*. In this case, one
person with no prior knowledge of either IL APL or
the RISC System/600&working alone except for a
few days of help at the end-was able to produce
the necessary back end of the IL compiler, which
translates the IL code to the language of the object
machine, and bring up a viable APL workspace on
the machine in less than 10 weeks. With a second
person writing the machine-dependent parts of the
program in C, the system was brought to the point
of being publicly demonstrated less than six months
from the start. An internal IBM release was reached
in 10 months and a product announcement was
made two months after that.

Other APL processors

All of the APL machine implementations described
so far (and shown in Figure 1) are interpreters, as
befits the language processor in a highly interactive
system. However, there has been a steady pressure
in the marketplace to improve the performance of
production applications in APL. As a result, in ad-
dition to the microcode assist described above, ac-
celeration techniques ranging from adaptive inter-
pretation, to translation to intermediate languages,
to direct compilation to machine language have
been worked on and used experimentally.

An adaptive interpreter for APL was designed in the
IBM Israel Scientific Center in the mid”7Os. The
program analysis was implemented in APL, and it
compiled code to an intermediate language con-
ceived of as a virtual APL machine.41 The imple-
mentation was completed far enough to estimate its
performance, which was promising as far as it went,
but no production use was made of it. However, the
techniques were further evaluated in the APL De-
sign Group in the Research Division when one of
the investigators took an assignment there, and
they provided background for the APL compiler
work that followed.

430 FALKOFF

This compiler work branched into two principal di-
rections, both of which used APL itself as the prin-
cipal programming tool. One direction emphasized
the exploitation of APL array operations to directly
generate very fast machine code and take advan-
tage of the potential for automatic parallelization
of APL programs at the basic block level.42 At first
relatively narrow in the range of APL expressions it
could compile, this program has been improved and
enhanced to the point where other internal IBM
sites are experimenting with it for production ap-
plications while the investigation continues in the
Research Division. Consideration is currently being
given to translating into another high-level lan-
guage, rather than directly into machine code.

The other branch of the Research Division work in
APL compilers started out with the intent to trans-
late into a high-level language, namely FORTRAN, in
order to take advantage of the optimizing compilers
already extant for that language and the portability
implied by the widespread availability of FORM
compilers.43 The general scheme of this compiler is
to work within the A P L ~ system, compiling those
functions in an application that are most resource
consuming, and invoking the compiled functions at
run time by means of the name association facility
in APL~. An important objective of the work on this
compiler was to translate all of APL, up to its chosen
language level, without compromising on the nu-
ances of end conditions or other detailed aspects of
the language definition. The work was transferred
to the numerically intensive computing (NIC) group
at IBM in Kingston, New York, around 1987, where
it underwent enhancement of its user interface and
was migrated from CMS to Multiple Virtual Stor-
age. Finally, under the aegis of that group, the pro-
gram, now known as AOC (APL~ Optimizing Com-
piler), was turned over to an IBM Business Partner
for marketing and further enhancement. It was an-
nounced as a product in early 1991.44

Another instance of translating APL to a high-level
language is the work done in the IBM Federal Sector
Division using Ada as the target language. The
translator was written in APL~, and had the limited
goal of allowing an algorithm designer to prototype
rapidly in APL and, after debugging there, translate
the program to Ada for compilation and running in
that envir~nment.~~ The APL acceptable to this
translator had to be highly stylized, but it never-
theless turned out to be useful in an important pro-
totyping application.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Concluding remarks

It is perhaps fitting to make note of some of the
things not discussed in this paper. Foremost among
these is all the work on APL implementation done
outside of IBM. The actual number of implemen-
tations of APL is in the dozens, most of which have,
or have had, an economic life. Virtually every major
manufacturer of computers has had its own imple-
mentations, starting very early in the history of the
language, and many of these, like the systems pro-
duced or modified by APL time-sharing vendors, have
contributed to the evolution of the language itself.

As noted in the text, APL has figured prominently in
the evolution of small machines. Its very interactive
nature, combined with the simplicity and power of
its array operations, has been a magnet for design-
ers of small machines. Thus, even before the IBM
5100 was developed, a small Canadian company,
Micro Computer Machines, had built several APL
machines small enough to fit in an attache case. At
the present time, there are implementations for all
the major families of small computers, as well as for
several workstations and lesser-known small and
intermediate machines.

Another large area untouched by this paper is that
of applications written in APL, except for one. That
one, of course, is the design and implementation of
APL systems. As the APL compilers come into their
own, this field of application may well broaden sig-
nificantly.

Finally, it should be mentioned that there has been
an unbroken series of international APL confer-
ences since 1969, and numerous implemented
workshops and standards committee meetings, at
which language, implementation, and standardiza-
tion issues have been refined to the benefit of all
concerned. Thus, IBM’s family of APL systems has
evolved in an active and stimulating environment
that continues to attract the kind of highly talented
people who made it happen in the first place.

Acknowledgments

While I have tried to achieve a dispassionate and
even-handed tone in describing the developments
in APL products, the actual events often took place
in a far more emotional, and sometimes adversar-
ial, atmosphere where points of view were ad-
vanced with fervor and fiercely defended. In the
course of writing this paper I consulted with many

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

of the people involved in these events, most of
whom are mentioned in the references. Without
exception, the responses were not only helpful, but
warm with the remembrance of past associations. I
hesitate to list their names, for fear I may inadvert-
ently leave some out, but I want to thank them all
for their present help, and for their earlier contribu-
tions to the evolution of APL systems. I also want to
express my gratitude to John C. McPherson, whose
name does not appear elsewhere herein, but whose
influence was pervasive. Now a retired IBM vice pres-
ident, John recognized the value of APL very early,
and shared his technical insights and gave support
and encouragement to everyone involved in APL
development throughout the course of the work.
*Trademark or registered trademark of International Business
Machines Corporation.

Cited references and notes
1. Figure 1 is an extension and elaboration of one produced by

R. H. Lathwell in 1982.
2. H. Hellerman, “Experimental Personalized Array Transla-

tor System,” Communications of the ACM 7,433 (July 1964).
3. A. D. Falkoff and K. E. Iverson, “The Evolution of APL,”

in History of Programming Languages, H. L. Wexelblat, Ed-
itor, Academic Press, New York (1981), p. 666.

4. H. A. Kinslow, “The Time-sharing Monitor System,” Pro-
ceedingsAFIPS 1964, FJCC 26, Spartan Books, Washington
DC (1964), pp. 443-454.

5. K. E. Iverson,AProgramming Language, John Wiley & Sons,
Inc., New York (1962).

6. A. D. Falkoff and K. E. Iverson, “The APLp60 Terminal
System” in Interactive Systems for Experimental Applied
Mathematics, Academic Press, New York (1968).

7. L. M. Breed and R. H. Lathwell, “The Implementation of
APLp60,“ in Interactive Systems for Experimental Applied
Mathematics, Academic Press, New York (1968).

8. The Grace Murray Hopper Award of the ACM, presented
to L. M. Breed, R. H. Lathwell, and R. E. Moore in 1973.
L. J. Woodrum of the IBM Poughkeepsie Laboratory con-
tributed code for sorting and other operations, and provided
continuing assistance in the development of APLp60.

10. A. D. Falkoff, “A Survey of Experimental APL File and I/O
Systems in IBM,” ColloqueAPL, Institut de Recherche &In-
formatique, Rocquencourt, France (1972).

11. R. H. Lathwell, “System Formulation and APL Shared Var-
iables,”IBMJoumal of Research and Development 17, No. 4,

12. The technology and the concept have now come together, 20
years later. As this paper was going to press, Release 1 of
APL2 version 2 was announced, one of its principal new
features being the ability to directly apply primitive APL
functions to host system files.

13. A. D. Falkoff and K. E. Iverson, Communication in APL
Systems, Technical Report 320-3022, IBM Philadelphia Sci-
entific Center, PA (1973).

14. A. D. Falkoff and K. E. Iverson, “The Design of APL,” IBM
Journal of Research and Development 17, No. 4, 324-334
(1973).

9. W. Barrett and M. F. C. Crick.

353-359 (1973).

15. IBM Corporate Bulletin C-B 3-9045-001 (October, 1974).
16. IBM Corporate Standard C-S 3-9045-001 (December,

1977).
17. A. D. Falkoff and D. L. Orth, “Development of an APL

Standard,”APL79 Conference Proceedings, APL Quote Quad
9, No. 4, Part 2, 409453, ACM, New York (1979).

18. B. J. Hartigan, “AP19-A Shared Variable Terminal Inter-
face for APL Systems,”APL81 Conference Proceedings,APL
Quote Quad 12, No. 1, 137-141, ACM, New York (1981).

19. A. Hassitt, J. W. Lageschulte, and L. E. Lyon, “Implemen-
tation of a High Level Language Machine,” Communica-
tions of the ACM 16, No. 4, 199-212 (1973).

20. A. Hassitt and L. E. Lyon, “Efficient Evaluation of Array
Subscripts of Arrays,” IBM Journal of Research and Devel-
opment 16, No. 1, 45-47 (1972).

21. A. Hassitt and L. E. Lyon, “An APL Emulator on Sys-
tem/370,” IBM Systems Journal 15, No. 4, 358-378 (1976).

22. Z. Ghandour and J. Mezei, “General Arrays, Operators and
Functions,” ZBM Journal of Research and Development 17,

23. D. A. Rabenhorst, “APL2 Language Manual,” SB21-3015,
IBM Corporation (1982); available through IBM branch of-
fices.

24. J. A. Brown, The Principles of APLZ, Technical Report
03.247, IBM Santa Teresa Laboratory, CA (1984).

25. J. A. Brown, J. Gerth, and M. Wheatley, Communication
Method Between an Interactive Language Processor and Ex-
ternal Processes, U.S. Patent No. 4,736,321 (1988).

26. H. Eberle and H. Schmutz, Calling PLII or FORTRAN Sub-
routines Dynamically from VS APL, Technical Report
77.11.007, IBM Heidelberg Scientific Center, Germany
(1977).

27. L. M. Breed and P. S. Abrams; the third person was W. S.
Worley, Jr.

28. P. J. Friedl, “SCAMP: The Missing Link in the PC‘s Past?,”
PC 2, No. 6, 190-197 (November 1983).

29. J. Littman, “The First Portable Computer,” PC World 1, No.
10, 294-300 (October 1983).

30. S. E. Krueger and T. D. McMurchie, A Programming Lan-
guagev500, Science Research Associates, Chicago, IL
(1968).

31. K. Soop and R. A. Davis 11, ”Extended Shared-Variable
Sessions,”APL8.5 Conference Proceedings, APL Quote Quad
15, No. 4, 148-150, ACM, New York (1985).

32. M. Alfonseca, M. L. Tavera, and R. Casajuana, “An APL
Interpreter and System for a Small Computer,” IBMSystems
Journal 16, No. 1, 18-40 (1977).

33. M. L. Tavera and M. Alfonseca, IL. An Intermediate Systems
Programming Language, Technical Report 01-78, IBM
Madrid Scientific Center, Spain (1978).

34. M. Alfonseca and M. L. Tavera, “A Machine-Independent
APL Interpreter,” ZBMJournal of Research and Development
22, No. 4, 413-421 (1978).

35. M. L. Tavera and M. Alfonseca, The MPL Machine-lnde-
pendent APL Processor, Technical Report 03-80, IBM
Madrid Scientific Center, Spain (1980).

36. R. H. Lathwell and J. E. Mezei, A Formal Description of
APL, Technical Report 320-3008, IBM Philadelphia Scien-
tific Center, PA (1971).

37. A. D. Falkoff, “A Pictorial Format Function for Patterning
Decorated Numeric Arrays,” APL81 Conference Proceed-
ings, APL Quote Quad 12, No. 1,101-106, ACM, New York
(1981).

38. P. A. McCharen, The Series I APL-EDX System Installation
and User’s Guide, Technical Report 19.0552, IBM Burling-
ton, VT (1981).

NO. 4, 335-352 (1973).

432 FALKOFF

39. M. L. Tavera, M. Alfonseca, and J. Rojas, “An APL System
for the IBM Personal Computer,” ZBM Systems Journal 24,

40. M. Alfonseca and D. A. Selby, “APL2 and PSI2 The Lan-
guage, the Systems, the Peripherals,” APL89 Conference
Proceedings, APL Quote Quad 19, No. 4, 1-5, ACM, New
York (1989).

41. H. J. Saal and Z. Weiss, “A Software High Performance
APL Interpreter,” APL79 Conference Proceedings, APL
Quote Quad 8, No. 4, 74-81, ACM, New York (1979).

42. W.-M. Ching, “Automatic Parallelization of APL Pro-
grams,” APL90 Conference Proceedings, APL Quote Quad
20, No. 4, 76-80, ACM, New York (1990).

43. G. C. Driscoll, Jr. and D. L. Orth, “Compiling APL The
Yorktown APL Translator,” IBM Journal of Research and
Development 30, No. 6, 583-593 (1986).

44. “1991: The Year of the APL2 Optimizing Compiler,”
Interlink, Janualy 1991, Interprocess Systems, Inc., Atlanta,
GA (1991).

45. J. G. Rudd and E. M. Klementis, “APGto-Ada Translator,”
APL87 Conference Proceedings, APL Quote Quad 17, No. 4,
269-283, ACM, New York (1987).

NO. 1, 61-70 (1985).

Accepted for publication June 27, 1991.

Adin D . Falkoff IBMResearch Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598.
Mr. Falkoff is currently a research staff member in the Com-
puter Science Department at the Thomas J. Watson Research
Center. He joined IBM in 1955, and since 1960 has worked on
various aspects of computer science, including APL. He was a
member of the visiting faculty at the IBM Systems Research
Institute for several years, and a visiting lecturer in computer
science at Yale University. From 1970 to 1974, Mr. Falkoff es-
tablished and managed the IBM Philadelphia Scientific Center,
and from 1977 to 1987 was the manager of the APL design group
at the Thomas J. Watson Research Center. He received a
B.Ch.E. from the City College of New York in 1941 and an M.A.
in mathematics from Yale University in 1963, the latter under
the IBM Resident Scholarship Program. He has received IBM
Outstanding Contribution Awards for the development of APL
and the development of APLj360.

Reprint Order No. G321-5443.

ISM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

