
1

Web Design Frameworks: An approach to improve reuse in Web applications

Daniel Schwabe *, Gustavo Rossi **, Luiselena Esmeraldo *, Fernando Lyardet**

*Departamento de Informática, PUC-Rio, Brazil
E-mail: {schwabe, luiselena} @inf.puc-rio.br

**LIFIA Facultad de Informática. UNLP.
La Plata, Argentina

E-mail: {fer,gustavo}@sol.info.unlp.edu.ar

Abstract

In this paper we introduce Web design
frameworks as a conceptual approach to maximize
reuse in Web applications. We first discuss the need for
building abstract and reusable navigational design
structures, exemplifying with different kinds of Web
Information Systems. Then, we briefly review the state
of the art of object-oriented application frameworks
and present the rationale for a slightly different
approach focusing on design reuse instead of code
reuse. Next, we present OOHDM-frame, a syntax for
defining the hot-spots of generic Web application
designs. We illustrate the use of OOHDM-frame with a
case study in the field of electronic commerce. We
finally discuss how to implement Web design
frameworks in different kind of Web platforms.

1 Introduction

Building complex Web applications such as e-
commerce applications is a time consuming task. We
must carefully design their navigational architecture
and user interface if we want them to be usable. We
must understand the user tasks while he is navigating
the hyperspace to decide which navigation facilities we
should include; for example we may consider defining
indexes, guided tours, landmarks, etc. according the
user needs. The interface should help the user browse
through the sea of information by giving him cues and
feed-back on his actions, and by presenting the
information in a clear and meaningful way. Moreover,
this kind of application also includes complex
behaviors, as they not only deal with buying or selling,
but they are also integrated with the company’s internal
business; often providing different views of corporate
databases, and acting as integrators of other
applications. Another dimension in which these
applications are different from what we may call
“conventional” software is the need to reduce
deployment and delivery times. Applications in the
Web must be built quickly and with zero defects. We
must improve not only development but also
debugging and testing times.

To make matters worse, building applications
in the Web involves using a myriad of different
technologies such as mark-up languages (like HTML
or XML), scripting languages (JavaScript, Pearl),
general purpose object-oriented languages (Java),
relational databases, etc. We should find ways to

improve the process of building this kind of
applications by systematically reusing both application
code and design structures.

We have been designing Web applications
using the Object Oriented Hypermedia Design Method
(OOHDM) for some years [Schwabe98, Schwabe96].
OOHDM considers Web applications as navigational
views over an object model [Rossi99c] and provides
some basic constructs for navigation (contexts,
indexes, etc) and for user interface design. Using
OOHDM we can apply well-known object-oriented
software engineering practices to the construction of
applications involving navigation. In the context of
OOHDM we have been looking at ways to maximize
reuse in the development process, since we have
observed a certain degree of commonality among
solutions in similar application domains. For example,
most online stores have similar navigation structures,
and they provide similar functions to their users.

In this context we have found many recurrent
patterns in Web applications; we have recorded them
using a mixture of the GOF [Gamma95] and
Alexandrian [Alexander77] styles. (See for example
[Rossi99a, Lyardet99, Lyardet98, Rossi96]). We have
found that micro-architectural reuse in Web
applications is really feasible. However, if we want to
move to architectural or design reuse, we need other
concepts and tools in order to reason in terms of
compositions of abstract and concrete Web application
elements.

In this paper we introduce Web design
frameworks as a novel concept to push design reuse in
Web applications. We first review object-oriented
frameworks and compare them with Web design
frameworks. We next present OOHDM-Frame, a
notation to specify Web design frameworks, and show
an example in the field of electronic commerce. Then,
we show how to map Web design frameworks to Web
application frameworks and to Web applications, and
present some ongoing research issues in this area.

2 Towards Web design frameworks

There are different ways to achieve reuse in
the context of Web applications. We can for example
reuse interface templates in the form of HTML or
XML descriptions. We can reuse information accessing
shared databases [Garzotto96]. We can go further and
reuse components that exhibit some non-trivial
behavior. For example we could reuse code

2

implementing shopping baskets in different e-
commerce applications. Even though many of the
supporting technologies may not support reuse (e.g.
there is no inheritance or polymorphism mechanisms in
HTML or XML, the code for shopping baskets might
not be found in a single component, etc.) it seems that
we can not go far beyond these examples.

As a consequence the most important kind of
reuse, design reuse, has been largely unexplored in
Web applications, perhaps due to the non object-
oriented nature of the Web. In a previous paper
[Rossi99a] we have introduced navigation patterns as a
way to record, convey and reuse design experience.
Though the kind of reuse provided by patterns is
valuable, complex corporate applications need a way to
maximize reuse of larger design structures. For
example, the set of activities triggered when the user of
an electronic store orders an item is usually similar in
different stores. We should be able to express these
commonalties in such a way that only the specific
aspects of a particular store should be designed or
programmed.

In the following sections we introduce Web
design frameworks as a solution to this problem. We
first review the state of the art in object-oriented
frameworks and then highlight the differences with
Web design frameworks.

2.1 Object-Oriented frameworks

Object-Oriented application frameworks are
the state-of-the art solution for building high quality
applications in a particular domain, by systematically
reusing an abstract design for that domain [Fayad99].
An object-oriented (OO) application framework is a
reusable design built from a set of abstract and
concrete classes, and a model of object collaborations.
A framework provides a set of classes that, when
instantiated, work together to accomplish certain tasks
in the intended domain. An application framework is
thus the skeleton of a set of applications that can be
customized by an application developer.

When many different applications must be
constructed in the same domain, application
frameworks provide "templates" for supporting their
commonalties, and accommodating individual
variations (differences). These "templates" usually
have the form of abstract classes that must be sub-
classified with concrete ones, or filled with "hook"
methods that must be implemented by the application’s
designer [Pree94]. The framework's designer must
understand the domain and be able to decouple the
concrete model of a particular application from the
abstract model of the whole domain. New applications
can be built by simply plugging together framework
and specific application components. Application
frameworks have been built in areas such as user
interface design, graphical editors, networks, financial
applications, etc [Fayad99].

Let us suppose that we are building a
framework for managing orders and delivery of
products in different (non-electronic) stores. The
framework will contain some abstract classes like
Product, Client, Provider, Order, Invoice, etc. Their
behavior will implement the usual flow of control in
the store: when a client places an order for a product, a
message is sent to the supplier, an invoice is generated,
etc.

 For a particular application (store) in this
domain, one will need to either instantiate these classes
or sub-classify them in order to accommodate both
their structure and behavior to the particular features of
this store, e.g. different kinds of products, various
payment policies, etc. This is usually achieved (in the
framework) by programming generic methods in
abstract classes that are then used (in the specific
application) as templates in concrete sub-classes.

This simple example helps to understand the
problems with framework technology if we want to
move to the Web environment – the need to adapt to an
hybrid environment (object-oriented frameworks are
usually programmed in a single programming
language). In addition, Web applications involve
another component, their navigational structure
[Rossi99a, Rossi99b], since we are interested not only
in the behavior of domain classes but also in the ways
the user will navigate through them.

2.2 Why Web design frameworks

Web environments are not fully object-
oriented. In the WWW we will have to define HTML
pages, scripts in some language (such as JavaScript or
Perl), queries to a relational database, etc. Conceptual
and Navigation objects may have to be mapped onto a
relational store, and behaviors defined during design
may have to be programmed by mixing a scripting
language, stored procedures, and so on. The main
consequence of this fact is that “conventional” object-
oriented application framework technology may still be
inadequate in this domain, since we cannot suppose a
single language environment as most frameworks do.
Though there is a growing trend in “object-orienting”
the WWW [IEEE99], we still need heuristics to
perform these translations.

It may happen that we can program the full
application using an object-oriented language (e.g.
Java). Even in this case we will still lack an important
part of the application’s functionality: its navigational
behavior. We have argued elsewhere [Schwabe98,
Rossi99d] that Web application models require both an
object (conceptual) model where we specify usual
behavior, and a navigational model in which we define
navigational components such as nodes, links,
contexts, paths, etc. For Web applications to be
successful, the navigational structure must be carefully
defined, and current object-oriented approaches do not
provide primitives for navigation design. As a
consequence, framework technology is not completely
adequate for this domain.

3

In the following sections we introduce Web
design frameworks, which provide a bridge between
current framework technology and Web environments.

3 Components of a Web design
framework architecture

3.1 Definition

Let us consider a Web application as "a
structured set of objects that may be navigated, and
processed, in order to achieve one or more tasks". A
Web application framework may be defined as "a
generic definition of the possible application objects,
together with a generic definition of the application's
navigational and processing architecture". A Web
application framework must then define the set
possible objects to be navigated, how they can be
structured in their navigation architecture, and how
they may behave. Current framework technology
would allow us to stress object relationships and
behaviors in a specific programming language and
wouldn’t allow us to specify navigation architectures.

We define a Web design framework as a
“generic design of possible Web application
architectures, including conceptual, navigational and
interface aspects, in a given domain”. Web design
frameworks must be environment and language-
independent.

As previously said one of the important
defining aspects of a framework are its hot-spots, i.e.,
the places in the framework where the designer may
introduce the variations or differences for a particular
application in the same domain of the framework. We
have taken the approach of modeling many
applications in the same domain (e.g., discussion lists,
online publications, online stores...) using OOHDM,
and comparing the resulting specifications. From this
comparison, it was possible to determine the
similarities and differences between them, which in
turn allowed us to identify what should be the hot spots
in a framework that could subsume the set of
applications in each particular domain.

As a result, in order to define hot-spots for
Web application frameworks, we used OOHDM
models, namely Conceptual and Navigation, as a
starting point. Before detailing hot-spot definitions, we
briefly recapitulate some key concepts in the OOHDM
approach that will serve as the basis for hot-spot
definition.

The first key concept is that in a Web
application, the user navigates over (navigation)
objects that are views of conceptual objects; these
views are defined opportunistically, according to
particular user profiles and tasks. The second key
concept is that navigation objects must be organized
into useful structured sets, called contexts. The
structure of these sets defines the intra-set navigational
architecture, whereas the set of conceptual relations,

which are mapped onto navigation links, defines the
inter-set navigational architecture.

Since sets can be defined in different ways,
this induces different types of contexts:

1 Simple class derived – includes all objects of a
class that satisfy some property ranging over their
attributes; e.g., “books with author=Umberto
Eco”, “CDs with performer = Rolling Stones”,
etc.

2 Simple link derived – includes all objects related
to a given object; e.g., “reviews on “The Name of
the Rose”", “CDs that were bought by persons
who also bought “Flashpoint””, etc.

3 Arbitrary - The set is defined by enumeration. For
example, a guided tour showing some pictures in
a virtual museum, or some outstanding books in a
collection.

Many times, contexts appear in families or
groups of related contexts; the most common types are
defined below

4 Class derived group – is a set of simple class
derived contexts, where the defining property of
each context is parameterized; e.g. “Products by
Manufacturer”, “Books by Keyword”
(Manufacturer and Keyword can vary). (Notice
that we are considering "Manufacturer" as an
attribute of Product, as discussed previously).

5 Link derived group - a set of link derived
contexts, each of which is obtained by varying the
source element of the link; e.g. “Book by Order”
(Order can vary).

A context is said to be dynamic if its elements
may change during navigation. This can happen for
two reasons – because it is possible to explicitly add to
or remove elements from a context, or because it is
possible to create new objects or links, or alter existing
ones. In the latter case, all class (respectively, link)
derived contexts automatically become dynamic.

A Web design framework may then be defined
by an analogous set of models - a Conceptual Model, a
Navigation Model, and rules for mappings between
them. However, each of these models will be made up
of different primitives than the ones used in OOHDM
itself.

It must be emphasized that web design
frameworks, while following the same philosophy as
application frameworks, use quite different
mechanisms for hot-spot definition and instantiation.
Whereas the latter use subclassing and class
instantiation to instantiate hot-spots, web design
frameworks use selective mapping and generic context
instantiations, as will be explained next.

For the sake of conciseness we do not include
variability related with the Interface model in this
paper.

4

3.2 Conceptual Model

A first question that must be answered is what
characterizes the application domain. The first step in
the design process is to define a Conceptual Model,
upon which applications will be built by defining
navigational views for each particular user profile. This
architecture (present in OOHDM) already constitutes
part of a framework, since it is possible to build many
applications starting from the same Conceptual Model.
Therefore, we define the application domain as being
the model characterized by the Conceptual Schema; it
defines the abstract classes, possibly some concrete

classes, and the relationships that make up the domain
of application. These classes may include (applicative)
behavior specification as well. The hot-spots of an
object-oriented framework for the application domain
can be defined according to [Pree94].

In Figure 1 we present a generic conceptual
model for electronic stores. Notice that genericity in
the conceptual schema can be obtained by following
well-known practices in object-oriented design
[Fayad99]. In this paper we stress the novel aspect of
Web design frameworks: the specification of generic
navigation structures.

1..* Is Author 1..*

Person

Name:string
Password:string
Address:string

Order

Order_Date:date
Payment_Form:string

DuplicateOrder(order)
MakeOrder(order)

1..* Makes *

Product

Name:string
Description: [string+,

photo]
Keywords:{string}
Price:real
Size:string
Section: {Section}
InPromotion:boolean
Addit_Info:string
DeliveryTime:string

Product in Order

Qty:int

IncludeProd(order,
product,qty)

1

1..*

Generic Reference

Title:string
Text:string
Ref_Date:date

1..* Mentions *

1..* reference 1..*

Company

Name:string
Address:string
Email:string
Site:URL

1..* Makes *

1..* Is Author 1..*

Figure 1 - An example of a conceptual schema for a generic electronic online store

3.3 Navigation Model

A Navigational model is defined by a
Navigation Class schema (mapped from the
Conceptual Model), and by a Navigation Context
Schema. The elements in the Navigation Class Schema
are abstract and concrete node classes, and links,
defined as views over the Conceptual Class Schema.
Differently from OOHDM, these classes may contain
optional elements (attributes or methods); links may
also be optional. Optional elements may be omitted
when the framework is instantiated. Therefore, the
optional inclusion of Navigation Class schema
elements is a first hot-spot in a Web design framework.

As an example, in the e-commerce domain,
one may define a Conceptual Class "Product" that has
"Description_Image”, and "Description_Text"
attributes (See Figure 1). It is possible to define, in the
framework's Navigation Class Schema, that there is a

Navigation Class "Product", derived from the
corresponding conceptual class, but where the
"Description_Image" is optional. This means that this
framework can be instantiated into applications that do
not include an image of a product. Similarly, the
framework may specify that the link "Related Product",
between products, is optional, and therefore two
different actual applications, one including it, another
omitting it, are valid instances of this framework. In
Figure 2 we show a possible navigational class schema
in this domain.

To generalize, the first hot-spot in a Web
design frameworks is defined by establishing the
constraints on possible mappings between Conceptual
an Navigation Classes, stating among other things that
certain elements of the Navigation Class Schema are
optional. These constraints must also address the issue
of consistency during framework instantiation, which
will be discussed later.

5

Order

Order_Date:date
Payment_Form:string
Client_Name: p.Name

where P:Person makes
self

Client_Address: p.Address
where p:Person makes
self

DuplicateOrder(order)*
MakeOrder(order)

Product

Name:string
Description: string
Image: photo *
Mfg: c.Name where

c:Company Makes self *
Author: p.Name where

p:Person IsAuthorOf self *
Keywords:{string}*
Price:real
Size:string
Section: {Section}
InPromotion:boolean *
Addit_Info:string*
DeliveryTime:string*

Product in Order

Qty:int

IncludeProd(order,
product,qty)

1

1..*

Generic Reference

Title:string
Author_Name:

p.Name where
P:Person
IsAuthorOf self

Text:string
Ref_Date:date

1..* Mentions *

1..* reference 1..*

Figure 2 - An example Navigation Class Schema for an electronic online store. Dashed lines indicate
optional links.

The second component of the Navigational
model is the Navigation Context Diagram. For Web
design frameworks, it is necessary to generalize the
concept of Navigation Context, replacing it with the
concept of Generic Navigation Context. A Generic
Navigation Context is the specification of a set of
possible Navigation Contexts, subject to some
constraints. This is another type of hot-spot in a Web
design framework, which is exercised during
instantiation by substituting the Generic Context by
actual Navigation Contexts, all of them satisfying the
Generic Context's constraints. The framework's
Context Navigation Diagram is supplemented with a
set of instantiation rules, which further constrain
possible Context Diagrams that may be derived from it
during the framework instantiation process.

Consider for example an e-commerce
application, where one is designing a product catalog
section. One may define several contexts that group
instances of Navigation Class "Product" in different
ways, for instance, "Product by Category", "Product by
Price", etc. Each of these defines a Navigation Context.
A Generic Navigation Context can be "Any Class-
Derived Context based on Product"; it is generic
because it does not specify the particular property that
is used to define each derived context. In addition, it
constrains its concrete instances by requiring that all of
them be based on some property over the attributes of
Navigation Class "Product". When a given

framework's Context Diagram includes concrete
Navigation Contexts (i.e., non-generic), it means that
all applications derived from this framework must
include such contexts as defined in the specification,
without variations.

Besides Navigation Contexts, a Context
Diagram also contains the specification of Access
Structures (indexes). By analogy, the framework's
Context Diagram will also contain the definition of
Generic Access Structures, which are generalizations
of Access Structures. In Generic Access Structures, the
criteria that may be varied are which elements are
included, their ordering, whether the index is static or
dynamic, and so on. Again, a Generic Access Structure
may be substituted by several actual access structures,
all of which satisfy its instantiation rules. The inclusion
of concrete Access Structures in the framework's
Context Diagram determines that all instantiations
include that access structure; a common example is the
"Main Menu" access structure, present in most
frameworks.

Summarizing, a framework's Navigation
Context diagram is made up of Generic Navigation
Contexts and (regular) Navigation Contexts, plus a set
of instantiation rules. It defines all valid Context
Diagrams of actual applications that can be obtained
from the framework instantiation.

6

4 The OOHDM-Frame notation

In order to specify Web design frameworks,
we have defined a new set of models, called OOHDM-
Frame. A framework specification in OOHDM-Frame
is comprised of a Conceptual Model specification and a
Navigation Model specification, together with
instantiation rules. We have already discussed the
Conceptual Model in section 3.2; it uses the same
primitives and notation as OOHDM Conceptual
Models plus hot-spots with the notation in [Pree94].
Whereas generic behaviors are specified in the
conceptual model, generic navigation architectures are
specified in the navigational model.

The Navigation Model in OOHDM-Frame is
made up of a Navigation Class Schema, a Context
Diagram, and a set of mapping and instantiation rules,
controlling how the Navigation Class Schema is
mapped onto the Conceptual Class Schema. The
Navigation Class schema is similar to the Conceptual
Class schema, except for the fact that Class attributes
may be optional (marked with an "*") and Relations

(links) can be optional (drawn with a dashed line). In
addition, a Navigation Class in the Navigational Class
Schema may also be sub-classed during instantiation,
thus implementing at least in part the "traditional" hot-
spot mechanism in OO frameworks. For example, class
"Product" in Figure 2 may be sub-classed in actual
applications, which will allow the definition of the real
products in each case.

Let us briefly examine the notation used to
represent generic contexts, and their respective context
cards.

The first kind is the Generic Simple Context.
It may be substituted during instantiation by any simple
context (class or link derived). The context card will
detail the instantiation restrictions, such as whether
there can be from 0 to n instances (cardinality);
whether the resulting contexts are communicating (i.e.,
it is possible to switch from one to the other at any
moment during navigation within either one of them);
and the allowed types with respect to persistence.

Generic Context
Cardinality: 0 to n
Communicability: [0|1]
Possible types: [static|persistent
dynamic | session dynamic] + [index
access]
Consistency/instantiation constraints:
Type: [simple | grup]

Generic
Context

 n

Figure 3 – A Generic Context, and its specification card.

The cardinality specification may be used to
indicate that a generic context must have at least one
instantiation, e.g., 1 to n. Arbitrary contexts, i.e., those
whose elements are enumerated, are also represented
with the same notation.

Figure 4 shows the representation of other
generic contexts. An instance creation or modification
context is a dynamic context that allows the creation of
new object instances, or changing the attributes of an
existing object. In this case, the only hot spot is
choosing the cardinality – 0 means it may not be
instantiated, 1 means its instantiation is mandatory.

Instance
Creation/

Modification

Instance creation or
modification context

Cardinality: 0 to 1
Communicability: [0|1]
Possible types: dynamic
Consistency and
Instantiation Constraints:

Generic
Index

Generic Access
Structure

Cardinality: 0 to n
Possible Types:
[static|dynamic] +
[simple|hierachical] +
[multiple ordering]
Consistency and
Instantiation constraints:

...:Elements
Generic Hierarchical
Access Structure

Cardinality: 0 to n
Possible types:
[static|dynamic] +
hierarchical + [multiply
ordered]
Consistency constraints:
hierarchy must have lowest
level items as specified in
“Elements”

Generic Query Access
Structure

Cardinality: [0|1]
Possible types:
[static|dynamic] +
[multiply ordered]
Consistency and
Instatiation Constraints:

Generic
Query

Figure 4– Other generic contexts and access structures and their specification cards

7

Similarly to contexts, access structures also
have a counterpart, generic access structures. The only
restriction placed on index instantiations is that it must
be compatible with the context instantiations they point
to. Since indexes may be hierarchic, it is also possible
to make the actual hierarchy a hot spot. In this case, we
use the notation shown in Figure 4.

Another type of hot spot is the property of a
context of being protected or not. It should be recalled
that contexts may have access restrictions for users of a
certain type. This hot spot is denoted in the diagram

with a double-edged oval next to the corresponding
generic context or index

In the following section we will examine in
more detail the actual process of framework
instantiation, by looking at an example.

5 Instantiating a framework

Let us look at an example of a framework for
an online store. The conceptual model has been shown
in Figure 1and Figure 2.

Order

Product

By Property
 n

Related
 0

By Query
 0

By Reference
 0

In Order

Comment

By Product
 0

Similar Property

Generic Reference

Arbitrary
 0

…:Section Product

…:Generic
Reference

Order Form

Query

Main Menu

checkout

Shopping Cart

References

Categories

Search

In Shopping
Basket

User

Profile Mgmt
profile
profile

Figure 5 – The Context Diagram for an Online Store application framework.

This “generic” diagram is at an abstraction
level that allows reasoning closer to the domain of
online stores. The main goal of such sites is, evidently,
to sell products. Therefore, it must allow as many paths
as possible leading to products; furthermore, once the
reader (“consumer”) has reached a product, he should
be lead (or shown) as many additional products as
possible.

Generic context “Product by Property” is a
either simple our group class derived context, which
will be typically instantiated into one or more contexts
that allow navigation among products according to
certain properties (e.g., “Product by price”; “Product
by size”; “Product by Color”; etc…). Once within any
of these, it is normally possible to navigate to other
“Related Products” (e.g., accessories, matching
products, etc…). There are several access structures
that lead the reader into these contexts; typically, these
are hierarchical access structures that reflect product
sections (departments) in a real world store.

Additional paths leading to products can be
offered by opportunistically grouping products
according to some (arbitrary) criteria, such as “N.Y.
Times Bestsellers List”, “John’s Recommendations”,

or “Promotions”. Such groupings are modeled by the
generic “Products by Reference” context, which can be
reached through the generic hierarchical index “…:
Generic Reference”.

The shopping basket and the order itself are
modeled as concrete dynamic contexts, which are
always present in any instantiated application (note the
absence of dashed lines). In addition, the access to
order is normally protected by some identification
process (notice the double oval next to the “Order
Form” context). Finally, some online stores may
require customer identification at the entrance, which is
modeled by having the “Main Menu” access structure
is optionally protected.

Let us now look at how this framework may
be instantiated into the “book” section of
Amazon.com’s website (http://www.amazon.com). We
have deliberately chosen to exemplify with only a
portion of that website, for reasons of clarity and space;
for instance, we have not included user profile
management that appears in the framework. Figure 6
shows the context diagram for this section of
Amazon.com’s website.

8

Main Menu

Subject:Topic

Referenciado

Search

Checkout

Shopping Cart

Book

Shopping
Cart

In order

Order

Order Form

Alphabetical

Comment

By book

Publication:Recommended

author

subject

auctions

related

Subjects

Recommendations

Figure 6 – The Context Diagram for http://www.amazon.com, an instantiation of diagram in Figure 5.

It can be readily seen that, as discussed in
[Rossi 99c], this site does not explore the “Set Based
Navigation” pattern (which is embodied in the
“Navigation Context” primitive). When looking at a
particular book, it is possible to navigate to several
related books, which are accessible through indexes:
“books that other customers that have purchased this

book have also purchased” (“related” index); “books
by the same author”) (“author” index); “books with
similar subjects” (“subject” index); “books
recommended by auction and zShops participants”
(“auctions” index). Regardless of which index is used,
once the user has navigated from the index to the book
node, context information is lost.

Figure 7 – An example of a “Book by title” instance. The related books are accessible through a
variety of indexes, as indicated. Only the top screenful of this (long) page is shown.

Same
author

Related
books

Recommended
by auction
participants

9

The main instantiation mappings for the
Amazon.com website are shown in Figure 11. Notice
that a single generic index, “similar property”, was
instantiated into four different indexes, “author”,
“subject”, “related”, and “auction”. “Generic
References” are mapped onto a simple set of indexes
“Publication: Recommended”, which give the

recommended books by several popular publications;
the actual text of the recommendations are not
included, hence the absence of the “Generic
Reference” context itself.

…:Section Product Subject:Topic

Generic Reference

Arbitrary
 0…:Generic

Reference
Publication:Recommended

author

subject

related

auctions

Similar Property

Framework Instantiation

Referenciado

Book

Shopping
Cart

In order

Alphabetical

Product

By Property
 n

Related
 0

By Query
 0

By Reference
 0

In Shopping
Basket

In Order

Framework Instantiation

Figure 8 – The instantiation mapping between the application framework context diagram in Figure 5
and the Amazon.com website shown in Figure 6. Only the most interesting mapping for access

structures is shown.

For those readers familiar with online stores, it
can be noticed that the approach taken in Amazon.com
is present in many other online stores; resulting in very
similar navigation diagrams; as an example, we cite
http://www.etoys.com.

In order to show that this application
framework is quite generic, we have also instantiated it
for Gap’s online store, http://www.gap.com. This site
has a straightforward but quite effective navigation
architecture, as can be seen in the diagram shown in
Figure 9.

Main Menu

Section:Category

Referenciado

Checkout

Shopping Cart

Product

Shopping
Cart

In order

Order

Order Form

by category
Sections

related

Figure 9 – The context diagram for the Gap
Online Store, http://www.gap.com

This site has an interesting use of “Set Based
Navigation”, as can be observed when navigating in
the “related Product” context. Figure 10 shows the
same product, “pique polo shirt”, in two different
contexts: (a) “Related Products”, since it is related to
“relaxed fit pleated khakis”, in category “Pants and
Shorts”; and (b) “Product by category”. Notice that the
index of the original context (“Pants and Shorts” and
“Shirts and Polos” remain on the left side of the
screen).

10

(a) (b)

Figure 10- An example of a Product – “pique polo shirt” in two different contexts: (a) related product
to “relaxed fit pleated pants”; (b) in the “product by category” context.

A comparison between the framework context
diagram in Figure 5 and the instantiation in Figure 9 is
shown in Figure 11.

Referenciado

Product

Shopping
Cart

In order

by category

related

Product

By Property
 n

Related
 0

By Query
 0

By Reference
 0

In Shopping
Basket

In Order

Section:Category
…:Section Product

Figure 11 – The instantiation mapping between
the application framework context diagram in
Figure 5 and the Gap.com website shown in
Figure 9. Only the most interesting mapping

for access structures is shown at the top.

6 From Design to Application
Frameworks and to Web
Applications

Web design frameworks help to specify the
abstract architecture of a family of Web applications. A
framework includes the specification of both the
common aspects of applications in the domain and the
hot-spots where the specificities of a particular

application are accommodated. Web design
frameworks are powerful because they are not
language or environment-dependent, i.e. we can use the
framework to produce Web applications in different
settings, including non-object oriented ones.

There are many different alternatives to
produce running Web applications for a given
framework. In this section we briefly discuss two of
them: mapping the design framework onto an
application framework (and then instantiate this
framework), or instantiating the design framework into
an OOHDM model, and then implementing the
resulting model in the Web.

6.1 Web Design Frameworks Mapped to
Application Frameworks

We have designed an object-oriented
architecture that allows designers to implement Web
application frameworks for specific domains (an early
version is discussed in [Garrido96]; an alternative
version is described in [Pizzol 99]). This architecture
(and its Java implementation) contains classes that
support the core OOHDM primitives (nodes, links,
indexes and contexts); these classes can be plugged
into domain specific classes (Products, Orders, etc) to
improve their behavior with navigation functionality.
Using this architecture, a designer should implement
the generic conceptual model using an object-oriented
programming language (e.g., Java), and for each
particular application either sub-class or instantiate the
domain classes and connect them with the OOHDM-
specific classes that were derived from the generic
navigational schema.

In this architecture we decouple the domain
and navigational model from the components that

11

provide dynamic content generation on the Web
(ranging from CGI/ISAPI to ASP/JSP). In this way a
Web application framework can be designed to be
independent of particular industry technologies (and
can thus evolve seamlessly).

In this architecture, the OOHDM server is
focused on providing the ability to access nodes in
different contexts, managing the navigation spaces and
linking among nodes. The HTML rendering task is
performed on the webserver side by either a custom
third-party CGI/ISAPI module or dynamic html pages
servers like ASP or JSP.

6.2 Instantiating a Design framework
into a Web application using a
development environment

Another possible implementation of a
particular Web application can be obtained by directly
implementing an instantiated Web design framework
using standard Web tools. We have been using
OOHDM-Web [Schwabe 99] for this purpose. In
OOHDM-Web, a complete OOHDM design is
represented using special purpose data structures,
which are nested lists of attribute-value pairs. These
data structures contain class definitions (including
InContext classes), navigation context definitions,
access structure definitions and interface definitions.
These definitions include the description of database
entries that store instance data.

Context definitions comprise the query
definition that selects the elements that belong to the
context; the same is true for access structure
definitions. Interface definitions are mixed html
templates, one for each class in each context where it
appears. The mixed HTML template intersperses pure
HTML formatting instructions with function calls to a
library of pre-defined functions that are part of the
OOHDM-Web environment. These functions allow
retrieval of object attributes, or reference to other
objects in specified contexts. Reference functions are
defined in such a way that, when activated by the user,
they cause the exhibition of the destination object in
the appropriate context, using the template defined for
that context.

Following the same approach, we have
defined OOHDM-Frame in a similar way, substituting
generic definitions for the concrete ones whenever
necessary. The resulting representation describes the
generic design of the framework in question. The
instantiation process will substitute the generic
definitions in the framework by the definitions (using
the OOHDM-Web representation) of their
corresponding instantiated elements. For example, a
generic class-derived context can be substituted by two
(or more) class-derived contexts in the instantiated
framework; this is achieved by actually replacing, in
the data structure that describes de framework, the
generic context description by the descriptions of the
two concrete contexts, using the OOHDM-Frame
format.

At the end of this process, when all hot-spots
have been plugged into the corresponding concrete
application elements, the resulting data structure is a
valid OOHDM-Web representation of the final
instantiated application, ready to be used. Our current
implementation does not automatically support all
constraint verifications, which must be done manually
by the designer when instantiating the framework.

7 Concluding remarks and Further
Work

In this paper we have introduced Web Design
frameworks as a novel technology to further design
reuse in Web applications. A Web framework contains
the specification of both the behavior and navigational
structure of a family of Web applications in a particular
domain. We have also introduced OOHDM-Frame, a
concise syntax that allows expressing generic OOHDM
models that conform to a framework specification. We
have shown how to instantiate a design framework into
a particular application using the domain of online
stores as an example. We finally showed that Web
design frameworks can be mapped in a straightforward
way into application frameworks by showing a specific
architecture.

This architecture allows a designer to
implement an object-oriented framework for a
particular application domain in much the same way he
would do it if the applications were not supposed to run
in the Web. He could then plug his application classes
into Web specific components (implementing nodes,
links and contexts) in order to deploy a running Web
application. Web design frameworks can be also
directly mapped into an application by using the
OOHDM-Web environment

One of the most (if not the most) important
architectural components in Web Design Frameworks
are (generic) Navigational Contexts. Contexts are
recurrent patterns in Web applications as they usually
deal with sets of similar objects (products in a store,
paintings in a museum’s room, etc). The notion that
patterns contribute to define the architecture of
complex applications is not new [Johnson94] though it
is just being perceived in the Web community. We are
now incorporating other navigation patterns into
OOHDM-Frame to enhance its expressive power. In
particular, we are defining a notation for Landmarks
and News [Rossi99b].

Landmarks help to indicate well-known entry-
points for navigation. For example, in an online
electronic store such as Amazon.com each sub-store
(Music, Video, Zshops, Auctions) are accessed from
everywhere in the site. An OOHDM-Frame
specification for Landmarks will allow defining both
generic and specific Landmarks to be used by the
implementers of a particular online store.

The News pattern meanwhile shows how to
deal with sites in which new information (products,

12

services) are constantly added. An OOHDM-Frame
specification for News would indicate how those news
will be presented, where they come from (in the
conceptual schema) and how they can vary in different
applications.

We are also improving our support
architectures for Web Design Frameworks; we strongly
believe that development, delivery and maintenance
times in the Web domain require reuse-centric
approaches. The systematic reuse of semi-complete
design structures, as described by Web design
frameworks is a key approach for maximizing reuse in
Web application development.

8 References

[Cowan 95] D. D. Cowan, and C. J. P.Lucena;
"Abstract Data Views: An Interface Specification
Concept to Enhance Design for Reuse". IEEE
Transactions on Software Engineering, Vol.21,
No.3, pp. 229-243, March 1995

[Fayad99] M. Fayad, D. Schmidt and R.
Johnson (editors): “Building Application
Frameworks”, Wiley 1999.

[Gamma95] E. Gamma, R. Helm, R. Johnson and
J. Vlissides: "Design Patterns. Elements of reusable
object-oriented software". Addison Wesley, 1995.

[Garrido96] A. Garrido and G. Rossi “A
Framework for Extending Object-Oriented
Applications with Hypermedia Functionality”. The
New review of Hypermedia and Multimedia.
Taylor Graham, vol. 2, 1996, pp. 25-42.

[Garrido99] A. Garrido and G. Rossi: “Capturing
hypermedia functionality in an object-oriented
framework. ” In Object-Oriented Application
Frameworks (R. Johnson, M. Fayad editors). John
Wiley 1999.

[Johnson88] R. Johnson and B. Foote: “Designing
reusable classes”. Journal of object-oriented
programming” 1(2), 22-35, 1988.

[Johnson94] R. Johnson and K. Beck. “Patterns
generate architecture”. In Proceedings of the
European Conference on Object-Oriented
Technology (ECOOP94).

[Pizzol 99] Pizzol, A.M; Schwabe, D., "A Java
Framework for Implementing OOHDM Designs",
Proceedings of the V Brazilian Symposium on
Hypermedia and Multimedia (SBMidia 99),
Goiânia, Brazil, May 1999 (In Portuguese).

[Pree94] W. Pree: “Design Patterns for object-
oriented software”, Addison Wesley, 1994.

[Rossi95] G. Rossi, A. Garrido and S.
Carvalho: "Design Patterns for Object-Oriented
Hypermedia Applications" , In Program Languages
of Program Design 2, pp. 177-191, 1996, Addison
Wesley.

[Rossi 95b] G. Rossi, D. Schwabe, C. Lucena and
D. Cowan: "An Object-Oriented model for

designing the Human-Computer Interface of
Hypermedia Applications". Proceedings of
IWHD'95 pp. 131-152, Springer Verlag,.

[Rossi96] G. Rossi, A. Garrido and D.
Schwabe: “Towards a Pattern Language for
hypermedia applications” Proceedings of PLoP’96,
Allerton, USA, 1996. Available at:
http://www.cs.wustl.edu/~schmidt/PLoP-
96/workshops.html.

[Rossi97] G. Rossi, D. Schwabe and A.
Garrido: Design Reuse in Hypermedia
Applications. 8th ACM Conference on Hypertext
Technology. Southampton, England 1997 , pp. 57-
66, ACM Press

[Rossi 99a] G. Rossi and A. Garrido: "Capturing
Hypermedia Functionality in an Object-Oriented
Framework", in Building Object-Oriented
Application Frameworks, Wiley 1999.

[Rossi99b] G. Rossi, F. Lyardet and D. Schwabe:
“Patterns for designing navigable spaces”, in
Pattern Languages of Programs 4, Addison
Wesley, 1999.

[Rossi99c] G. Rossi, D. Schwabe, F. Lyardet:
“Improving Web information systems with
navigational patterns” International Journal of
Computer Networks and Applications, May 1999.

[Rossi99d] G. Rossi, D. Schwabe, F. Lyardet:
“Web application models are more than
conceptual models”. Proceedings of the First
International Workshop on Conceptual Modeling
and the WWW, Paris, France, November 1999.

[Schwabe95b] D. Schwabe and G. Rossi: "The
Object-Oriented Hypermedia Design Model
(OOHDM)", Comm ACM, pp. 45-46, August 1995,
ACM Press.

[Schwabe96] D. Schwabe, G. Rossi and S.
Barbosa. "Systematic Hypermedia Application
Design with OOHDM", Proceedings of the ACM
International
Conference on Hypertext (Hypertext'96),
Washington, March, 1996, 116-128, ACM Press.

[Schwabe98] D. Schwabe, G. Rossi: “An object-
oriented approach to web-based application
design”. Theory and Practice of Object Systems
(TAPOS), Special Issue on the Internet, v. 4#4,
pp.207-225, October, 1998.

[Schwabe 99] Schwabe, D.; Pontes, R. A.; Moura,
I.; “OOHDM-Web: An Environment for
Implementation of Hypermedia Applications in the
WWW”, ACM SigWEB Newsletter, Vol. 8, #2,
June 1999.

 [UML97] Rational Corporation: The unified
modeling language. Documentation set. In
http://www.rational.com/uml.

