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Executive Summary 

The original goal of this program was to create a model that attempted to accurately 
model fire flow. This year’s goal was to improve upon the previous year’s progress. The team 
achieved great success in more accurately modeling the spread of fire by incorporating concepts 
from Huygen’s Principle along with many other fire-spread models. Historically, fires cause 
more damage every year than any other natural disaster. When attempting to model fire, several 
important factors must be considered in order to project for realistic fire flow. These factors 
include spread rates over different fuels and heat’s effect on fire, as fire acceleration, wind, 
elevation, moisture contents, amounts of fuel, spot fires, and crown fires. However, accounting 
for all these variables requires an extremely complex model. Therefore, this project concentrates 
on the basis of fire flow in two dimensions limiting its factors to what was verifiable. 

 In building this year’s model, rather than just modeling heat flow to demonstrate the 
advance of a fire as was done last year, both fire flow and heat flow have been differentiated to 
more realistically show a fire’s expansion perimeter. The most important aspect of heat 
generated by a fire is the possibility that heat could lead to the rapid acceleration of a fires 
perimeter. The basis of the fire flow process is the Elliptical Fire Theory, which simply states 
that fire will form a perfect circle under perfect conditions. The fire flow process involves 
locating the fire’s perimeter and extending new fire ellipses. The determining factor which 
establishes fire flow is the varying degrees of spread rates of the virtual-forest fuels. In the 
program, heat flow is accounted for using Newton’s Law of Cooling, the Stefan Boltzmann Law 
of Radiation, and Fourier’s Law of Conduction.  

The environment also plays a crucial role in determining fire flow. In order for certain 
patches, which are locations in the environment, to burn, they must have reached an ignition 
point, or minimal burn temperature. Each patch owns different fuel types, amounts of fuel, 
spread rates, temperatures, and other independent and dependent variables that define fire flow in 
the program.  

The basis of this program, the Elliptical Fire Theory, has been verified through empirical 
data collection. However, the limitations of this computer projection are many. These limitations 
are related to the multitude of variables within the fire flow process. Many of these variables 
could have been used, but much more time and research are needed to do this. Thus far, this 
project has yielded a foundation which can be built upon one step at a time.    
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Introduction 
 

Forest fires have threatened mankind for as long as man can remember. In the distant 

past, wild fires were free to demolish billions of acres of lush forest, and entire ecosystems have 

grown dependent on natural forest fires sweeping through and clearing out room for younger 

generations of plants to take over. This process was all very normal until humans, who inherently 

try to protect their lifestyles, began to intervene on the process. Today people do as much as 

possible to prevent the spread of fire into their settlements. Many of the most recent fires have 

reeked havoc on the near by populations. Some of these most recent fires include the Cerro 

Grande fire in 2000 which burned 47,650 acres and cost $10 million dollars to contain (Masse, 

2003), the Yellowstone fire in 1983 which burned 793,000 acres (36% of the park) and cost $120 

million dollars to contain (www.nps.gov); and even the Great Michigan fires of 1871 which 

burned 2.5 million acres, caused more than $200 million dollars in damage, and took the lives of 

more than 1,300 people (Heidorn, 2000). Even though these recent fires were relatively small 

they destroyed hundreds of homes and caused millions of dollars in damage. Ancient fires were 

much more massive by proportion, but they did not affect as many people as more recent fires. 

Fire is a devastating force. Every year around six-and-a-half million acres of woodland 

forest are burned (O’Driscoll, 2005). By learning how fire flows and how the heat it generates 

allows it to spread, the team will be more able to predict where it will go and how much damage 

it can cause.  
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Last Years Progress 
 

Last year’s project was titled “Fire in the 

Bosque” and Christopher Morrison made remarkable 

progress on his own after his team member dropped 

out of the Supercomputing competition soon after 

the Glorieta kickoff. He was able to create a forest 

environment model with C++ that modeled how the 

heat generated from a fire in the Albuquerque 

Bosque would spread.  

Last year’s program was not as accurate at 

modeling fire flow because it attempted to model fire 

based upon principles that don’t follow realistic fire 

flow. The basis of fire flow was founded upon the 

transfer of heat rather than the current program that 

differentiates the fire flow process from heat flow. 

Basically, last year’s program used an algorithm 

which averaged temperatures and would mark the patch as a “fire” if the temperature in the patch 

was over the flashpoint of that particular patch. The program lacked the ability to track the fire’s 

exact location across the landscape because it lacked the fire flow process which is this year’s 

program’s founding principle. 

 In essence, the inaccuracy of last year’s program lies with its discord with the Elliptical 

Fire Theory through its algorithm. Its base flow formed a square or diamond shape rather than a 

perfect circle under perfect conditions. Therefore the basis of the old program has been 

disproven by its violation of the Elliptical Fire Theory. 

Furthermore, last year’s program was written in C++ for the SDL graphics emulator. It 

lacked the ability to graphically display the detail that this year’s program has attained using C++ 

for the OpenGL graphics emulator. For further information on last year’s project, please visit the 

final report at http://www.challenge.nm.org/archive/04-05/finalreports/50.pdf  
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Research 
 

Contacts 
The team’s first contact was Andrea Rodriguez, a United State Forest Service 

Cartographer with the Geospatial Service and Technology Center. Andrea attempted to help by 

finding real forest-contour data derived from satellite data which could be incorporated into the 

program, but the program is not yet advanced enough to use the data. In the continuation next 

year, the program may become advanced enough for it to be possible to incorporate the available 

forest-contour data next year. 

The next contact made was Nestor Pena who works as a battalion chief at the Rio Rancho 

Department of Public Safety. Nestor pointed out many of the assumptions made by the team and 

explained how firefighters battle large-scale forest fires. From Nestor, the team learned that 

because of the select few variables used in the program, the program can not yet be used as is for 

fire prevention and containment, but indicated the program showed promise. 

 

FARSITE Program 
The FARSITE Program is a fire perimeter expansion program developed by the United 

States Forest Service for fire path prediction. The most important thing learned from the 

FARSITE Program was Huygen’s elliptical expansion principles. Huygen’s Principles state that 

a fire will always expand in an elliptical pattern from a central ignition point. A fire’s perimeter 

was further expanded by creating new ignition points along the original elliptical expansion to 

complete a circular pattern. This pattern of expansion can be 

seen in this picture. A new ignition points are created along the 

original elliptical pattern further expanding the fire.  

The limitations of the FARSITE program include the 

limited factors which are taken into account by the program. 

These few factors include wind vectoring and elevation. Since it 

is believed by the team that the burned fuel type plays a 

significant role, the team does not agree that FARSITE is an all-

inclusive model even though it is widely accepted by the 
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scientific community. Another difficulty with the FARSITE program is the very complex 

differential equations that made it hard to utilize in this project’s program. 

From FARSITE, the team further expanded upon the fire perimeter expansion concept by 

using an original ignition point and creating numerous rays which each expand depending upon 

the factors in the path of the ray. Basically, a fire flow process was developed that borrowed 

from Huygen’s concept, but was altogether different. 

 

Fire Methodology 
From their research, the team was able to deduce several of the key factors which effect a 

fire. A key component in creating a successful fire model was first to differentiate between the 

heat flow of a fire and the actual fire spread. Fire cannot be explicitly defined and must be 

broken down into its component elements. When broken down, fire follows many known 

characteristics. Incorporated into this project’s model are several of these characteristics. In order 

to break apart the fire phenomena and gain insight into these characteristics, fire must be broken 

down to its intrinsic nature by starting with as basic an assumption as possible. In order for fire 

to exist three factors must be present: heat, oxygen, and fuel. Differing amounts of these 

variables effect the ability of a fire to exist within a certain area, the spread speed of the fire, and 

the damage inflicted upon the environment. 

 

• Elliptical Fire Theory 

The basis of this project is the concept that under perfect conditions, fire grows in the 

form of a perfect circle. Even in space, fire maintains the shape of a sphere. This is the 

Elliptical Fire Theory. The theory suggests that fire growth is circular and is only acted 

upon by external forces. While not proven, the Elliptical Fire Theory is the underlying 

assumption of this project. Once this basis has been determined it opens the door to 

incorporating many other characteristics. 

 

• Heat 

If a wildfire is burning in the winter, it will not have the same ability to spread as a fire in 

the summer.  This is due to heat’s effect upon fire spread. There are three basic forms of 
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heat flow: conduction, convection, and radiation. Heat flow in the atmosphere occurs 

everyday and has highs and lows as the day passes but is very different when a fire 

produces heat.  

  

• Convection 

Convection is relevant to this project because of heat flow and loss to the atmosphere 

and has been incorporated with Newton’s Law of Cooling which states:  

T(1) = ambient temperature + (T(0) – ambient temperature) x ekt 

Whereas: 
T(1) = New temperature        *temperature units are interchangeable    
T(0) = Old temperature   
K = Negative variable constant dependent on the object’s heat retaining rate  
T = Time elapsed in minutes  
 
• Conduction 

Conduction is the heat flow into and from solid objects and integrated using Fourier’s 

Law of Conduction 

 
Whereas: 
Temp(2) > Temp(1) 
dh/dt is the amount of heat flow from Temp(2) to Temp(1)  
k is the thermal conductivity of the material of transfer 
A is the area^2 of the two materials in meters 
Pos(2)-Pos(1) is the difference in meters between the two Temp() 

  Note: Air has been treated as a solid for conduction object with k=.026 (Wikipedia.com) 

 

 
• Radiation 
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Radiation is the chief transport of heat flow from a fire. Radiation is the flow of heat 

from rays through space whether matter is present or not. Radiation has been defined 

with the Stephan Boltzmann Law of Radiation 

E = KsAT4 

Whereas 
K = Stefan-Boltzmann Constant=5.67*10^(-8) 
S = Emissivity 
A = surface area (meters) 
T = Kelvin Temperature of object 
E = heat transfer in joules that is emitted 
 

 Note: This law doesn’t account for radiation emitted from fire only from an object 

• Fuel 

The heat fire produces is developed from rapidly oxidizing the fuel in a chemical 

reaction, and fire needs fuel to produce heat. This chemical reaction is a self-perpetuating 

reaction that breaks off the oxygen atoms from its fuel. Yet, before this reaction can take 

place, the water contained in the fuel must be evaporated. Once the moisture content is 

evaporated, fire needs only to attain the piloted flashpoint or combustion temperature 

to combust the fuel and begin to spread. 

• Fuel types 

In a forest there are many types of fuels. For example, the Russian olive tree and the 

cottonwood tree possess distinctive properties. When burned, the Russian olive 

produces a higher heat value and is consumed much faster than the cottonwood. 

There are thousands, if not millions, of varying kinds of fuels ranging from low grass 

to, piñon, and other deciduous hardwoods. Each fuel type governs different 

characteristics of fire flow when they are aflame and radically change the flow of fire. 

Also, some fuel types like oak are very thick and slow to burn. Others like redwoods 

have fire-retardant bark which prevents a crown fire. Depending on the forest, 

different fuel types must be defined empirically and entered into the program. 

• Wet and Dry Fuels 

Each of these above fuels can be further generalized into two groups: wet fuels and 

dry fuels. Wet fuels are living fuels, which contain a moisture content that must be 
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evaporated before igniting. Dry fuels consist of the dead underbrush that has lower 

flashpoints due to the minimal moisture.  

• Piloted Flash Point 

The basic flash point, or piloted flashpoint, is the temperature the fire must attain to 

ignite the fuel and, with a fire present burst into flames. This flashpoint value is 

dependent upon the atomic structure of the material being burned and varies 

depending on the fuel source. 

•  Unpiloted Flashpoint 

The unpiloted flashpoint of a fuel is the temperature at which the fuel will be 

combusted, whether fire is present or not. Examples of such ignition without fire 

radiation include using friction to start a fire, a match on fire, rubbing two twigs 

together, or even focusing light under a magnifying glass to ignite a fire. This means 

the temperature of the heated area becomes hot enough to begin a fire without a fire 

present. 

• Crown Fires 

The crown of a tree is the height at which its leaves or needles are located. The fire 

cannot burn the crown if it cannot reach that height. Tree trunks are generally too 

high for the heat of a ground fire to reach. Many forest fires behave in a pattern as if 

they were two separate fires a fast-moving crown fire and slow-moving ground fire. 

Crown fires constitute a major danger to forests and inhabitants because if a crown 

fire ignites a tree, it will likely determine whether the tree will survive the fire. 

 

• Oxygen 

In order for the chemical reaction of rapid oxidization to take place, oxygen must be 

present. If there is no oxygen, then there is no fuel and thus no fire. As fire burns, it 

consumes the oxygen and produces carbon dioxide. The rate at which fire consumes 

oxygen can be partially attributed to convection movement of the oxygen-containing 

wind that fire produces. This is caused by the fact that when fire burns, it produces wind 

from convection, which further stimulates the fire because it brings in air rich in oxygen. 

 

• Environmental Factors 
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In addition to the heat, fuel, and oxygen factors, environmental factors also affect fire. 

They are named environmental factors because they are derived from the forest 

conditions.  

• Wind speed and angle 

Wind speed and wind angle will ultimately determine the prevailing path and 

intensity of the fire. Sometimes fire can travel much faster than a human can run 

because of the result of wind. To firefighters, this is known as a bad day. 

• Ambient Temperature 

Temperature plays a large role in determining fire flow. A fire burning in cold 

temperatures will have a lower intensity than a fire burning in the hot temperatures of 

the afternoon, which is why a fire’s intensity decreases after nightfall and increases in 

the afternoon. This suggests that heat has an affect upon fire flow. 

• Humidity 

Humidity slows fire flow by increasing the moisture content of all fuels. The higher 

the moisture content, the longer and hotter a fire must burn to remove the moisture. 

• Elevation 

Elevation plays a big role in fire flow. Fire will spread uphill faster than downhill to 

gain access to oxygen-rich air. Fire acts as a force that will oppose gravity. Therefore 

it affects fire flow in the third dimension and when elevation changes with slopes and 

cliffs, fire is also affected on the two-dimensional plane.  

 

 Fire is not totally inexplicable in its nature. This is because there are many variables 

acting upon fire that are yet to be defined. Those variables which have been defined and 

incorporated however, allow for a fire model to be constructed. 

 

Fire Flow/Spread 

As stated earlier, fire spread is something that, to date, can only be approximated. A 

commonly used approximation is based on Huygen’s Principle. In accordance with the 

Elliptical Fire Theory, fire will spread in all directions as fast as it possibly can while still 

maintaining its three fundamental bases: heat, oxygen, and fuel. However, the exact 

determination of fire spread is still not as simple as that. There are so many factors 
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bearing upon fire that it is currently impossible to incorporate them all into some finite 

formula. To determine basic fire flow one must look at the basic intrinsic parts and 

develop an approximation. This is the goal of this year’s project. 
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Problem Definition 
 

Ignition

Fire Spread

Heat Wind Fuel

There are three major challenges faced by this research 

team. The first is how to accurately model heat flow and fire 

flow, the second is how to successfully incorporate 

environmental factors like elevation and wind into fire flow; 

and the final issue to be solved is to verify that the fire spread 

program is successful. Fire flow is defined as the path the fire 

follows when exposed to an environment. Rather than bogging down in a marsh of factors that 

affect fire, this project decided to focus only on a few factors.    

The independent variables of this project are wind, fuel, heat and fire ignition 

temperature, while the dependent variable is the fire spread. The general rule of a fire is that it 

will continue to expand until any one of the afore-mentioned variables are exhausted. 

Heat flow and fire flow have been defined as separate entities because “fire”, as most 

people understand it, is actually a set of complex factors which all play a part in furthering fire 

expansion. Heat flow has been defined as the energy released by the fuel as it burns, as well as 

the ambient temperature flow within the forest. The higher the heat rating of a fire, the greater 

the energy the fire has, and the further it is likely to spread before dying out on its own. 

Furthermore, as the fire spreads, the heat on the perimeter, inside, and in the burned areas will 

change. The local temperature of a patch will get higher as the fire burns in it and will cool down 

as the fire moves on to the next patch. 

The fuel modeling portion of the program is another variable involved in determining fire 

flow.  As a fire spreads over different fuels it will spread at different rates. Basically, the fuel 

modeling is based upon the environment. The environment ultimately determines the shape of 

the fire assuming all other factors are consistent 

Fuel may determine the shape of the fire, but wind decides the path through the forest 

that fire will follow. Wind works to push fire flow in one direction more so than another. This 

relationship is very important to firefighters because, in the wrong wind, fire will outrun ground 

crews, threatening their safety.  
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Problem Solution 
 

Assumptions 
In order to model fire flow, certain assumptions had to be made. This is due to the 

complex nature of fire itself. The base foundation of this project is the Elliptical Fire Theory. 

Because fire flows in a circle, to incorporate other factors would be a matter of shortening and 

lengthening the radii based on these factors. By adjusting each radii based on the given variables, 

a more random fire flow model would result. This would be effective for any two-dimensional 

model, especially since fire flows only on surface area. This flow pattern could later be adapted 

for a three dimensional model. From this cornerstone, other assumptions were made about the 

effects of factors on fire flow. The distinction between the heat flow and fire flow models, an 

improvement over last year’s project, is an example of this. Though the exact relationship is 

undefined as of yet, fire is dependent upon heat to determine its flow.  

Another founding assumption was that fire cannot exist where there is not ample fuel and 

heat. If fire encounters an area that cannot be burnt under certain conditions then it will be forced 

to stop. The other assumptions made by the research team in order to complete the program 

include: no humidity, no ground duff, wind speed. The team also assumed limited fuel types, and 

two-dimensional fire flow no precipitation, no convection currents produced by the heat of a fire, 

and no elevation change. These factors although essential to real-world fire spread, have each 

been simplified because each is a small piece of a larger picture.  

 Three-Dimensional Fire Spread 

Fire does not move on a single plane, and can move in many different levels of forest, 

including the ground, small shrubs, and even in the canopy in large fires. Firefighters are 

most concerned about canopy fires because, once a fire reaches the forest crown, it gains 

speed and can quickly outrun and outmaneuver even the most experienced of fire 

fighters. Multi-dimensional fire flow was simplified to a two-dimensional plane. By 

ignoring the third dimension, gravity’s effect on fire can be simplified and almost 

ignored.  

• Precipitation 

Precipitation effects fire flow of a forest fire by increasing the fuel wetness, which raises 

the temperature required to maintain persistent fire. Rain will greatly diminish the 
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strength of a fire. Before a fire starts, precipitation will increase the humidity of the 

ambient environment and the wetness rating of the fuel types. Each of these variables 

dampens the likelihood of starting a fire and will decrease the “Fire Danger level” as 

measured by the United States Forest Service. The only related factor is moisture content 

of the fuel. If it has rained, then the moisture content can be adjusted likewise.   

• Fire-Generated Wind Currents 

Since heat is a byproduct of fire, the heat generated by a fire causes convection currents 

in the vicinity of the fire and if the fire gets hot enough, the fire will create its own wind 

currents. Fire-generated wind is very unpredictable and is an important aspect of any fire 

program that very few models take into account. Fire-generated wind has been left out of 

this model as well because of the numerous complex aspects that would be involved in 

modeling heats effect on air currents and the air currents’ effect on fire flow. 

• Elevation Change 

When on a slope, fire will flow faster uphill, rather than downhill, because more of the 

heat will rise, which then increases the ambient temperature on that part of the slope, 

causing the fuels to ignite and burn. Elevation has been excluded from this model 

because the team was unable to verify how elevation affects a fire in the time available.  

In order to gain exact verifiable insight into elevation’s effect upon fire, empirical data 

must be acquired. 

• Oxygen Modeling 

Oxygen is one of the three vital factors involved in producing fire. However, it was 

decided to leave the oxygen component out because oxygen’s effect upon fire must 

include the convection from the wind-producing fire. 

•  Humidity 

By simplifying humidity, a much more uniform fuel type is created, which allows for 

more even flow of fire. Humidity can vary greatly throughout a forest, depending on 

precipitation and proximity to a water source. Humidity effects a fire by raising the 

ignition temperature of the fuel because the fire must first burn away the moisture before 

it can successfully ignite the fuel. The solution to this is simplifying the assortment of 

humid fuels to two kinds: wet and dry fuels. The wet and dry fuels possess different 

flashpoints and can be manipulated according to environmental factors. For example, the 
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wet and dry fuel rating changes depending on whether it was a wet or dry year or if rain 

has just fallen upon the forest. 

• Wind 

The programs wind assumption maintains that fire radii are dependent upon wind and its 

angle and based on vectoring to shorten and lengthen radii on the ellipse. Basically, fire is 

treated as a vector based upon the spread rate and wind direction and angle. 

• Ground Duff 

Ground duff is the dead material at the bottom of a forest. In a coniferous forest, it is 

generally pine needles, in a deciduous forest, duff is generally composed of dead leaves 

and plant matter. It affects a fire by drastically increasing the amount of burnable fuel on 

the ground level. In the program, ground duff has been simplified along with the fuel 

types. For example, every cottonwood fuel patch will have the same amount of ground 

duff. 

• Numerous Fuel Types 

Another basic assumption is that fire has the capacity to spread differentially over 

different fuel types because of the fuel’s typical surface area and atomic structure. Every 

tree, shrub, and patch of grass has a different values which determine its specific fuel 

type. By reducing the amount of fuel types, the program is able to better model a simple 

forest fire with a few varieties of plants and is, therefore, able to be verified easily.  

 

By simplifying these variables, a basic fire spread model has been created. For a future 

venture a continuation of this program would include many of these variables, The variables 

would need to be defined and incorporated to better account for the multitude of factors which 

make up fire. 
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Program 
For this project an original computer program was written in the C++ language, using a 

technique that draws off Huygen’s Principle, but it is original in itself. The program traces the 

fire perimeter across the forest environment. Implementing Newton’s Law of Cooling, Fourier’s 

Law of Conduction, and the Stefan-Boltzmann Law of Radiation, the program differentiates fire 

flow from heat flow. It also uses a patch class environment system that records the individual 

aspects of each individual area. The virtual forest is created from a forest environment editor that 

can be changed by the user to mimic any realistic forest. 

 

 The Basic Environment 

The environment in which the fire 

persists is a system of patches. Within those 

patches, there are more mini-patches. The 

patches each own their own specific set of 

variables which depend on the fuel type, 

wind speed, wind angle, ambient 

temperature, humidity, wet fuel, dry fuel, 

temperature, flash point, secondary flash 

point, produced heat, and crown height. 

Though, some of these variables have yet to have a place in the program. The collection of 

patches, as a whole, is known as the virtual forest. Each patch type is unique and causes a fire to 

either accelerate or slow down as it passes over the patch. The patches then have individual 

sections within them called mini-patches. These mini-patches are then used to further track the 

exact movement of the fire as it crosses the virtual forest.  

This is an overhead view of the virtual forest. Each different color represents a different fuel 

type. The rectangle top left is an overall view of the forest. 
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• Virtual Forest Level Editor 

The virtual forest was developed by the virtual forest level editor, which allows the user to 

design a forest from scratch through a Graphic User Interface. 

The Algorithm Fire Spread/ Flow 

The program uses a hybrid of both Huygen’s Principle and 

the Elliptical Fire Theory. The different patches in the virtual 

forest contain different values of what is called spread rate, which 

is the rate at which fire can spread through the patch. The spread 

rate can be manipulated by factors such as heat and humidity.  For 

each time step, the fire spreads across the patches until the 

accumulated value of the time steps reaches a point called the 

maximum spread rate (top picture). This process is repeated until 

a fire arc is formed, making the perimeter of the fire for the 

certain time step. In this picture the teal patches have certain 

values. The fire line spreads across these patches, accumulating 

their values until the maximum value is reached for the fire. 

The fire arc shown here (second from top) is the same process as 

shown before, just taken out many more iterations. The endpoints 

of the fire arc are then stored, and during the next step are 

transformed into fire arcs themselves. This process is computed 

once per time step, producing fire perimeter results such as in the bottom picture. This picture 

depicts the result of several time steps in a non-uniform virtual forest and shows the created fire 

perimeter. 

 

• Fire Perimeter Reduction 

As the fire grows larger, only the perimeter is needed to map the fire flow.  If the 

computer took every fire endpoint and arced it, its efficiency would be xN, whereas ‘x’ is 

the number of endpoints the fire arc contains and ‘N’ is the number of time steps. 

Therefore, a system was developed to record previously burned spots and reject new fire 

 18



arcs in those burned spots. This would increase the efficiency of the program by 

preventing “burned” patches from being burned a second time. These two pictures show 

the fire perimeter and the burnt mini-patches that help with fire perimeter reduction. 

            

The Algorithm Heat Flow 
Heat flow was solved by incorporating Fourier’s Law of Conduction, Newton’s Law of 

Cooling, and the Stefan-Boltzmann law of Radiation. Fourier’s law of conduction is performed 

in order to account for heat conduction through air. The Stefan-Boltzmann Law of Radiation is 

then performed to account for heat radiation. It is not used, however, to account for fire radiation 

of heat. However, no heat loss is factored into these because Newton’s Law of Cooling accounts 

for heat loss through all three types of heat flow, convection, conduction, and radiation.    

                   

Heat created during the rapid oxidization process is not accounted for through radiation. 

The heat produced in a patch while burning is based upon the total percent of the patch burning 

and a pseudo value dictated by fuel types to calculate how much energy can be produced by 

burning the patch completely. So, for each iteration the heat produced by fire can be defined by 

multiplying the heat produced by the percent of the patch burning. This process will continue 

until the fuel is exhausted. The pictures above demonstrate their use.     

The pictures shown above depict a very hot heat source (white) as it cools and transfers 

the heat (red) until the patch temperatures drop back to the ambient range (blue). 
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Environmental Factors 

Fire is greatly affected by three certain environmental factors: 

wind, humidity, and ambient temperature.  

• Wind 

Wind has been accounted for with the incorporation 

of vectoring. Each fire arc is subject to course 

correction by adjusting for wind using a vector 

which is based upon both the spread distance and the 

wind speed. However, this adjustment only 

takes place upon spread lengths emanating 

from the central ignition point. This is 

because, if the wind is blowing, the fire’s 

shape would not produce the right shape as 

dictated by FARSITE and all other data upon 

which wind is based on. These pictures show 

the vectoring process in more detail.  

 

• Humidity 

Humidity has not been incorporated because its effect on fire could not be easily 

defined. Humidity could possibly be accounted for by editing the spread rate based 

upon the ambient humidity; however, there is no finite scale upon which to make this 

assessment. 

 

• Ambient Temperature 

Ambient temperature is the starting temperature of the virtual forest. As seen in the 

heat flow example, as the environment cools, it approaches the ambient temperature. 

This is the basis of Newton’s Law of Cooling. The beginning ambient temperature 

must be input by the user in the beginning, and is handled by the program from then 

on. 
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Technical  
This program was developed to be efficient. The use of advanced classes, vectors, header 

files, text file input and output, and such has successfully increased the efficiency of the 

program. The program, at its current state, is 1,403 lines of code, with the most important 

processes in the main header file (Please refer to Appendix C). However, the task is not 

completely done as of yet. Before the final presentations, there will be several more additions to 

the current code. There will also be a website developed detailing the project in its entirety. Code 

additions include: correction of the wind vectoring code, a status number box, a view that 

integrates the physical environment with the fire flow, and a java applet demo version of the 

program that will be placed on the website, as well as possibly incorporating parallel processing.  
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Program Validation 
 

In order to validate the program, the team created ideal 

conditions, as much as possible in the laboratory and by 

creating ignition points on varying stocks of paper in a windless 

room using a lighter. The team chose paper because it is the 

most uniform material that can be burned. The Elliptical Fire 

Theory states that under ideal conditions, a fire will burn in a 

two-dimensional circle. Several different types of paper were 

chosen, which included printer paper, construction paper, and 

tissue paper. As the fire burned, the advance of the fire was 

filmed. As seen above, the fire moves in a very circular pattern 

because the fuel type is uniform, and there are no external 

factors such as wind which can adversely affect the fire flow. 

The next step was to input the conditions into the fire model. 

 When a uniform fuel type is input into the program, the 

“fire” moves in a perfectly circular pattern and matches the Elliptical Fire Theory. Since the 

program’s fire moves in a similar pattern, then the program has been validated and the theory 

endorsed. 

When a non-uniform surface was burned (see picture above), the fire flow upon the 

surfaces was different. This endorsed and validated the assumption that fire will flow at different 

rates over different fuel types. Appendix A section C contains the program’s version of the 

experiment. The similarity between them is striking. This reflects the programs validity over the 

fire phenomena.   

Since the basis of this project was validated, it is hoped that other factors cold also be 

validated in laboratory conditions.  
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Discussion 
 

What has been learned during the course of this project is that fire is an entity which is 

very difficult to define, and in order to properly model it, many many variables must be 

incorporated. To date, no all inclusive fire model has ever been created. Although many groups 

such as the U.S. Forest Service have attempted to accurately model how a fire flows in a forest, 

no one has yet created a model which incorporates all the variables that can be observed in the 

real world. 

Due to the limited time period in which to create this model, the team chose to model fuel 

types and wind vectoring because they believed that those two variables, in particular, affected 

the flow of fire the most. Although the model does not take into account many of the variables 

associated with fire, those few variables which have been modeled, have created an accurate 

replication of how a fire flows n a realistic environment. The variables which have been 

incorporated significantly advance the program beyond the progress that was achieved last year.. 

Many concepts which were intangible when the project was first begun have been defined and 

will be essential in future fire modeling research. The most important of these is the distinction 

between fire flow and heat flow.  

 

The Heat Flow Model 

The incorporation of Newton’s Law of Cooling and Fourier’s Law of Conduction account 

for convection and conduction, and the introduction of these two laws into the project gives the 

project a strong foundation. However, the radiation model has eluded the modeling process. The 

Stefan-Boltzmann Law of Radiation accounts for only fire radiation given off by heat and not the 

chemical reaction of fire. Fire’s main method of heat creation is radiation. Therefore, the heat 

flow model requires more development, most specifically the radiation model. The actual fire 

model is also affected, because if heat cannot be properly defined, then the effect of temperature 

upon fire cannot be properly modeled.  
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            The Wind Model 

The wind vectoring process makes logical sense. Fire flow can be treated as a vector of 

the proportion of the wind speed and its direction and the spread of the fire across an area. 

However, this has not been validated yet and can only remain suspicion.  

 

 The Fuel Model 

 The fuel model generalizes many factors. It breaks the forest and its individual traits into 

a square grid with meters as its base unit. This generalization makes fire flow less accurate. Yet, 

you cannot model the forest exactly in a computer program. There are factors that cannot be 

perfectly defined no matter how precise you become.  

 The division of the patches’ fuel into wet and dry fuel also pulls the fire flow process 

from the mark. Yet, it is this simplification that gives the project a basis, flawed, but workable, 

upon which it can solve the important part, the fire flow. The program can then easily 

characterize wet and dry fuels.   
 

The Fire Flow Model 
 The fire flow process is the biggest success of this project. The Elliptical Fire Theory 

gives the program a validated base upon which to build. As more variables are added to the 

model, one must know the beneficial or detrimental effects of the variable upon fire spread to 

find the growth of the fire. This is a standard benchmark that depends upon all the incorporated 

variables the fire will travel a certain distance at a certain degree.   

 

 Variables and Empirical Data 

 Fire is never exposed to perfect circumstances. In the real world, fire is affected by many 

variables, some yet to be defined. This project attempted to take into account three specific 

variables that effect fire flow; heat, fuel type, and wind. However, to determine these variables, 

other variables must be known, and eventually integrated. For example, it is known fire spreads 

at different rates over different fuels, but it remains unknown exactly at what rate per fuel type. 

Empirical data is needed to increase the accuracy of this project. There are many variables which 

could become constants with more research and experimentation.  
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 Though this program may not account for all environmental factors, it does provide a 

basis for later addition of these factors when the variables’ effects are known a can be integrated 

into the program. 

 

 Validation 

 Looking back, this project has come a long way since last year. The foundation of the 

Elliptical Fire Theory has evolved into the modeling of a fire. This project and the program 

cannot be disproven, yet cannot be proven at their current state. This is suggested by the research 

and data collected. 

This program follows basic fire expansion. In a future venture however, further validation 

of this project needs more real-world data. This data must then be collected, compared, and the 

program adjusted to take into account realistic, imperfect fire conditions. Possibly a static test 

could be done to compare the effects of a real forest fire against the program’s version of the fire. 

Or perhaps this program could be compared against FARSITE. The basis of validation in this 

project was to validate the Elliptical Fire Theory by burning materials in relatively perfect 

conditions. Although in tune with the program, in wildfires the conditions of the forest are not 

perfect. For this project to be of any practical use, the program must be validated against more 

than perfect conditions.    

Overview 

This program is the basis upon which a more advanced program can be built. Because 

there are so many variables that must be taken into account in order to ensure a true fire flow 

program, only a select few have been incorporated as discussed above. In the future, many more 

important fire variables must be incorporated in order to ensure an even more accurate fire flow 

program. In addition, further verification will be attempted using actual fire data collected by the 

United States Forest Service and other organizations. The team will attempt to verify that, based 

on the given environmental conditions, the program would flow in the same manner and speed 

evidenced by a past fire. If the program can be validated by this method using additional 

variables, then a true to life fire model, which may be even more accurate than current fire 

models, could be created for use in the real world. Fire is a devastating force, and by 

understanding it, and using the wondrous technology around us to model and predict it, we may 

one day live in a world in which forest fires no longer threaten our homes and our lives. 
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Conclusion 
 

In conclusion, this project’s foundation has been validated. The Elliptical Fire Theory has 

been validated in the real world and has been successfully incorporated into the program.  With 

this basis validated, other factors that bear on fire can then be incorporated when their effect on 

fire radii are known. 

This project was named Analytical Fire for a reason. After all, forests are far too precious 

to be burned at a whim. However, now that a basis has been laid, it needs real world values to be 

placed in variable areas. The fuel type assumption, that fire will spread at different rates over 

different fuel types, has been validated. However, there is no data yet for the rate at which fire 

moves over different fuels. Heat’s effect upon fire is known, but not precisely defined. 

Therefore, this project needs an empirical basis as well as an analytical basis to become a more 

accurate fire flow forecaster.  

Another inaccuracy of this project involves the sheer number of factors involved in 

determining fire flow. Fire flow cannot be accurately modeled without knowing these factors and 

their affect upon fire. However, the nature of the Elliptical Fire Theory allows for these variables 

to be accounted for easily once their affects are known. As more and more variables are 

accounted for, more accurate fire flow approximation can be included in the program. Therefore, 

this program allows for a core around which a realistic approximation can be built.  

The conclusion is that this project is a success. The amount of progress accomplished in 

such a short amount of time is remarkable. The flow of fire across the virtual environment is 

rational. The results of this project are viable. The program only needs more work, time, 

research, and an empirical basis to become an asset which could be used in real world 

applications.  
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Appendix 
 
Appendix A - Program Screen Shots 
 
A. Uniform Fire: This execution shows the application of the Elliptical Fire Theory in the 
program. 
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B. Fuel Type Emphasis: This execution of the program emphasizes the effect of fuel types on 
fire growth 
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C. A repeated experiment of the validation only in the computer program. The similarity 
between the program and real fire is remarkable. 
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Appendix B - Glossary 
 
 

Ambient Heat – Starting from the forest’s ambient temperature and raising as a fire moves 

approaches, and decreasing as the fire passes by or dies our for lack of fuel or oxygen.  

Ambient Temperature- Temperature to which environment will cool based upon Newton’s Law 

of Cooling 

Dry Fuel- Fuel classified as having a lower moisture content requiring a lower flash point than 

wet fuel. 

Elevation Assumption- Changes in ground level affect fire because of differences in oxygen   

Elliptical Fire Theory- Theory that fire will form a perfect ellipse under perfect burn 

conditions. This implies that to properly account for fire flow, the polar radii can be shortened 

and lengthened accounting to different variables’ effects on fire. 

FARSITE- Forestry Service’s fire approximation program based on Huygen’s Principle. 

Fire – The chemical reaction of fuel, ignition heat, and oxygen which generates additional heat 

burning fuel and oxygen. Fire is self-perpetuating as long as sufficient fuel and oxygen remain. 

Fire Acceleration- As fire grows larger, it accelerates faster. The heat assumption may account 

for this phenomenon.  

Fire Arcs- The collection extensions of the fire radii from a single point. 

Fire Flow – The most commonly understood definition of a fire, defined as the actual, 

observable movement of a fire through a forest. 

Fire Perimeter- Collection of fire arcs that, with fire perimeter reduction, form a perimeter 

around the fire. 

Fire Perimeter Reduction- For better efficiency, unneeded fire arcs are deleted in the middle of 

the fire.  

Fire Radii- Polar extensions from a central ignition point. For example, 3 units at 30 degrees. 

Fire radii are susceptible to changes in lengths based upon factors involved in fire flow.  

Fourier’s Law of Conduction- Law to describe conduction. Heat flow through air can be 

considered conduction. 

Fuel- Every patch has fuel with different moisture contents. These moisture contents are 

simplified into two types of fuels requiring different prerequisites to burn then.   
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Fuel Type – Different types of fuels where each contain its own heat generation factors, ignition 

point values, dry and wet fuel ratings, etcetera. Some examples include trees and shrubs. 

Fuel Type Assumption- As fire flows over different types of ground coverage, it will spread 

faster or slower depending upon the fuel type’s atomic structure and typical surface area. 

Heat Flow – The transfer of heat in a forest as a fire moves, as well as, during everyday 

circumstances. Generally connected to fire flow because of the natural properties of fire which 

gives off heat as a byproduct, but can also be associated with ambient warming and cooling with 

the time of day. 

Heat Assumption- Different amounts of heat cause fire to spread differentially. The hotter it is, 

the faster the fire flow.   

Huygen’s Principle- FARSITE equation that uses wind and elevation to determine an ellipse that 

the fire will follow. 

Ignition Point – Minimum temperature at which a fuel will ignite and become self sustaining 

based on fuel type and environmental factors. 

Moisture Assumption- More moisture will slow fire spread. 

Mini-Patches- Patches divided into 100 equal parts to better keep track of certain aspects in the 

program. 

Newton’s Law of Cooling- Variable equation that accounts for cooling of patches during 

radiation, convection, and conduction.  

Patches- Division of fuel type exactness and area. One patch is approximately 1 sq meter. 

Piloted Flash Point/ Instantaneous – Point at which patch will combust whether or not fire is 

present. 

Rapid Oxidization- The scientific term for the chemical reaction of fire. Rapidly taking of the 

oxygen in the fuel. 

Spot Fires- A term for sparks that fly into the air and create fires in new places down wind. 

Spread Rate- The rate at which fire can spread across the ground. Influenced by many 

environmental factors, heat, wind, and other factors. 

Stefan-Boltzmann Law of Radiation- Law to give the amount of radiation emitted from an 

object based upon its emmisivity and temperature. 

Unpiloted Flash Point/ Basic – Temperature which is required to burn a certain fuel. 

Virtual Forest- Collection of patches that make up the forest environment. 
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Wet Fuel- Fuel classified as having a higher moisture content requiring a higher flash point than 

dry fuel . 

Wind Assumption- Wind’s affect upon fire can be described as a vector of wind speed and fire 

spread. 

Wind Vectoring- The process of correcting fire flow for wind. 
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Appendix C Program Code 

Main.h  
 
The bulk of the useful  program code 
//Main.h  where it all happens 
//Written by: Chris Morrison and Nick Kutac 
//Not perfected version 
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++// 
#include <gl\gl.h> //gl libraries 
#include <gl\glu.h> 
#include <math.h> 
#include<vector.h> 
#include<iomanip.h> 
#include "Load.h" 
#include "Data.h" 
#include "Wind.h" 
 
void DrawForest(double ypers, double xpers,double sf, int selected[3]); 
void DrawHeat  (double ypers, double xpers,double sf, int selected[3]); 
void DrawFire  (double ypers, double xpers,double sf, int selected[3]); 
void DrawBurnt (double ypers, double xpers,double sf, int selected[3]); 
void MakeFire(); 
void Continue(int sf); 
void disContinue(); 
void Record(); 
 
double increment=.1;               //fire step length 
double MSR=1;                    //interval*fuela legnth per step 
double s=0;                        //current interval*fuela 
 
int degrees=18;                    //number of extensionsor radii on fire arc 
int boundaries; 
//----------------------------------------------------------------- 
  class Enviornment             //forest environment 
{ 
 public: 
   double WindSpeed;            //global env factors 
   double WindAngle; 
   double AmbientTemperature;      
         
    class Patches 
  {     public:                //specific to patch env factors 
        int type; 
        float DryFuelHum; 
        float WetFuelHum; 
        float oxygen; 
        double CrownWetFuel; 
        double CrownDryFuel; 
        double FloorWetFuel; 
        double FloorDryFuel; 
        long double CelsiusTemperature; 
        double WetFlashPoint; 
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        double DryFlashPoint; 
        double InstantaneousFlashPoint; 
        double ProducedHeat; 
        double CrownHeight; 
        double emmisivity;     
        bool active[10][10];  //minipatches 
           
   void Ignite(int x,int y)   //ignite mini-patches   
   {  
     active[x][y]=true; 
   } 
         
   bool PreviousFire(int x,int y)//check if a fire has previously been  
   {                             //in the patch 
        return active[x][y]; 
   } 
    
   bool Sustainable()            //if the conditions in the patch are  
   {                             //able to sustain fire 
    
if((CelsiusTemperature>DryFlashPoint&&FloorDryFuel>0)||(CelsiusTemperature>WetFlashPoint&&FloorWetFuel
>0)) 
        {return true;} 
         return false; 
   } 
  
}Heat[500][500][2];           //500x500 patches supportable x2 for heat records 
// 
void Rationalize(int sf)      //rationalize temperatures 
 {    for(int x=0;x<=sf;x++) 
         {for(int y=0;y<=sf;y++) 
             {Heat[x][y][0].CelsiusTemperature+=Heat[x][y][1].CelsiusTemperature;} 
         } 
 } 
//  
void HeatFlow(int x,int y)     //heat flow algorithm 
 {       double k=-.25;        //Newton's Law of Cooling Varible   
         double e=2.718281828; //e 
         double K=1;           //Fouriers Law of Conductivity 
         double joulesToCelsius=.5; 
                               //Joules required to raise  
      
     Heat[x][y][0].CelsiusTemperature=AmbientTemperature+(Heat[x][y][0].CelsiusTemperature-
AmbientTemperature)*pow(e,k); 
     //Newton's Law of Cooling 
     if(Heat[x-1][y][0].CelsiusTemperature<Heat[x][y][0].CelsiusTemperature) 
       {Heat[x-1][y][1].CelsiusTemperature=+K*(((Heat[x][y][0].CelsiusTemperature-Heat[x-
1][y][0].CelsiusTemperature))/4);} 
     if(Heat[x+1][y][0].CelsiusTemperature<Heat[x][y][0].CelsiusTemperature) 
       {Heat[x+1][y][1].CelsiusTemperature=+K*(((Heat[x][y][0].CelsiusTemperature-
Heat[x+1][y][0].CelsiusTemperature))/4);} 
     if(Heat[x][y-1][0].CelsiusTemperature<Heat[x][y][0].CelsiusTemperature) 
       {Heat[x][y-1][1].CelsiusTemperature=+K*(((Heat[x][y][0].CelsiusTemperature-Heat[x][y-
1][0].CelsiusTemperature))/4);} 
     if(Heat[x][y+1][0].CelsiusTemperature<Heat[x][y][0].CelsiusTemperature) 
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       {Heat[x][y+1][1].CelsiusTemperature=+K*(((Heat[x][y][0].CelsiusTemperature-
Heat[x][y+1][0].CelsiusTemperature))/4);} 
    //Fourier's Law of conductivity 
     Heat[x-
1][y][1].CelsiusTemperature=+.0000000567*Heat[x][y][1].emmisivity*pow(Heat[x][y][1].CelsiusTemperature+273
,4)*joulesToCelsius/8; 
     
Heat[x+1][y][1].CelsiusTemperature=+.0000000567*Heat[x][y][1].emmisivity*pow(Heat[x][y][1].CelsiusTemperat
ure+273,4)*joulesToCelsius/8; 
     Heat[x][y-
1][1].CelsiusTemperature=+.0000000567*Heat[x][y][1].emmisivity*pow(Heat[x][y][1].CelsiusTemperature+273,4)
*joulesToCelsius/8; 
     
Heat[x][y+1][1].CelsiusTemperature=+.0000000567*Heat[x][y][1].emmisivity*pow(Heat[x][y][1].CelsiusTemperat
ure+273,4)*joulesToCelsius/8; 
     Heat[x-
1][y+1][1].CelsiusTemperature=+.0000000567*Heat[x][y][1].emmisivity*pow(Heat[x][y][1].CelsiusTemperature+
273,4)*joulesToCelsius/16; 
     
Heat[x+1][y+1][1].CelsiusTemperature=+.0000000567*Heat[x][y][1].emmisivity*pow(Heat[x][y][1].CelsiusTempe
rature+273,4)*joulesToCelsius/16; 
     Heat[x-1][y-
1][1].CelsiusTemperature=+.0000000567*Heat[x][y][1].emmisivity*pow(Heat[x][y][1].CelsiusTemperature+273,4)
*joulesToCelsius/16; 
     
Heat[x+1][y+1][1].CelsiusTemperature=+.0000000567*Heat[x][y][1].emmisivity*pow(Heat[x][y][1].CelsiusTempe
rature+273,4)*joulesToCelsius/16; 
     //Stefan Boltzmann Law of Radiation 
    double total=0; 
    for(int xa=0;xa<=9;xa++) 
       { for(int ya=0; ya<=9;ya++) 
         {   if(Heat[x][y][0].active[xa][ya]) 
           {total+=.01;}       
         } 
       } 
   Heat[x][y][0].CelsiusTemperature+=Heat[x][y][0].ProducedHeat*total; 
                     
    //Burn loop 
 } 
// 
void LoadForest(int sf)  //initializes forest and its values 
 { AmbientTemperature=getAmbient(); 
   WindSpeed=getWind(); 
   WindAngle=getWindAngle(); 
   //Load for environment class 
   for(int x=0; x<=sf-1;x++) 
      {for(int y=0; y<=sf-1;y++) 
          {Heat[x][y][0].CelsiusTemperature=AmbientTemperature; 
           Heat[x][y][0].ProducedHeat=Produced(Heat[x][y][0].type)*3; 
           Heat[x][y][0].FloorWetFuel=WetFuel(Heat[x][y][0].type); 
           Heat[x][y][0].FloorDryFuel=DryFuel(Heat[x][y][0].type); 
           Heat[x][y][0].WetFlashPoint=wetBasicFlash(Heat[x][y][0].type); 
           Heat[x][y][0].DryFlashPoint=dryBasicFlash(Heat[x][y][0].type); 
           Heat[x][y][0].InstantaneousFlashPoint=instantFlash(Heat[x][y][0].type); 
           Heat[x][y][0].emmisivity=Emmisivity(Heat[x][y][0].type); 
           //load values for patch class 
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             for(int xa=0; xa<=9;xa++) 
                {for(int ya=0; ya<=9;ya++) 
                   {Heat[x][y][0].active[xa][ya]=false; 
                 }}}//set mini-patches unburned 
      } 
  //Heat[10][10][0].CelsiusTemperature=150000;   
  }    
  
}FOREST; 
//------------------------------------------------------------------- 
class FirePerimeter //keep track of all points to arc next iteration 
{public: 
 vector<double> xloc; 
 vector<double> yloc; 
 vector<double> zloc; 
}Perimeter; 
//---------------------------------------------------------------------- 
class Draw  //records last iteration to display it with less processing 
{public: 
 double xstart;    
 double ystart; 
 double zstart; 
 vector <double> xloc; 
 vector <double> yloc; 
 vector <double> zloc; 
 
 Draw(int num,vector <double> aloc,vector <double> bloc,vector <double> cloc,double xs,double ys,double zs) 
     {//constructor 
      xloc=aloc; 
      yloc=bloc; 
      zloc=cloc; 
      xstart=xs;    
      ystart=ys; 
      zstart=0; 
     } 
  
 void Display() //function to display the past step 
 {   glBegin(GL_LINES); 
     if(xloc.size()!=0) 
     {for(int x=0; x<=xloc.size()-1; x++) 
        {   
          glVertex3f(xloc[x],yloc[x],0); 
          glVertex3f(xstart,ystart,0); 
        } 
        glEnd(); 
     } 
 } 
}; 
vector<Draw> DRAWING;//make it dynamic 
//---------------------------------------------------------------------- 
class Fire  //handles fire procreation 
{public: 
 double xstart;    
 double ystart; 
 double zstart; 
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Fire(double x,double y, double z) 
{ xstart=x;ystart=y; zstart=z;} 
//constructor 
void FireFlow() 
 { bool done; 
        vector<double> xloc,yloc,zloc; 
      for(int x=0;x<=180;x+=(360/degrees)) 
      { //increments the degree of the radii 
        double spread=0;s=0; 
           do 
          {            
            //double b=ystart-tan(convert(x))*xstart; 
            //double xa=xstart+(s/sqrt(1+pow(tan(convert(x)),2))); 
            //double ya=(xstart+(s/sqrt(1+pow(tan(convert(x)),2))))*tan(convert(x))+b; 
            //before and after polar corrections 
            double xa= xstart + s*(cos(convert(x) + pi/2)); 
            double ya= ystart + s*(sin(convert(x) + pi/2)); 
            //keeps track of exact coordinates 
            double za=0; 
           if(xa<1){xa=1;}if(ya<1){ya=1;} 
           if(xa>30){xa=30;}if(ya>30){ya=30;} 
           //keeps flow within boundaries          
           int aa=floor(xa); 
           int ba=floor(ya); 
           //casts as ints to ignite flow 
            
           spread=spread+(increment*Geta(FOREST.Heat[aa][ba][0].type)); 
           //adds spread  until reaxhes maximum 
           if(spread>=MSR) 
               {done=true; 
               //if it has reached the maximum time flow  
                   double newxa=xa,newya=ya,newza=0; 
                        if(FOREST.WindSpeed!=0) 
                        { newxa=WindVectoring('x',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,2,x); 
                          newya=WindVectoring('y',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,2,x); 
                          newza=WindVectoring('z',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,2,x); 
                        } //computes wind vectoring 
                        if(newxa<1){newxa=1;}if(newya<1){newya=1;} 
                          bool record=firepath(newxa,newya,x);                                                                
                          if(record) 
                          {Perimeter.xloc.push_back(newxa); 
                           Perimeter.yloc.push_back(newya); 
                           //keep track of fire end points and perimeter 
                           xloc.push_back(newxa); 
                           yloc.push_back(newya); 
                           zloc.push_back(0); 
                          } 
              
               } 
           else 
           {done=false;  }       
           
           if(!FOREST.Heat[aa][ba][0].Sustainable()) 
           {done=true;  //if conditions aren't suitable for fire         
           double newxa=xa,newya=ya,newza=0; 
                        if(FOREST.WindSpeed!=0) 
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                        { newxa=WindVectoring('x',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,2,x); 
                          newya=WindVectoring('y',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,2,x); 
                          newza=WindVectoring('z',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,2,x); 
                        }  
                        if(newxa<1){newxa=1;}if(newya<1){newya=1;} 
                          bool record=firepath(newxa,newya,x);                                                                
                          if(record) 
                          {Perimeter.xloc.push_back(newxa); 
                           Perimeter.yloc.push_back(newya); 
                           //keep track of spread in vectors 
                           xloc.push_back(newxa); 
                           yloc.push_back(newya); 
                           zloc.push_back(0); 
            
           }} 
            
            s=s+(increment*heatFactor(FOREST.Heat[aa][ba][0].CelsiusTemperature)); 
         }while(!done); 
      spread=0; s=0; 
         do 
          { //computes the same just for the opposite quadrant 
            //double b=ystart-tan(convert(x))*xstart; 
            //double xa=xstart-(s/sqrt(1+pow(tan(convert(x)),2))); 
            //double ya=(xstart-(s/sqrt(1+pow(tan(convert(x)),2))))*tan(convert(x))+b; 
            double xa = xstart - s * (cos(convert(x) + pi/2)); 
            double ya = ystart - s * (sin(convert(x) + pi/2)); 
            double za=0; 
           if(xa<1){xa=1;}if(ya<1){ya=1;} 
            
            int aa=floor(xa); 
            int ba=floor(ya); 
                        
         spread=spread+(increment*Geta(FOREST.Heat[aa][ba][0].type)); 
             
            if(spread>=MSR) 
               {done=true; 
                        double newxa=xa,newya=ya,newza=0; 
                        if(FOREST.WindSpeed!=0) 
                        { 
newxa=WindVectoring('x',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,FOREST.WindSpeed,x+180); 
                          
newya=WindVectoring('y',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,FOREST.WindSpeed,x+180); 
                          
newza=WindVectoring('z',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,FOREST.WindSpeed,x+180); 
                        } 
                          if(newxa<1){newxa=1;}if(newya<1){newya=1;} 
                          bool record=firepath(newxa,newya,x+180); 
                          if(record) 
                          {Perimeter.xloc.push_back(newxa); 
                           Perimeter.yloc.push_back(newya); 
                           xloc.push_back(newxa); 
                           yloc.push_back(newya); 
                           zloc.push_back(0);  
                          }                          
               } 
           else 
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           {done=false; 
           }       
           
           if(!FOREST.Heat[aa][ba][0].Sustainable()) 
           {done=true;  double newxa=xa,newya=ya,newza=0; 
                        if(FOREST.WindSpeed!=0) 
                        { newxa=WindVectoring('x',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,2,x); 
                          newya=WindVectoring('y',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,2,x); 
                          newza=WindVectoring('z',xa,ya,za,xstart,ystart,zstart,FOREST.WindAngle,2,x); 
                        }  
                        if(newxa<1){newxa=1;}if(newya<1){newya=1;} 
                          bool record=firepath(newxa,newya,x);                                                                
                          if(record) 
                          {Perimeter.xloc.push_back(newxa); 
                           Perimeter.yloc.push_back(newya); 
                            
                           xloc.push_back(newxa); 
                           yloc.push_back(newya); 
                           zloc.push_back(0);       }} 
           s=s+(increment*heatFactor(FOREST.Heat[aa][ba][0].CelsiusTemperature)); 
          }while(!done); 
      }   
            
     Draw tmp(degrees,xloc,yloc,zloc,xstart,ystart,zstart);        
     DRAWING.push_back(tmp); 
      
  } 
  bool firepath(double xa,double ya,int degslope)//keeps track of the fire path 
  {  double legnth=sqrt(pow(xstart-xa,2)+pow(ystart-ya,2)); 
     int aa=0,ba=0,ca=0,da=0;  
      for(double x=0; x<=legnth; x+=.09) 
      { //tells the computer to burn the minipatches in the way of the fire 
        double feta; 
         if((degslope>=90&&degslope<=180)||(degslope>=270&&degslope<=360)) 
         {feta=90-(degslope%90);} 
         if((degslope<90)||(degslope>180&&degslope<270)) 
         {feta=degslope%90;} 
          
         if(degslope<=90) 
         {aa=floor(xstart+x*cos(convert(feta))); 
          ca=floor(10*(xstart+x*cos(convert(feta)))); 
          ba=floor(ystart+x*sin(convert(feta))); 
          da=floor(10*(ystart+x*sin(convert(feta)))); 
         } 
          
         if(degslope>90&&degslope<180) 
         {aa=floor(xstart-x*cos(convert(feta))); 
          ca=floor(10*(xstart-x*cos(convert(feta)))); 
          ba=floor(ystart+x*sin(convert(feta))); 
          da=floor(10*(ystart+x*sin(convert(feta))));                                        
         } 
         if(degslope>=180&&degslope<=270) 
         {aa=floor(xstart-(x*cos(convert(feta)))); 
          ca=floor(10*(xstart-(x*cos(convert(feta))))); 
          ba=floor(ystart-(x*sin(convert(feta)))); 
          da=floor(10*(ystart-(x*sin(convert(feta)))));          
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         } 
         if(degslope>270&&degslope<=360) 
         {aa=floor(xstart+x*cos(convert(feta))); 
          ca=floor(10*(xstart+x*cos(convert(feta)))); 
          ba=floor(ystart-x*sin(convert(feta))); 
          da=floor(10*(ystart-x*sin(convert(feta)))); 
         }         
        if(!FOREST.Heat[aa][ba][0].PreviousFire(ca%10,da%10)&&x<legnth-sqrt(.02)) 
          {FOREST.Heat[aa][ba][0].Ignite(ca%10,da%10);} 
      } 
  if(!FOREST.Heat[aa][ba][0].PreviousFire(ca%10,da%10)) 
    {return true;} 
    return false; 
  } 
}fire(14,16,0),fIre(5,5,0); 
 
vector<Fire> FIRE; 
//************************************************************** 
bool Main(double ypers, double xpers,const double sf,int selected[3],int status,long timer,int TimeChange) 
{   //initializes  
     if(timer==0) 
      {boundaries=sf+1; 
     for(int x=0;x<=sf;x++) 
        {for(int y=0; y<=sf; y++) 
            { FOREST.Heat[x][y][0].type=getType(x,y);} 
        }  
      FOREST.LoadForest(sf); 
      } 
     switch(TimeChange) 
     {//if there is a time step or not 
     case 0: 
       {           disContinue();       
         if(status==1){ DrawForest(ypers,xpers,sf,selected);} 
         if(status==2){ DrawHeat(ypers,xpers,sf,selected);} 
         if(status==3){ DrawFire(ypers,xpers,sf,selected);} 
         if(status==4){ DrawBurnt(ypers,xpers,sf,selected);} 
         break;//which screen to display 
       } 
      
     case 1: 
       { //if there is a time change                    
         if(status==1){ DrawForest(ypers,xpers,sf,selected);} 
         if(status==2){ DrawHeat(ypers,xpers,sf,selected);} 
         if(status==3){ DrawFire(ypers,xpers,sf,selected);} 
         if(status==4){ DrawBurnt(ypers,xpers,sf,selected);} 
     //which screen to display 
         DRAWING.clear(); 
         fire.FireFlow(); 
         //fIre.FireFlow(); 
         if(FIRE.size()!=0) 
           {for(int x=1; x<=FIRE.size()-1;x++) 
               {    
                FIRE[x].FireFlow(); 
               } 
           }  
         //compute the fire flow 
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         Continue(sf); 
         Record(); 
         //record valid data to a text file 
         break; 
       } 
      
   default:{break;} 
  } 
  return true; 
} 
 
//**************************************************************  
void DrawForest(double ypers, double xpers,double sf,int selected[3]) 
{ 
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  
 glLoadIdentity(); 
              
 glTranslatef(xpers,ypers,-25.0f); 
    glBegin(GL_QUADS); 
    { glColor3f(0,.75,.5); 
        glVertex3d(1,1,0); 
        glVertex3d(1,sf,0); 
        glVertex3d(sf,sf,0); 
        glVertex3d(sf,1,0); 
         
         
         
    }glEnd(); 
     
    for(int x=1; x<=sf; x++) 
    { for(int y=1; y<=sf; y++) 
      { glBegin(GL_QUADS); 
     glColor3f( blue(FOREST.Heat[x][y][0].type) 
,yellow(FOREST.Heat[x][y][0].type),red(FOREST.Heat[x][y][0].type)); 
        glVertex3d(x,y,0); 
        glVertex3d(x+1,y,0); 
        glVertex3d(x+1,y+1,0); 
        glVertex3d(x,y+1,0); 
    glEnd(); 
    }} 
   //draw the fuel types 
      
     glBegin(GL_QUADS); 
    { glColor3f(1.0f,1.0f,1.0f); 
        glVertex3d(selected[0],selected[1],0);//selected[3]); 
        glVertex3d(selected[0]+1,selected[1],0);//selected[3]); 
        glVertex3d(selected[0]+1,selected[1]+1,0);//,selected[3]); 
        glVertex3d(selected[0],selected[1]+1,0);//selected[3]); 
    }glEnd();  
     glBegin(GL_LINES); 
 for(int x=1; x<=sf; x++) 
    {   glColor3f(0.0f,1.0f,1.0f); 
            glVertex3d(1,x,0);     // Left Center Of Player 
   glVertex3d(sf,x,0); 
            glVertex3d(x,1,0);     // Left Center Of Player 

 44



   glVertex3d(x,sf,0);  
    } 
     glEnd();   
         
        for(int x=1; x<=sf; x++) 
        { for(int y=1; y<=sf; y++) 
      {  
         glBegin(GL_QUADS); 
     glColor3f( blue(FOREST.Heat[x][y][0].type) 
,yellow(FOREST.Heat[x][y][0].type),red(FOREST.Heat[x][y][0].type)); 
        glVertex3d(((6/sf)*x)-xpers-11-2,((6/sf)*y)-ypers-11+12,0); 
        glVertex3d(((6/sf)*x)-xpers-11-2+6/sf,((6/sf)*y)-ypers-11+12,0); 
        glVertex3d(((6/sf)*x)-xpers-11-2+6/sf,((6/sf)*y)-ypers-11+12+6/sf,0); 
        glVertex3d(((6/sf)*x)-xpers-11-2,((6/sf)*y)-ypers-11+12+6/sf,0); 
        } 
        } 
        //draw the minimap       // Done Drawing The Quad 
    glEnd(); 
  
      
} 
//************************************************************* 
void DrawHeat(double ypers, double xpers,double sf, int selected[3]) 
{ 
     glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
     glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  
     glLoadIdentity(); 
     glTranslatef(xpers,ypers,-25.0f); 
      
     for(int x=1; x<=sf; x++) 
    { for(int y=1; y<=sf; y++) 
      { glBegin(GL_QUADS); 
     glColor3f( BLUE(FOREST.Heat[x][y][0].CelsiusTemperature) 
,GREEN(FOREST.Heat[x][y][0].CelsiusTemperature),RED(FOREST.Heat[x][y][0].CelsiusTemperature)); 
        glVertex3d(x,y,0); 
        glVertex3d(x+1,y,0); 
        glVertex3d(x+1,y+1,0); 
        glVertex3d(x,y+1,0); 
    }} 
     glEnd(); 
      
     glBegin(GL_QUADS); 
    { glColor3f(1.0f,1.0f,1.0f); 
        glVertex3d(selected[0],selected[1],0);//selected[3]); 
        glVertex3d(selected[0]+1,selected[1],0);//selected[3]); 
        glVertex3d(selected[0]+1,selected[1]+1,0);//selected[3]); 
        glVertex3d(selected[0],selected[1]+1,0);//selected[3]); 
    } glEnd(); 
    glBegin(GL_LINES); 
 for(int x=1; x<=sf; x++) 
    {   glColor3f(0.0f,1.0f,1.0f); 
            glVertex3d(1,x,0);     // Left Center Of Player 
   glVertex3d(sf,x,0); 
            glVertex3d(x,1,0);     // Left Center Of Player 
   glVertex3d(x,sf,0);  
    } 
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    glEnd(); 
    DrawNum(1,FOREST.Heat[selected[0]][selected[1]][0].CelsiusTemperature,ypers+12,xpers+12); 
     
      
 
} 
//************************************************************* 
void DrawFire(double ypers, double xpers,double sf, int selected[3]) 
{ 
     glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
     glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  
     glLoadIdentity(); 
     glTranslatef(xpers,ypers,-25.0f); 
     glBegin(GL_LINES); 
 for(int x=1; x<=sf; x++) 
    {   glColor3f(0.0f,1.0f,1.0f); 
            glVertex3d(1,x,0);     // Left Center Of Player 
   glVertex3d(sf,x,0); 
            glVertex3d(x,1,0);     // Left Center Of Player 
   glVertex3d(x,sf,0);  
    } 
 glEnd(); 
     
      
    //DRAWING.clear(); 
    if(DRAWING.size()!=0) 
   {for(int x=0; x<=DRAWING.size()-1;x++) 
    {    
            DRAWING[x].Display(); 
    } 
   }     //displays all saved fire arcs 
} 
//************************************************************** 
void DrawBurnt (double ypers, double xpers,double sf, int selected[3]) 
{ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  
  glLoadIdentity(); 
  glTranslatef(xpers,ypers,-25.0f); 
     for(int x=1; x<=sf; x++) 
    { for(int y=1; y<=sf; y++) 
      { for(int xa=0; xa<=9; xa++) 
        { for(int ya=0; ya<=9; ya++) 
          { 
                  double a=xa,b=ya; 
      glBegin(GL_QUADS); 
     if(FOREST.Heat[x][y][0].active[xa][ya]){glColor3f(1,1,0);} 
        if(!FOREST.Heat[x][y][0].active[xa][ya]){glColor3f(0,0,1);} 
        glVertex3d(x+(a/10),y+(b/10),0); 
        glVertex3d(x+.1+(a/10),y+(b/10),0); 
        glVertex3d(x+.1+(a/10),y+.1+(b/10),0); 
        glVertex3d(x+(a/10),y+.1+(b/10),0); 
    glEnd(); 
    }}}} 
     
     
     glBegin(GL_LINES); 
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 for(int x=1; x<=sf; x++) 
    {   glColor3f(0.0f,1.0f,1.0f); 
            glVertex3d(1,x,0);     // Left Center Of Player 
   glVertex3d(sf,x,0); 
            glVertex3d(x,1,0);     // Left Center Of Player 
   glVertex3d(x,sf,0);  
    } 
 glEnd(); 
 
} 
//************************************************************** 
void MakeFire() 
{if(Perimeter.xloc.size()) 
    { for(int x=0; x<=Perimeter.xloc.size()-1; x++) 
      {     Fire Temporary(Perimeter.xloc[x-1],Perimeter.yloc[x-1],0); 
            FIRE.push_back(Temporary);  
      } 
    }  //add fires to vectors 
Perimeter.xloc.clear(); 
Perimeter.yloc.clear(); 
Perimeter.zloc.clear(); 
} 
//************************************************************** 
void Continue(int sf) 
{     
     for(int x=1; x<=sf-1; x++) 
     {   for(int y=1; y<=sf-1; y++) 
             {FOREST.HeatFlow(x,y);} 
     } 
     FOREST.Rationalize(sf); 
     //create new fires   
     FIRE.clear();  
     MakeFire(); 
} 
//*************************************************************** 
void disContinue() 
{ 
Perimeter.xloc.clear(); 
Perimeter.yloc.clear(); 
Perimeter.zloc.clear(); 
}//crear extra vectors 
//**************************************************************** 
void Record() 
{ int num=0; 
for(int w=0; w<=30-1;w++) 
   {for(int x=0; x<=30-1;x++) 
     {for(int y=0; y<=9;y++) 
      {for(int z=0; z<=9;z++) 
        {if(FOREST.Heat[w][x][0].PreviousFire(y,z)) 
        {num++;}}}}} 
        PutOut(num,num); 
} 
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Data.h 
 Data Storehouse 
//Data.h Where data is stored for patches mainly 
//based on fuel type values 
 
#include<math.h> 
#define pi 3.141592654 
 
double inline convert(double con) 
{  return con*pi/180;} 
 
float red(int ft) 
{ 
    if(ft==0){return 0;} 
    if(ft==1){return 0;} 
    if(ft==2){return 0.5;} 
    if(ft==3){return 1;} 
    if(ft==4){return 0;} 
    if(ft==5){return 0;} 
    if(ft==6){return 0;} 
    if(ft==7){return 1;} 
    if(ft==8){return 0;} 
    if(ft==9){return 1;} 
    if(ft==10){return 0;} 
    return 0; 
} 
float yellow(int ft) 
{ 
    if(ft==0){return 0;} 
    if(ft==1){return 0;} 
    if(ft==2){return 0;} 
    if(ft==3){return 0;} 
    if(ft==4){return 0.5;} 
    if(ft==5){return 1;} 
    if(ft==6){return 0;} 
    if(ft==7){return 0;} 
    if(ft==8){return 0.5;} 
    if(ft==9){return 1;} 
    if(ft==10){return 0;} 
    return 0; 
} 
float blue(int ft) 
{ 
    if(ft==0){return 0;} 
    if(ft==1){return 0;} 
    if(ft==2){return 0.5;} 
    if(ft==3){return 1;} 
    if(ft==4){return 0;} 
    if(ft==5){return 0;} 
    if(ft==6){return 0.5;} 
    if(ft==7){return 0;} 
    if(ft==8){return 1;} 
    if(ft==9){return 0;} 
    if(ft==10){return 1;} 
    return 0; 
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} 
//spread values based on fuel type  
 float Geta(int ft) 
{ 
    if(ft==0){return 1.5;} 
    if(ft==1){return 1;} 
    if(ft==2){return .5;} 
    if(ft==3){return 3;} 
    if(ft==4){return 2;} 
    if(ft==5){return 1;} 
    if(ft==6){return .5;} 
    if(ft==7){return 2;} 
    if(ft==8){return 1;} 
    if(ft==9){return 2.5;} 
    if(ft==10){return 1;} 
    return 0; 
} 
//RGB heat colors 
  float RED(double Heat) 
{  if(Heat<0) 
      {return 1;} 
   if(Heat<=1500&&Heat>=0) 
      {return 1-Heat/1500;} 
   else {return (Heat-1500)/1500;}         
} 
 
 float BLUE(double Heat) 
{  if(Heat<0) 
      {return 0;} 
   if(Heat<=1500&&Heat>=0) 
      {return Heat/1500;} 
   else {return 1;} 
} 
  float GREEN(double Heat) 
{  if(Heat>1500) 
   {return (Heat-1500)/1500;} 
   else 
   {return 0;} 
} 
float Produced(int ft) 
{   if(ft==0){return 100;} 
    if(ft==1){return 100;} 
    if(ft==2){return 100;} 
    if(ft==3){return 100;} 
    if(ft==4){return 100;} 
    if(ft==5){return 100;} 
    if(ft==6){return 100;} 
    if(ft==7){return 100;} 
    if(ft==8){return 100;} 
    if(ft==9){return 100;} 
    if(ft==10){return 100;} 
    return 0; 
} 
int WetFuel(int ft) 
{   if(ft==0){return 1;} 
    if(ft==1){return 1;} 
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    if(ft==2){return 1;} 
    if(ft==3){return 1;} 
    if(ft==4){return 1;} 
    if(ft==5){return 1;} 
    if(ft==6){return 1;} 
    if(ft==7){return 1;} 
    if(ft==8){return 1;} 
    if(ft==9){return 1;} 
    if(ft==10){return 1;} 
    return 0; 
} 
int DryFuel(int ft) 
{   if(ft==0){return 1;} 
    if(ft==1){return 1;} 
    if(ft==2){return 1;} 
    if(ft==3){return 1;} 
    if(ft==4){return 1;} 
    if(ft==5){return 1;} 
    if(ft==6){return 1;} 
    if(ft==7){return 1;} 
    if(ft==8){return 1;} 
    if(ft==9){return 1;} 
    if(ft==10){return 1;} 
    return 0; 
} 
double wetBasicFlash(int ft) 
{   if(ft==0){return 200;} 
    if(ft==1){return 200;} 
    if(ft==2){return 200;} 
    if(ft==3){return 200;} 
    if(ft==4){return 200;} 
    if(ft==5){return 200;} 
    if(ft==6){return 200;} 
    if(ft==7){return 200;} 
    if(ft==8){return 200;} 
    if(ft==9){return 200;} 
    if(ft==10){return 200;} 
    return 0; 
        
} 
double dryBasicFlash(int ft) 
{   if(ft==0){return 0;} 
    if(ft==1){return 0;} 
    if(ft==2){return 0;} 
    if(ft==3){return 0;} 
    if(ft==4){return 0;} 
    if(ft==5){return 0;} 
    if(ft==6){return 0;} 
    if(ft==7){return 0;} 
    if(ft==8){return 0;} 
    if(ft==9){return 0;} 
    if(ft==10){return 0;} 
    return 0; 
} 
double instantFlash(int ft) 
{   if(ft==0){return 500;} 
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    if(ft==1){return 500;} 
    if(ft==2){return 500;} 
    if(ft==3){return 500;} 
    if(ft==4){return 500;} 
    if(ft==5){return 500;} 
    if(ft==6){return 500;} 
    if(ft==7){return 500;} 
    if(ft==8){return 500;} 
    if(ft==9){return 500;} 
    if(ft==10){return 500;} 
    return 0; 
} 
//MONITERS HEATS EFFECT UPON FIRE FLOW 
float heatFactor(int temp) 
{ 
 return 1;      
} 
float Emmisivity(int ft) 
{ 
    if(ft==0){return .5;} 
    if(ft==1){return .5;} 
    if(ft==2){return .5;} 
    if(ft==3){return .5;} 
    if(ft==4){return .5;} 
    if(ft==5){return .5;} 
    if(ft==6){return .5;} 
    if(ft==7){return .5;} 
    if(ft==8){return .5;} 
    if(ft==9){return .5;} 
    if(ft==10){return .5;} 
    return 0;      
} 
//draws numbers to the screen (incomplete) 
void DrawNum(double size,double temp,double xl,double yl) 
{ glBegin(GL_QUADS); 
     int ones=floor(temp); 
   for(int x=0;x<=7;x++) 
   { 
           for(int y=0; y<=7;y++) 
           {/*if(getNum(ones%10-1,x,y)==1) 
            //{         
     glColor3f(1.0f,1.0f,1.0f); 
        glVertex3d(10+x/8,    10+y/8    ,0); 
        glVertex3d(10+x/8+1/8,10+y/8    ,0); 
        glVertex3d(10+x/8+1/8,10+y/8+1/8,0); 
        glVertex3d(10+x/8,10+y/8+1/8    ,0); 
       // glVertex3d(10,10+1,0); 
        //glVertex3d(10,10,0); 
        //glVertex3d(10+1,10,0); 
        //glVertex3d(10+1,10+1,0); 
           
          }*/} 
  } 
                
     glEnd();           
} 
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Fire.cpp  
Initializatione Code borrowed and edited from nehe.gamedev.net
You don’t want to reinvent the wheel 
//Chris Morrison  
//Initialization Source borrowed and edited from nehe.gamedev.net 
//2.5d fire flow program 
//****************************************************************** 
#include <windows.h>  // Header File For Windows 
#include <gl\gl.h>   // Header File For The OpenGL32 Library 
#include <gl\glu.h>   // Header File For The GLu32 Library 
#include "Main.h" 
#include<iostream.h> 
#include<fstream.h> 
#define sf size4feet 
 
 
 
HDC   hDC=NULL;  // Private GDI Device Context 
HGLRC  hRC=NULL;  // Permanent Rendering Context 
HWND  hWnd=NULL;  // Holds Our Window Handle 
HINSTANCE hInstance;  // Holds The Instance Of The Application 
 
bool keys[256];   // Array Used For The Keyboard Routine 
bool active=TRUE;  // Window Active Flag Set To TRUE By Default 
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default 
bool    Return=false; 
int status=1; 
int selected[3]={0,0,0}; 
 
double xpers=-11; 
double ypers=-10; 
double size4feet=30; 
 
unsigned long timer=0; 
  
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);  
// Declaration For WndProc 
//***************************************************************** 
GLvoid ReSizeGLScene(GLsizei width, GLsizei height)  
 // Resize And Initialize The GL Window 
{ 
 if (height==0)   // Prevent A Divide By Zero By 
 { 
  height=1; // Making Height Equal One 
 } 
 
 glViewport(0,0,width,height); // Reset The Current Viewport 
 
 glMatrixMode(GL_PROJECTION); // Select The Projection Matrix 
 glLoadIdentity();   // Reset The Projection Matrix 
 
 // Calculate The Aspect Ratio Of The Window 
 gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.1f,35.0f); 
 
 glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix 
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 glLoadIdentity();      // Reset The Modelview Matrix 
} 
//******************************************************************** 
int InitGL(GLvoid)  // All Setup For OpenGL Goes Here 
{ 
 glShadeModel(GL_SMOOTH);  // Enable Smooth Shading 
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f);  // Black Background 
 glClearDepth(1.0f);    // Depth Buffer Setup 
 glEnable(GL_DEPTH_TEST);  // Enables Depth Testing 
 glDepthFunc(GL_LEQUAL);   // The Type Of Depth Testing To Do 
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);  

// Really Nice Perspective Calculations 
 return TRUE;     // Initialization Went OK 
} 
//********************************************************************* 
GLvoid KillGLWindow(GLvoid)      // Properly Kill The Window 
{ 
 if (fullscreen)     // Are We In Fullscreen Mode? 
 { 
  ChangeDisplaySettings(NULL,0); // If So Switch Back To The Desktop 
  ShowCursor(TRUE);   // Show Mouse Pointer 
 } 
 
 if (hRC)   // Do We Have A Rendering Context? 
 { 
  if (!wglMakeCurrent(NULL,NULL)) 
 // Are We Able To Release The DC And RC Contexts? 
  { 

MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK | 
MB_ICONINFORMATION); 

  } 
 
  if (!wglDeleteContext(hRC))  // Are We Able To Delete The RC? 
  { 

MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN 
ERROR",MB_OK | MB_ICONINFORMATION); 

  } 
  hRC=NULL;     // Set RC To NULL 
 } 
 
 if (hDC && !ReleaseDC(hWnd,hDC)) // Are We Able To Release The DC 
 { 
  MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | 
MB_ICONINFORMATION); 
  hDC=NULL;    // Set DC To NULL 
 } 
 
 if (hWnd && !DestroyWindow(hWnd))// Are We Able To Destroy The Window? 
 { 

MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | 
MB_ICONINFORMATION); 

  hWnd=NULL;    // Set hWnd To NULL 
 } 
 
 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class 
 { 
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MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | 
MB_ICONINFORMATION); 

  hInstance=NULL;   // Set hInstance To NULL 
 } 
} 
 
/*This Code Creates Our OpenGL Window.  Parameters Are:   * 
 *title   - Title To Appear At The Top Of The Window  *  
 * width  - Width Of The GL Window Or Fullscreen Mode  * 
 * height  - Height Of The GL Window Or Fullscreen Mode  * 
 * bits  - Number Of Bits To Use For Color (8/16/24/32)  * 
 * fullscreenflag - Use Fullscreen Mode (TRUE) Or Windowed Mode (FALSE) */ 
//********************************************************************** 
BOOL CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag) 
{ 
 GLuint  PixelFormat; // Holds The Results After Searching For A Match 
 WNDCLASS wc;  // Windows Class Structure 
 DWORD dwExStyle; // Window Extended Style 
 DWORD dwStyle; // Window Style 
 RECT  WindowRect; // Grabs Rectangle Upper Left / Lower Right Values 
 WindowRect.left=(long)0; // Set Left Value To 0 
 WindowRect.right=(long)width; // Set Right Value To Requested Width 
 WindowRect.top=(long)0; // Set Top Value To 0 
 WindowRect.bottom=(long)height; // Set Bottom Value To Requested Height 
 fullscreen=fullscreenflag; // Set The Global Fullscreen Flag 
 
 hInstance= GetModuleHandle(NULL);   // Grab An Instance For Our Window 
 wc.style  = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;  

// Redraw On Size, And Own DC For Window. 
 wc.lpfnWndProc= (WNDPROC) WndProc;  // WndProc Handles Messages 
 wc.cbClsExtra = 0;   // No Extra Window Data 
 wc.cbWndExtra= 0;   // No Extra Window Data 
 wc.hInstance= hInstance;  // Set The Instance 
 wc.hIcon= LoadIcon(NULL, IDI_WINLOGO); // Load The Default Icon 
 wc.hCursor= LoadCursor(NULL, IDC_ARROW); // Load The Arrow Pointer 
 wc.hbrBackground= NULL;  // No Background Required For GL 
 wc.lpszMenuName= NULL;  // We Don't Want A Menu 
 wc.lpszClassName= "OpenGL"; // Set The Class Name 
 
 if (!RegisterClass(&wc))  // Attempt To Register The Window Class 
 { 

MessageBox(NULL,"Failed To Register The Window 
Class.","ERROR",MB_OK|MB_ICONEXCLAMATION); 

  return FALSE;   // Return FALSE 
 } 
  
 if (fullscreen)               // Attempt Fullscreen Mode? 
 { 
  DEVMODE dmScreenSettings;    // Device Mode 
  memset(&dmScreenSettings,0,sizeof(dmScreenSettings)); 

 // Makes Sure Memory's Cleared 
  dmScreenSettings.dmSize=sizeof(dmScreenSettings); 
  // Size Of The Devmode Structure 
  dmScreenSettings.dmPelsWidth= width;   // Selected Screen Width 
  dmScreenSettings.dmPelsHeight= height; // Selected Screen Height 
  dmScreenSettings.dmBitsPerPel= bits;     // Selected Bits Per Pixel 
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dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT; 

// Try To Set Selected Mode And Get Results.  NOTE: CDS_FULLSCREEN Gets Rid Of Start 
Bar. 

if(ChangeDisplaySettings(&dmScreenSettings,CDS_FULLSCREEN)!=DISP_CH  
ANGE_SUCCESSFUL) 

  {// If The Mode Fails, Offer Two Options.  Quit Or Use Windowed Mode. 
if (MessageBox(NULL,"The Requested Fullscreen Mode Is Not Supported By\nYour 
Video Card. Use Windowed Mode Instead?","NeHe 
GL",MB_YESNO|MB_ICONEXCLAMATION)==IDYES) 

   { 
 fullscreen=FALSE;  // Windowed Mode Selected.  Fullscreen = FALSE 
   } 
   else 
   { 
  // Pop Up A Message Box Letting User Know The Program Is Closing. 

MessageBox(NULL,"Program Will Now Close.","ERROR",MB_OK|MB_ICONSTOP); 
   return FALSE;  // Return FALSE 
   } 
  } 
 } 
 
 if (fullscreen)    // Are We Still In Fullscreen Mode? 
 { 
  dwExStyle=WS_EX_APPWINDOW;       
 // Window Extended Style 
  dwStyle=WS_POPUP;         
 // Windows Style 
  ShowCursor(FALSE);         
 // Hide Mouse Pointer 
 } 
 else 
 { 
  dwExStyle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE;    
 // Window Extended Style 
  dwStyle=WS_OVERLAPPEDWINDOW;       
 // Windows Style 
 } 
 
 AdjustWindowRectEx(&WindowRect, dwStyle, FALSE, dwExStyle);    
 // Adjust Window To True Requested Size 
 
  // Create The Window 
 if (!(hWnd=CreateWindowEx( 
  dwExStyle,   // Extended Style For The Window 
  "OpenGL",   // Class Name 
  title,    // Window Title 
  dwStyle |   // Defined Window Style 
  WS_CLIPSIBLINGS | // Required Window Style 
  WS_CLIPCHILDREN, // Required Window Style 
 0, 0,    // Window Position      

WindowRect.right-WindowRect.left,    // Calculate Window Width 
  WindowRect.bottom-WindowRect.top,// Calculate Window Height 
  NULL,    // No Parent Window 
  NULL,    // No Menu 
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  hInstance,   // Instance      
 NULL)))   // Dont Pass Anything To WM_CREATE 
 { 
  KillGLWindow();  // Reset The Display 

MessageBox(NULL,"Window Creation 
Error.","ERROR",MB_OK|MB_ICONEXCLAMATION); 

  return FALSE;   // Return FALSE 
 } 
 
 static PIXELFORMATDESCRIPTOR pfd= 

// pfd Tells Windows How We Want Things To Be 
 { 
  sizeof(PIXELFORMATDESCRIPTOR), 

// Size Of This Pixel Format Descriptor 
  1,     // Version Number 
  PFD_DRAW_TO_WINDOW | // Format Must Support Window 
  PFD_SUPPORT_OPENGL |  // Format Must Support OpenGL 
  PFD_DOUBLEBUFFER,  // Must Support Double Buffering 
  PFD_TYPE_RGBA,   // Request An RGBA Format 
  bits,     // Select Our Color Depth 
  0, 0, 0, 0, 0, 0,    // Color Bits Ignored 
  0,     // No Alpha Buffer 
  0,     // Shift Bit Ignored 
  0,     // No Accumulation Buffer 
  0, 0, 0, 0,    // Accumulation Bits Ignored 
  16,     // 16Bit Z-Buffer (Depth Buffer)   
  0,     // No Stencil Buffer 
  0,     // No Auxiliary Buffer 
  PFD_MAIN_PLANE,   // Main Drawing Layer 
  0,     // Reserved 
  0, 0, 0     // Layer Masks Ignored 
 }; 
  
 if (!(hDC=GetDC(hWnd)))   // Did We Get A Device Context? 
 { 
  KillGLWindow();   // Reset The Display 

MessageBox(NULL,"Can't Create A GL Device 
Context.","ERROR",MB_OK|MB_ICONEXCLAMATION); 

  return FALSE;    // Return FALSE 
 } 
 
 if (!(PixelFormat=ChoosePixelFormat(hDC,&pfd))) // Did Windows Find A Matching Pixel Format? 
 { 
  KillGLWindow();    // Reset The Display 

MessageBox(NULL,"Can't Find A Suitable 
PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION); return FALSE;  
   // Return FALSE 

 } 
 
 if(!SetPixelFormat(hDC,PixelFormat,&pfd))   
            // Are We Able To Set The Pixel Format? 
 { 
 KillGLWindow();    // Reset The Display 

MessageBox(NULL,"Can't Set The PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION); 
  return FALSE;    // Return FALSE 
 } 
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 if (!(hRC=wglCreateContext(hDC))) 
 // Are We Able To Get A Rendering Context? 
 { 
  KillGLWindow();   // Reset The Display 

MessageBox(NULL,"Can't Create A GL Rendering 
Context.","ERROR",MB_OK|MB_ICONEXCLAMATION); 

  return FALSE;    // Return FALSE 
 } 
 
 if(!wglMakeCurrent(hDC,hRC)) // Try To Activate The Rendering Context 
 { 
  KillGLWindow();  // Reset The Display 

MessageBox(NULL,"Can't Activate The GL Rendering 
Context.","ERROR",MB_OK|MB_ICONEXCLAMATION); 

  return FALSE;   // Return FALSE 
 } 
 
 ShowWindow(hWnd,SW_SHOW); // Show The Window 
 SetForegroundWindow(hWnd); // Slightly Higher Priority 
 SetFocus(hWnd);   // Sets Keyboard Focus To The Window 
 ReSizeGLScene(width, height); // Set Up Our Perspective GL Screen 
 
 if (!InitGL())    // Initialize Our Newly Created GL Window 
 { 
  KillGLWindow();  // Reset The Display 

MessageBox(NULL,"Initialization Failed.","ERROR",MB_OK|MB_ICONEXCLAMATION); 
  return FALSE;   // Return FALSE 
 } 
 
 return TRUE;    // Success 
} 
//********************************************************************** 
LRESULT CALLBACK WndProc( HWND  

hWnd,    // Handle For This Window 
  UINT uMsg,   // Message For This Window 
  WPARAM wParam, // Additional Message Information 
  LPARAM lParam) // Additional Message Information 
{ 
 switch (uMsg)    // Check For Windows Messages 
 { 
  case WM_ACTIVATE: // Watch For Window Activate Message 
  { 
   if (!HIWORD(wParam)) // Check Minimization State 
   { 
    active=TRUE;     // Program Is Active 
   } 
   else 
   { 
    active=FALSE; // Program Is No Longer Active 
   } 
 
   return 0;  // Return To The Message Loop 
  } 
 
  case WM_SYSCOMMAND: // Intercept System Commands 
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  { 
   switch (wParam) // Check System Calls 
   { 
    case SC_SCREENSAVE:       
  // Screensaver Trying To Start? 
    case SC_MONITORPOWER:      
  // Monitor Trying To Enter Powersave? 
    return 0;         
  // Prevent From Happening 
   } 
   break; // Exit 
  } 
 
  case WM_CLOSE:  // Did We Receive A Close Message? 
  { 
   PostQuitMessage(0); // Send A Quit Message 
   return 0;  // Jump Back 
  } 
 
  case WM_KEYDOWN: // Is A Key Being Held Down? 
  {    
   keys[wParam] = TRUE;// If So, Mark It As TRUE 
   return 0;  // Jump Back 
  } 
 
  case WM_KEYUP:  // Has A Key Been Released? 
  { 
   keys[wParam] = FALSE; 

           Return=true;                  // If So, Mark It As FALSE 
   return 0;   // Jump Back 
  } 
 
  case WM_SIZE:   // Resize The OpenGL Window 
  { 

ReSizeGLScene(LOWORD(lParam),HIWORD(lParam));  // LoWord=Width, 
HiWord=Height 

   return 0;   // Jump Back 
  } 
 }// Pass All Unhandled Messages To DefWindowProc 
 return DefWindowProc(hWnd,uMsg,wParam,lParam); 
} 
//********************************************************************** 
int WINAPI WinMain(  

HINSTANCE hInstance,  // Instance 
 HINSTANCE hPrevInstance,  // Previous Instance 
 LPSTR lpCmdLine,   // Command Line Parameters 
 int nCmdShow)   // Window Show State 
{ 
 MSG msg;    // Windows Message Structure 
 BOOL done=FALSE;   // Bool Variable To Exit Loop 
 // Ask The User Which Screen Mode They Prefer 

if (MessageBox(NULL,"Are you cool?", 

"Coolness",MB_YESNO|MB_ICONQUESTION)==IDNO) 
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 { 
  fullscreen=FALSE;  // Windowed Mode 
 } 
 
 // Create Our OpenGL Window 
 if (!CreateGLWindow("Fire!",640,480,16,fullscreen)) 
 { 
  return 0;   // Quit If Window Was Not Created 
 } 
 Load(); 
    while(!done)    // Loop That Runs While done=FALSE 
 { 

if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting? 
  { 
   if (msg.message==WM_QUIT) 

// Have We Received A Quit Message? 
   { 
   done=TRUE;  // If So done=TRUE 
   } 
   else   // If Not, Deal With Window Messages 
   { 
    TranslateMessage(&msg); // Translate The Message 
    DispatchMessage(&msg); // Dispatch The Message 
   } 
  } 
  else    // If There Are No Messages 
  { 

 if ((active && !Main( ypers, xpers, sf,selected,status,timer,0)) || keys[VK_ESCAPE]) // 
Active?  Was There A Quit Received? 

   { 
    done=TRUE;  
            } 
    else   // Not Time To Quit, Update Screen 
   { 
    SwapBuffers(hDC); // Swap Buffers (Double Buffering) 
   } 
       if(keys[VK_SHIFT]&&keys[VK_UP]) 
            {ypers--;} 
          if(keys[VK_SHIFT]&&keys[VK_DOWN]) 
            {ypers++;} 
          if(keys[VK_SHIFT]&&keys[VK_LEFT]) 
            {xpers++;} 
          if(keys[VK_SHIFT]&&keys[VK_RIGHT]) 
            {xpers--;} 
          if(keys[VK_UP]) 
            {selected[1]++;} 
          if(keys[VK_DOWN]) 
            {selected[1]--;} 
          if(keys[VK_LEFT]) 
            {selected[0]--;} 
          if(keys[VK_RIGHT]) 
            {selected[0]++;} 
          if(keys[VK_RETURN]&&Return) 
            {timer++; 
            Main(ypers, xpers, sf,selected,status,timer,1); 
            Return=false; 
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            } 
          if(selected[0]<1) 
            {selected[0]=1;} 
          if(selected[1]<1) 
            {selected[1]=1;} 
          if(selected[0]>sf-1) 
            {selected[0]=sf-1;} 
          if(selected[1]>sf-1) 
            {selected[1]=sf-1;} 
          if (keys[VK_F1])       
   {status=1; 
             Main(ypers, xpers, sf,selected,status,timer,2); 
            } 
          if(keys[VK_F2])       
   {status=2; 
            // Main(ypers, xpers, sf,selected,status,timer,2); 
            } 
    if(keys[VK_F3])       
   {status=3; 
          //   Main(ypers, xpers, sf,selected,status,timer,2); 
            } 
          if(keys[VK_F4])       
   {status=4; 
        //     Main(ypers, xpers, sf,selected,status,timer,2); 
            }               
  } 
 } 
 
 // Shutdown 
 KillGLWindow();         // Kill 
The Window 
 return (msg.wParam);       // Exit The Program 
} 
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Load.h 
//loads basis of patches and such 
//from text Files 
#include<iostream.h> 
#include<fstream.h> 
 
vector<int> record; 
struct Factors 
{ double AmbientTemp; 
  double WindSpeed; 
  double WindAngle; 
}Forest; 
 
int level[300][300]; 
int num[10][8][8]; 
//****************************************************  
 void Load() 
 { ifstream coolestfile; 
   ifstream coolfile; 
   ifstream Numbers; 
   coolfile.open("forest.txt"); 
   for(int x=0; x<=29; x++) 
   {for(int y=0; y<=29; y++) 
    { 
             coolfile>>level[x][y]; 
    } 
   }  
  
 coolestfile.open("Factors.txt"); 
  
     coolestfile>>Forest.AmbientTemp>>Forest.WindSpeed>>Forest.WindAngle; 
 
Numbers.open("numbers.txt");  //the following loads the text 0 and 1 renderings of numbers for this program 
    for(int n=0;n<=9; n++) //0-9 
     { 
     for(int y=0;  y<=7; y++) //8x8 
        {         
     for(int x=0; x<=7;x++) 
        {  
             Numbers>>num[n][x][y]; 
        } 
      } 
    } 
     coolestfile.close(); 
     coolfile.close(); 
     Numbers.close(); 
} 
//******************************************************* 
int getType(int x,int y) 
{ 
    return level[x][y]; 
} 
//******************************************************** 
int getNum(int x,int y,int z) 
{ 
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    return num[x][y][z]; 
} 
//******************************************************** 
inline double getAmbient() 
{return Forest.AmbientTemp;} 
//********************************************************* 
inline double getWind() 
{return Forest.WindSpeed;} 
//******************************************************** 
inline double getWindAngle() 
{ return Forest.WindAngle;} 
//******************************************************** 
void PutOut(int minifires, int totalfires) 
{    record.push_back(minifires); 
     ofstream coolerfile; 
      coolerfile.open("record.txt",ios::out); 
     for(int x=0; x<=record.size()-1; x++) 
     { 
       coolerfile<<record[x]<<'\n'; 
     } 
     //coolerfile<<totalfires; 
     coolerfile.close(); 
} 
//********************************************************** 
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Wind.h 
//computes wind vectoring 
//This version is incomplete 
#include<Math.h> 
 
double WindVectoring(char Component,double xa,double ya,double za,double xstart,double ystart,double zstart,int 
WindAngle,double WindSpeed,int xb) 
 {    WindSpeed=0; 
      double newxa=xa,newya=ya,newza=za; 
      double legnth=sqrt(pow(xstart-xa,2)+pow(ystart-ya,2)); 
      double x; 
      int feta; 
      int diff=abs(xb-WindAngle); 
      bool neg; 
      if(xb-WindAngle<0) 
      {neg=true;} 
      if(xb-WindAngle>=0) 
      {neg=false;}       
      if(diff<=90) 
      {feta=diff;} 
      if(diff>90&&diff<=180) 
      {feta=90-diff%90;} 
      if(diff>180&&diff<=270) 
      {feta=diff%180;} 
      if(diff>270) 
      {feta=90-diff%270;} 
      x=WindSpeed*cos(convert(feta)); 
      if(neg) 
      {x*=-1;} 
      double newlength=legnth;//+x; 
      double xc=xstart+newlength*(cos(convert(xb))); 
      double yc=ystart+newlength*(sin(convert(xb))); 
      double zc=0; 
      newxa=xc; 
      newya=yc;       
      newza=zc;    
       
      if(Component=='x') 
      {return newxa;} 
      if(Component=='y') 
      {return newya;} 
      if(Component=='z') 
      {return newza;} 
  
 }                 
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