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Abstract 

The first shock wave experiments performed on silicate materials were reported for 

quartz in 1962.  The intervening forty years have allowed for extensive investigation of 

SiO2 by dynamic, static and theoretical means.  Previous studies have concluded that quartz 

transforms completely to stishovite at ~40 GPa and melts at ~115 GPa along its Hugoniot.  

Recent discoveries that SiO2 transforms to phases slightly more dense than stishovite have 

led to a reexamination of the dynamic compression of SiO2 in this thesis.  Based on 

comparing calculated Hugoniots to data for multiple initial SiO2 phases, it is proposed that, 

in addition to the stishovite and melt transitions, quartz is completely transformed to the 

CaCl2 structure at ~70 GPa.  Coesite shows evidence of complete transformation to 

stishovite at ~ 50 GPa, and to the CaCl2 structure at ~65 GPa.  Due to the higher 

temperature achieved in the quartz samples the slope of the stishovite-CaCl2 phase 

boundary is constrained to be ~180 K/GPa. 

From a similar analysis of Hugoniot data collected for high quality MgSiO3 natural 

crystal and synthetic glass in this study, and existing data, it is concluded that along the 

crystal Hugoniot akimotoite is attained at ~70 GPa, perovskite structure at ~110 GPa and 

melt at ~ 170 GPa.  It is found that the melt is 2-3 % denser than the solid at pressures 

greater than 100 GPa, after correcting for thermal differences in the two regimes.  An 

important implication is a negative Clapeyron slope, leading to a decreasing melting 

temperature with increasing pressure, above ~ 100 GPa.  These observations increase the 

possibility of the existence of a significant amount of partial melt in the lowermost mantle, 

e.g., the ultra low velocity zone.  
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C h a p t e r  1  

Introduction 

Outline of thesis 

The body of this thesis consists of four chapters.  Chapter 2 provides a brief 

explanation of the experimental techniques used, and a tutorial on calculating pressure-

density and pressure-temperature Hugoniots.  Chapter 3 is an attempt to reconcile pre-

existing Hugoniot and static data in the SiO2 system.  The majority of Chapter 3 was 

previously published in Geophysical Research Letters [Akins and Ahrens, 2002].  The 

Hugoniot behavior observed in SiO2 is used as a framework in analyzing the MgSiO3 

Hugoniot data collected in this study as presented in Chapter 4.   

Summary  

 

The discovery of the ultra-low-velocity zone (ULVZ) by Garnero and Helmberger 

[1995] and subsequent interpretation of the layer as being due to partial melt by Williams 

and Garnero [1996] has greatly increased the geophysical interest in silicate melts at 

pressures greater than 100 GPa.  Although it is not known if SiO2 exists as a free phase in 

the lower mantle, it has been extensively studied both statically and dynamically.  The high 

pressure melt equation of state of SiO2 is constrained by Hugoniot pressure-density, 

pressure-temperature and sound velocity data and provides a guide to predicting the 

behavior of silicate melts at high pressures.  The occurrence of melting along the Hugoniots 

of fused and crystal quartz was first proposed by Lyzenga et al. [1983] based on shock 

temperature measurements and later verified by the sound velocity measurements of 
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Chhabildas and Miller [1985].  The fused quartz data exhibits a large amount of scatter; 

however, it is clear from the quartz data that with increasing pressure above 70 GPa the 

shock temperature rises steadily until at ~ 115 GPa a sudden drop in temperature of ~ 2000 

K occurs.  The temperature drop is assumed to be due to complete melting of the samples 

shocked to pressures greater than 115 GPa.  A corresponding jump in density is observed 

and can be attributed to thermal expansion of the superheated solid relative to the melt 

regime of the Hugoniot.  In spite of this super-heating, calculations of complete 

transformation to stishovite and CaCl2 structure indicate that stishovite is attained along the 

Hugoniots of SiO2 phases with a range of initial densities, from 2.13 to 2.92 g/cm3, and 

further transition to CaCl2 structure for samples with initial densities of 2.65 to 2.92 g/cm3.  

The possibility that the CaCl2 structure is attained along Hugoniots that reach the necessary 

pressure-temperature conditions is an unexpected result, however it is the favored 

interpretation of the data presented in Chapter 3. 

The observations of super-heating, and an increase in density upon melting, in the 

SiO2 Hugoniot data is considered in the analysis of the Hugoniot data on MgSiO3 single 

crystal and glass presented in Chapter 4.  Between 110 and 170 GPa the Hugoniot data for 

the crystal is in reasonable agreement with a calculated Hugoniot curve assuming the 

perovskite structure is achieved.  At ~170 GPa there is a jump in density of ~ 7% observed 

in the data.  Based on assumed behavior similar to that of quartz this jump is interpreted as 

being due to complete melting.  Although there are numerous uncertainties involved, a 

thermal correction of the presumed perovskite state to the pressure and temperature of the 

melt indicates the melt is 2-3% denser than the solid.  Implications of this observation are 

discussed further in Chapter 4.   
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Chapter 2 

Hugoniot Equations of State Techniques and Calculations 

Hugoniot Equations of State 

Various techniques used to study the shock behavior of materials and the 

underlying math and physics are presented in a more complete form in Ahrens [1987] and 

are reviewed here only briefly.  The equations governing a steady shock wave with velocity 

US relative to the laboratory, traveling through a sample with zero initial velocity and at 

room pressure, are 

PS

So
H UU

Uρ
ρ

−
= ,     (Conservation of mass) (2.1) 

PSoH UUρP =    (Conservation of momentum)   (2.2) 

and 

 ( )HoHoHH VVP
2
1EEE∆ −=−=   (Conservation of energy) (2.3) 

where ρ, UP, P and E refer to density, particle velocity behind the shock front, shock 

pressure, and internal energy.  Subscript o refers to the unshocked state and subscript H 

refers to the peak shock state.  In general there is a linear relation between US and UP 

defined by the terms Co and S in the form 

 U ,  (2.4) PoS SUC +=
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and referred to as the Hugoniot equation of state.  Standard materials, such as copper, 

aluminum and tantalum used in this study [Mitchell and Nellis, 1981] with well-constrained 

Hugoniot equations of state are used to constrain the equations of state of materials with 

unknown Hugoniot properties, such as the enstatite glass and crystal discussed in Chapter 

4.   

A projectile with a flyer plate of standard material embedded in it is launched at a 

target of the material being investigated (Figure 2.1a).  The flyer plate impacts a driver 

plate at velocity Ufp and a shock is driven back into the flyer plate slowing it from Ufp to UP 

along its Hugoniot (Figure 2.2) and forward into the driver plate, previously at rest.  The 

sample being studied, with preshock density ρo, is in contact with the driver plate.  As the 

shock passes from the driver into the sample the material is accelerated to particle velocity, 

UPH.  The shock travel time through the sample, US, is measured from a streak camera 

image.  The streak camera records the reflection of a light source off of mirrored surfaces 

in contact with the sample and driver plate (Figure 2.1a).  The arrival of the shock destroys 

the mirrored surface and the reflection of light being recorded is extinguished.  Time 

calibration of the streak rate allows the shock travel time, and therefore velocity through the 

sample with known thickness, to be calculated.    

From Equation 2.2 it is easily seen that there is a linear relation between particle 

velocity and pressure with slope ρoUS (Figure 2.2).  Since the P-UP curve of the standard 

material is known, the pressure-particle velocity state achieved in the sample is constrained 

by the intersection of the standard Hugoniot and the line with slope ρoUS. Pressure is 

continuous across the driver-sample interface.  The internal energy change upon reaching 
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the final shock state, ∆EH, and the volume, VH, of the shock state are then calculated from 

Equations 2.1 and 2.3.           

Shock Temperature Measurements 

Lyzenga [1980] reported the results of the first shock temperature measurements on 

Earth related materials.  His thesis contains a more detailed explanation of the optical 

pyrometry method used to measure shock temperatures and a discussion of more recent 

upgrades to the Caltech system is found in Wenbo Yang’s thesis [Yang, 1996].   A single 

shock temperature measurement was made in this study on MgSiO3 glass, so only a brief 

introduction is provided here.  

In contrast to the equation of state (EOS) experiments discussed previously shock 

temperature samples are not covered with a mirrored surface (Figure 2.1b).  This allows 

light emitted from the shock front to be directed into a six channel optical pyrometer.  To 

prepare the sample for shock temperature measurement a silver layer was sputter coated to 

the driver side of the sample to block radiation emitted from shock compressed air trapped 

in the sample-driver interface [Lyzenga, 1980].  To prevent the detection of light from non-

planar shock waves, reflected from the sample edges, a mask with a 5 millimeter hole in 

the center was placed on the far side of the sample.  Upon impact of a copper flyer plate 

with the target a shock wave was driven into a copper driver plate in contact with the 

sample.  The sample pressure obtained by the shock impedance method discussed above, 

using the measured copper impactor speed of 5.97 ± 0.01 km/s and equation of state values 

for the glass of Co = 4.29 km/s and S = 1.22 determined from the three pressure-density 

Hugoniot experiments on MgSiO3
 glass listed in Table 4.2, was 107 ± 4 GPa.  Radiation 

produced by the shock heating of the central 5 millimeters of the sample is reflected by a 
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disposable mirror into the optical system [Yang, 1996], which projects the image onto a 

fiber bundle.  The fiber bundle is split into six smaller bundles that pass through 10 nm 

nominal band-pass interference filters centered at 451.3, 555.3, 603.7, 661.4, 748.3, and 

904.0 nm.  Digital oscilloscopes with 1 GHz sampling rate were used to record voltage 

versus time at each of the six wavelengths.  The voltages are converted to light intensity by 

using a calibration factor obtained by measuring the voltages produced upon imaging a 

1000 W spectral irradiance standard lamp (Optronix S-809)  prior to each experiment.  A 

sample trace from each channel used in the analysis of Shot 311 on MgSiO3 glass is shown 

in Figure 2.3a. The light intensity, I, vs. wavelength, λ, at each sampling point is fit by a 

least-squares method to a greybody Planck radiation curve  

1
T

C
5

1 1eCI
2

−
λ− 






 −λε=  (2.5)  

where ε is effective emissivity, C1 = 1.191 x 10-16 W m2/steradian and C2 = 1.439 x 10-2 m 

K, shown in Figure 2.3b.  This fit gives emissivity and temperature as a function of time 

during the experiment (Figure 2.3c and d).  The scatter in these plots is due to the noise in 

channel 6 (Figure 2.3a).  The inferred temperature in MgSiO3 glass shocked to 107 GPa is 

5050 ± 173 K with an emissivity of 0.78 ± 0.13. 

Hugoniot Pressure-Temperature and Pressure-Density Calculations 

One way to calculate the Hugoniot temperature of a material shocked to a high 

pressure phase (H.P.P.), such as quartz shocked to stishovite, is to use energy balance to 

relate the Hugoniot state, PH, at constant volume, VH, to a metastable isentrope centered on 
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the fictive zero pressure volume, Vo, of the H.P.P. [Ahrens, 1987].  This statement is 

illustrated graphically in Figure 2.4.  The energy balance is 

∆EH = ETRAN + ∆ES + ∆EV (2.6)            

where ∆EH, Hugoniot energy, is the change in internal energy due to shock compression of 

the material from Voo to VH (Equation 2.3); ETRAN, transition energy, is the change in 

internal energy resulting from transformation of the low pressure phase (L.P.P.) to the 

H.P.P. at ambient conditions; ∆ES is the energy change resulting from isentropic 

compression of the metastable H.P.P. from Vo to VH; and ∆EV is the energy of heating the 

material at constant volume from the isentrope to the Hugoniot calculated using the 

definition of the thermodynamic Grüneisen parameter 

( )
SH

SHH

V EE
PPV

E
PVγ

−
−

≈







∂
∂

=    (Mie-Grüneisen approximation) (2.7) 

and the relation 

SHV EE∆E −=  (2.8) 

which yields  

( )
γ

PPV
∆E SHH

V
−

= . (2.9) 

Equation 2.6 may be rewritten  

γ
)VP-(P

dVP - E  
2

)PV -(V HSH
V

Vo
STRAN

HHoo
H

+= ∫  (2.10) 
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Solving for PH, an equation for calculating the Hugoniot of the initial sample shocked to the 

H.P.P., as a function of volume, is developed, 







 −











+

=
∫

2
VV

V
γ -1

E - dVP
V
γP

P
Hoo

H

V

Vo
TRANS

H
S

H

H

. (2.11) 

Since the change in enthalpy, ∆H, during a phase transition and not the internal 

energy difference, ETRAN, is measured by calorimetric studies, the following approximation 

is made,  

ETRAN =  ∆H + P∆V ≈ ∆H, (2.12) 

since P∆V is negligible at 1bar.  The Birch-Murnaghan EOS has shown great success in      

applications to shock wave data so it is used here, 

ES = 9 VO KoS (f2/2 + a1f3/3) (2.13)           

PS = 3 KoS f (2f + 1)5/2 (1 + a1f), (2.14) 

where 

f = [(Vo/VH)2/3 -1]/2  (2.15) 

a1 = 3 (KoS´ - 4)/2 (2.16) 

KoS and KoS’ are the bulk modulus of the H.P.P. at ambient conditions and its pressure 

derivative.  

The equations describing Hugoniot temperatures by relating the H.P.P. Hugoniot to 

a metastable H.P.P. isentrope, or other reference curve, are 
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]/V)dV(exp[- T  T
H

o

V

V

oS ∫ γ=  (2.17) 

where 

( )
q

o
o V

VγVγ 







=  (2.18) 

and 

/γ)VP(PdTC HSH

T

T

V

H

S

−=∫ . (2.19)

 



 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Flyer plate impacts driver plate sending a plane shock wave into the sample.  a)  

A xenon lamp, reflected by mirrors until the shock wave arrives, allows travel time through 

sample to be determined.  After Ahrens [1980].  b)  Silver coating on sample blocks gap 

flash from detectors.  Radiation from shock front is detected.  After Schmitt et al. [1986]. 
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Figure 2.2  Digrammatic sketch of impedance match method for obtaining Hugoniot 

states discussed in text.  After Ahrens [1987]. 
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Figure 2.3  a) Spectral radiance vs. time obtained from voltage vs. time recorded by four 

pyrometer channels in shot 311.  Pyrometers 1 and 5 were off scale and not presented.  The 

initial peak in radiance is from "gap flash" as the shock passes from the driver into the 

sample. The trough is interpreted as the equilibrium state. The voltage measured was 

converted to radiance by calibrating to a standard lamp before the experiment.  Estimated 

times of shock entrance and exit from sample are shown.  b)  A greybody temperature fit at 

a specific time is obtained by fitting radiance vs. wavelength points to a greybody Planck 

curve (Equation 2.5).  1σ standard errors for radiance at each wavelength are shown.  c)  

Emissivity vs. time.  Error is standard deviation (s.d.) of 29 data points in the measurement 

interval.  Excessive variations are due to noise in one channel.  d)  Temperature vs. time. 

Error is s.d. of 29 data points in the measurement interval.  
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Figure 2.4  Equation 2.6 depicted graphically.  ∆EH, Hugoniot energy, is the change in 

internal energy due to shock compression of the material from Voo to VH (Equation 2.3); 

ETRAN, transition energy, is the change in internal energy resulting from transformation of 

the low pressure phase (L.P.P.) to the H.P.P. at ambient conditions; ∆ES is the energy 

change resulting from isentropic compression of the metastable H.P.P. from Vo to VH; and 

∆EV is the energy of heating the material at constant volume from the isentrope to the 

Hugoniot.
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C h a p t e r  3  

Dynamic Compression of SiO2:  A New Interpretation  

Introduction 

The recent discoveries of silica phases with the CaCl2 (ρo = 4.303 g/cm3) [Andrault 

et al., 2003] and α-PbO2 (ρo = 4.334 g/cm3) [Teter et al., 1998] structures, slightly more 

dense than stishovite (ρo = 4.287 g/cm3) [Weidner et al., 1982], have led to a reexamination 

of the dynamic compression of SiO2. Although the first observation of the CaCl2 structure 

indicated it was stable above ~100 GPa [Tsuchida and Yagi, 1989], later theoretical 

[Cohen, 1991] and experimental [Andrault et al., 2003; Dubrovinsky et al., 1997; Kingma 

et al., 1995; Shieh et al., 2002] studies have constrained the onset of the stishovite-to-CaCl2 

transition to ~ 50 GPa at 298K.   The α-PbO2 structure is found to be stable above ~ 100 

GPa, based on experiments and theoretical calculations [Dubrovinskaia et al., 2001; 

Dubrovinsky et al., 2001; Dubrovinsky et al., 1997; Murakami et al., 2003; Teter et al., 

1998].  The α-PbO2 structure has also been observed in the Shergotty meteorite, a Martian 

basalt thought to have experienced multiple shock events [El Goresy et al., 2000].  In 

addition to these high-pressure silica phases, with oxygen in 6-fold coordination, transition 

to an 8-fold coordination structure is predicted near 200 GPa [Dubrovinsky et al., 1997; 

Teter et al., 1998].  Although it is unclear whether substantial quantities of a phase of SiO2 

exists in the Earth’s mantle, the equations of state of high-pressure SiO2 phases play a 

crucial role in mantle-core chemical reactions which sequester iron from mantle silicates 

into the core [Luo et al., 2002b].   
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In addition to the static data on SiO2 there have been several studies on its dynamic 

compression.  Crystal and fused quartz were the first silicates studied by dynamic 

compression methods [Adadurov et al., 1962; Wackerle, 1962].  Thereafter McQueen et al. 

[1963] demonstrated that the Hugoniot of crystal (ρo = 2.65 g/cm3) and fused (ρo = 2.2 

g/cm3) quartz, above 40 GPa, correspond to the properties of the rutile structure of SiO2 

[Stishov and Popova, 1961], which was later found in shocked quartz-bearing rocks of 

Meteor Crater [Chao et al., 1962] and named stishovite.  Subsequently, small amounts of 

stishovite were recovered from peak pressures in the 15-28 GPa range [DeCarli and 

Milton, 1965].  Later work by German et al. [1974] demonstrated that orthorhombic SiO2 

may be recovered from the 70-90 GPa (first shock) pressure range along the Hugoniot of 

quartz.  This phase (ρo = 4.435 g/cm3) was most likely formed during release from a 

multiply shocked state and is not necessarily representative of a phase formed along the 

principal Hugoniot of quartz.   

Additional studies of crystal and fused quartz, as well as porous cristobalite (ρo = 

2.13 g/cm3), porous coesite (ρo = 2.4 g/cm3), coesite (ρo = 2.92 g/cm3), and stishovite (ρo = 

4.3 g/cm3) have been conducted by Fowles [1967], Trunin et al. [1971], Podurets et al. 

[1990], Borshchevskii et al. [1998], Lyzenga et al. [1983], Zhugin et al. [1999]  and Luo et 

al. [2002b].  It is proposed in this work that with the exception of the more scattered fused 

quartz results, and two anomalous points for porous cristobalite, these data provide strong 

evidence for the transitions to stishovite, the CaCl2 structure and melt along the Hugoniots 

of quartz and coesite, whereas porous coesite melts directly from the stishovite regime.  

Shocked stishovite does not appear to undergo any phase changes up to 240 GPa [Luo et 

al., 2002b]. 
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Dynamic Compression of Crystal Quartz 

The present interpretation of the crystal quartz Hugoniot is shown in Figure 3.1.  

The theoretical Hugoniot pressure-density and pressure-temperature calculation for crystal 

quartz (and other SiO2 phases) of Figures 3.1, 3.3 and 3.4 are based on the Mie-Grüneisen 

offset from the 3rd order Birch-Murnaghan isentropes, e.g., McQueen et al. [1963], as 

outlined in Chapter 2.  Based on the phase diagram of Figure 3.6a and the independent 

pressure-density and pressure-temperature Hugoniot data for various silica phases, the 

following seven regimes along the quartz Hugoniot are inferred:  1)  The elastic shock 

Hugoniot extending to 5.5 – 15.0 GPa depending on orientation  [Fowles, 1967; Wackerle, 

1962].  2)  Mixed phase regime (A) of quartz and stishovite extending from 23 to 35 GPa  

[Zhugin et al., 1999].    3)  The stishovite regime from 35 to 70 GPa, which is consistent 

with the equation of state (EOS) parameters for stishovite in Tables 3.1 and 3.2.  4)  Mixed 

phase regime (B) of stishovite and CaCl2 (~70 GPa).  5)  The CaCl2 structure regime from 

70 to 115 GPa.  The Hugoniot in this regime is consistent with parameters for CaCl2 

structure given in Tables 3.1 and 3.2.  6)  Mixed phase regime (C) of CaCl2 and melt.  7)  

The high pressure phase (H.P.P.) melt regime > 120 GPa.  The Hugoniot from 120-400 

GPa is consistent with the H.P.P. melt EOS parameters in Tables 3.1 and 3.2 and is 

assumed to be dominated by silicon in 6-fold coordination.  The jump in density observed 

upon achieving final shock states in the melt is discussed in detail by Lyzenga et al. [1983] 

and briefly in this work in relation to the corresponding shock temperature measurements.    

The room temperature compression curves of stishovite and the CaCl2 structure, 

observed in the diamond anvil study of Andrault et al. [2003], are plotted below the shock 

wave data in Figure 3.1.  Notably the diamond anvil data displays a transition at ~ 50 GPa 
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from stishovite to the CaCl2 structure in approximate agreement with the deviation of the 

calculated 298K isotherms of stishovite and the CaCl2 structure.  The EOS for stishovite 

used in the present study is further supported by the reasonable agreement of the calculated 

stishovite Hugoniot and the data of Luo et al. [2002b] in the 100 to 240 GPa range (inset 

Figure 3.1).   

The interpretation of the quartz Hugoniot presented in this study, based largely on 

the EOS of stishovite, is in stark contrast to the conclusion of Panero et al. [2003] that the 

Hugoniot data is 2.4% less dense than calculated for complete conversion of quartz to 

stishovite, even though the same EOS parameters were used.  Due to this discrepancy the 

calculation of quartz shocked to stishovite was independently verified by Professors 

Thomas J. Ahrens and Paul D. Asimow, and Dr. Shengnian Luo, all at Caltech, and found 

to be in perfect agreement with the calculation presented in Figure 3.1 [personal 

communications].    

Hugoniot Sound Velocities in Quartz 

The measurements of sound velocity behind the shock front in dynamically 

compressed crystal quartz (ρo = 2.65 g/cm3), quartzite (ρo = 2.65 g/cm3) and novaculite (ρo 

= 2.64 g/cm3) shown in Figure 3.2, support the above interpretation of the high pressure 

behavior of quartz along the Hugoniot.  Figure 3.2a shows calculated longitudinal and bulk 

sound velocities, after Duffy and Ahrens [1992] for stishovite, CaCl2 structure and H.P.P. 

melt.  Elastic parameter values used are listed in Table 3.1.  The values of Ko, K’, and ρo 

for the H.P.P. melt were varied to satisfy the sound velocity data, and the pressure-density 

(Figure 3.1) and pressure-temperature (Figure 3.5) Hugoniot data discussed later.  The 

interpretation of the sound velocities is presented in Figure 3.2b.  The rarefaction velocities 
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for elastic and deformational unloading demonstrate that the stishovite longitudinal wave 

velocity increases to about 12.9 km/s, at 35 GPa, at which pressure mode softening 

(decreasing shear modulus) begins to occur [Cohen, 1991].  The mode softening results in 

an essentially second order phase transition from tetragonal stishovite to a similar 

orthorhombic CaCl2 structure [Andrault et al., 2003], as opposed to a first order 

reconstructive transition.  With increasing pressure the sound velocity decreases in 

anticipation of the transition to the CaCl2 structure which occurs at ~65 GPa.  The 

longitudinal wave velocity in the CaCl2 structure (metastably shocked into the melt region 

above 70 GPa) then rises again until at a Hugoniot pressure of 115 GPa melting occurs, as 

inferred by the sudden drop to the bulk sound velocity.  At this pressure the longitudinal 

velocity becomes equal to the bulk velocity, as is expected upon melting.  Although the dip 

in sound velocity indicated by the data may be due to random error, the agreement with 

expected behavior, given shear softening in stishovite prior to transformation to the CaCl2 

structure, is remarkable.  In contrast to the longitudinal velocity, the bulk sound velocity 

should steadily increase at the onset of the stishovite to CaCl2 structure transition and 

continue to increase with pressure.  Quite interestingly, the bulk sound velocity data appear 

to change little upon melting of CaCl2 structure at ~115 GPa.   

Coesite, Porous Coesite and Porous Cristobalite Data 

Shock data for coesite (ρo = 2.92 g/cm3) and porous coesite (ρo = 2.4 g/cm3) are 

plotted in Figure 3.3.  The theoretical Hugoniot curves are consistent with the stishovite, 

CaCl2 and melt EOS parameters of Tables 3.1 and 3.2.  Coesite and porous coesite are 

assessed to transform to stishovite above 30 GPa.  The single data for porous coesite at 85 

GPa is assumed to correspond to a point in the stishovite-melt regime which achieves a 
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higher density than stishovite.  In contrast the zero porosity polycrystalline coesite achieves 

a state in the 50 to 65 GPa region consistent with coesite transformed to stishovite, whereas 

the five higher pressure states between 85 and 140 GPa appear to lie along the CaCl2 

regime of the coesite Hugoniot; melt is inferred above 150 GPa as will be discussed in 

relation to the corresponding shock temperature calculations.    

Hugoniot data for fused quartz and porous cristobalite compared to calculations for 

final shock states of stishovite, CaCl2 structure, and H.P.P. melt are shown in Figure 3.4.  

In the case of the porous cristobalite data the two points in the 45 to 70 GPa region are 

interpreted as being in the stishovite regime.  The calculations for porous cristobalite (thick 

lines) indicate the data greater than 70 GPa are too dense to be in the CaCl2 structure, and 

not dense enough to be H.P.P. melt and are considered anomalous.  Although they are 

referred to as α-cristobalite by Podurets et al. [1981] the quality of these samples is 

unknown.  The reported average initial density of 2.13 g/cm3 is less than the typical values 

for cristobalite of 2.2 to 2.33 g/cm3 [Gaines et al., 1997] and initial densities for each 

experiment are not tabulated.  A possible explanation for the discrepancy with the 

calculated Hugoniots in this pressure regime will be discussed in tandem with observed 

anomalous behavior of the fused quartz Hugoniot data in the section on shock temperature 

calculations, below.  

Regarding the fused quartz data, the majority of the data is bounded by the 

calculated stishovite and H.P.P. melt segments indicating complete conversion to 

stishovite, or melt, in contrast to the conclusion of Panero et al. [2003].  The scatter is most 

likely due to differing glass synthesis conditions, residual stress, or impurities in the 

samples.  Related details are not provided in the shock wave studies tabulated by Marsh 
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[1980].  Although a more detailed study of the Hugoniot states achieved by fused quartz 

with uniform constraints on synthesis conditions and composition may prove useful, a 

similar region of Hugoniot P-V-T space may be explored using cristobalite, or possibly 

tridymite which typically has fewer impurities and can be found as centimeter sized 

crystals in lithophysal cavities of some rhyolitic rocks [Gaines et al., 1997].    

Shock Temperatures  

Complete shock temperature data for both fused and crystal quartz, as well as 

calculations in the solid and melt phases, are shown in Figure 3.5, and for the solid 

Hugoniot states only, in Figure 3.6a.  Shock temperatures were calculated using the method 

of Ahrens et al. [1982] as presented in Chapter 2 and assumed CV equal to a constant for 

the solid phases (Tables 3.1 and 3.2).  A temperature dependent CV is required for the melt 

to satisfy the shock temperature measurements in the melt regime of fused and crystal 

quartz and calculations assuming both CV constant and CV(T) are plotted in Figure 3.5.  

The temperature dependence used is similar to that of Grover [1971], 

]2)0.06(T/T3R[1VC m+= . (3.1)  

The calculated shock temperatures of Wackerle [1962] for both fused and crystal 

quartz are in remarkable agreement with the original data of Lyzenga et al. [1983], as 

modified by Boslough [1988], and the McQueen and Fritz [1982] data.  The agreement 

between the calculated Hugoniot and the data show the fused quartz shock temperatures 

below 55 GPa to be in the stishovite stability field, the data between 55 and 65 GPa appear 

to correspond to superheated stishovite, and above 75 GPa lie along the melt segment of 

the Hugoniot.      

 



 28
It now appears that in the case of crystal quartz the Hugoniot between 70 and 115 

GPa is in the CaCl2 structure rather than the superheated stishovite phase as suggested by 

Lyzenga et al. [1983].  Shock temperature states above 115 GPa are completely melted.  

The interpretation of super-heated solid followed by a drop in temperature due to melting is 

also supported by the post-shock temperature analysis of Boslough [1988].  Therefore the 

drop in shock temperature at 65-70 GPa for fused quartz corresponds to melting of 

stishovite, whereas the drop between 115 and 120 GPa for shocked crystal quartz results 

from melting of crystal quartz transformed to the CaCl2 structure.   

Notably, the shock temperature calculations (Figure 3.6a) for porous cristobalite 

indicate that it enters the regime of transition to stishovite above 20 GPa and the molten 

SiO2 stability field at 70 GPa.  Taken with the pressure-density Hugoniot data of Figure 

3.4a, Figure 3.6a clearly demonstrates that, like fused quartz transformed to stishovite, 

porous cristobalite also is superheated along the stishovite branch of its Hugoniot to a 

shock pressure of 70 GPa.  Therefore it is predicted that future shock temperature 

experiments will see a drastic decline in shock temperature from ~6200 to ~4200K at ~70 

GPa upon making radiative measurements in single crystal cristobalite, or tridymite as 

suggested previously.  In light of the anomalous behavior of the fused quartz and porous 

cristobalite data these experiments would be very useful in constraining the assertions of 

this work that complete transition to high pressure phases occurs predictably in SiO2 

phases.  It is proposed that the fused quartz and porous cristobalite data are sampling a P-

V-T region in the melt where some portion of the silicon is still in 4-fold coordination, 

unlike the quartz H.P.P. melt segment that lies in melt that has completely undergone 

transition to 6-fold coordination.     
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Similarly, as shown in Figure 3.3, porous coesite appears to begin to transform to 

the stishovite structure above 30 GPa and is completely transformed into the stishovite 

regime at 55 GPa.  Between 55 and 80 GPa it appears to remain in the stishovite structure 

although above 55 GPa the stishovite is superheated.  The pressure-density data (Figure 

3.3) suggest that melting of the superheated stishovite occurs at ~85 GPa and above ~90 

GPa the Hugoniot is inferred to be in the complete H.P.P. melt regime in agreement with a 

similar amount of super heating to that observed in the quartz data, as shown in Figure 

3.6a.  

Coesite also demonstrates the phase transition to stishovite starting at 30 GPa, is in 

the coesite-stishovite mixed phase regime from 30 to 50 GPa and in the pure stishovite 

region from 50 to ~62 GPa.  Transition from stishovite to the CaCl2 structure appears to 

occur at ~65 GPa and, accounting for an amount of super-heating similar to that of quartz 

shocked to CaCl2, it is inferred that at ~150 GPa transition to the H.P.P. melt occurs.  Given 

this new interpretation of the transformation from stishovite to the CaCl2 structure along 

the quartz and coesite Hugoniots, at 70 and 65 GPa, respectively, the Clapeyron slope of 

the transition is constrained to be ~180 K/GPa.  Other experimental and calculated 

constraints on the slope of the phase boundary are shown in Figure 3.6b.  Due to the second 

order nature of the stishovite to CaCl2 structure it is not surprising that the transition 

appears to occur near equilibrium conditions as predicted in two other studies [Kingma et 

al., 1995; Oganov et al., 2003].  This would most likely not be the case if the transition 

were reconstructive, e.g., first order. 

Given the phase diagram of Figure 3.6a and the stishovite Hugoniot temperature 

calculation, stishovite is too cold to undergo any of the above mentioned solid-solid phase 
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transitions along its Hugoniot, as demonstrated by the stishovite Hugoniot data up to 240 

GPa of Luo et al. [2002b], plotted along with the calculated Hugoniot in Figure 3.1.  Not 

until 425 GPa will stishovite melt along its principal Hugoniot.  To observe the solid-solid 

transitions shock wave experiments on porous stishovite, stishovite/coesite, or 

stishovite/paraffin mixtures are needed.  The following predictions are made:  For ρo = 3.6 

g/cm3 the CaCl2 to α-PbO2 transition will be observed at ~130 GPa and ~ 3000 K, and 

melting at ~ 200 GPa and ~ 5000 K.  For ρo = 3.95 g/cm3 the CaCl2 to α-PbO2 will be 

observed at ~110 GPa and ~ 1700 K, α-PbO2 to 8-fold coordination solid at ~ 200 GPa and 

~ 3500 K, and melting at ~ 315 GPa and ~ 5500 K. 

The shock temperature (Figure 3.5) and sound velocity (Figure 3.2b) Hugoniot data 

indicate melting occurs at ~115 GPa along the quartz Hugoniot.  Interestingly, at this 

pressure the Hugoniot melt regime lies at 2% higher density than the solid phase (Figure 

3.1).  Is the melt intrinsically denser than the solid in this pressure regime, or is the 

superheated solid segment of the quartz Hugoniot less dense due to being 2000 K hotter 

than the melt (Figure 3.5)?   Given that the solid is superheated to ~ 7000 K before 

dropping in temperature 2000 K upon melting (Figure 3.5), a correction for this 

temperature difference is needed to place a constraint on the thermal contribution to the 2% 

density difference.  The thermal expansion, α, of stishovite at 120 GPa and 4000 K was 

calculated to be 1.2 x 10 -5 K -1 by Luo et al. [2002a].  Assuming CaCl2 structure SiO2, the 

super heated solid phase along the quartz Hugoniot, has similar thermal properties to that of 

stishovite, α = 1.2 x 10 -5 K -1 may be used to correct the density of the solid, 5.01 g/cm3, at 

115 GPa for the 2000 K temperature difference between the super heated solid and melt to 

5.13 g/cm3.  This is close to the density of the melt, 5.15 g/cm3
, at 115 GPa and 5000 K.  
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Given ~ 2% uncertainties in the Hugoniot density measurements inferred from shock travel 

times through samples during shock temperature experiments [Lyzenga et al., 1983], the 

2.7% density decrease inferred along the melt boundary by Lyzenga et al. [1983] and the 11 

K/GPa positive Clapeyron slope (Equation 4.1) are compatible with the observed jump in 

density upon melting at 115 GPa.         

Conclusions 

Based on the preceding analysis the following conclusions are drawn: 

1) The shock wave pressure-density data for porous cristobalite, fused quartz and 

porous coesite are consistent with these phases transforming from their initial state 

to the stishovite structure upon shock compression.  

2) Based on shock temperature measurements in fused and crystal quartz, it is inferred 

that in porous cristobalite, fused quartz and porous coesite the solid is super-heated 

in the stishovite structure starting at 45, 55 and 60 GPa, respectively followed by 

melting at ~70 GPa for porous cristibalite and fused quartz and at ~85 GPa for 

porous coesite. 

3) In contrast, shock induced transformation to stishovite from initially crystal quartz 

and coesite begins at 22 and 30 GPa, respectively.  Complete transformation to 

stishovite is completed at 40-50 GPa along their Hugoniots and transformation to 

the CaCl2 structure begins at 65 – 75 GPa.  The CaCl2 phase for crystal quartz and 

coesite is metastably superheated above the 80 GPa, 4000 K melting line of the 

CaCl2 structure.  Catastrophic melting occurs at ~115 GPa along the quartz 
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Hugoniot, and ~150 GPa along the coesite Hugoniot, in the CaCl2 structure.  At 

higher pressures the Hugoniots of crystal quartz and coesite lie in the melt regime. 

4) Stishovite is too cold along its principal Hugoniot to undergo phase transitions up to 

240 GPa.  To observe the solid-solid transitions shock wave experiments on porous 

stishovite, stishovite/coesite, or stishovite/paraffin mixtures are needed.  The 

following predictions are made:  For ρo = 3.6 g/cm3 the CaCl2 to α-PbO2 transition 

will be observed at ~130 GPa and ~ 3000 K, and melting at ~ 200 GPa and ~ 5000 

K.  For ρo = 3.95 g/cm3 the CaCl2 to α-PbO2 will be observed at ~110 GPa and ~ 

1700 K, α-PbO2 to 8-fold coordination solid at ~ 200 GPa and ~ 3500 K, and 

melting at ~ 315 GPa and ~ 5500 K. 

5) Hugoniot sound velocity data for quartz provides evidence of shear softening in 

stishovite prior to transformation to the CaCl2 structure at ~70 GPa.  

6) The positive slope of 11 K/GPa inferred by Lyzenga et al. [1983] is consistent with 

the density jump associated with melting along he quartz Hugoniot at 115 GPa.   
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Table 3.1:  Elastic Parameters of SiO2 Phases 

 
 

Phase 

Initial 
Density, ρo 

(g/cm3) 

Bulk 
Modulus, Ko 

(GPa) 

 
dKo /dP, 

K’ 

Shear 
Modulus, Go 

(GPa) 

 
dGo /dP, 

G’ 
SiO2 Composition      

Stishovite 4.287 a) 315 b) 4.8 b) 223 c) 1.72 c) 
CaCl2  structure 4.303 d) 334 d) 4.0 d) 200 e) 1.6 e) 

H.P.P. melt 4.100 f) 240 f) 6.0 f) - - 
                                                          
a)   Weidner et al. [1982]. d)  Andrault et al. [2003]. 
b)  Panero et al. [2003]. e)   Karki et al. [1997].       
c)  Karki et al. [2001]. f)   This study (see text).  
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Table 3.2:  Thermodynamic Parameters of  SiO2 Phases 

 
 

Phase 

Grüneisen 
Parameter, 

γo
a) 

 
 

qa) 

Transition 
Energy, Etr

 b)
 

(MJ/kg) 

Specific 
Heat, Cv

 c),  
(J/kg K) 

SiO2 Composition   From quartz  
Stishovite 1.35 d) 1.0 e) 0.86 f)  0.9*3nR e) 

CaCl2  structure 1.2 g) 1.0 g) 1.3 g) 1.05*3nR g) 
H.P.P. melt 0.5 g) 2.0 g) 2.5 g) 1.1*3nR g), h) 

                                                          
a)  γ = γo (V/Vo)q e)  Akins and Ahrens [2002].   

b)  Etr  = ∆E ≅ ∆H at zero pressure. f)   Navrotsky [1995]. 
c)  n = # of atoms per formula unit. g)  This study. 
d)  Stixrude and Bukowinski [1993].   h)

   Cv(T) also used.  See text.  
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Figure 3.1  New interpretation of Hugoniot of crystal SiO2 (quartz).  Quartz data (open 

circles) from Marsh [1980], Fowles [1967], Trunin et al. [1971], Lyzenga et al. [1983], 

Podurets et al. [1976], Podurets et al. [1990], Borschevskii et al. [1998]; Stishovite data 

(closed circles) Luo et al. [2002b].  Static compression data for initial stishovite (x’s) from 

Andrault et al. [2003].  Curves in stishovite, CaCl2 structure and H.P.P. melt regime 

calculated from parameters in Tables 3.1 and 3.2. 
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Figure 3.2  a)  Sound speed measurements in SiO2 phases with ρo = 2.65 g/cm3 (symbols 

explained in 3.2b caption) compared to calculated 300 K curves, after Duffy and Ahrens 

[1992].  b)  Drop in Vp of quartz shocked to stishovite, due to shear softening, prior to 

transition to CaCl2 structure at 70 GPa, and drop to bulk sound velocity upon melting at 

115 GPa, are evident.  Quartz data of McQueen [1991], M91, below 90 GPa are not plotted 

as they are discrepant with the more reliable datum of Chhabildas and Miller [1985], 

CM85.  Other data shown: Grady et al. [1975], G75; Morgan and Fritz [1979], MF79, and 

Weidner et al. [1982], W82. 
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Figure 3.3   Hugoniot data on initially porous (ρo = 2.4 g/cm3) [Podurets et al., 1981] and 

zero porosity polycrystalline (ρo = 2.92 g/cm3) [Luo et al., 2002b; Podurets et al., 1981] 

coesite compared to calculated Hugoniots as calculated from parameters in Tables 3.1 and 

3.2.  
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Figure 3.4  Hugoniot data on porous cristobalite (ρo = 2.13 g/cm3) of [Podurets et al., 

1981], P81, and fused quartz (ρo = 2.2 g/cm3) of [Marsh, 1980], M80,  compared to various 

possible Hugoniot phases calculated from parameter values in Tables 3.1 and 3.2. 
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Figure 3.5  Hugoniot temperatures, fused quartz (FQ) and quartz (QTZ), of Lyzenga et al. 

[1983] (with minor corrections for Al absorption, Boslough [1988]) and [McQueen and 

Fritz, 1982; Sugiura et al., 1982; Wackerle, 1962].  Melting curve, with positive slope 11 

K/GPa, extrapolated from static data of Shen and Lazor [1995] shown for comparison.  

Calculated Hugoniots in melt regime: dashed curves are for CV = constant and solid curves 

for CV(T) from Equation 3.1.  
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Figure 3.6  a)  High pressure phase diagram of SiO2.  Only data and calculations for solid 

phases are shown.  Shock temperature calculations are terminated at pressures 

corresponding to observed, or expected, drops in temperature due to melting.  The field of 

α-PbO2 [Murakami et al., 2003] is shown for reference only.  b)  Additional constraints on 

stishovite-CaCl2 phase boundary.  K95 [Kingma et al., 1995], O02 and laser heated 

diamond anvil data [Ono et al., 2002], and O03 [Oganov et al., 2003]. 
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C h a p t e r  4  

Shock Wave Equation of State and Temperature Measurements in 
(Mg,Fe)SiO3 Natural Crystal, Synthetic Glass and Porous Material 

Introduction 

The high pressure-temperature behavior of (Mg,Fe)SiO3 perovskite has been a topic 

of intense research as it is considered the most abundant component of Earth's lower mantle 

[Bina, 1998].  Since the composition of perovskite in the lower mantle is thought to be ≥ 88 

molecular per cent MgSiO3 it is necessary to constrain the equation of state (EOS) and 

phase relations in the end member MgSiO3 system to provide constraints on the amount of 

iron necessary to satisfy observations in seismology and geodynamics. Constraints on the 

thermal EOS of MgSiO3 perovskite have been reported by numerous static lab and 

computational studies, as compiled in Marton et al. [2001].  Previous dynamic studies on 

MgSiO3 composition are compiled in Marsh [1980] with additional data, up to 220 GPa, 

reported in Simakov and Trunin [1973].    This study provides further Hugoniot data up to 

206 GPa on initial MgSiO3 synthetic glass and natural crystal providing further support to 

existing constraints on MgSiO3 perovskite and new insight into the behavior of MgSiO3 

melt at pressures and temperatures relevant to Earth’s lower mantle.   

Sample preparation 

Shock wave experiments were carried out on synthetic MgSiO3 glass and Sri 

Lankan enstatite.  Samples of MgSiO3 glass were prepared in E. M. Stolper’s lab at 

Caltech, with the help of John Beckett and Michael Baker, from 99.999% pure, 
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devolatilized MgO (Specialty Products Lot # S20565) and 99.998% pure SiO2 (Specialty 

Products Lot # 21172) mixed in an automatic agate grinder for five hours.  The mixture 

was placed in a 10 ml Pt/5%Au crucible and heated to 1620 ºC, under flowing N2, in a 

vertical Deltech furnace for 18 hours, then quenched by immersing the bottom 1 cm of the 

crucible in a beaker of room temperature water for 10 seconds.  The samples were cut to 

3mm x 12mm diameter disks and polished to an optical finish.  They have Archimedean 

densities of 2.7415 +/- 0.0027 g/cm3.  The lower density of the sample used in shot 315 

(Table 4.2) was due to air bubbles in the bulk sample.  The target was designed such that 

the measured shock velocity traversed a bubble free volume of the sample.  

Electron microprobe analysis of three batches is given in Table 4.1.  These early 

attempts at synthesis did not include accounting for adsorption of H2O during measurement 

of MgO mass.  This resulted in the samples being enriched in Si, i.e., Si/Mg = 1.036 

compared to Si/Mg = 1.000 for ideal MgSiO3 stoichiometry.  Later attempts to account for 

H2O adsorption resulted in mixtures with Si/Mg ~1.000, but led to unsuccessful glassing 

due to formation of olivine float crystals.  Additionally, wafers of the glass samples were 

provided to Thomas Duffy’s group at Princeton to conduct perovskite synthesis 

experiments in the laser heated diamond cell.  Successful synthesis of perovskite, along 

with a previously unidentified silica phase, at high pressure and temperature [Shim et al., 

2001] supports our present conclusion regarding the slight excess in SiO2 of the glass 

samples based on the electron microprobe analysis.  The slight silica enrichment in the 

glass samples has no obvious effect on the experimental results of this study.  It appears 

that the ~10 ns rise time of the shock experiments is sufficient time for the majority of the 

glass to transform to the perovskite structure.in the 50 to 100 GPa peak shock pressure 
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range.  Shim et al. [2001] also confirmed that these samples have no long range order from 

their observation of a diffuse x-ray diffraction signal at ambient conditions.   

In addition to the glass samples, several rough cut natural enstatite samples from the 

Embilipitiya region of Sri Lanka [Gaminizoysa, 1985; Harding et al., 1982], obtained from 

Carl Francis of Harvard University, were studied.  Electron microprobe analysis indicates 

the samples are nearly pure magnesium end member (Table 4.1).  The pyroxene 

composition of these samples is Wo0.2 En99.2 Fs0.6, corresponding to molecular percent 

of the pyroxene end member components wollastonite (CaSiO3), enstatite (MgSiO3) and 

ferrosilite (FeSiO3).  Although aluminum substitution is ignored the relatively minor 

amounts will not alter the conclusion that these crystals are nearly pure magnesium end 

member enstatites.  The samples used in the pressure-density equation of state (EOS) phase 

of this study were colorless to brownish-pink with numerous small flaws and sub-

millimeter to millimeter inclusions.  Samples were cut to allow streak image to sample 

shock behavior of the nearly flawless, and inclusion free, volumes of the crystals.  This 

attention to detail has greatly increased the reliability of the present data set, compared to 

samples with higher iron content used in earlier studies, such as pyroxenites [McQueen et 

al., 1967; Trunin et al., 1965], or Bamble bronzite (En85) [Ahrens and Gaffney, 1971; 

Jeanloz and Ahrens, 1977; Watt and Ahrens, 1986].  Although modern nomenclature 

rulings disallow the use of species designations such as bronzite for intermediate 

(Mg,Fe)SiO3 pyroxene compositions [Morimoto et al., 1988], the term bronzite is used in 

this study to refer to orthopyroxenes of composition En70 to En88, in keeping with the 

historical designation of original papers and to avoid confusion when referring to Sri 

Lankan enstatite and synthetic glass which are referred to as En100 for simplicity.     
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Experimental results 

A total of fourteen shock wave pressure-density equation of state (EOS) 

experiments were conducted; eleven on enstatite and three on synthetic glass samples.  

Results are listed in Table 4.2.  A single shock temperature measurement was carried out 

on a glass specimen shocked to 107 ± 4 GPa.  The measured temperature was 5050 ± 173 

K with an emissivity of 0.78 ± 0.13 as outlined in Chapter 2.  In all experiments copper, 

aluminum, or tantalum flyer plates were accelerated to impact speeds up to 7.38 +/- 0.01 

km/s using a 25mm two-stage light gas gun [Jeanloz and Ahrens, 1977].  Pressures were 

calculated by the impedance match method [Ahrens, 1987] using standard equations of 

state for Al, Cu and Ta [Mitchell and Nellis, 1981].  Impactor speed was measured by the 

flash x-ray method.  Bowing and tilting of the flyer was accounted for using techniques 

outlined in Jeanloz and Ahrens [1980].      

Dynamic Compression of Amorphous, Porous and Crystalline (Mg,Fe)SiO3:  Interpretation  

Theoretical Hugoniot pressure-density and pressure-temperature curves for MgSiO3 

crystal and synthetic glass based on the Mie-Grüneisen offset from the 3rd order Birch-

Murnaghan isentropes for each high pressure phase (H.P.P.) as outlined in Chapter 2 were 

calculated.  Parameter values for each phase are listed in Tables 4.3 and 4.4.  Based on 

these calculations, the phase diagram of Figure 4.3, the independent pressure-density and 

pressure-temperature Hugoniot data for the two MgSiO3 phases studied in this work, and 

the data of [Ahrens and Gaffney, 1971; Jakubith and Hornemann, 1981; Jeanloz and 

Ahrens, 1977; Marsh, 1980; Simakov and Trunin, 1973; Trunin et al., 1965; Watt and 

Ahrens, 1986] the following ten regimes along the (Mg,Fe)SiO3 Hugoniot are inferred 

(Figure 4.1):  1)  The elastic shock Hugoniot extending to 6.7 GPa [Ahrens and Gaffney, 
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1971].  2)  The enstatite deformational Hugoniot from 6.7 to 15 GPa.  3)  Mixed phase 

regime (A) of enstatite and majorite extending from 15 to 34 GPa [Ahrens and Gaffney, 

1971].   4)  The majorite regime from 34 to 48 GPa [Ahrens and Gaffney, 1971].  5)  Mixed 

phase regime (B) of majorite and akimotoite (ilmenite structure) from 48 to 70 GPa.  6)  

The akimotoite regime from 70 to 105 GPa.  7)  Mixed phase regime (C) of akimotoite and 

perovskite structure from 105 to 110 GPa.  8)  The perovskite structure regime from 110 to 

~170 GPa.  9)  Mixed phase regime (D) of perovskite and melt in the 170 to 175 GPa 

range.  10)  The melt regime > 175 GPa.  The remainder of this section provides support 

for this interpretation of the Hugoniot data, and further insight into the observed behavior 

of the data presented in Figure 4.1, i.e., ∆Vm = Vmelt – Vsolid > 0 at 30 GPa and < 0 at 170 

GPa.  

Mixed Phase Regime 

The Hugoniot Elastic Limit (H.E.L.) and mixed phase regime up to 48 GPa were 

previously studied in Bamble bronzite [Ahrens and Gaffney, 1971].  In the present study 

EOS shots with peak shock pressures of 48.2 ± 2.1, 57.4 ± 2.1 and 68.1 ± 2.4 GPa show 

evidence of first arrivals that lead to a partial loss of reflectivity in the mirrors followed by 

a second shock that completely extinguishes reflectivity.  The average wave velocity of the 

precursor is 9.10 ± 0.52 km/s.  Since the shock and particle velocities must be known to 

calculate pressure (Equation 2.2), and using only flat mirrors it is possible to determine 

only the shock velocity, it is not possible to determine the pressure corresponding to the 

precursors in this study.  The impedance match method provides the particle velocity at 

peak shock conditions only (Figure 2.2).   

 



 54
The average longitudinal sound velocity of Sri Lankan enstatite measured prior to 

these experiments is listed in Table 4.5 along with sound velocities in Bamble bronzite, and 

related high pressure phases.  Precursor velocities are listed for comparison.  The velocity 

measurements were made in G. Ravichandran’s lab at Caltech using ultrasonic transducers. 

It is a reasonable conclusion of Ahrens and Gaffney [1971] that the initial arrival in Bamble 

bronzite, up to 48 GPa peak pressure, is an elastic shock propagating in unshocked crystal, 

as the longitudinal elastic wave and elastic shock have similar velocities (Table 4.5).  For 

enstatite, however, the observed first arrival average velocity of 9.1 km/s is greater than the 

maximum measured longitudinal elastic velocity.  It is possible that the first arrival is a 

transition wave related to formation of majorite in the rising shock, whose ambient 

longitudinal elastic velocity is 8.9 km/s.  Complete conversion to majorite should lead to 

stiffening of the Hugoniot at ~ 50 GPa, in excellent agreement with the calculated enstatite 

to majorite Hugoniot (Figure 4.2), however, the majorite transition wave is followed by a 

transition to the akimotoite structure.  Not until 70 GPa does the akimotoite transition wave 

overtake all precursors and the Hugoniot stiffens due to complete conversion to akimotoite 

in good agreement with the calculated Hugoniot (Figure 4.2).   

No precursor was observed in MgSiO3 glass shocked to a peak pressure of 47 GPa 

in the present study.  Sound velocities in the glass samples were not measured before the 

experiments due to excessive noise in transducer signals.  No observation of precursors, or 

sound velocities, was reported in Marsh [1980] for the porous MgSiO3 data in Figure 4.2.  

It is reasonable to assume that any elastic waves generated in the shock front of these 

samples would be much slower than those in the crystal and easily overtaken by the peak 

shock wave.  The 47 GPa peak pressure is in the proposed majorite single phase regime, 
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therefore no two-wave shock structure is expected. Differences in phases achieved along 

different Hugoniots due to varying iron content and isobaric temperature differences along 

Hugoniots of varying initial porosities are not analyzed here.  A detailed study of these 

effects requires much more work and is left to others. 

Shock recovery experiments of Jakubith and Hornemann [1981] on Bamble 

bronzite in the peak shock pressure range of 10 to 50 GPa show x-ray evidence of bronzite 

up to 25 GPa and a mixture of bronzite, clinoenstatite and majorite recovered from peak 

shock pressures in the 25 to 50 GPa range.  Strong majorite diffraction lines are found only 

in material recovered from > 40 GPa peak pressure.  The recovered bronzite observed in 

these shots may be due to reversion from majorite prior to x-ray analysis.  These findings 

are consistent with the interpretation of the pressure-density Hugoniot data presented in 

Figure 4.1.  The results of Jakubith and Hornemann [1981] need to be verified, as it is 

possible that weathering impurities in the Bamble bronzite led to regions of melt in the 

samples that would not occur in a more pure gem quality material such as Sri Lankan 

enstatite.   Additional support of the conversion of enstatite to H.P.P. under shock 

conditions is evidence of majorite, akimotoite, ringwoodite, and perovskite observed in 

shock-induced melt veins of several chondritic meteorites [Chen et al., 1996; Sharp et al., 

1997; Smith and Mason, 1970; Stöffler, 1997].  The Hugoniot P-V-T states achieved by 

these phases will be discussed later.    

Calculated High-Pressure Phase Hugoniots 

In the pressure range of 70 to 105 GPa, shown in Figure 4.1 and in detail in Figure 

4.2, it is clear the enstatite Hugoniot data are less dense than predicted for conversion to 

perovskite.  The datum plotted in Figure 4.1 from Fiquet et al. [2000] laser heated to 2900 
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K in the diamond anvil cell, confirmed to be in the perovskite structure by X-ray 

diffraction, is ~ 1400 K hotter and more dense than the enstatite Hugoniot supporting the 

assertion that a less dense phase than perovskite is attained along the 70 to 105 GPa region 

of the enstatite Hugoniot.   

The possibility of an overdriven phase transition to a phase stable < 25 GPa under 

static equilibrium conditions is investigated.  Calculated Hugoniots of possible high 

pressure phases are shown in Figure 4.2.  From these calculations, akimotoite is the most 

likely phase attained along this segment and is consistent with the phase progression with 

increasing pressure observed in static phase equilibria experiments.  The Hugoniot for a 

mixture of periclase and stishovite is only slightly more dense than the data, but is not 

consistent with recent static experiments at relevant pressures [Serghiou et al., 1998; Shim 

et al., 2001].  The breakdown of the perovskite structure to its component oxides was 

observed by Meade et al. [1995] and Saxena [1996], though Serghiou et al. [1998] found 

only perovskite and no evidence of the component oxides using Raman spectroscopy on 

material recovered from the same pressure range.  Shim et al. [2001] concluded perovskite 

is stable over the 50 to 106 GPa and 1600 to 2400 K range based on in situ observations 

using more recent technical improvements to decrease thermal and stress gradients in the 

diamond cell.  The stability of perovskite over mixed oxides is also supported by the Gibbs 

Free Energy calculations of Luo et al. [2002b].  

Figure 4.3 shows calculated Hugoniot temperatures as a function of pressure for 

enstatite shocked to various high-pressure phases using the parameters listed in Tables 4.3 

and 4.4.  The assumption that the specific heat, CV, is equal to a constant 3nR is only valid 

above the Debye temperature which is not well constrained for many of the phases used in 
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the calculations.  Since the specific heat may be overestimated in the calculations the 

temperatures may be underestimated (Equation 2.19); however, it is interesting to note that, 

except for ringwoodite + stishovite and perovskite, Hugoniot temperatures are ~ 1000 K 

less than the corresponding equilibrium phase region.  Assuming a phase at any pressure 

will not form at temperatures colder than its equilibrium stability field, the interpretation 

that majorite is formed at peak shock pressures along the (Mg,Fe)SiO3 crystal Hugoniot 

requires an increase in temperature of over 1500 K.  It is proposed that frictional energy 

generated by shear banding, as observed in quartz [Brannon et al., 1983], provides the 

needed heat.   

The observation of high pressure phases found only in shock veins of meteorites, 

mentioned earlier, argues in favor of the suggestion that high-pressure phases crystallize 

from the melt.  By implication they also form when the melt is still at elevated pressure, 

during adiabatic release from the peak shock state as proposed by Ringwood [1975].  His 

conclusion that the majorite crystallized from the melt was based on minor element 

differences in the composition of the majorite and unshocked orthopyroxene of the Coorara 

meteorite.  Additional support of his conclusion is that no majorite observed in shocked 

veins shows evidence of tetragonal symmetry (low temperature majorite), twinning, or 

tweeds, observed in cubic majorite quenched in lab experiments.  Based on these 

observations and quench rates Tomioka et al. [2002] conclude that cubic majorite observed 

in shock veins cooled more rapidly than 1000° C/s, consistent with adiabatic cooling from 

the peak shock state.  In this regard, labeling the 34 to 48 GPa segment of the Hugoniot as 

the majorite regime is incorrect, as it is not formed uniformly in the sample at peak shock 

pressures, but more likely due to release from bands, or pockets, of melt.  The shock 
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temperature calculations support the presence of ringwodite + stishovite in the 34 to 48 

GPa region, however, there is no reported evidence of their presence in the recovered lab 

samples of Jakubith and Hornemann [1981].   

Melting of MgSiO3 Perovskite:  Constraints on the Melting Curve at High Pressures 

Based on calculated high pressure phase Hugoniots (Figure 4.4), the high pressure 

regime along the Hugoniot of enstatite, in the 110 to 170 GPa range, is highly concordant 

with diamond anvil [Fiquet et al., 2000] and Brillouin scattering [Yeganeh-Haeri, 1994] 

based EOS data for MgSiO3 perovskite structure.  The density jump at ~ 170 GPa is not 

consistent with any known solid-solid phase transition.  Based on calculated Hugoniots the 

absolute and relative densities of the transition are too large for it to be due to the solid-

solid breakdown of the perovskite structure to MgO + SiO2 (CaCl2 structure), or MgO + 

SiO2 H.P.P. melt (Figure 4.4).  It is therefore proposed that it is due to the complete 

transition to MgSiO3 H.P.P. melt along the Hugoniot.  A similar jump is observed along the 

Hugoniot of quartz at 115 GPa with a corresponding drop in longitudinal sound velocity 

from 15.5 km/s to the bulk sound velocity of 12 km/s and a drop in temperature from 7000 

K in the solid to 5000 K in the liquid as discussed in Chapter 3.  The SiO2 sound velocity 

data indicate the bulk sound velocity of the melt at high pressure and temperature is similar 

to that of the solid at high pressure and room temperature (Figure 3.2).  Assuming similar 

behavior for magnesium silicates, the EOS of H.P.P. MgSiO3
 melt should have a bulk 

sound velocity similar to that of perovskite at 300 K and pressures of 100 to 200 GPa.   

Based on expected behavior similar to quartz (Figure 3.5), at 170 GPa where the 

proposed transition to the melt is observed in pressure-density for the MgSiO3 crystal 

(Figure 4.1), the Hugoniot temperature curve should cross the melting curve.  As there are 
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no constraints on the melting curve of MgSiO3 at pressures greater than 85 GPa (Figure 

4.3), three possibilities will be explored:  a smooth extrapolation of Sweeney and Heinz’s 

[1998] positively sloped, ~1.7 K/GPa at pressures greater than 50 GPa, Simon equation 

(Figure 4.3) designated Simon (SH98); a turnover to a negative slope along the SH98 

extrapolation at 95 GPa designated curve G-C (discussed later); and a third possibility of a 

steeper slope, ~30 K/GPa, attaining a melting temperature of ~ 5500 K at 100 GPa 

preferred by Boehler [2000] with a subsequent turnover to a negative slope at ~ 100 GPa 

designated curve G’-C’ (discussed later).   

Given the expected cooler temperature of the melt at 170 GPa, due to superheating 

of the solid prior to melting, it is necessary to address the possibility that the density 

difference is due solely to thermal effects and not compressibility.  Assuming a high 

compression thermal expansion coefficient for MgSiO3 perovskite of 1 x 10-5 K -1 

[Anderson, 1995] and a temperature difference of 1200 K based on extrapolation of the 

Sweeney and Heinz [1998] melting curve to 170 GPa (thin dashed curve in Figure 4.5a), 

twice the pressure of their highest data, accounts for only a 1 % density increase in the solid 

at 170 GPa.  Based on these observations the present analysis indicates MgSiO3 melt is 2-

3% denser than the solid at pressures and temperatures corresponding to the lower 1000 km 

of the mantle.  This supports the possibility of the presence of a significant fraction of 

partial melt in the ULVZ observed by seismology and warrants more detailed analysis.   

An additional implication of the melt being denser than the solid is a negative slope 

for the melt boundary based on the Clapeyron equation   

mm S/VP/T ∆∆=∂∂ , (4.1) 
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where ∆Vm = Vmelt – Vsolid and  the change in entropy is ∆S = Smelt – Ssolid.  Since there are 

no known instances of ∆S < 0 upon melting, it is assumed that ∆S > 0.  Given ∆Vm < 0 

yields a negative Clapeyron slope.  A negative Clapeyron slope is inconsistent with a 

smooth extrapolation of the Sweeney and Heinz [1998] melting curve to pressures greater 

than 100 GPa.     

Using the bulk sound velocity constraint mentioned earlier and the transition of the 

Sweeney and Heinz [1998] melting curve to a negative slope a H.P.P. melt EOS was 

developed.  Temperature calculations for glass and enstatite shocked to perovskite and 

H.P.P. melt, designated H.P.P. melt1 (Tables 4.3 and 4.4), are shown in Figure 4.5a.  The 

turnover to a negative sloped Clapeyron curve at 95 GPa is discussed below.  In Figure 

4.5b Hugoniot temperature calculations for MgSiO3 glass and crystal shocked to 

perovskite, and subsequently to melt, are shown accounting for the higher temperature 

melting curve of Boehler [2000].  The EOS used in this case is denoted H.P.P. melt2 

(Tables 4.3 and 4.4).  It was not possible to simultaneously satisfy the constraint that the 

bulk sound velocity of the liquid is similar to that of the solid at high compression and 300 

K, and a negative Clapeyron slope, in developing an EOS for H.P.P. melt2.  The bulk 

sound velocity of H.P.P. melt2 is ~10 % less than that calculated for H.P.P. melt1 in the 

100 to 200 GPa range.   

The slope of the melting curve may be calculated by a finite difference calculation 

of the left side of Equation 4.1 using the intersections of the proposed melting curve with 

the glass and crystal H.P.P. melt segments at 123 and 170 GPa, points G and C in Figure 

4.5a, respectively.  This indicates a Clapeyron slope of -10 K/GPa.  With this slope, a 

calculated density of the solid (perovskite) along the melt boundary at 170 GPa of 5.5 
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g/cm3, and a 2.5 % density increase upon melting, ∆S is constrained to be 1.1R.  This value 

of ∆S is similar to the 1.3R value constrained by Lyzenga et al. [1983] along the positive 

slope melt boundary of 11 K/GPa in the high pressure regime of the SiO2 system.  A 

similar analysis along the higher melting temperature curve of Figure 4.5b, between points 

G’ and C’, yields a Clapeyron slope of -16 K/GPa.  

For a given thermal expansion a larger temperature difference between the super 

heated solid and the melt will result in a larger thermal correction of the density jump at 

170 GPa, and therefore, a smaller ∆Vm = Vmelt – Vsolid.  Since the thermal expansion of 

perovskite at high pressures and temperatures is not known the trade off between thermal 

expansion and temperature drop was investigated using the equation 

([ SHSmeltSHSS TT1VV )]−α+= . (4.2) 

Subscript SHS refers to volume, V, and temperature, T, of super heated solid (SHS) at 170 

GPa.  Subscript melt refers to the calculated Hugoniot state of the melt at 170 GPa.  Figure 

4.6 summarizes the results of the calculations.  The points marked Simon, G-C and G’-C’ 

are defined in Figures 4.5a and b and the values listed in Table 4.6.  Since compression 

counteracts thermal expansion, it is unlikely that the thermal expansion of the super heated 

perovskite at 170 GPa and ~5000 K is much greater than the 2.7 x 10-5 K-1 at 5000 K and 

room pressure calculated from α(T) = 2.18 x 10-5 K + (T2 – T1) x 0.11 x 10-8 K-2, 

constrained by Fiquet et al. [2000].  It is also reasonable to assume the thermal expansion 

of the perovskite is similar to that of MgO, ~1.5 x 10-5 K-1, in the 170 to 200 GPa region 

constrained by shock wave experiments [Speziale et al., 2001].   
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Assuming the jump in density observed at 170 GPa along the MgSiO3 crystal 

Hugoniot is due to melting, the positively sloped melting curve of Sweeney and Heinz 

[1998] would require a larger thermal expansivity at 170 GPa than at room pressure (closed 

circle compared to vertical dashed line in Figure 4.6).  Such behavior may be the result of 

the solid being in a super heated metastable state.  A negative deviation from the Sweeney 

and Heinz [1998] melting curve above 100 GPa, as shown in Figure 4.5a, would result in a 

larger drop in temperature up to an assumed maximum of 2000 K.  Again within 

uncertainty it is unlikely that the melt is less dense than the solid, e.g., the melting curve 

does not have a positive slope above 100 GPa.  The steeper melting curve presented in 

Figure 4.5b results in a smaller temperature difference.  It is unlikely the temperature in the 

melt would be greater than the solid, so the tip of the crystal to perovskite temperature 

calculation at 170 GPa places a constraint on the melting temperature of ~ 5500 K.  

Boehler’s [2000] data up to 58 GPa extrapolates smoothly into this point with a positive 

slope.  This is inconsistent with the density jump observed at 170 GPa along the Hugoniot 

of MgSiO3 crystal (Figure 4.1).  From Figure 4.6 it is obvious that small temperature 

differences between the super heated perovskite and melt, ~500 K, would require thermal 

expansivities approaching 10-4 K-1 for even a weakly positive slope melting curve.  If the 

steeper melting curve is accurate the Hugoniot data presented in this study require a drastic 

turnover in the melting curve at ~ 100 GPa such that the slope is negative in the 150 to 200 

GPa range.        

In contrast with the melting behavior at high pressure is the Hugoniot data for an 

ultraporous mixture of MgO and fused silica, ρo = 1.58 g/cm3, to nearly 50 GPa plotted in 

Figure 4.1.  At 30 GPa the data exhibit an abrupt decrease in density of ~10%.  
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Calculations of possible H.P.P. indicate only perovskite is dense enough to account for the 

density of 4.2 g/cm3 achieved at 30 GPa (Figure 4.2).  The corresponding temperature is 

4000 K, above the melting curve of MgSiO3 at 30 GPa (Figure 4.3).  It is proposed that the 

density decrease is due to melting, as would be expected.  This is in contrast to the increase 

in density observed upon melting at 170 GPa along the Hugoniot of the crystal.  Calculated 

pressure-density and pressure-temperature Hugoniots for ultraporous MgO + SiO2 shocked 

to enstatite melt, using parameter values similar to those for diopside melt [Rigden et al., 

1989], show remarkable agreement with the pressure-density data (Figure 4.2) and super-

heated behavior relative to the melting curve constrained by static experiments (Figure 4.3).   

Figure 4.7 demonstrates a long standing discrepancy in the (Mg,Fe)SiO3 Hugoniot 

data.  The bifurcation in the data at 60 GPa, when compared to the magnesium end member 

data of Figure 4.1, appears to have a subset of samples that reaches higher density than 

predicted for conversion to perovskite.  It is proposed that these samples have been shocked 

to partial, or complete, melt states.  This is attributed to impurities in the pyroxenite 

samples, and weathering of the Bamble bronzite.  This conclusion is supported by the 

observation of Sweeney and Heinz [1998] that Bamble bronzite melts at temperatures up to 

1500 K less than Webster bronzite, or synthetic enstatite. 

Conclusions 

Based on the preceding analysis of Hugoniot data for (Mg,Fe)SiO3 composition the 

following conclusions are drawn: 

1) With increasing pressure, complete transition to akimotoite, perovskite and H.P.P. 

melt occurs along the Hugoniot of (Mg,Fe)SiO3.  
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2) The change in volume upon melting of MgSiO3 is positive at low pressures, but 

becomes negative at pressures greater than 100 GPa, e.g., the melt is 2-3 % denser 

than the solid.   

3) Recovered high pressure phases are due to adiabatic cooling of melt formed in 

shear bands in pure phases, or melt pockets nucleated due to impurities. 

4) Purity of samples is of previously unappreciated importance in studying the high 

pressure Hugoniot behavior of silicates.  The bifurcation in previous Hugoniot data 

collected on (Mg,Fe)SiO3 samples is due to partial, or complete melting. 
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Table 4.1:  Electron microprobe analysis of MgSiO3 synthetic glass and 
natural enstatite.  Molar analysis based on six oxygens.   

 
Element  

Synthetic glass 
(This study) a) 

Sri Lankan Enstatite 
(This study) b)  

Sri Lankan Enstatite 
c) 

Si 2.022 ± 0.003 1.984 ± 0.003 1.98 

Al < 0.001 0.060 ± 0.001 0.067 

Ti < 0.001 0.001 ± 0.000 0.001 

Fe < 0.001 0.010 ± 0.001 0.028 

Mg 1.952 ± 0.005 1.924 ± 0.005 1.904

Ca < 0.001 0.004 ± 0.000 0.004

Na 0.002 ± 0.001 - 0.001 

Si/Mg 1.036 1.031 1.04 
 
a)  Based on a total of 17 analysis points in 3 glass samples.  ± 1 s.d.   
b)  Based on a total of 5 analysis points in 1 sample.  ± 1 s.d.   
c)  Gaminizoysa [1985] 
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Table 4.2:  Enstatite natural crystal and synthetic glass shock wave data.  * Denotes 2nd 
arrival.  Uncertainties in last one, or two, figures shown in parentheses.  

 
Shot 

Number 

Initial 
Density, 
ρo (g/cm3) 

 
Flyer/ 
Driver 

Flyer 
Velocity, 
Ufp (km/s)  

Shock 
Velocity, 
Us (km/s) 

Hugoniot 
Pressure, Ph 

(GPa) 

Hugoniot 
Density, ρh, 

(g/cm3) 

Glass       
315 2.712(5) Al/Al 4.51(1) 7.24(7) 47.1(7) 4.06(3) 

313 2.743(5) Cu/Cu 5.05(1) 8.53(6) 83.1(6) 4.70(3) 

312 2.740(5) Cu/Cu 6.07(1) 9.49(13) 110.0(16) 4.94(6) 

Crystal       
328 3.195(5) Al/Al 4.16(1) 9.30(30) - - 

    7.50(12)* 48.2(21) 4.37(7) 

320 3.121(5) Al/Al 4.56(1) 9.35(25) - - 
    7.78(16)* 53.9(20) 4.37(7) 

327 3.209(5) Al/Al 5.34(1) 8.64(35) - - 
    8.22(4)* 68.1(28) 4.68(11) 

317 3.167(5) Cu/Cu 4.62(1) 9.13(6) 88.2(7) 4.75(2) 

326  3.166(5) Cu/Cu 5.44(1) 9.65(4) 110.0(6) 5.05(2) 

316 3.227(5) Cu/Cu 5.71(1) 10.06(7) 121.4(10) 5.14(3) 

321 3.197(5) Ta/Ta 5.98(1) 10.79(3) 149.4(7) 5.34(2) 

324 3.173(5) Ta/Ta 6.52(1) 11.34(6) 169.8(11) 5.44(3) 

318 3.225(5) Ta/Ta 6.71(1) 11.16(9) 175.3(15) 5.72(4) 

322 3.192(5) Ta/Ta 7.22(1) 11.69(5) 195.5(10) 5.79(2) 

319 3.242(5) Ta/Ta 7.38(1) 11.99(19) 206.4(35) 5.82(8) 
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Table 4.3:  Elastic Parameter Values for MgO, MgSiO3, and Mg2SiO4 
Compositions.  

 
 

Phase 

Initial 
Density, ρo 

(g/cm3) 

Bulk 
Modulus, Ko 

(GPa) 

 
d Ko /dP, 

K’ 
Mg2SiO4 Composition    

Wadsleyite  3.474 a) 174 a) 4.4 b) 
Ringwoodite 3.559 c) 190 d) 4.19 d) 

    
MgSiO3 Composition    

Enstatite 3.22 e)   108 g)  6.0 h)  
Enstatite melt 2.57 n)  29 p)    6.9 o)   

Majorite 3.522 f) 162 f) 6.7 f)  
Akimotoite 3.795 i) 212 i) 4 e) 
Perovskite 4.103 j)   260 j) 3.7 j) 

Wadsleyite + Stishovite k) 3.668 m) 203  m)  4.5  m) 
Ringwoodite + Stishovite k) 3.737  m) 217  m) 4.3  m) 

Periclase + Stishovite k) 3.956  m) 234  m) 4.6  m) 
Periclase + CaCl2 (SiO2) k) 3.981  m) 228  m) 4.6  m) 

H.P.P. melt1 4.000 e) 160  e) 6.0  e) 
H.P.P. melt2 3.95  e) 145  e) 4.5  e) 

Periclase + SiO2 H.P.P. melt k) 3.865  m) 202  m) 5.1  m) 
    

MgO    
Periclase 3.580 l) 162 l) 4.13 l) 

a)   Bass [1995].   i)  Weidner and Ito [1985].   
b)  Li and Liebermann [2000]. j)  Fiquet et al. [2000].     
c)  Jackson et al. [2000].   k)  Table 3.1.   
d)  Kiefer et al. [1997]. l)  Jackson and Niesler [1982].  

e)  This study (see text). m)  Voigt-Reuss-Hill averages [Watt et al., 1976].  
f)  Gwanmesia et al. [2000]. n)  Lange and Carmichael [1987].  
g)  Weidner et al. [1978]. o)  Rigden et al. [1989]. 
h)  Webb and Jackson [1993]. p)  Diopside melt Ko = 22.4 GPa o).
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Table 4.4:  Thermodynamic Parameter Values for MgO, MgSiO3, and Mg2SiO4 
Compositions.  

 
 

Phase 

Gruneisen 
Parameter, 

γo 
a) 

 
 

q a) 

Transition 
Energy, Etr

 b)
 

(MJ/kg) 

 
Cv

 c),  
(J/kg K) 

 
Mg2SiO4 Composition 

  From 
forsterite 

 

Wadsleyite  1 d) 1 d) 0.30 e) 3nR d) 
Ringwoodite 1.24 f) 1 d) 0.40 e) 3nR d) 

     
 

MgSiO3 Composition 
  From 

enstatite 
 

Enstatite 0.88 g) 1 d) - - 
Enstatite melt 0.3 h)   1 d)   1.0 d) 0.85*3nR d) 

Majorite 1 d) 1 d) 0.36 e) 3nR d) 

Akimotoite 1.24 i) 2 d) 0.59 e) 3nR d)  
Perovskite 1.5 j) 0.5 d),k) 1.10 e) 1.05*3nR d) 

Wadsleyite + Stishovite o) 1.1 l) 1 l) 0.15 e) 3nR d) 
Ringwoodite + Stishovite o) 1.3 l) 1 l) 0.25 e) 3nR d) 

Periclase + Stishovite o) 1.4 l) 1 l) 1.0 e) 3nR d) 
Periclase + CaCl2 (SiO2) o) 1.5 l) 1 l) 1.5 d) 3nR d) 

H.P.P. melt1 0.8 d) 1.6 d) 1.80 d) 1.1*3nR d) 
H.P.P. melt2 2.1 d) 1 d) 2.1 d) 1.1*3nR d) 

Periclase + SiO2 H.P.P. melt o) 0.8 l) 1.5 l) 1.6 o) 3nR d) 
     

MgO     
Periclase 1.52 m) 1 m)  - 3nR n) 

 

a)   γ = γo (V/Vo)q   i)  Reynard and Rubie [1996]. 
b)  Etr  = ∆E ≅ ∆H at zero pressure. j)  Stixrude nd Bukowinski [1993].  
c)  n = # of atoms per formula unit.   k)  For K’ = 4, q = 1.    
d)  This study. l)  Voigt-Reuss-Hill averages [Watt et al., 1976].   
e)  Navrotsky [1995]. m)  Duffy [1992]. 
f)  Piekarz et al. [2002]. n)  Svendsen and Ahrens [1987].    
g)  Yang and Ghose [1994]. o)  Table 3.2.   
h)  Rigden et al. [1989].  
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Table 4.5:  Wave velocities    

 
 
 

Phase 

Ambient 
Longitudinal 

Sound Velocity, 
Vp (km/s) 

Observed 
Peak Shock 

Pressure 
Range (GPa) 

Peak Shock 
Precursor 
Velocity 
(km/s)  

Bamble bronzite a)  7.865 ± 0.015 15 – 48 GPa 7.78 

Sri Lankan enstatite b) 8.41 ± 0.31 48 – 68 GPa 9.10 ± 0.52 

Majorite c) 8.90  - - 

Ringwoodite d) + Stishovite d) 10.4 e) - - 

Wadsleyite d) + Stishovite d) 10.2 e) - - 

Akimotoite f) 10.11  - - 
 
a)  Ahrens and Gaffney [1971]. d)  Bass [1995].    
b)  This study (see text). e)  Voigt-Reuss-Hill average [Watt et al., 1976].  
c)  Gwanmesia et al. [2000]. f)  Weidner et al. [1985]. 



 

 

70
Table 4.6:  Constraints on Clapeyron slope of melting curves at P = 170 GPa.   

Melting  
curve 

 
dT/dP  

 
∆S a) 

 
∆Vm/Vs  

 
αperovskite  

 
∆T  

Simon (SH98) b)  1.7 K/GPa 1.1R 0.5 % 3.9 x 10-5 K-1 -1200 K 

G-C c) -10 K/GPa 1.1R -2.5 % 1.0 x 10-5 K-1 -2000 K 

G’-C’ d) -16 K/GPa  1.1R -4.0 % 1.0 x 10-5 K-1 -450 K 
 

a)  R = 415 J/kg K.   
b)  Extrapolation of Sweeney and Heinz’s [1998] Simon equation. 
c)  ∆Vm < 0 assuming shallow slope of SH98 up to 100 GPa (Figure 4.5a). 
d)  ∆Vm < 0 assuming steeper slope of Boehler  [2000] up to 100 GPa (Figure 4.5b). 
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Figure 4.1  Pressure vs. density plot of Hugoniot data for MgSiO3 glass and crystal from 

this study shown with previous Hugoniot data for porous material.  Also shown is the 

excellent agreement between 298 K diamond anvil cell (DAC) data and 298 K isotherm of 

Fiquet et al. [2000].  The perovskite datum, also from Fiquet et al. [2000], at 67 GPa, 4.77 

g/cm3 and 2900 K is more dense than Hugoniot data at same pressure, and temperature 

~1500 K, indicating a lower density phase than perovskite along the Hugoniot in the 70 to 

105 GPa range.  Mixed phase regions apply to crystal Hugoniot only, as described in the 

text.  Note increase in density along crystal Hugoniot observed at ~170 GPa and ~4500 K 

compared to decrease in density upon melting of an ultraporous mixture of MgO and fused 

SiO2 shocked to perovskite at 30 GPa with a calculated temperature and density of 4000 K 

and 4.2 g/cm3.  Standard errors calculated after Jackson and Ahrens [1979] are shown.   
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Figure 4.2  Calculated H.P.P. Hugoniots of enstatite, for the 10 – 100 GPa range.  The data 

in the 70 – 105 GPa range are less dense than predicted for the perovskite structure.  Based 

on calculated Hugoniots for candidate phases akimotoite is the phase most likely achieved 

along this segment.  Crystal data < 70 GPa show evidence of two arrivals indicating a 

mixed phase regime as outlined in Figure 4.1.  Overturned Hugoniot calculated for 

MgO/fused silica mix shocked to perovskite due to large thermal pressure.  Decrease in 

density upon melting is in excellent agreement with calculations. 
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Figure 4.3  Calculated shock temperatures of candidate H.P.P. Hugoniots of enstatite for 

the 10 – 100 GPa range.  Phases are all colder than their corresponding equilibrium phase 

regimes, except Rg + St.  Calculated Hugoniot temperature of ultraporous mixture of MgO-

SiO2 shocked to perovskite and melt shown. Phase boundaries from Presnall [1995] 

except:  Mj-Ak-Pv triple point [Hirose et al., 2001]; Mj-melt-Pv triple point [Ito and 

Katsura, 1992]; and melting curve slope for T > 2700 K of [Shen and Lazor, 1995] (SL95), 

[Sweeney and Heinz, 1998] (SH98) and [Boehler, 2000] (B00).  Clinoenstatite (CE).  

Orthoenstatite (OE).  Protoenstatite field not shown. 
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Figure 4.4  Calculated H.P.P. Hugoniots of enstatite indicate the perovskite structure is 

achieved in the 110 – 170 GPa range, followed by melting.  Orientation of pre-shocked 

enstatite is shown for 3 shots.  The presence of peak shock density for initial enstatite (001) 

on the perovskite and melt segments indicates the increase in density at ~170 GPa is not 

due to a denser Hugoniot achieved due to orientation, as observed in synthetic Mg2SiO4 

[Furnish and Brown, 1986]. 
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Figure 4.5  a) Temperature vs. pressure showing single measurement on MgSiO3 synthetic 

glass at 107 ± 4 GPa and 5060 ± 173 K.  Calculations of glass and enstatite shocked to final 

shock states of perovskite and H.P.P. melt1 are shown.  Accounting for super-heating the 

melt transition of the crystal is fixed to ~170 GPa, as observed in the P-ρ data, and a melt 

Hugoniot temperature in agreement with a -10 K/GPa deviation, at 90 GPa, from the 

extrapolation of Sweeney and Heinz [1998] Simon melt equation, as constrained by their 

data up to 85 GPa.  b)  Calculations of glass and enstatite shocked to final shock states of 

perovskite and H.P.P. melt2 are shown assuming steeper melting curve of Boehler [2000] 

as shown in the figure up to 100 GPa compared to melting curve of part a). 
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Figure 4.6  Change in volume upon melting, ∆Vm, (as a percentage of Vsolid) constrained 

by the density jump along the crystal Hugoniot at 170 GPa as a function of thermal 

expansion of the solid (perovskite) for various temperature differences.  ∆T used in 

calculation shown along each curve.  Uncertainty in ∆Vm = 0 shown by horizontal dashed 

lines.  ∆Vm and α consistent with the three melting curves discussed in the text are shown:  

Simon (SH98) corresponds to extrapolation of Sweeney and Heinz’s [1998] melting curve 

to 170 GPa; G-C corresponds to low temperature negative slope melting curve of Figure 

4.5a; and G’-C’ corresponds to high temperature more steeply sloped negative Clapeyron 

curve of Figure 4.5b.  At 170 GPa it is unlikely the thermal expansivity of perovskite 

would be greater than 2.7 x 10-5 K-1, the value at 5000 K and room pressure. 
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Figure 4.7  Pressure vs. density Hugoniot data for MgSiO3 (open symbols) and (Mg1-x 

,Fex)SiO3, where x = .08 to .15 (closed symbols).  En notation, i.e., En85 corresponds to 1-

x in percent form.  Bifurcation in (Mg,Fe)SiO3 data at 60 GPa shows Akimotoite and 

Perovskite phases achieved in similar pressure ranges as interpreted for MgSiO3 data in 

Figure 4.2 with a higher density leg assumed to be due to lower compressibility.  The low 

compressibility is most likely due to partial, or complete, melt occurring at lower pressures 

than expected due to impurities (pyroxenites), or alteration products (Bamle bronzite), not a 

phase transition to a more dense solid phase.  [Trunin et al., 1965] (T65); [Ahrens and 

Gaffney, 1971] (AG71); [Jeanloz and Ahrens, 1977] (JA77); [Watt and Ahrens, 1986] 

(WA86); [Marsh, 1980] (M80); [Gong et al., 2001] (G02); [Simakov and Trunin, 1973] 

(ST73).     
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