
Petascale Computing
for Large-Scale Graph Problems
David A. Bader

David A. Bader, Petascale Computing for Large-Scale Graph Problems 2

A global race is under way …

Sputnik (1957)

Japanese Earth Simulator (2002)

China joins U.S. and Japan in global
race to build the fastest computer

- John Markoff, Aug 19, 2005

NSF Leadership-
Class System
Acquisition -
Creating a Petascale
Computing
Environment for
Science and
Engineering

U.S. Petascale (2008-2010)

David A. Bader, Petascale Computing for Large-Scale Graph Problems 3

Aiming for Petascale at Georgia Tech!

• 6th ranked academic institution in the most recent June 2006
Top100 List of most capable supercomputers in the world

• Georgia Tech’s high-end computing resources include
approximately 7,000 processors in 35 clusters along with
about 100 processors across several SMP systems. Recent
HPC system acquisitions include:
– IBM Skolnick System Biology Center system: a 4020-processor

IBM eServer BladeCenter with 1,005 blades of 2x2 Opteron
cores/blade

– Dell PowerEdge 1850 system: a 512-node supercomputing
cluster with Intel Xeons and InfiniBand interconnect.

• Klaus Advanced Computing Building (most advanced
computing building in the world!) opens 26 October 2006

» Created a Computational Science &
Engineering Department in Fall 2005.

David A. Bader, Petascale Computing for Large-Scale Graph Problems 4

HPC for Multicore Processors
• Sun Fire T2000 Servers
• UltraSPARC T1

“Niagara” processor
• “the highest-throughput

and most eco-
responsible processor
ever created”®

Georgia Tech multicore research includes:

• IBM Shared University Research Award for Cell processors

• Sun Academic Equipment Grant for Sun Fire T2000 servers

David A. Bader, Petascale Computing for Large-Scale Graph Problems 5

Germany: The birthplace of graph
theory
• In Konigsberg, Germany, a river ran through the city such that in its

center was an island, and after passing the island, the river broke into
two parts. Seven bridges were built so that the people of the city
could get from one part to another.

• The people wondered whether or not one could walk around the city
in a way that would involve crossing each bridge exactly once.

• Leondard Euler, circa 1735

Source: The Math Forum

David A. Bader, Petascale Computing for Large-Scale Graph Problems 6

Graph problems arise from a variety of sources

Graphs are everywhere!

Power Distribution Networks Internet backbone Social Networks

Ground Transportation Tree of Life

Protein-interaction networks

Sources: C. Faloutsos talk [IPAM 05]

David A. Bader, Petascale Computing for Large-Scale Graph Problems 7

Giot L, Bader JS, …, Rothberg JM,
A protein interaction map of Drosophila melanogaster
Science 302: 1727-1736, 2003.

David A. Bader, Petascale Computing for Large-Scale Graph Problems 8

Computational Phylogeny
GRAPPA

CIPRES aims to establish
the cyber infrastructure

(platform, software,
database) required to

attempt a
reconstruction of the

Tree of Life
(10-100M organisms)

The Tree of Life

• Genome Rearrangements Analysis
under Parsimony and other
Phylogenetic Algorithm

• Freely-available, open-source,
GNU GPL

• already used by other
computational phylogeny groups,
Caprara, Pevzner, LANL, FBI,
Smithsonian Institute, Aventis,
GlaxoSmithKline, PharmCos.

• Gene-order Phylogeny Reconstruction
• Breakpoint Median
• Inversion Median

• over one-billion fold speedup from
previous codes

• Parallelism scales linearly with the
number of processors

Tobacco

Campanulaceae
• Bob Jansen, UT-Austin;
• Linda Raubeson, Central Washington U

David A. Bader, Petascale Computing for Large-Scale Graph Problems 9

Signaling networks:
activating potentials through space and time

David A. Bader, Petascale Computing for Large-Scale Graph Problems 10

Biochemical Pathways
Boehringer-Mannheim wallchart

Roche Applied Science http://www.expasy.org/

David A. Bader, Petascale Computing for Large-Scale Graph Problems 11

Homeland Security: Terrorist Networks
• Certain activities are often suspicious not because of the

characteristics of a single actor, but because of the interactions
among a group of actors.

• Interactions are modeled through a graph abstraction where the
entities are represented by vertices, and their interactions are the
directed edges in the graph.

Figure Credit: Uncloaking Terrorist Networks, V.E. Krebs,
First Monday, 7(4), April 2002.

Figure Credit: Graph-based technologies for intelligence
analysis,T. Coffman, S. Greenblatt, S. Marcus, Commun.
ACM, 47(3):45-47, 2004.

David A. Bader, Petascale Computing for Large-Scale Graph Problems 12

Information Overload

• Challenge: Piecing the data together and extracting
critical, relevant information in a timely manner

• Semantic Graphs (or Attributed Relational Graphs) are
one way to integrate data from disparate sources
– Vertices represent people, places, locations, events, etc.
– Edges represent the relationships between the vertices
– Semantic graph encodes web of relationships

David A. Bader, Petascale Computing for Large-Scale Graph Problems 13

Simple Example

David A. Bader, Petascale Computing for Large-Scale Graph Problems 14

Advantages of Semantic Graphs

• Much smaller than raw data. Can fit in memory of large
computer
– Fast response to queries
– Pre-join of database

• Combine data from different sources and of different
types

• Some common intelligence and law enforcement queries
are naturally posed on graphs
– Particularly for the terrorist threat

David A. Bader, Petascale Computing for Large-Scale Graph Problems 15

Query Example I: Short Paths

David A. Bader, Petascale Computing for Large-Scale Graph Problems 16

Query Example II: Motif Finding

Image Source:
T. Coffman,
S. Greenblatt,
S. Marcus,
Graph-based
technologies for
intelligence
analysis,
CACM, 47
(3, March 2004):
pp 45-47

David A. Bader, Petascale Computing for Large-Scale Graph Problems 17

The Big Picture

Analyst makes
queries.

Mongo
Databases

Fast
Graph
Query

Extract “Window”Extract “Window”

High Latency Query

Graph resides in memory
of supercomputer.

David A. Bader, Petascale Computing for Large-Scale Graph Problems 18

Graph algorithms

• Driving applications are not traditional HPC:
– health care, proteomics, security, informatics, …

• Fundamental abstraction
– Standard introductory material covered in a computer

science course on data structures and algorithms,
but...

• Why have there been so few (or no) efficient
distributed memory implementations of even the
simplest algorithm for sparse, arbitrary graphs?

David A. Bader, Petascale Computing for Large-Scale Graph Problems 19

Informatics Graphs are Tough

• Very different from graphs in scientific
computing!
– Graphs can be enormous
– Power-law distribution of the number of neighbors
– Small world property – no long paths
– Very limited locality, not partitionable
– Highly unstructured
– Edges and vertices have types

• Experience in scientific computing applications
provides only limited insight.

Six degrees of Kevin Bacon
Source: Seokhee Hong

David A. Bader, Petascale Computing for Large-Scale Graph Problems 20

Architectural Challenges

• Runtime is dominated by latency
– Random accesses to global address space
– Perhaps many at once

• Essentially no computation to hide memory
costs

• Access pattern is data dependent
– Prefetching unlikely to help
– Usually only want small part of cache line

• Potentially abysmal locality at all levels of
memory hierarchy

David A. Bader, Petascale Computing for Large-Scale Graph Problems 21

Desirable Architectural Features

• Low latency / high bandwidth
– For small messages!

• Latency tolerant
• Light-weight synchronization mechanisms
• Global address space

– No graph partitioning required
– Avoid memory-consuming profusion of ghost-nodes
– No local/global numbering conversions

• One machine with these properties is the Cray
MTA-2
– And successor Eldorado

David A. Bader, Petascale Computing for Large-Scale Graph Problems 22

How Does the MTA Work?

• Latency tolerance via massive multi-threading
– Each processor has hardware support for 128 threads
– Context switch in a single tick
– Global address space, hashed to reduce hot-spots
– No cache or local memory. Context switch on memory request.
– Multiple outstanding loads

• Remote memory request does not stall processor
– Other streams work while your request gets fulfilled

• Light-weight, word-level synchronization
– Minimizes access conflicts

• Flexibly supports dynamic load balancing
• Notes:

– MTA-2 is 5 years old
– Clock rate is 220 MHz
– Largest machine is 40 processors

David A. Bader, Petascale Computing for Large-Scale Graph Problems 23

Case Study: MTA-2 vs. BlueGene/L
• With LLNL, implemented s-t shortest paths in MPI
• Ran on IBM/LLNL BlueGene/L, world’s fastest computer

• Finalist for 2005 Gordon Bell Prize
– 4B vertex, 20B edge, Erdős-Renyi random graph
– Analysis: touches about 200K vertices
– Time: 1.5 seconds on 32K processors

• Ran similar problem on MTA-2
– 32 million vertices, 128 million edges
– Measured: touches about 23K vertices
– Time: 0.7 seconds on one processor, 0.09 seconds on 10 procs

• Conclusion: 4 MTA-2 procs = 32K BlueGene/L procs

David A. Bader, Petascale Computing for Large-Scale Graph Problems 24

But Speed Isn’t Everything

• Unlike MTA code, MPI code limited to Erdős-Renyi graphs
– Can’t support power-law graphs; pervasive in informatics

• MPI code is 3 times larger than MTA-2 code
– Took considerably longer to develop

• MPI code can only solve this very special problem
– MTA code is part of general and flexible infrastructure

• MTA easily supports multiple, simultaneous users

• But … MPI code runs everywhere
– MTA code runs only on MTA/Eldorado and on serial machines

David A. Bader, Petascale Computing for Large-Scale Graph Problems 25

Lessons & Challenges

• Massively multithreaded architectures:
– Are highest performing for graph algorithms
– Are boutique and rare
– Have specialized programming model

• Distributed memory machines:
– Are a very poor fit for graph informatics applications
– Are commodity and ubiquitous
– MPI provides extremely portable programming model

David A. Bader, Petascale Computing for Large-Scale Graph Problems 26

What is easy on the MTA-2
• No need to place data near computation
• No performance concerns with modifying shared

data
• Can access data in any order
• Using indirection or linked data-structures, and

pointer-chasing
• No need to partition program into independent,

balanced computations
• No need to use adaptive or dynamic

computations for load balancing
• No laborious task needed to minimizing

synchronization operations
Source: Cray, Inc.

David A. Bader, Petascale Computing for Large-Scale Graph Problems 27

Our development on MTA-2 includes
• Data Structures

– Treaps (randomized binary
trees)

• Fast set operations – parallel
algorithms run in optimal O(m
log(n/m)) work and O(log n)
expected time

• Used for representing
neighbors of high-degree
nodes in the graph

• Used for compacting edge
sets in BFS, MST algorithms

– Van Emde Boas trees
• Recursive data structure, set

operations
– Fibonacci Heaps and Pairing

Heaps
• Dijkstra-based Shortest paths

implementations

• List ranking and connected
components.
– List ranking runs 40 times

faster
– Connected components runs 6

times faster
– on 220MHz Cray MTA-2

processors compared with a
commodity 400MHz Sun SMP.

– [Bader, Cong, Feo; ICPP 2005]

• Graph theory applications
– Parallel breadth-first search;

approximate clique extraction;
DARPA SSCA2 [Bader,
Madduri, Feo, in progress]

– st-connectivity [Bader,
Madduri; ICPP 2006]

– Betweenness Centrality
[Bader, Madduri; ICPP 2006]

David A. Bader, Petascale Computing for Large-Scale Graph Problems 28

Two Case Studies

• Breadth-First Search (BFS)

• Betweenness Centrality

David A. Bader, Petascale Computing for Large-Scale Graph Problems 29

Case Study 1: Breadth-First Search (BFS)

• Sequential BFS: using a FIFO queue
• Recent algorithms and implementations for

handling large-scale graphs:
– graph partitioning [Yoo et. al. 2005]

– external memory [Meyer et. al. 2006]

• Our design is a fine-grained algorithm, suited for
multithreaded architectures
– All vertices at a given level in the graph can be

processed simultaneously, instead of just picking the
vertex at the head of the queue

– The adjacencies of each vertex can be inspected in
parallel

)(nmO +

David A. Bader, Petascale Computing for Large-Scale Graph Problems 30

Multithreaded BFS

;
;1

 then1 if
do parallelin oadjacent t each for

; Delete
do parallelin allfor

do while
; Enqueue

;
;0

;1
do parallelin allfor

edgesweight -unit assuming
 to frompath shortest theof

length theholding with 1 Array :Output
 vertexsource),,(

Qv
d[u]d[v]

-d[v]
uv

Qu
Qu

Q
Qs

Q
d[s]

-d[v]
Vv

V,vs
d[v]..n]d[

sEVG

→
+←

=

←
∈

≠
→

←
←

←
∈

∈

Enqueue

 :Input

φ

φ

David A. Bader, Petascale Computing for Large-Scale Graph Problems 31

MTA-2 BFS Implementation details

• Only requires a simple shared queue
– efficient due to the low-overhead

synchronization primitives on MTA-2
• We easily exploit nested parallelism in the

algorithm
– MTA compiler automatically collapses the

inner loop (visiting adjacencies)
• Unbalanced degree distributions (scale

free graphs) do not pose a problem
– Loop iterations are dynamically scheduled

David A. Bader, Petascale Computing for Large-Scale Graph Problems 32

Input Graphs for Testing on MTA-2
Degree distribution of the test graph instances

(16 million vertices, 150 million edges)

Out Degree

0 1 10 100 1000 10000 100000 1000000

Fr
eq

ue
nc

y

0

1

10

100

1000

10000

100000

1000000

10000000

100000000
RAND1
SF-RMAT
RAND2
SSCA2

• Erdős-Renyi Random
• Scale-free graphs

• Cray/Sandia power law
• DARPA HPCS

David A. Bader, Petascale Computing for Large-Scale Graph Problems 33

Scaling of BFS on RAND1
BFS on Random (RAND1) graphs

(200 million vertices, 1 billion edges)

No. of processors

10 16 20 32 40

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

1

2

3

4

5

6

7

8

R
el

at
iv

e
S

pe
ed

up

5

10

15

20

25

30

35

40

Time
Speedup

No. of processors

1 2 4 8 10

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

0

10

20

30

40

50

60

R
el

at
iv

e
Sp

ee
du

p

0

2

4

6

8

10

12

David A. Bader, Petascale Computing for Large-Scale Graph Problems 34

Scaling of BFS on SF-RMAT
(1 to 10 processors)

BFS on Scale-free (SF-RMAT) graphs
(200 million vertices, 1 billion edges)

No. of processors

1 2 4 8 10

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

0

10

20

30

40

50

60

R
el

at
iv

e
S

pe
ed

up

0

2

4

6

8

10

12
Time
Speedup

David A. Bader, Petascale Computing for Large-Scale Graph Problems 35

Scaling of BFS on SF-RMAT
(10 to 40 processors)

No. of processors

10 16 20 32 40

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

1

2

3

4

5

6

7

8

R
el

at
iv

e
S

pe
ed

up

5

10

15

20

25

30

35

40
Time
Speedup

BFS on Scale-free (SF-RMAT) graphs
(200 million vertices, 1 billion edges)

David A. Bader, Petascale Computing for Large-Scale Graph Problems 36

Comparison
• Cray MTA-2: 40 processors

– BFS, graph of 528M vertices, 2.1 Billion edges
– Scale-free graph: 17.32 seconds
– Random graph: 13.74 seconds

• 1 IBM BlueGene/L: 32K processors
– BFS on a random Poisson graph of 3.2 Billion vertices, average

degree of 10
– 4.9 seconds

• 2 Parallel Boost Graph Library:
performance on a 128–node cluster
– BFS Random graph, 1M vertices, 15M edges
– 1 processors: 40 seconds
– 20 processors: 10 seconds
– 70 processors: 3 seconds
– 100 processors : 10 seconds

1 Chow ’04, Eliassi-Rad IPAM 2005 talk
2 http://www.osl.iu.edu/research/pbgl/performance/

David A. Bader, Petascale Computing for Large-Scale Graph Problems 37

Case Study 2: Social Network Analysis

• Centrality metrics: Quantitative measures to
capture the importance of a node/vertex/actor in
a graph
– Degree, Closeness, Stress, Betweenness

• Applications include:
– Biological networks, protein-protein interactions
– Sexual networks and AIDS
– Identifying key actors in terrorist networks
– Organizational behavior
– Supply chain management
– Transportation networks

David A. Bader, Petascale Computing for Large-Scale Graph Problems 38

Betweenness Centrality (BC)

• Key metric in social network analysis
[Freeman ’77, Goh ’02, Newman ’03, Brandes ’03]

• -- No. of shortest paths between vertices s and t
• -- No. of shortest paths between vertices s and t

passing through v

• Betweenness Centrality is compute-intensive

() ()st

s v t V st

v
BC v

σ
σ≠ ≠ ∈

= ∑

)(vstσ
stσ

David A. Bader, Petascale Computing for Large-Scale Graph Problems 39

Our Contributions
• Design and implementation of the first parallel

algorithm for evaluating Betweenness Centrality,
optimized for scale-free sparse graphs
– [Bader, Madduri; ICPP 2006]

• Capability to solve real-world instances more
than three orders of magnitude larger than
current SNA packages!

• We have analyzed several large-scale real
datasets: patent citation networks, movie-actor,
and protein-interaction networks

David A. Bader, Petascale Computing for Large-Scale Graph Problems 40

BC Previous Results
• Traditional Algorithm for BC computation:

– Compute the length and number of shortest paths between all
pairs

– Sum all pair-dependencies ()
• time summation, storage of pair dependencies

• Current Social network analysis packages (UCINET,
Pajek, InFlow etc.) use this straight-forward algorithm
for implementing Betweenness Centrality
– They cannot compute BC for graphs larger than 10,000 vertices

• Brandes [2003] proposed a faster sequential algorithm for
BC on sparse graphs
– time and space for weighted graphs
– time for unweighted graphs

st

st v
σ

σ)(

)(3nO)(2nO

)(3nO

)log(2 nnmnO +)(nmO +
)(mnO

David A. Bader, Petascale Computing for Large-Scale Graph Problems 41

Overview of Our BC Parallel Algorithm
• Our parallel algorithm is motived by Brandes’

sequential algorithm
– Augments BFS/SSSP and maintains a running sum of

BC
• Compute n shortest paths trees in parallel, one

for each vertex in the graph
• During these computations, also maintain the

predecessor sets
• The dependencies can be computed by

traversing the vertices in non-increasing order of
their distance from the source vertex

• Individual BFS/SSSP computations are also
parallelized

David A. Bader, Petascale Computing for Large-Scale Graph Problems 42

BC Implementation Details
• We have designed and implemented parallel

betweenness centrality for two shared memory
platforms:

– Symmetrical multiprocessors (SMPs)
• Modest number of processors
• Coarse-grained implementation, BFS/SSSP computations are

done concurrently
• Implemented on IBM p570

– multithreaded architectures
• Thousands of hardware threads
• Individual BFS/SSSP computation is parallelized
• Implemented on Cray MTA-2

David A. Bader, Petascale Computing for Large-Scale Graph Problems 43

IBM p5 570

• 16-way Power5 symmetric multiprocessor
• 1.9 GHz processor
• 256 GB physical memory
• 32KB L1D, 1.9MB L2,

32MB L3
• 8-way superscalar
• SMT on each core

• Supports a C and POSIX threads
parallel implementation

David A. Bader, Petascale Computing for Large-Scale Graph Problems 44

BC for IMDB movie actor network

ND-actor : IMDB movie-actor network
(392,400 vertices and 31,788,592 edges)

Degree
0 1 10 100 1000 10000 100000

Fr
eq

ue
nc

y

0

1

10

100

1000

10000

100000

Real-world instance: an undirected graph of 392,400 vertices (movie actors)
and 31,788,592 edges. An edge corresponds to a link between two actors, if
they have acted together in a movie. The dataset includes actor listings from
127,823 movies.

Betweenness Centrality computation for the ND-actor graph
(392,400 vertices and 31,788,592 edges)

No. of processors
2 4 8 16 20 32 40

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

0

200

400

600

800

1000
IBM p5 570
Cray MTA2

Degree Distribution: Scale-free

David A. Bader, Petascale Computing for Large-Scale Graph Problems 45

BC for web graph
Betweenness Centrality computation for the ND-web graph

(325,729 vertices and 1,497,135 edges)

No. of processors
4 8 16 20 40

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

0

20

40

60

80

100

120

140

160
Cray MTA-2
IBM p5 570

David A. Bader, Petascale Computing for Large-Scale Graph Problems 46

BC Analysis:
Protein-protein interactions
• We recently computed betweenness centrality scores for

the human genome1 protein interaction network

Human Genome Protein Interactions
degree distribution

(undirected graph, 6228 vertices and 71803 edges)

Degree

0.1 1 10 100 1000

C
ou

nt

0.1

1

10

100

1000

10000

Human Genome Protein Interactions
Degree vs. Betweenness Centrality

Degree

1 10 100

N
or

m
al

iz
ed

 B
et

w
ee

nn
es

s
C

en
tra

lit
y

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1 Lehner, Fraser. A first draft human protein interaction map,
http://genomebiology.com/2004/5/9/R63

Low degree
vertices can have

high centrality
scores

David A. Bader, Petascale Computing for Large-Scale Graph Problems 47

Human Genome core protein interactions
Degree vs. Betweenness Centrality

Degree

1 10 100

B
et

w
ee

nn
es

s
C

en
tra

lit
y

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

43 interactions
Protein Ensembl ID

ENSG00000145332.2
Kelch-like protein 8

BC Analysis:
Protein-protein interactions

David A. Bader, Petascale Computing for Large-Scale Graph Problems 48

Collaborators

• Kamesh Madduri (Georgia Tech)
• Bruce Hendrickson (Sandia National

Laboratories)
• Jon Berry (Sandia National Laboratories)
• Vipin Sachdeva (IBM Austin Research Lab)
• Guojing Cong (IBM TJ Watson Research

Center)
• John Feo (Cray, Inc.)

David A. Bader, Petascale Computing for Large-Scale Graph Problems 49

Acknowledgment of Support
• National Science Foundation

– CSR: A Framework for Optimizing Scientific Applications (06-14915)
– CAREER: High-Performance Algorithms for Scientific Applications (06-11589; 00-

93039)
– ITR: Building the Tree of Life -- A National Resource for Phyloinformatics and

Computational Phylogenetics (EF/BIO 03-31654)
– ITR/AP: Reconstructing Complex Evolutionary Histories (01-21377)
– DEB Comparative Chloroplast Genomics: Integrating Computational Methods,

Molecular Evolution, and Phylogeny (01-20709)
– ITR/AP(DEB): Computing Optimal Phylogenetic Trees under Genome

Rearrangement Metrics (01-13095)
– DBI: Acquisition of a High Performance Shared-Memory Computer for

Computational Science and Engineering (04-20513).

• IBM PERCS / DARPA High Productivity Computing Systems (HPCS)
– DARPA Contract NBCH30390004

David A. Bader, Petascale Computing for Large-Scale Graph Problems 50

Petascale Computing for Graph Theory:
Conclusions
• Need to move from FP-centric to data-centric

computing
– Impact to emerging areas such as life sciences and

informatics
• Several architectural features reduce the

programmer’s burden and enable high-
performance large-scale applications with
irregular data structures

• How will we program multicore processors,
especially for these applications?

• Will Microsoft / Intel reach this before the HPC
community? ☺

