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A global race is under way …

Sputnik (1957)

Japanese Earth Simulator (2002)

China joins U.S. and Japan in global 
race to build the fastest computer

- John Markoff, Aug 19, 2005

NSF Leadership-
Class System 
Acquisition -
Creating a Petascale
Computing 
Environment for 
Science and 
Engineering 

U.S. Petascale (2008-2010)
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Aiming for Petascale at Georgia Tech!

• 6th ranked academic institution in the most recent June 2006 
Top100 List of most capable supercomputers in the world

• Georgia Tech’s high-end computing resources include 
approximately 7,000 processors in 35 clusters along with 
about 100 processors across several SMP systems. Recent 
HPC system acquisitions include:
– IBM Skolnick System Biology Center system: a 4020-processor 

IBM eServer BladeCenter with 1,005 blades of 2x2 Opteron
cores/blade

– Dell PowerEdge 1850 system: a 512-node supercomputing 
cluster with Intel Xeons and InfiniBand interconnect.

• Klaus Advanced Computing Building (most advanced 
computing building in the world!) opens 26 October 2006

» Created a Computational Science & 
Engineering Department in Fall 2005.
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HPC for Multicore Processors 
• Sun Fire T2000 Servers
• UltraSPARC T1  

“Niagara” processor 
• “the highest-throughput 

and most eco-
responsible processor 
ever created”®

Georgia Tech multicore research includes:

• IBM Shared University Research Award for Cell processors

• Sun Academic Equipment Grant for Sun Fire T2000 servers
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Germany: The birthplace of graph 
theory
• In Konigsberg, Germany, a river ran through the city such that in its 

center was an island, and after passing the island, the river broke into 
two parts. Seven bridges were built so that the people of the city 
could get from one part to another. 

• The people wondered whether or not one could walk around the city 
in a way that would involve crossing each bridge exactly once.

• Leondard Euler, circa 1735 

Source: The Math Forum
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Graph problems arise from a variety of sources

Graphs are everywhere!

Power Distribution Networks Internet backbone Social Networks

Ground Transportation Tree of Life

Protein-interaction networks

Sources: C. Faloutsos talk [IPAM 05]
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Giot L, Bader JS, …, Rothberg JM,
A protein interaction map of Drosophila melanogaster
Science 302: 1727-1736, 2003.
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Computational Phylogeny
GRAPPA

CIPRES aims to establish 
the cyber infrastructure 

(platform, software, 
database) required to 

attempt a 
reconstruction of the 

Tree of Life
(10-100M organisms)

The Tree of Life

• Genome Rearrangements Analysis 
under Parsimony and other 
Phylogenetic Algorithm

• Freely-available, open-source, 
GNU GPL

• already used by other 
computational phylogeny groups, 
Caprara, Pevzner, LANL, FBI, 
Smithsonian Institute, Aventis, 
GlaxoSmithKline, PharmCos.

• Gene-order Phylogeny Reconstruction
• Breakpoint Median
• Inversion Median

• over one-billion fold speedup from 
previous codes

• Parallelism scales linearly with the 
number of processors

Tobacco

Campanulaceae
• Bob Jansen, UT-Austin;
• Linda Raubeson, Central Washington U
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Signaling networks:
activating potentials through space and time
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Biochemical Pathways
Boehringer-Mannheim wallchart

Roche Applied Science   http://www.expasy.org/
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Homeland Security: Terrorist Networks
• Certain activities are often suspicious not because of the 

characteristics of a single actor, but because of the interactions 
among a group of actors.

• Interactions are modeled through a graph abstraction where the 
entities are represented by vertices, and their interactions are the 
directed edges in the graph. 

Figure Credit: Uncloaking Terrorist Networks, V.E. Krebs, 
First Monday, 7(4), April 2002.

Figure Credit: Graph-based technologies for intelligence 
analysis,T. Coffman, S. Greenblatt, S. Marcus, Commun. 
ACM, 47(3):45-47, 2004. 
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Information Overload

• Challenge: Piecing the data together and extracting 
critical, relevant information in a timely manner 

• Semantic Graphs (or Attributed Relational Graphs) are 
one way to integrate data from disparate sources
– Vertices represent people, places, locations, events, etc. 
– Edges represent the relationships between the vertices
– Semantic graph encodes web of relationships
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Simple Example
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Advantages of Semantic Graphs

• Much smaller than raw data.  Can fit in memory of large 
computer
– Fast response to queries
– Pre-join of database

• Combine data from different sources and of different 
types

• Some common intelligence and law enforcement queries 
are naturally posed on graphs
– Particularly for the terrorist threat
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Query Example I: Short Paths
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Query Example II: Motif Finding

Image Source:
T. Coffman, 
S. Greenblatt, 
S. Marcus, 
Graph-based 
technologies for 
intelligence 
analysis, 
CACM, 47
(3, March 2004): 
pp 45-47
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The Big Picture

Analyst makes
queries.

Mongo
Databases

Fast
Graph
Query

Extract “Window”Extract “Window”

High Latency Query

Graph resides in memory 
of supercomputer.
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Graph algorithms

• Driving applications are not traditional HPC:
– health care, proteomics, security, informatics, …

• Fundamental abstraction
– Standard introductory material covered in a computer 

science course on data structures and algorithms, 
but...

• Why have there been so few (or no) efficient 
distributed memory implementations of even the 
simplest algorithm for sparse, arbitrary graphs?
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Informatics Graphs are Tough

• Very different from graphs in scientific 
computing!
– Graphs can be enormous
– Power-law distribution of the number of neighbors
– Small world property – no long paths
– Very limited locality, not partitionable
– Highly unstructured
– Edges and vertices have types

• Experience in scientific computing applications 
provides only limited insight.

Six degrees of Kevin Bacon
Source: Seokhee Hong
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Architectural Challenges

• Runtime is dominated by latency
– Random accesses to global address space
– Perhaps many at once

• Essentially no computation to hide memory 
costs

• Access pattern is data dependent
– Prefetching unlikely to help
– Usually only want small part of cache line

• Potentially abysmal locality at all levels of 
memory hierarchy
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Desirable Architectural Features

• Low latency / high bandwidth
– For small messages!

• Latency tolerant
• Light-weight synchronization mechanisms
• Global address space

– No graph partitioning required
– Avoid memory-consuming profusion of ghost-nodes
– No local/global numbering conversions

• One machine with these properties is the Cray 
MTA-2
– And successor Eldorado 



David A. Bader,  Petascale Computing for Large-Scale Graph Problems 22

How Does the MTA Work?

• Latency tolerance via massive multi-threading
– Each processor has hardware support for 128 threads
– Context switch in a single tick
– Global address space,  hashed to reduce hot-spots
– No cache or local memory.  Context switch on memory request.
– Multiple outstanding loads

• Remote memory request does not stall processor
– Other streams work while your request gets fulfilled

• Light-weight, word-level synchronization
– Minimizes access conflicts

• Flexibly supports dynamic load balancing
• Notes:

– MTA-2 is 5 years old
– Clock rate is 220 MHz
– Largest machine is 40 processors
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Case Study: MTA-2 vs. BlueGene/L
• With LLNL, implemented s-t shortest paths in MPI
• Ran on IBM/LLNL BlueGene/L, world’s fastest computer

• Finalist for 2005 Gordon Bell Prize
– 4B vertex, 20B edge, Erdős-Renyi random graph
– Analysis: touches about 200K vertices
– Time: 1.5 seconds on 32K processors

• Ran similar problem on MTA-2
– 32 million vertices, 128 million edges
– Measured: touches about 23K vertices
– Time: 0.7 seconds on one processor, 0.09 seconds on 10 procs

• Conclusion: 4 MTA-2 procs = 32K BlueGene/L procs
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But Speed Isn’t Everything

• Unlike MTA code, MPI code limited to Erdős-Renyi graphs
– Can’t support power-law graphs; pervasive in informatics

• MPI code is 3 times larger than MTA-2 code
– Took considerably longer to develop

• MPI code can only solve this very special problem
– MTA code is part of general and flexible infrastructure

• MTA easily supports multiple, simultaneous users

• But … MPI code runs everywhere
– MTA code runs only on MTA/Eldorado and on serial machines
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Lessons & Challenges

• Massively multithreaded architectures:
– Are highest performing for graph algorithms
– Are boutique and rare
– Have specialized programming model

• Distributed memory machines:
– Are a very poor fit for graph informatics applications
– Are commodity and ubiquitous
– MPI provides extremely portable programming model
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What is easy on the MTA-2
• No need to place data near computation
• No performance concerns with modifying shared 

data
• Can access data in any order
• Using indirection or linked data-structures, and 

pointer-chasing
• No need to partition program into independent, 

balanced computations
• No need to use adaptive or dynamic 

computations for load balancing
• No laborious task needed to minimizing 

synchronization operations
Source: Cray, Inc.
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Our development on MTA-2 includes
• Data Structures

– Treaps (randomized binary 
trees)

• Fast set operations – parallel 
algorithms run in optimal O(m
log(n/m)) work and O(log n) 
expected time

• Used for representing 
neighbors of high-degree 
nodes in the graph 

• Used for compacting edge 
sets in BFS, MST algorithms

– Van Emde Boas trees
• Recursive data structure, set 

operations
– Fibonacci Heaps and Pairing 

Heaps
• Dijkstra-based Shortest paths 

implementations

• List ranking and connected 
components.
– List ranking runs 40 times 

faster 
– Connected components runs 6 

times faster
– on 220MHz Cray MTA-2 

processors compared with a 
commodity 400MHz Sun SMP. 

– [Bader, Cong, Feo; ICPP 2005]

• Graph theory applications
– Parallel breadth-first search; 

approximate clique extraction; 
DARPA SSCA2 [Bader, 
Madduri, Feo, in progress]

– st-connectivity [Bader, 
Madduri; ICPP 2006]

– Betweenness Centrality 
[Bader, Madduri; ICPP 2006]
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Two Case Studies

• Breadth-First Search (BFS)

• Betweenness Centrality
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Case Study 1: Breadth-First Search (BFS)

• Sequential BFS:                using a FIFO queue
• Recent algorithms and implementations for 

handling large-scale graphs: 
– graph partitioning [Yoo et. al. 2005]

– external memory [Meyer et. al. 2006]

• Our design is a fine-grained algorithm, suited for 
multithreaded architectures
– All vertices at a given level in the graph can be 

processed simultaneously, instead of just picking the 
vertex at the head of the queue

– The adjacencies of each vertex can be inspected in 
parallel

)( nmO +
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Multithreaded BFS
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MTA-2 BFS Implementation details

• Only requires a simple shared queue
– efficient due to the low-overhead 

synchronization primitives on MTA-2
• We easily exploit nested parallelism in the 

algorithm
– MTA compiler automatically collapses the 

inner loop (visiting adjacencies)
• Unbalanced degree distributions (scale 

free graphs) do not pose a problem
– Loop iterations are dynamically scheduled
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Input Graphs for Testing on MTA-2
Degree distribution of the test graph instances

(16 million vertices, 150 million edges) 
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• Erdős-Renyi Random
• Scale-free graphs

• Cray/Sandia power law 
• DARPA HPCS
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Scaling of BFS on RAND1
BFS on Random (RAND1) graphs

(200 million vertices, 1 billion edges)
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Scaling of BFS on SF-RMAT
(1 to 10 processors)

BFS on Scale-free (SF-RMAT) graphs
(200 million vertices, 1 billion edges)

No. of processors

1 2 4 8 10

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

on
ds

)

0

10

20

30

40

50

60

R
el

at
iv

e 
S

pe
ed

up
 

0

2

4

6

8

10

12
Time
Speedup



David A. Bader,  Petascale Computing for Large-Scale Graph Problems 35

Scaling of BFS on SF-RMAT
(10 to 40 processors)
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(200 million vertices, 1 billion edges)



David A. Bader,  Petascale Computing for Large-Scale Graph Problems 36

Comparison
• Cray MTA-2: 40 processors

– BFS, graph of 528M vertices, 2.1 Billion edges 
– Scale-free graph: 17.32 seconds
– Random graph: 13.74 seconds

• 1 IBM BlueGene/L: 32K processors
– BFS on a random Poisson graph of 3.2 Billion vertices, average 

degree of 10
– 4.9 seconds

• 2 Parallel Boost Graph Library: 
performance on a 128–node cluster
– BFS Random graph, 1M vertices, 15M edges
– 1 processors: 40 seconds
– 20 processors: 10 seconds
– 70 processors: 3 seconds
– 100 processors : 10 seconds

1 Chow ’04, Eliassi-Rad IPAM 2005 talk
2 http://www.osl.iu.edu/research/pbgl/performance/



David A. Bader,  Petascale Computing for Large-Scale Graph Problems 37

Case Study 2: Social Network Analysis

• Centrality metrics: Quantitative measures to 
capture the importance of a node/vertex/actor in 
a graph
– Degree, Closeness, Stress, Betweenness

• Applications include:
– Biological networks, protein-protein interactions
– Sexual networks and AIDS
– Identifying key actors in terrorist networks
– Organizational behavior
– Supply chain management
– Transportation networks
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Betweenness Centrality (BC)

• Key metric in social network analysis
[Freeman ’77, Goh ’02, Newman ’03, Brandes ’03]

• -- No. of shortest paths between vertices s and t
• -- No. of shortest paths between vertices s and t 

passing through v

• Betweenness Centrality is compute-intensive

( ) ( )st

s v t V st
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Our Contributions
• Design and implementation of the first parallel 

algorithm for evaluating Betweenness Centrality, 
optimized for scale-free sparse graphs
– [Bader, Madduri; ICPP 2006]

• Capability to solve real-world instances more 
than three orders of magnitude larger than 
current SNA packages!

• We have analyzed several large-scale real 
datasets: patent citation networks, movie-actor, 
and protein-interaction networks
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BC Previous Results
• Traditional Algorithm for BC computation:

– Compute the length and number of shortest paths between all 
pairs

– Sum all pair-dependencies (       )
• time summation,         storage of pair dependencies

• Current Social network analysis packages (UCINET, 
Pajek, InFlow etc.) use this straight-forward        algorithm 
for implementing Betweenness Centrality
– They cannot compute BC for graphs larger than 10,000 vertices

• Brandes [2003] proposed a faster sequential algorithm for 
BC on sparse graphs
– time and              space for weighted graphs
– time for unweighted graphs

st

st v
σ

σ )(

)( 3nO )( 2nO

)( 3nO

)log( 2 nnmnO + )( nmO +
)(mnO
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Overview of Our BC Parallel Algorithm
• Our parallel algorithm is motived by Brandes’ 

sequential algorithm
– Augments BFS/SSSP and maintains a running sum of 

BC
• Compute n shortest paths trees in parallel, one 

for each vertex in the graph
• During these computations, also maintain the 

predecessor sets 
• The dependencies can be computed by 

traversing the vertices in non-increasing order of 
their distance from the source vertex

• Individual BFS/SSSP computations are also 
parallelized
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BC Implementation Details
• We have designed and implemented parallel 

betweenness centrality for two shared memory 
platforms:

– Symmetrical multiprocessors (SMPs)
• Modest number of processors
• Coarse-grained implementation, BFS/SSSP computations are 

done concurrently
• Implemented on IBM p570

– multithreaded architectures
• Thousands of hardware threads
• Individual BFS/SSSP computation is parallelized
• Implemented on Cray MTA-2
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IBM p5 570

• 16-way Power5 symmetric multiprocessor 
• 1.9 GHz processor
• 256 GB physical memory
• 32KB L1D, 1.9MB L2, 

32MB L3
• 8-way superscalar
• SMT on each core

• Supports a C and POSIX threads 
parallel implementation
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BC for IMDB movie actor network

ND-actor : IMDB movie-actor network
(392,400 vertices and 31,788,592 edges)
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Betweenness Centrality computation for the ND-actor graph
(392,400 vertices and 31,788,592 edges)
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BC for web graph
Betweenness Centrality computation for the ND-web graph

(325,729 vertices and 1,497,135 edges)
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BC Analysis: 
Protein-protein interactions
• We recently computed betweenness centrality scores for 

the human genome1 protein interaction network

Human Genome Protein Interactions
degree distribution

(undirected graph, 6228 vertices and 71803 edges) 
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Human Genome core protein interactions
Degree vs. Betweenness Centrality
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Protein-protein interactions



David A. Bader,  Petascale Computing for Large-Scale Graph Problems 48

Collaborators

• Kamesh Madduri (Georgia Tech)
• Bruce Hendrickson (Sandia National 

Laboratories)
• Jon Berry (Sandia National Laboratories)
• Vipin Sachdeva (IBM Austin Research Lab)
• Guojing Cong (IBM TJ Watson Research 

Center)
• John Feo (Cray, Inc.)



David A. Bader,  Petascale Computing for Large-Scale Graph Problems 49

Acknowledgment of Support
• National Science Foundation 

– CSR: A Framework for Optimizing Scientific Applications (06-14915)
– CAREER: High-Performance Algorithms for Scientific Applications (06-11589; 00-

93039)
– ITR: Building the Tree of Life -- A National Resource for Phyloinformatics and 

Computational Phylogenetics (EF/BIO 03-31654)
– ITR/AP: Reconstructing Complex Evolutionary Histories (01-21377)
– DEB Comparative Chloroplast Genomics: Integrating Computational Methods, 

Molecular Evolution, and Phylogeny (01-20709)
– ITR/AP(DEB): Computing Optimal Phylogenetic Trees under Genome 

Rearrangement Metrics (01-13095)
– DBI: Acquisition of a High Performance Shared-Memory Computer for 

Computational Science and Engineering (04-20513).

• IBM PERCS / DARPA High Productivity Computing Systems (HPCS)
– DARPA Contract NBCH30390004



David A. Bader,  Petascale Computing for Large-Scale Graph Problems 50

Petascale Computing for Graph Theory: 
Conclusions
• Need to move from FP-centric to data-centric 

computing
– Impact to emerging areas such as life sciences and 

informatics
• Several architectural features reduce the 

programmer’s burden and enable high-
performance large-scale applications with 
irregular data structures

• How will we program multicore processors, 
especially for these applications?

• Will Microsoft / Intel reach this before the HPC 
community? ☺


