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AN ALGEBRAIC ANNULUS THEOREM

G.P. Scott and G.A. Swarup

We present an extension of Dunwoody’s theory of tracks
and use it to prove an analogue of the annulus theorem for
hyperbolic groups.

1. Introduction.

We prove the following analogue for (word) hyperbolic groups of the Annulus
Theorem for 3-manifolds:

Theorem 1.1. Let G be a torsion free hyperbolic group with one end. Sup-
pose that G has an infinite cyclic subgroup such that the number of ends of
the pair (G,H) is greater than one. Then G splits over some infinite cyclic
subgroup.

Corollary 1.2. Let G′ be a subgroup of finite index in a torsion free hyper-
bolic group G. Then G splits over an infinite cyclic group if and only if G′
splits over an infinite cyclic group.

This result has also been proved by Bowditch [2], using very different
methods. We discuss these differences at the end of this introduction.

The terminology used is standard (from [11] and [17]). The importance
of splitting groups along infinite cyclic subgroups is well known from the
work of Paulin [13], Rips and Sela [14] and Sela [18].

If G has an infinite cyclic subgroup H such that e(G,H) ≥ 3, we will say
that G is of multi-band type. Otherwise we will say that G is of surface type.
The proofs of Theorem 1.1 are different in the two cases. We do not need
the assumption that G is torsion free in the multi-band case. In this case
we obtain the following result.

Theorem 1.3. Let G be a one-ended hyperbolic group and let H be a two-
ended subgroup with e(G,H) ≥ 3. Then G splits over a subgroup commen-
surable with H.

Both of the above results are closely related to the Annulus Theorem for
3-manifolds. There are several versions of this result and we state one of
the most basic ones here. A map f : S1 × I → M of the annulus into a
3-manifold M is essential if it is π1-injective, proper in the sense that f maps
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the boundary of the annulus into the boundary ∂M of M, and in addition
f is not properly homotopic into ∂M.

Annulus Theorem: Let M be a compact orientable irreducible 3-manifold
with incompressible boundary. If M admits an essential map of the annulus
S1 × I, then it admits an essential embedding of the annulus.

The connections between the Annulus Theorem for 3-manifolds and our
algebraic analogues are described briefly as follows. The assumptions that
M be compact orientable and irreducible with non-empty boundary imply
that G = π1(M) is torsion free. The additional assumption that M has
incompressible boundary implies that G has one end. Also if f : S1×I →M
is a π1-injective proper map and H denotes the infinite cyclic subgroup of
G carried by f, then f is essential if and only if e(G,H) ≥ 2, and G splits
over H if and only if f is properly homotopic to an embedding. Finally,
if e(G,H) ≥ 3, then f can be homotoped to cover an embedded essential
annulus.

Our paper is organised as follows. In Section 2, we develop the general
theory of patterns and tracks in 2-complexes and its connection with the
number of ends of a 2-complex. This theory was introduced by Dunwoody in
[6]. We extend Dunwoody’s theory by adding the idea of a singular pattern
and of the length of a pattern. Dunwoody introduced patterns and tracks in
order to prove the accessibility of finitely presented groups. We show how
our new ideas give an alternative version of his arguments. In Section 3,
we discuss the use of tracks in a situation where one has a pair of groups
such that e(G,H) ≥ 2, and H is infinite cyclic. In Section 4, we discuss
crossing of tracks and give examples of groups of multi-band type and of
surface type. The proof of Theorem 1.3 on the multi-band case is completed
in Section 5. The rest of the paper is devoted to the surface type case, and
the main construction of the proof comes in Section 8. We use hyperbolicity
of the group a bit more in the surface type case. On the whole our use
of hyperbolicity seems weak and we expect that the 2-complex techniques
set out in our proofs will be useful in the study of splittings of finitely
presented groups. Another feature of the proof is the surface-like properties
of a large class of one-ended torsion free hyperbolic groups, particularly
those which we call surface type groups. In this case, we need to deal with
orientation reversing elements in the group; we show that if a surface-like
group has orientation reversing elements then it splits as an amalgamated
free product over an infinite cyclic subgroup which has index two in one of
the vertex groups which is also infinite cyclic. This is the analogue of the
fact that a non-orientable surface must contain an embedded Mobius band.
Our proof is suggested by the arguments of Dunwoody [6] and Tukia [23]
and by the least area arguments of Freedman, Hass and Scott [8] and [9].
As in Tukia [23], we run into difficulties in the torsion case. With some
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more work one can show without the torsion free assumption that either the
conclusion of Theorem 1.1 holds or there is a subgroup of G which “looks
like” a triangle group.

Brian Bowditch [2] recently developed a theory of JSJ-decompositions for
one-ended hyperbolic groups with locally connected boundary, and Swarup
then showed that any one-ended hyperbolic group has locally connected
boundary [22]. Using an extension of the work of Rips, Bestvina and Feighn
(see [3]), Bowditch showed that if one removes the torsion freeness hypoth-
esis from Theorem 1.1, the conclusion remains true except for the case of
triangle groups. His techniques are very different from ours, making heavy
use of the boundary of a hyperbolic group, and as explained above we ex-
pect that our techniques will be useful in the study of splittings of finitely
presented groups. It is for this reason that we have presented the theory
of patterns in more generality and detail than we require in this paper.
Perhaps Gabai’s techniques [10] may also be useful for extending Theorem
1.1. Another obvious question is whether there is an analogue of orientation
covers for hyperbolic groups.

Acknowledgments. Much of this work was carried out while the first au-
thor was visiting the University of Melbourne in 1994 and the Mathematical
Sciences Research Institute in Berkeley in 1994 and 1995. He is grateful for
the partial support provided by the University of Melbourne, by NSF grant
DMS-9306240, and by MSRI, which is partially supported by NSF grant
DMS-9022140.

Note added after acceptance by the Pacific Journal in October
1998: Apart from corrections to two misprints and updating of references,
this paper is unchanged from the version completed by the authors in July
1996. In the intervening two years, our result has been generalised to the
case of arbitrary finitely presented groups and splittings over free abelian
groups by Dunwoody and Swenson in a series of preprints each of which
has been withdrawn and replaced by an updated version. We have further
generalised their result to the case of splittings over virtually polycyclic
groups, and we heard recently that Dunwoody and Swenson have done this
also.

Note added in proof in September 2000: Dunwoody and Swenson’s
paper appeared in Inventiones earlier this year.

2. Tracks and ends.

Throughout this section, Y will denote a connected locally finite 2-dimen-
sional simplicial complex. A subset of Y will be called a pattern if it inter-
sects each closed simplex of Y in a compact properly embedded subman-
ifold of codimension one. This means that it avoids the 0-skeleton of Y,
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meets each 1-simplex in a finite set and meets each 2-simplex in a compact
1-dimensional submanifold whose boundary lies on the boundary of the sim-
plex. See Figure 1a. A pattern t in Y locally has a collar neighbourhood,
and globally there is a neighbourhood of t in Y which is an I-bundle over
t. If this bundle is trivial, we say that t is two-sided. In this paper, we
will mostly consider two-sided patterns but we will also need to consider
one-sided patterns at times. A component of a pattern which is a circle in
the interior of a 2-simplex will be called a trivial circle.

Figure 1.a. Figure 1.b.
(Pattern) (Normal Pattern)

Note that a pattern is compact if and only if it meets only a finite num-
ber of the simplices of Y . As we are mainly interested in the combinatorics
described by a pattern, we will often say that a compact pattern is finite.
Finite two-sided patterns typically arise from maps to the real line by tak-
ing inverse images of regular points. They can also be constructed using
coboundaries of 0-cochains. A pattern will be called normal if it intersects
each 2-simplex only in arcs, and the two ends of each arc lie on different
edges of the simplex. See Figure 1b. A connected pattern is called a track.
It should be noted that our definitions of the terms pattern and track are
more general than Dunwoody’s definitions in [6]. His patterns and tracks
are all normal in our terminology. Note that if Y has a free edge e, which
means that e is not a face of any 2-simplex, then a single point of the interior
of e is a normal track in Y. We will not usually be interested in such tracks,
but one does need to be aware of their existence.

As patterns have similar separation properties to those of a codimension-
one submanifold of a manifold, we will say that a two-sided pattern t in a
2-complex Y bounds Z if t cuts Y into pieces such that the union of some
of them has closure Z, and Z contains t but meets only one side of each
component of t. A choice of normal direction for each component of a two-
sided pattern t will be called a transverse orientation of t, and we will refer
to t with a prescribed transverse orientation as an oriented pattern. Our
interest in patterns and tracks in Y is because they give a good way of
discussing the number of ends of Y. They are also a natural generalisation of
the idea of a normal surface in a 3-manifold. For our purposes, we will need
to consider patterns which are not normal, although these will play a small
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role in our arguments. Consider a finite pattern t in Y. We will be interested
in whether the closures of the components of Y − t are compact or not.
Again, because it is the combinatorics which are important, a component
whose closure is compact will be called finite. This is equivalent to saying
that the component contains only a finite number of vertices of Y . We will
say that a finite pattern t in Y splits Y if it cuts Y into pieces at least
two of which are infinite. Now consider an oriented finite pattern t. If f
denotes a proper map of the line into Y or a map of the circle into Y such
that f is transverse to t, we define the sign of an intersection point of f
with t by comparing the orientation of the line or circle with the transverse
orientation of t. (Here we use the definition that a map f : X → Y is
proper if the pre-image of any compact set is compact.) By summing over
all intersection points, we define the intersection number of f with t. As any
proper map of the line into Y and any map of the circle can be properly
homotoped to be transverse to t, and as the intersection number obtained
is independent of the homotopy, this defines the intersection number of any
such map with t. We say that an oriented finite pattern t is essential if any
loop in Y has zero intersection number with t and there is a proper map of
the line into Y which has non-zero intersection number with t. Note that if t
is not connected, then the condition of essentiality may well depend on the
choice of transverse orientation. We will say that a two-sided finite pattern
t is essential if t admits an orientation which makes it essential. Clearly an
essential pattern must split Y. The additional conditions which we impose
for a pattern to be essential are needed because we want to consider patterns
which are not connected. They are aimed at simplifying the discussion of
essential patterns but they do not really restrict us in any way. To see this,
consider a finite pattern t which splits Y. Next pick an infinite component
of the complement of t and denote its closure by U. We define a sub-pattern
t′ of t to consist of those components of t which meet U but do not lie in
the interior of U. Then t′ bounds U and if we transversely orient t′ to point
into U, then t′ is essential in Y. Thus a splitting pattern always contains an
essential pattern. We will say that an essential pattern t is elementary if t
bounds a subset U of Y such that all the orientations point into U or all
point out of U. (Of course, such U must be infinite.) We have just seen that
any splitting pattern contains an elementary essential pattern.

We will say that two oriented finite patterns t1 and t2 in Y are equivalent
if, for any proper map h of the real line into Y and any map h of the circle into
Y, the intersection number of h with t1 equals the intersection number of h
with t2. If t1 and t2 are disjoint, they are equivalent if and only if the union of
t1 and of t2 with opposite orientation bounds a compact subset U of Y such
that for each component V of U, either all the transverse orientations point
into V or all point out of V. Thus the relation of equivalence could reasonably
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be called oriented cobordism. We will say that an oriented pattern is trivial
if it is equivalent to the empty set.

Before we discuss ends, we prove the following fundamental lemma about
patterns. An invariant of a finite pattern t which will be used often is its
weight w(t), which we define to be the total number of points of t ∩ Y (1),
where Y (1) denotes the 1-skeleton of Y .

Lemma 2.1. Any finite oriented pattern in Y is equivalent to a finite ori-
ented normal pattern, possibly empty.

Remark 2.2. If we apply the procedure below to a one-sided pattern, we
will obtain a one-sided pattern, but equivalence is not defined for one-sided
patterns.

Proof. (See [21].) Let t be a finite pattern in Y . If t is not normal, then
there is a 2-simplex σ of Y and a component of t∩ σ which is either a circle
C or an arc λ with both endpoints on one edge e of σ. If there is such a
circle C, we alter t by deleting C. If there is such an arc λ, let λ′ denote
the sub-arc of e with the same endpoints as λ. We alter t by removing a
small neighbourhood of λ and, for each 2-simplex σ′, other than σ, which
contains the edge e, we add to t an arc parallel to λ′. There is a natural
choice of transverse orientation for the new arc which is compatible with the
transverse orientation on the rest of t. See Figure 2.

Figure 2.a. Figure 2.b.

Each of these moves replaces t by an equivalent pattern. Also each of
these moves reduces the sum w(t) + d(t), where w(t) is the weight of t and
d(t) denotes the sum over all 2-simplices σ of Y of the number of components
of t∩σ. As this sum is a non-negative integer, this sequence of alterations to
t must terminate, at which point we will have obtained an oriented normal
pattern as required.

Note that even if t has no components which are trivial circles, such com-
ponents can be introduced by the second type of alteration. Thus we may
need to delete trivial circles at some stage. Now we consider the connection
between ends and patterns.
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Lemma 2.3. The locally finite 2-dimensional simplicial complex Y has at
least two ends if and only if it contains a finite essential pattern.

Remark 2.4. If Y contains a finite essential pattern, the preceding lemma
shows that it contains a finite normal pattern which is essential.

Proof. If Y contains a finite essential pattern, it is immediate that Y − {t}
has at least two infinite components, so that Y must have at least two ends.
Now suppose that Y has at least two ends. This implies that we can find a
proper map g of Y onto the real line R. Without altering g on the vertices
of Y, we can homotop it to be linear on the simplices of Y and this will
be a proper homotopy. Now if z is a point of R which is not the image
of a vertex, then g−1(z) is a finite two-sided pattern t which we give the
transverse orientation induced from the orientation of R. Any loop in Y
has zero intersection number with t, as any loop in R has zero intersection
number with z. Also if we choose a proper map λ of the line into Y such that
g◦λ sends the ends of the line to distinct ends of R, then λ will have non-zero
intersection number with t as g ◦ λ has non-zero intersection number with
z. This shows that t is essential, as required. Note that t will be normal
automatically.

So far, we have not discussed anything really different from the ideas of
Dunwoody. The first new concept we need to introduce is that of a singular
pattern in Y. Note that a pattern t in Y has a natural induced structure as
a 1-complex with vertex set consisting of t ∩ Y (1). Any circle component of
t which lies in the interior of a 2-simplex of Y will not have any vertices,
but we will allow this in our definition of a 1-complex for the purposes of
discussing singular patterns.

Definition 2.5. A singular pattern in Y is a proper map f of a 1-complex
t into Y such that:

1) f maps vertices of t to interior points of edges of Y .
2) f maps non-vertex points of t to interior points of 2-simplices of Y.
3) If v is a vertex of t of valence d, it is mapped to an edge e of Y also of

valence d, with distinct rays of the neighborhood of v being mapped
to distinct 2-simplices of Y.

We define the weight w(f) of a singular pattern f to equal the number
of vertices of t. If f is an embedding this agrees with the original definition
of weight. We also define a singular pattern f to be normal if t has no
component which is a circle without vertices, and if, for each edge λ of t,
the two endpoints of λ are mapped to distinct edges of Y. Again this agrees
with the original definition of normality when f is an embedding.

The conditions in the above definition imply that a singular pattern has
similar local separation properties to those of a pattern. In particular it
has an induced normal bundle, which means that there is a unique bundle
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over t with fibre the interval I such that f extends to the total space of this
bundle and the extended map is injective on each fibre of the bundle. We
will say that f is two-sided if its normal bundle is trivial. In this case, a
choice of normal direction for each component of t will be called a transverse
orientation of f and we will say that f is oriented. Our main interest in
singular patterns is whether a finite singular pattern is essential in a sense
analogous to that for an embedded pattern. We consider a finite oriented
singular pattern f : t → Y. We will say that f is essential if any loop in Y
has zero intersection number with f and there is a proper map of the line
into Y which has non-zero intersection number with f. This clearly agrees
with the original definition of essentiality if f is an embedding. Finally we
will say that two singular finite oriented patterns f and g are equivalent if,
whenever h is a proper map of the real line into Y or a map of the circle
into Y, the intersection number of h with f equals the intersection number
of h with g. Again this agrees with the definition of equivalence of embedded
oriented patterns, when f and g are embeddings.

Now we want to bring in ideas of Jaco and Rubinstein [12]. They defined
a PL-analogue of area for a normal surface in a triangulated 3-manifold.
We will follow their ideas to define an idea of length for a finite, possibly
singular, pattern in Y . Jaco and Rubinstein [12] considered the case when
the 2-complex is the 2-skeleton of a 3-manifold but their ideas extend to
the general case. First one needs a “metric” on Y . To provide this, we
simply choose an identification of each 2-simplex of Y with an ideal trian-
gle in the hyperbolic plane. We then glue these triangles by isometries to
obtain our “metric” on Y . We will call this a hyperbolic structure on Y .
Really this structure is defined on Y − Y (0), where Y (0) denotes the set of
vertices of Y . It does yield a metric on Y − Y (0), but we will not use this
fact. Note that there is no requirement that this metric be complete, and
completeness will be irrelevant for our arguments. For simplicity, we will
give the definitions for embedded patterns only, with brief comments about
how they extend to singular patterns. We define the complexity c(t) of a
finite pattern t in Y to be the ordered pair (w(t), L(t)), where L(t) denotes
the sum over all 2-simplices σ of Y of the length of the 1-manifold t ∩ σ.
(Note that L(t) is non-zero unless t consists only of isolated points on free
edges of Y.) For a singular pattern f : t → Y, note that one does not want
to measure the length of the image of f, but the length with appropriate
multiplicity. This is done by pulling back the metric on Y to a metric on t. It
is assumed that we are only considering finite patterns whenever we talk of
complexity. These complexities are ordered lexicographically and they are
added component-wise. Note that a hyperbolic structure on Y immediately
induces a hyperbolic structure on every cover of Y. The idea now is that
if we consider patterns whose complexity is as small as possible, then such
patterns should have good properties. In particular they should intersect in
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a reasonably simple way. This is by analogy with the very nice properties of
surfaces of least area in 3-manifolds [8] and of shortest curves on surfaces [9].
It will be very convenient to refer to a pattern of least possible complexity
as shortest. However, the reader should keep clear the fact that this term
means least complexity c(t) and not least length L(t).

We say that two patterns t1 and t2 in Y intersect transversely if t1∩t2 does
not meet the 1-skeleton of Y, and for each 2-simplex σ of Y the 1-manifolds
t1 ∩ σ and t2 ∩ σ intersect transversely in the interior of σ. If t1 and t2 are
finite patterns in Y which intersect transversely, we can define a new pattern
t by performing cut and paste at each point of t1 ∩ t2 and rounding corners.
As rounding corners reduces length, we see that c(t) ≤ c(t1) + c(t2), with
strict inequality so long as t1∩ t2 is not empty. (For singular patterns which
intersect transversely, the same construction can be made so long as they are
in general position. This means that no point of f1(t1)∩ f2(t2) is a multiple
point of f1 or f2.) This essentially trivial observation will have important
consequences for us in the cases in which we are interested. Note that even
if t1 and t2 are normal, the new pattern t will usually not be normal. In fact,
for each point x of t1 ∩ t2, exactly one of the two possible cuts and pastes at
x will yield normal arcs, so that there is a unique cut and paste of t1 and t2
which yields a normal pattern. In Dunwoody’s work [6], he used only this
cut and paste which explains why he did not need to consider non-normal
patterns. We will definitely need to use other cut and paste operations. We
introduce one further piece of terminology. If t1 and t2 are finite patterns in
Y which intersect transversely in a non-empty set, then t1∩ t2 cuts t1 and t2
into pieces which are not patterns. We will call such pieces partial patterns.
The complexity of a partial pattern is well defined in the same way as the
complexity of a pattern, and if s1, . . . , sk denote the partial patterns which
are contained in t1, we have c(t1) =

∑
c(si). Note that this equality holds

because t1 ∩ t2 does not meet any edge of Y.
We want to use cut and paste constructions on shortest patterns to show

that such patterns have nice intersections and we will also need to show
that shortest patterns exist in suitable classes of patterns in order to apply
these ideas. A good example to bear in mind is that of an essential simple
closed curve C on an annulus A equipped with some metric. If this metric is
reasonable, e.g., if A covers a closed surface F and the metric on A is lifted
from that on F , we can find a shortest loop in the homotopy class of C. Of
course, we do not want to think of the homotopy class of a pattern. For us a
finite pattern is interesting if it is essential. Given a finite essential pattern
t on a 2-complex Y, we will want to know that there is a shortest pattern
equivalent to t and/or that there is a pattern which is shortest among all
essential patterns in Y.

Before proving the existence results which we need, we will show how to
use essential patterns of least complexity. The following result will be useful.
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Lemma 2.6. Suppose that Y has at least two ends, and let t be a finite
essential pattern in Y of least possible weight and without trivial circles.
Then t is normal and intersects each 2-simplex of Y in at most one arc.

Proof. The fact that t is normal follows from the proof of Lemma 2.1 as any
normalising moves will reduce the weight of t. If E,E∗ are infinite disjoint
sets of vertices of Y with Y (0) = E ∪ E∗, then we can construct from δE
a pattern which has the required property. If we have an essential pattern
t, we take the corresponding subdivision E,E∗ of Y (0). Then δE gives an
essential pattern s and any 2-simplex which s meets must also be met by
t. It follows that w(s) ≤ w(t). The minimality of w(t) implies that s and t
have the same weight, and now it follows that t must meet each 2-simplex
of Y in at most one arc.

Now we come to a key property of essential patterns of least complexity.

Lemma 2.7. Suppose that Y has at least two ends and let s and t be essen-
tial patterns in Y which are shortest among all such patterns. Then either
s and t coincide or they are disjoint.

Proof. First note that s and t are two-sided and must have the same com-
plexity. Next recall that each must contain an elementary essential pattern,
so the fact that each is shortest implies that each is already elementary. Now
suppose that s and t are not disjoint and intersect transversely. Denote the
two pieces of Y bounded by s by S and S∗, and the two pieces of Y bounded
by t by T and T ∗. Thus s∩ t cuts s into two partial patterns s∩T and s∩T ∗
which we denote s′ and s′′, and it cuts t into t∩S and t∩S∗ which we denote
by t′ and t′′. None of these four partial patterns need be connected even if
s and t are connected. Note that c(s′) + c(s′′) = c(s) = c(t) = c(t′) + c(t′′).
Of these four partial patterns, we consider one of the shortest, i.e., of least
complexity. Without loss of generality, s′ is a shortest one. Then consider
the patterns s′ ∪ t′ and s′ ∪ t′′. After rounding corners, we obtain two pat-
terns each of which has complexity strictly less than c(t), which implies that
both patterns are inessential in Y. The pattern s′ ∪ t′ bounds S ∩ T and its
complement, and this complement must be infinite as it contains S∗. Hence
S ∩ T must be finite or s′ ∪ t′ would be essential. Similarly S∗ ∩ T must be
finite. But this implies that T is finite so that t is inessential. This contra-
diction completes the proof of the lemma in the case when s and t intersect
transversely.

If s and t intersect but not transversely, we use the trick of Meeks and Yau,
see Lemma 1.3 of [8], as modified by Jaco and Rubinstein in Section 2.3 of
[12]. Here is how the trick works in our situation. Note that the intersection
of s and of t with each 2-simplex σ of Y must consist of geodesic arcs in
the hyperbolic metric on σ. We will start by discussing the simplest case
when no two geodesic arcs of s and t coincide, and s∩ t meets the 1-skeleton
of Y in exactly one point x which lies on an edge e of Y. The problem is
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that cutting and pasting s and t at x does not yield a strict reduction in
the length of s ∪ t as we cannot round corners. We resolve this as follows.
First pick a direction along e and measure the angles at which the various
geodesic arcs of s and of t meet e at x. The fact that s is a critical point
for the length function implies that the sum of the cosines of the angles
corresponding to the edges of s must be zero, and the analogous statement
holds for the edges of t. In particular, it follows that s and t must locally
cross at x. This means that any neighbourhood of x contains points of s
on each side of t and vice versa. Now we perturb s slightly to a new track
s1 by moving the point s ∩ e a small distance ε along e. We will discuss
how small to choose ε in a moment. The new track s1 must cross t in at
least one 2-simplex σ1 which has e as an edge. Clearly c(s1) ≥ c(s), and
we can assume the inequality is strict as otherwise s1 and t would be two
shortest essential tracks on Y which intersect transversely, contradicting the
result of the previous paragraph. Now L(s1) −L(s) is a function of ε which
must be zero to the first order as s is a critical point of L. However, the
reduction of length obtained by cutting and pasting s1 and t in σ1 is, to
the first order, linear in ε with (non-zero) coefficient | cos θ − cosφ| where
θ and φ denote the original angles in σ1 between e and the arcs of s and
t which met e at x. It follows that if we choose ε suitably small, then the
reduction will outweigh the increase so that the arguments of the preceding
paragraph will yield a contradiction by applying them to s1 and t. If no two
geodesic arcs of s and t coincide, and s∩ t meets the 1-skeleton of Y in more
than one point, essentially the same argument will work by perturbing s at
each of the points where s ∩ t meets the 1-skeleton of Y. If some geodesic
arcs of s and t coincide, we need to perturb s along the entire 1-complex Γ
of coincident arcs and make the same argument as before at each extreme
point of Γ. Note that s and t must locally cross at each extreme point x of
Γ, so that there is an intersection between s1 and t in a 2-simplex σ1 which
contains x and contains non-coincident edges of s and t which end at x.

We will need one further related result for singular essential patterns.

Lemma 2.8. Let f : t→ Y be a finite two-sided essential singular pattern.
Then either f factors through a covering of an essential embedded pattern
in Y or there is an essential embedded pattern s in Y such that s and f are
equivalent and c(s) < c(f).

Remark 2.9. This result means that if we can minimise complexity among
all singular patterns in an equivalence class or collection of equivalence
classes, then the least complexity pattern must be an embedding or a cov-
ering of an essential embedded pattern.

Proof. We will first consider the case where f is self-transverse. Then we can
perform cut and paste at all the singular points of f(t) to obtain a pattern
s in Y such that c(s) < c(f). In order to ensure that s is equivalent to f, we
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choose all the cut and paste operations to be orientation preserving. This
means that we choose the transverse orientation for f(t) specified by the
transverse orientation which makes f essential and then ensure that each
cut and paste preserves this direction. The orientation preserving condition
ensures that any line or loop which has algebraic intersection number d with
f also has algebraic intersection number d with the new pattern, where we
choose the obvious transverse orientation for the new pattern.

Now we need to consider the more general situation where f need not be
self-transverse. Our aim is to apply the Meeks-Yau trick as in the proof of
the preceding lemma. In other words, we will perturb f by a small amount
to a self-transverse pattern f ′, and then perform cut and paste on f ′ as in the
preceding paragraph to obtain an embedded pattern s such that c(s) < c(f).
Note that if f is a covering map of an embedded pattern, there is no way
to carry out this procedure. Suppose first that t is connected and that f
is not a covering map of an embedded pattern. Then the methods apply
to obtain an embedded pattern s equivalent to f such that c(s) < c(f).
If t is not connected, but f fails to be a covering map when restricted to
some component t1 of t, we can use the same methods to obtain an embedded
pattern s1 equivalent to f1, the restriction of f to t1, such that c(s1) < c(f1).
Let F denote the pattern obtained from f by replacing f1 by the inclusion
of s1 and let ε denote c(f) − c(F ). We can perturb F on each of the other
components of t, and perform more cut and paste to obtain an embedded
pattern s which is equivalent to f. Further, this can be done while increasing
the complexity of F by less than ε, so that c(s) < c(f) as required.

In the first part of the proof of the preceding lemma, we showed that if
f is a two-sided essential self-transverse pattern in Y, then oriented cut and
paste yields an equivalent embedded two-sided pattern. A natural question
is what can one say when one considers a one-sided pattern. The answer is
the following little result which we will use later.

Lemma 2.10. Let f : t→ Y be a finite one-sided pattern in Y. Then either
f is an embedding, or there is a one-sided embedded pattern in Y which has
less complexity than f. In particular, Y cannot be simply connected.

Proof. If f covers an embedded pattern s in Y, then s must also be one-sided.
Thus either f is an embedding or s has less complexity than f as required.
Without loss of generality we can assume that t is connected. Suppose also
that f is in general position. Pick a maximal tree T in t, and let S denote
a subset of t consisting of one point from the interior of each edge of t− T.
Then there is a transverse orientation for t − S. By removing points from
S, we can assume that this transverse orientation does not extend over any
point of S. We can assume that none of the points of S are double points
of f. This allows us to perform oriented cut and paste of f to obtain an
embedded pattern s in Y which is transversely oriented except at the points
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of S, and the orientation does not extend across the points of S. It follows
that s is one-sided as required. If f is not in general position, we apply the
Meeks-Yau trick as in the proof of the previous lemma.

Now we want to prove an existence result for patterns of least complexity.
First we consider only patterns of the same combinatorial type as a given
singular normal pattern f. This means that any such pattern is homotopic
to f through singular patterns in Y, and so, in particular, has the same
weight as t. We call such a homotopy a normal homotopy.

Lemma 2.11. Let Y be a locally finite 2-dimensional simplicial complex
equipped with some hyperbolic structure, and let f : t→ Y be a finite singular
normal pattern in Y such that the restriction of f to each component of t
cannot be normally homotoped arbitrarily close to a vertex of Y. Then there
is a singular pattern f ′ which is of the same combinatorial type as f and
has least complexity among all such patterns.

Remark 2.12. The hypothesis on the components of t implies that no com-
ponent of t can be a single point.

Proof. This is proved exactly as on page 500 of Jaco and Rubinstein [12].
We will be interested in the existence of shortest patterns equivalent to

a given essential singular pattern f : t→ Y but not necessarily of the same
combinatorial type. In order to apply the above result, we will need to know
that the essentiality of f implies that no component of t can be homotoped
arbitrarily close to a vertex of Y. But this need not be true unless we impose
some condition on Y. For example, suppose that Y is obtained from two
infinite 2-complexes Y1 and Y2 by glueing them at a vertex v and let ti
denote the pattern in Yi which has one vertex on each edge which contains
v and has one edge in each 2-simplex which contains v. Thus ti is a copy of
the link of v in Yi. Then each ti is essential in Y, as it separates Y into pieces
which are essentially Y1 and Y2, and each ti can be isotoped arbitrarily close
to v.

If Y is a locally finite 2-dimensional simplicial complex, we will say that
a vertex v of Y is a splitting vertex if some component of the link of v in Y
does not bound a compact subset of Y. The assumption which we will make
for the rest of this paper is that the 2-complexes which we consider have
no splitting vertices. This will not be a problem for our applications for
the following reason. If Y does have a splitting vertex, so does its universal
cover, and it follows that the universal cover has at least two ends. Thus we
have the following result.

Lemma 2.13. Let Y be a locally finite 2-dimensional simplicial complex
which covers a finite simplicial complex Z with fundamental group G. If Y
has a splitting vertex, then e(G) > 1.

Now we can state and prove our existence result for shortest patterns.
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Lemma 2.14. Let Y be a locally finite 2-dimensional simplicial complex
without splitting vertices, and suppose that Y has a hyperbolic structure lifted
from a finite complex Z covered by Y. Let f denote an essential finite singular
pattern in Y. Then:

1) There is a singular pattern f ′ which is equivalent to f and has least
complexity among all such singular patterns. Further any such f ′ must
be a covering map of an embedded normal pattern in Y.

2) There is a singular pattern f ′′ which has least complexity among all
essential singular patterns in Y. Further, any such f ′′ must be an em-
bedded normal pattern in Y.

Remark 2.15. In the first part of this lemma, the situation where f ′ covers
an embedded pattern but is not an embedding can certainly occur. Here is
a simple example. Consider any essential track t embedded in Y and let f
consist of two parallel copies of t. Then f ′ could map the two copies of t
onto one copy of t.

Proof. Let (w0, L0) denote the infimum of the complexities of all singular
patterns in Y which are equivalent to f, and let fi : ti → Y denote a
sequence of such patterns such that c(fi) → (w0, L0) as i tends to infinity.
As remarked earlier, the proof of Lemma 2.1 shows that we can assume that
each fi is normal, as any normalising move reduces complexity. By passing
to a subsequence, we can also assume that each fi has weight w0.We consider
the projections of the fi’s into the finite complex Z. This gives us a sequence
gi of singular patterns in Z. Note that our hypothesis that the hyperbolic
structure on Y is lifted from one on Z implies that the complexities of fi and
gi are equal. As there are only finitely many combinatorial types of singular
patterns of a fixed weight in a given finite 2-complex, we can arrange, by
again passing to a subsequence, that all the gi’s are of one combinatorial
type. This means that each ti can be identified with a fixed 1-complex t′
and that for a given vertex v of t′ each gi maps v to the same edge of Z. Now
the proof of Lemma 2.11 shows that there is a singular pattern g : t′ → Z
of the same combinatorial type as the gi’s and with complexity (w0, L0)
unless, for large values of i, there is a component u of t′ whose image gi(u)
lies arbitrarily close to a vertex of Z. This would imply that fi(u) also lies
very close to a vertex of Y and so must cover some component of the link
of this vertex. The fact that Y has no splitting vertices implies that this
component bounds a compact subset of Y, and hence that the restriction of
fi to t′−u is equivalent to fi which contradicts our assumption that each fi

has the least possible weight w0. The fact that g has the same combinatorial
type as each gi, means that g can be lifted to a (possibly singular) pattern
f ′i in Y, where f ′i is of the same combinatorial type as fi. For each i, the
singular pattern f ′i is equivalent to the original singular pattern f, and it has
least possible complexity because its complexity is equal to the complexity
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of g. Now Remark 2.9 shows that f ′i must be an embedding or a covering
map of an embedded normal pattern.

For the second part of the lemma, the existence part of the proof is es-
sentially the same as in the preceding argument, and is carried out by min-
imising over the class of all essential singular patterns in Y. Now consider a
singular essential pattern f ′′ : t′′ → Y of least possible complexity. We al-
ready know that f ′′ must be a covering map of an embedded normal pattern
s in Y, so that c(s) ≤ c(f ′′) with equality if and only if f ′′ is an embedding.
There must be a component of Y − s with infinite closure U and with infi-
nite complement as otherwise f ′′ could not be essential. Let s1 denote the
sub-pattern of s which is the union of those components of s which meet
U but do not lie in the interior of U. Then s1 is an essential pattern in Y.
As c(s1) ≤ c(s) ≤ c(f ′′), the fact that f ′′ minimises complexity over all
essential patterns in Y implies that these inequalities are equalities and so
c(s) = c(f ′′) which implies that f ′′ is an embedding as required.

Using the ideas of the preceding proof, one can give a somewhat different
proof of Stallings’ Theorem for finitely presented groups and of the acces-
sibility of finitely presented groups by following Dunwoody’s arguments in
[6]. We sketch the proof of Stallings’ Theorem. Consider a finitely presented
group G which is the fundamental group of a finite 2-dimensional simplicial
complex YG with universal cover Y. First we suppose that Y does not have
any splitting vertices. We choose a hyperbolic structure on YG and give Y
the induced hyperbolic structure. The hypothesis of Stallings’ Theorem is
that Y has at least two ends. Now we can apply Lemma 2.14 to obtain a
shortest essential pattern t in Y. A crucial point which comes in here is that
as Y is simply connected, each component of t must separate Y. It follows
immediately, that some component of t must be essential, and the fact that
t has least complexity shows that t must equal this component, so that t
is connected. Now we consider the action of G on Y. Lemma 2.7 tells us
that for each g in G the translate gt of t is disjoint from or coincides with
t. It follows that t projects into YG as a covering of some embedded track
s. This immediately gives a splitting of G over the finite group C which is
the stabiliser of t. If Y does have a splitting vertex v, the existence result
for shortest tracks fails but it is not needed. Let u denote the image of v in
YG. It is immediate that u determines a splitting of G over the trivial group,
which is the stabiliser of v. Thus in either case, Stallings’ Theorem follows
for finitely presented groups.

3. Ends of pairs of groups.

We will now fix some of the notation to be used in most of the rest of this
paper. G is a torsion free hyperbolic group with one end and G has an
infinite cyclic subgroup H such that e(G,H) ≥ 2. Following Bowditch, we
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sometimes call the number e(G,H) the number of co-ends of H (in G). X
denotes a simply-connected 2-dimensional simplicial complex on which G
acts on the left freely and simplicially so that the quotient is compact and
inherits a simplicial complex structure. If L is a subgroup of G then XL

denotes the quotient complex X/L. We will always use only the triangulation
of XL inherited from the given triangulation of X. The notation XH usually
means that H is infinite cyclic and if h is a generator of H we sometimes
write Xh instead of XH .

We will often be interested in the subgroup of π1(Y ) represented by a
track t in Y, where Y is any locally finite 2-dimensional simplicial complex.
Of course, the fundamental group of any track is a free group, but the group
in which we will be interested is the image of the natural map π1(t) → π1(Y ).
If K denotes this subgroup, we will say that t carries K. Note that K is
only defined up to conjugacy in π1(Y ), but this will not cause any problems
as π1(Y ) will usually be abelian in the cases in which we are interested.

Now we consider an infinite cyclic subgroup H of G and the corresponding
2-complex XH . We will assume that H has infinite index in G, so that
XH is not compact. The reader should think of the special case where
XG is a closed orientable surface so that XH is an annulus which contains
an embedded essential simple closed curve. From our point of view, the
fundamental property of this simple closed curve is that it separates the
annulus into two infinite pieces. In addition, of course, it is connected and
carries the entire group H. In the general situation, we want to find a track
which will play the role of this simple closed curve on the annulus.

Lemma 3.1. Let H be an infinite cyclic subgroup of G which has infinite
index in G. If t is a finite two-sided track in XH , then it must separate XH .
If, in addition, t carries the trivial group, then t must separate XH into
two pieces one of which is compact and carries the trivial group, so that, in
particular, t is inessential.

Proof. If t does not separate XH , it follows that t must carry the trivial
subgroup of H. Hence t must lift to X, and as X is simply connected this
lift s must separate X into two pieces. Each of these pieces must be infinite,
which contradicts our hypothesis that X has only one end. See [20] for a
related argument. Now we consider the case when t is separating and carries
the trivial group. Again t must lift to X, and this lift s must separate X
into two pieces. If both the components of the complement of t in XH are
infinite, or if the finite component carries a non-trivial subgroup of H, then
it follows that the complement of s in X consists of two infinite components
contradicting our hypothesis that X has only one end. This completes the
proof of the lemma.

Now we will concentrate on finite tracks t in XH which carry a non-trivial
subgroup of H.
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Lemma 3.2. Let H be an infinite cyclic subgroup of G which has infinite
index in G. Then there is a finite two-sided track in XH which carries a
non-trivial subgroup of H.

Proof. As XH is not compact, we can take a proper map φ : XH → R
+, the

non-negative real numbers, and consider the finite pattern t = φ−1(c) where
φ−1([0, c]) contains a loop representing h. At least one of the components
of t must be a track of the required type, by the preceding lemma.

Remark 3.3. Another way to obtain tracks is to take suitable sets in XH

whose frontiers are disjoint from vertices.

Lemma 3.4. If e(XH) ≥ 2, there is a finite essential track t in XH . Any
such track carries a non-trivial subgroup of H.

Proof. As e(XH) ≥ 2, we can take a proper map ϕ of XH onto the reals
and consider the finite essential pattern φ−1(c) for some c in R. Now we
apply Lemma 3.1 to show that some component of φ−1(c) is essential. The
same lemma shows that any essential track in XH must carry a non-trivial
subgroup of H.

Remark 3.5. If W is a subset of XH whose projection to R is not onto, we
can choose t to be disjoint from W by choosing c in R but not in the image
of W.

The inverse image in X of such a track t in X has one component if t
carries H. Otherwise t must carry a subgroup of H of finite index and we
have a finite number of components in the inverse image of t. If we fix a
generator h of H, then we can talk of the positive and negative end points
of any one of these components in ∂X, the Gromov boundary of X or G.

We want to use tracks to subdivide ∂X. Note that any track in X is two-
sided as X is simply connected. We will generally assume that any track
A in X which we are considering has two ends; often it will have infinite
cyclic stabilizer. The quotient by this stabiliser must be compact if A has
two ends. We will use the term axis for any track in X with two ends
and infinite cyclic stabilizer. We will use Stab0A to denote the subgroup of
StabA consisting of elements which do not interchange the sides of an axis
A, and if h is a generator of Stab0A, then ∂A or E(A) will denote the fixed
points of h. Usually PA denotes the positive or attracting fixed point of h,
and NA denotes the negative or repelling fixed point of h. These will also be
called positive and negative end points of A. By Coornaert [4], H = Stab0A
acts properly discontinuously on X−E(A) with compact quotient. If t is the
image of A in XH , then t carries H. We will say that the axis A is essential
if t is an essential track in XH . Note that if A is essential, then e(XH) ≥ 2,
but the following example shows that the converse is false.
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Example 3.6. Let XH be obtained from an open annulus Z and a compact
annulus Z ′ by identifying one component of ∂Z ′ with an essential circle S of
Z. Consider circles C and C ′ in Z and Z ′ respectively which are parallel to
S and disjoint from S. By an isotopy, we can arrange that each is a track in
XH . Then C is an essential track in XH , but C ′ is not essential. Thus the
pre-images of C and C ′ in X are tracks A and A′ with the same endpoints,
with A essential and A′ inessential.

If A is an essential axis in X, we denote the two parts of the image of
(∂X − E(A))/H separated by t as ∂0(XH) and ∂1(XH) and think of these
as the left and right parts of the boundary ∂(XH) of XH . If p denotes the
projection from XH ∪ (∂X −E(A))/H to XH ∪ ∂(XH),then the subdivision
of (∂X−E(A)) consists of p−1(∂0(XH)) , p−1(∂1(XH)). If we take any finite
cover XK of XH and the lift t′ of t and repeat the above construction, then
we get the same subdivision of (∂X−E(A)). On the other hand, if we start
with a track t whose fundamental group does not surject onto H, then the
subdivision of (∂X−E(A)) may depend on the lift of t that we take in XK .
Finally note that distinct essential axes A and A′ with the same end points
may yield different subdivisions of (∂X − E(A)), as the following example
shows.

Example 3.7. This example is the same as the preceding one except that
we take Z ′ to be a half open annulus, so that XH has three ends. Now C
and C ′ are both essential tracks in XH , but A and A′ divide (∂X − E(A))
in distinct ways.

The positive outcome of the above discussion is the following.

Lemma 3.8. Given an essential axis A in X and an infinite cyclic H ⊆
Stab0A, then A/H defines a subdivision of ∂XH and the corresponding sub-
division of (∂X − E(A)) is independent of the H chosen in Stab0A.

If A,A′ are disjoint and H ⊆ Stab0A∩Stab0A′ and if A,A′ bound a com-
pact subset of XH , we get the same subdivision of (∂X − E(A)) whether
we use A or A′ (note that E(A) = E(A′)). This generates an equivalence
relation on essential axes with the same end points. We will denote these
subsets of (∂X −E(A)) by ∂0A and ∂1A; thus implicitly we are using some
transverse orientation for A. We will also often use the notation ∂LA and
∂RA for the above sets and LA,RA for the corresponding parts of X sepa-
rated by A.

Remark 3.9. We will also use another description of the subdivision of
∂X. Taking a suitable base point x in RA, we can describe ∂LA as the set
of points of ∂X which can be joined by quasi-geodesic rays from x which
cross A an odd number of times and ∂RA as the set of points of ∂X which
can be joined by quasi-geodesic rays from x crossing A an even number of
times.
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4. Crossing of Tracks.

We next consider crossing of tracks in X. It is understood that all the tracks
considered are two-ended and when we talk of subdivision of the boundary,
the track considered has infinite cyclic stabilizer.

Definition 4.1. We say that B crosses A, if the end points of B are on
different sides of A, that is, one end point of B is in ∂LA and the other in
∂RA.

It is clear that if B crosses A and B′ is a track with the same end points
as B, then B′ also crosses A. Also if A is equivalent to A′, meaning that
A and A′ induce the same splitting of ∂X, then B and B′ cross A′. It is
easy to see that crossing is not symmetric in general even if one restricts
attention to axes (see the examples later in this section). This will cause us
some difficulty, but it turns out that we will have symmetry in the cases in
which we are interested. We note that if B crosses A, then any bi-infinite
quasi-geodesic joining the end points of B crosses A an odd number of times.
We can, if necessary, modify the quasi-geodesic to cross A exactly once.

We now examine the symmetry of crossing. The following proposition
shows that we have symmetry in many cases.

Proposition 4.2. Suppose that A,B are essential axes so that e(XH) ≥ 2
and e(XH′) ≥ 2, where H = Stab0A and H ′ = Stab0B. Then A crosses B
if and only if B crosses A.

Proof. It will suffice to show that if B does not cross A, then A does not
cross B. If B does not cross A, the picture in XH is as shown in Figure 3.
Remark 2.12 tells us that we can choose an essential track t′ in XH disjoint
from π(B) where π denotes the covering projection X → XH . This gives a
track A′ in X which is disjoint from B with the same end points as A. Thus
A′ cannot cross B. As A and A′ have the same end points, it follows that
A cannot cross B. This completes the proof of Proposition 4.2.

t '

(Β)π

t= π(A)

Figure 3.

The next proposition is crucial to our whole approach.
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Proposition 4.3. Let A be an essential axis, and suppose that for some
H ⊆ Stab0A, e(XH) ≥ 3. Then the end points of A lie on one side of any
axis B in X, i.e., A does not cross B.

Proof. Consider t = π(A) in XH . There are three possibilities for the end
points of π(B): (1) Both end points are in ∂0XH , (2) One end point is in
∂0XH and the other in ∂1XH , (3) Both the end points are in ∂1XH . (See
Figure 4.)

X H

(B)

t
π

= π(Α)

Figure 4.

In each case, the fact that XH has at least three ends while B has only
two ends implies that there is a proper map φ : XH → R such that the
induced map from B to R is not onto. Now Remark 3.5 implies that we can
find a finite track s in XH which carries a non-trivial subgroup of H and
does not intersect π(B) (see Figures 4a and 4b). This gives a track A′ in X
with the same end points as A which is disjoint from B.

XH

(B)π

s

t

XH

(B)π

s

t

 

XH

(B)π

XH

(B)π
s

t

 
Figure 4.a. Figure 4.b.

It follows that A′, and hence A, does not cross B. This completes the
proof.

Now we give the promised examples of asymmetry of crossing of axes.
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Example 4.4. For any hyperbolic group G which is not elementary, if A
is an essential axis with H ⊆ Stab0A, and if e(XH) ≥ 3, there is an axis
B such that B crosses A but A does not cross B. This is immediate if we
can find B as in case 2) in the proof of Proposition 4.3. To find such a B,
we take h ∈ G which has limit points as in case 2), (such h must exist by
the density of endpoints of axes [24]), and take B to be the axis of h. By
Proposition 4.2 we must have e(Xhn) = 1 for any positive integer n. Similar
examples can be constructed even when e(G,H) ≤ 2 for all two-ended H in
G. (See the definition and examples below.)

This example may give the impression that asymmetry in the crossing
of axes is a surprising condition which can only occur for rather subtle
reasons. The following simple example shows that asymmetry of crossing is
not surprising and should have been expected.

Example 4.5. Let M be a compact orientable hyperbolic 3-manifold with
an incompressible boundary component F which is not a sphere or torus.
Identify the universal cover of F with the hyperbolic plane H2. Let C1 and
C2 be essential simple closed curves on F such that C1 and C2 cannot be
homotoped in F to be disjoint. Let G denote the fundamental group of M,
let g1 and g2 denote generators of the cyclic subgroups of G carried by C1

and C2 and let l1 and l2 denote axes in H2 for g1 and g2 which lie above C1

and C2. The fact that C1 and C2 cannot be homotoped in F to be disjoint
means that l1 and l2 must cross, in the sense of Definition 4.1.

Suppose that there is an essential annulus S1 embedded in M with C1 as
a boundary component, and let S2 denote an inessential annulus embedded
in M with C2 as a boundary component. This means that S2 is parallel
into F. Fix a triangulation of M such that S1 and S2 are normal surfaces
in M. Let XG denote the 2-skeleton of M , and let t1 and t2 denote the
intersection of S1 and S2 with XG. Thus t1 and t2 are tracks in XG which
contain C1 and C2 and hence carry the cyclic groups generated by g1 and
g2 respectively. Let X denote the universal cover of XG, and let A1 and A2

denote components of the pre-image in X of t1 and t2, so that they contain l1
and l2 and are axes for g1 and g2 respectively. The fact that S2 is inessential
implies that e(G,A2) ≤ 1 so that A1 cannot cross A2. The facts that S1 is
essential and that l2 crosses l1 implies that A2 crosses A1.

Recall that a one-ended hyperbolic group G is said to have a multi-band or
to be of multi-band type, if there is a two-ended subgroup H with e(G,H) ≥
3, and that G is of surface type if e(G,H) ≤ 2 for every two-ended subgroup
H. The proof of the main theorem is broken up into two cases using this
division. We will prove the theorem in the multi-band case in the next
section. The rest of the paper will be devoted to providing a proof in the
surface type case. Here are some examples of both types. The first three
are of multi-band type.
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Example 4.6. Consider two orientable closed surfaces of genus ≥ 2 and
identify them along a non-trivial simple loop on both. If G is the group
so obtained and H the subgroup corresponding to the simple loop, then
e(G,H) = 4 and G is hyperbolic by a theorem of Bestvina and Feighn [1].

Example 4.7. Let G1, G2 be hyperbolic groups, let g1, g2 be elements of
G1, G2 respectively such that g1 is indivisible in G1 and g2 has a root of
order ≥ 3 in G2. Let G be the group obtained by amalgamating G1 and G2

along the cyclic subgroups generated by g1 and g2, and let H denote this
cyclic subgroup of G. Again, it is easy to verify that e(G,H) ≥ 3 and that
G is hyperbolic by [1].

Example 4.8. This is a special case of the previous example. We can take
G2 to be infinite cyclic and g2 to be the nth power of a generator of G2 where
n ≥ 3. Of course, we take g1 to be indivisible in G1 and so that it does not
generate the whole group.

We next construct surface type examples which are not surface groups.

Example 4.9. Let M1,M2 be two orientable hyperbolic 3-manifolds with
incompressible boundary. We further assume that there are no essential
annuli or tori in M1,M2. Identify the manifolds along non-trivial embedded
annuli A1 ⊂ ∂M1, A2 ⊂ ∂M2 to obtain M . Let G be the fundamental group
of M and let H denote the subgroup corresponding to A1, A2. We claim
that G is of surface type. We have to show that e(G) = 1, and e(G,K) ≤ 2
for any infinite cyclic K in G. It is easy to check that e(G) = 1, because
M is irreducible with incompressible boundary. The claim about e(G,K) is
divided into a few cases. If X is the universal cover of M and XK the cover
corresponding to K, both X,XK are built from various covers of M1,M2. In
both cases we need to consider only covers which are either simply connected
or have infinite cyclic fundamental groups.

If N is any such cover we want to calculate H1
c (N ;Z) and use the

Mayer-Vietoris sequence to estimate H1
c (XK ;Z). We also have H1

c (N ;Z) ∼=
H2(N, ∂N ;Z). The latter fits into the exact sequence

0 → H2(N, ∂N ;Z) → H1(∂N ;Z) → H1(N ;Z) . . . .

Since each Mi is acylindrical, H1(∂N ;Z) ∼= 0 or Z and since Mi is boundary
incompressible the mapH1(∂N ;Z) → H1(N ;Z) is injective. ThusH1

c (N ;Z)
is always zero in the cases we need. If N,N ′ are two such copies in XK and
if they intersect, they intersect along, say Y , which is an annulus or the
product of an interval and a real line. Now the exact sequence

0 → H0
c (Y ;Z) → H1

c (N ∪N ′;Z) → H1
c (N ;Z) ⊕H1

c (N ′;Z) → H1
c (Y ;Z)

shows that e(G,K) = 1 when K is not conjugate to a subgroup of H, and
that e(G,K) = 2 if K is conjugate to a subgroup of H.
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Example 4.10. We can use a construction similar to the above to obtain
a HNN-extension. This time, we start with M with similar properties to
those of Mi above and identify two non-parallel annuli in the boundary of
M . The proof that M is of surface type is similar.

5. Proof in the multi-band case.

We need the following variation of Theorem 2.2 of [15] stemming from the
work of Stallings [19] and Dunwoody [5]. Let K be a finite simplicial 2-
complex with universal cover X, and let A be a track in X with stabiliser H.
Let π denote the projection X → XH and let E,E∗ be the two components
of X −A.

Theorem 5.1. Suppose that:
(a) A/H is finite.
(b) Both the components of XH −AH are infinite.
(c) For every g ∈ G = π1(K), at least one of the four sets

gE ∩ E, gE ∩ E∗, gE∗ ∩ E, gE∗ ∩ E∗

has finite image in XH , and:
(d) If two of the four sets in (c) have finite image in XH , then at least one

of them is empty.
(e) The equation gE = E∗ does not hold for any element g of G.

Then G splits over H.

Remark 5.2. Assumption (c) means that the axis A does not cross any of
its translates. Assumption (d) means that if gA projects to a finite singular
track in XH then A and gA are disjoint or coincide. Assumption (e) means
that no element of H interchanges the sides of A in X so that A/H is a
two-sided track, and assumption (b) means that A/H is essential in XH .

Ideally, we would like to prove this theorem by taking A/H to be shortest
in some sense and showing that as A does not cross any of its translates, it
must be disjoint from all its translates. This would immediately imply the
result. However, there are some technical problems with this approach so
we simply use the arguments in [15].

The theorem in [15] is stated in terms of 3-manifolds, but the proof of
Theorem 2.2 in [15] carries over to a proof of Theorem 5.1 above. (The
condition (d), is not explicitly stated in [15], though it is mentioned a few
times that it is satisfied in the course of the proof.)

In this paragraph, we discuss the case of a general group G which can have
a multi-band or be of surface type. We first examine the situation when
one has two axes A,B which do not cross. We may assume by choosing
appropriate transverse orientations that NA, PA ∈ LB and NB, PB ∈ RA.
Consider the infinite components of X − (A ∪ B). Let H = Stab0A and
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let K = Stab0B. Choosing a suitable base point near NB or PB in RB

(see Figure 9 in the proof of Lemma 8.1) we see that there is an infinite
component X1 of X − (A ∪B) whose closure contains NB, PB but does not
contain translates by K of NA, PA. Similarly there is a component X2 whose
closure contains NA, PA but does not contain translates by H of NB, PB.
Finally, there are either one or two infinite components X3, X4 (one of them
may be empty) such that their closures contain one of the end points of A
and one of the end points of B (possibly all four). The closures of the Xi’s
exhaust all of ∂X. Thus X −∪Xi is compact. With our notation, we have:

Lemma 5.3. If A,B are axes which do not cross, then (with the above
choices of transverse orientations) LA ∩ LB, RA ∩ RB and RA ∩ LB are
infinite, and LA ∩RB is finite.

We now assume that G has a multi-band and we want to prove Theorem
1.3 by using Theorem 5.1. We restate the result.

Theorem 1.3. Let G be a one-ended hyperbolic group and let H0 be a
two-ended subgroup with e(G,H0) ≥ 3. Then G splits over a subgroup H
commensurable with H0.

Proof. The hypothesis that H0 be two-ended implies that H0 contains an
infinite cyclic subgroup H1 of finite index. Let g denote a generator of H1

and let P and Q denote the fixed points of g in its action on ∂X. Let H2

denote the stabiliser of {P,Q}. Then H2 must contain H1 as a subgroup
of finite index so that H2 also has two ends. The point of considering H2

is that it is the unique maximal two-ended subgroup of G which contains
H0. Let H denote the intersection of all the conjugates of H1 in H2, so that
H is normal in H2. As H1 is of finite index in H2 and is infinite cyclic,
it follows that H is also of finite index in H2 and infinite cyclic. Let Xi

denote the quotient of X by Hi. We denote the quotient group H2/H by K.
Thus K is a finite group which acts on XH by covering translations with
quotient X2. As XH is a finite cover of X0, and e(X0) ≥ 3 by assumption,
it follows that e(XH) ≥ 3. We claim that there is a finite essential track t
in XH which is K-equivariant. This means that, for all k in K, the track
kt is disjoint from or coincides with t. Let s denote a finite essential track
in XH , and let N denote a K-invariant neighbourhood of the union of all
the translates of s by K. Then any component of the frontier of N in XH

is a K-equivariant finite track. If no component is essential in XH , then all
but one of the components of XH −N is finite, which would contradict the
assumption that s is essential. Thus some component of the frontier of N
is the required K-equivariant essential finite track t in XH . The pre-image
of t in X consists of a finite number of disjoint axes. Let A denote one of
them. The K-equivariance of t implies that A is H2-equivariant.
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Now we can verify the hypotheses of Theorem 5.1. Let h be an element
of G. The fact that e(XH) ≥ 3 combined with Proposition 4.3 tells us that
A, and hence also hA, cannot cross any axis. Hence if hA has different end
points from A, then both the end points of hA are on one side of A, say
in ∂RA, and both the end points of A are on one side of hA, say in h∂LA.
Lemma 5.3 tells us that exactly one of the four sets of 5.1.(c) is finite, namely
LA ∩ hRA. The other three sets have points near the boundary of X and
thus project to unbounded sets under π. Hence exactly one of the four sets
of 5.1.(c) has finite image in XH . If hA has the same endpoints as A, then h
lies in H2 so that hA is equal to A or disjoint from A. This implies that the
conditions (a-d) of 5.1 are satisfied. Condition (e) can fail only if t covers a
one-sided track u in X2. If this occurs, we let v denote the boundary of a
regular neighbourhood of u in X2 and replace t by a parallel track t′ which
covers v. The new track t′ satisfies condition (e) and automatically satisfies
the other conditions also. This completes the proof of the theorem.

6. Orientation in surface type groups.

For the rest of this paper, we will concentrate on surface type groups. This
time we cannot expect to split along a subgroup commensurable with H, as
the example of the usual surface groups shows. Tukia [23] showed how to
find better candidates if the original H does not work. We could combine
this approach and Theorem 5.1 to complete the proof. Instead we follow the
ideas of Freedman, Hass, Scott [8] and show that tracks of least complexity,
like least area surfaces, result in the desired splittings.

We recall that we are considering a hyperbolic group G which is a one-
ended torsion free group with e(G,H) ≤ 2 for every infinite cyclic H ⊂ G.
As mentioned above this case is very similar to the usual surface groups
and we plan to adopt some of Tukia’s ideas in [23]. We have the additional
difficulty of orientation reversing elements which we discuss first. We start
by observing that tracks have some nice properties in the case of groups of
surface type.

Lemma 6.1. If G is of surface type and e(G,H) = 2, and if t is a finite
track in XH , then t must be two-sided. If t is essential in XH , then t must
carry H.

Proof. If t is one-sided, let W denote the space obtained from XH by cutting
along t. Then XH has a double cover which is the union of two copies of
W glued along a double cover of t. This double cover must have four ends
which contradicts the hypothesis that G is of surface type. Hence t must
be two-sided. If t is essential, then Lemma 3.1 shows that t must carry a
subgroup H ′ of H of some finite index d. Thus t splits XH into two infinite
pieces C and D such that C carries H and D carries H ′. It follows that the
cover of XH of degree d consists of a finite cover of C together with d copies
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of D and so it must have at least d + 1 ends. The fact that G is of surface
type implies that d equals 1, so that t must carry H as claimed.

Lemma 6.2. Let G be of surface type and e(G, 〈g〉) = 1 , but e(G, 〈gn〉) = 2
for some n. Then e(G, 〈g2m〉) = 2 and e(G, 〈g2m+1〉) = 1.

Proof. Let Xk denote the quotient of X by the cyclic group generated by gk.
Note that the finite cyclic group Zk acts on Xk with quotient X1. If Xk has
two ends, the action of Zk on Xk induces an action on the two ends, yielding
a homomorphism from Zk to Z2. If this homomorphism were trivial, i.e., if
the action preserved the two ends, it would follow that X1 had two ends
also. This contradiction shows that the homomorphism must be non-trivial,
so that k must be even. If k is odd, we deduce that Xk must have one
end. Hence if there is n such that Xn has two ends, then n is even and the
analysis above shows that X2 must also have two ends. Now it follows that
X2m has at least two ends, for all m, and hence that X2m has exactly two
ends, as G is of surface type. This proves the assertions of the lemma.

Definition 6.3. If G is of surface type and if e(G, 〈g〉) = 1 but e(G, 〈gn〉) =
2 for some n, then we call g orientation reversing.

If g is not orientation reversing we call g orientation preserving.
In the Lemma above, we can map C onto a Mobius band and take the

inverse image of the middle circle to obtain a finite one-sided pattern inside
C. Any one-sided component t of this pattern will be a track in C whose
pre-image in the double cover of C is essential. It follows that t carries 〈g〉.
This gives an axis in X stabilized by 〈g〉 whose sides are interchanged by g.
Conversely, if there is such an axis whose sides are interchanged by g, then
g is clearly orientation reversing. Thus:

Lemma 6.4. Let G be of surface type. An element g ∈ G is orientation
reversing if and only if there is an axis A in X stabilized by 〈g〉 such that
the sides of A are interchanged by g.

We will call A an axis for g if g stabilises A. We have:

Lemma 6.5. If G is of surface type and e(G, 〈g〉) = 2, then all essential
axes for g give the same separation of ∂X.

7. Shortest tracks for groups of surface type.

It is simpler for many of the assertions that follow to assume that G is of
surface type and even though some of the results of the following sections are
valid more generally, we will continue to confine ourselves to surface
type groups. Recall that Lemma 6.1 tells us that if e(XH) = 2, then
any finite track t in XH is two-sided and that if t is essential in XH then
t must carry H. This is very similar to the situation of an annulus cover
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of a surface as already discussed. We will use this analogy and use shortest
tracks to obtain splittings in the surface type case. We will need the following
existence result for shortest tracks.

Lemma 7.1. Let G be a torsion free hyperbolic group of surface type and let
H be an infinite cyclic subgroup. If e(XH) = 2, there is an essential pattern
t in XH which is shortest among all such patterns, and any such pattern is
normal, connected (hence a track), two-sided and carries H.

Further, there is an infinite cyclic subgroup H of G and an essential track
t in XH such that t is shortest among all essential tracks in all quotients of
X by an infinite cyclic subgroup of G.

Remark 7.2. The first part of this lema is analogous to the second part of
Lemma 2.14. There is no point discussing the analogue of the first part of
Lemma 2.14, which is about the existence of a shortest pattern in a given
equivalence class as all essential tracks in XH are equivalent as XH has two
ends.

Proof. The second part of Lemma 2.14 shows that there is an essential sin-
gular pattern in XH which is shortest among all such patterns and that any
such shortest pattern is a normal embedding. Let t denote such a shortest
pattern. As we remarked at the start of this section, Lemma 6.1 shows that
each component of t must separate XH . It follows that some component of
t is essential. As t is shortest it follows that t equals this component so that
t is connected. Of course, t must be two-sided as it is essential. Finally, we
apply Lemma 6.1 again to show that t must carry H.

The last part of Lemma 7.1 is proved in much the same way as the ex-
istence result of Lemma 2.14 by projecting into XG a sequence of tracks
whose complexity approaches the infimum of all possible complexities. The
fact that the tracks being considered are all essential in some quotient of X
by an infinite cyclic subgroup of G ensures that some subsequence converges
to a singular track in XG, and this will yield a possibly singular track f in
some XH such that f has the required minimal complexity and is essential,
and covers an embedded track t. Now the fact that f has minimal complexity
implies that f must be an embedding and that t is the required track.

We will also need an analogous existence result for shortest one-sided
tracks.

Lemma 7.3. If XH contains a one-sided track, then there is a shortest one-
sided track in XH . Further, there is an infinite cyclic subgroup H of G and
a one-sided track t in XH such that t is shortest among all one-sided tracks
in all quotients of X by an infinite cyclic subgroup of G.

Proof. This result has essentially the same proof as the existence results for
shortest essential tracks in Lemma 2.14. One takes a minimising sequence
of one-sided tracks in XH . Remark 2.2 shows that we can assume that each
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of these tracks is normal. The hypothesis of one-sidedness replaces the
hypothesis of essentiality, and the key fact needed is that a one-sided track
in a 2-complex cannot be very close to a vertex. For there is a canonical
normal direction for a track close to a vertex v, in which the normal points
towards v. One obtains a possibly singular one-sided track f in XH of least
possible complexity. Lemma 2.10 shows that f must be an embedding.

The second part of the lemma has essentially the same proof.
We next give analogues of results in Freedman, Hass and Scott [8] and

[9]. The proofs are essentially identical. The first result is the analogue of
the fact that two shortest simple closed curves on an annulus must coincide
or be disjoint. It is a special case of Lemma 2.7, once one remembers that
a shortest essential track in XH is actually shortest among all essential
patterns as proved in Lemma 7.1.

Lemma 7.4. Suppose XH has two ends and that s and t are shortest es-
sential tracks in XH . Then either s and t coincide or they are disjoint.

Our next result is the analogue of the fact that a shortest loop on an
annulus lifts to a shortest loop on any finite cover.

Lemma 7.5. Suppose XH has two ends and t is a shortest essential track
in XH . If XK is any finite cover of XH and t′ denotes the lift of t to XK ,
then t′ is a shortest essential track in XK .

Proof. Let p : XK → XH be the covering projection, τ be a generator of
the deck transformation group and let the order of the cover be d. Suppose
there is an essential track s′ in XK with c(s′) < c(t′). Lemma 6.1 shows
that s′ must carry K. Choose s′ to be a shortest such track. Consider the
translates of s′ by the powers of τ . The preceding lemma implies that each
τ is′ must coincide with s′ or be disjoint from s′. It follows that s′ projects
into XH covering its image which we denote by s. Clearly s is an essential
track in XH , and so it must carry H by Lemma 6.1. It follows that each τ is′
coincides with s′, so that s′ covers s with degree d and hence c(s′) = d.c(s).
As c(t′) = d.c(t), it follows that c(s) < c(t). This contradiction completes
the proof of the lemma.

Before continuing, we briefly consider the orientation reversing case. If g
is orientation reversing, consider p : Xg2 → Xg, let τ denote the non-identity
covering translation and let t be a shortest essential track in Xg2 . Lemma
7.4 shows that t and τ(t) are either disjoint or coincide. In the first case
c(p(t)) = c(t), and in the second case 2c(p(t)) = c(t) and p(t) is one-sided
in Xg. Also recall from the discussion at the end of Section 5 that if one
starts with a one-sided track t in Xg, then its pre-image in Xg2 must be an
essential track. Thus:

Lemma 7.6. If c(g) is the minimum of c(t) for one-sided tracks in Xg, and
c(g2) is the minimum for essential tracks in Xg2, then 2c(g) ≥ c(g2).
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Now we consider the analogue of the fact that if one has a shortest loop
C on an annulus M then its pre-image in the universal cover M̃ of M is a
length minimising line l. This means that any compact interval λ in l is the
shortest path in M̃ connecting the two points which form ∂λ. The proof in
[9] uses the facts that λ projects injectively into a finite cover M1 of M and
that the lift C1 of C into M1 is shortest and so any sub-arc is also shortest
in its homotopy class. We need to replace the concept of homotopy class for
our more general situation.

Let s and s′ be oriented partial patterns in a 2-complex Y which have
the same boundary. Thus s ∪ s′ is naturally a singular pattern in Y. We
will suppose that if we take the given transverse orientation on s and the
opposite one on s′, this yields a transverse orientation on s∪ s′. We will say
that s and s′ are equivalent if every loop and proper map of the line into
Y has zero intersection number with s ∪ s′ equipped with this transverse
orientation. Now the following result is clear.

Lemma 7.7. Suppose that XH has two ends and let t be a shortest essen-
tial track in XH . If s is an oriented partial pattern contained in t which is
equipped with a transverse orientation induced from a transverse orientation
of t, then s is shortest among all oriented partial patterns in XH which have
the same boundary as s and are equivalent to s.

It follows that if the pre-image of t in X is the axis A, then A is length
minimising in the following sense.

Lemma 7.8. Suppose that XH has two ends and let t be a shortest essential
track in XH . Let the pre-image of t in X be the axis A. Then any finite
pattern s contained in A is shortest among all partial patterns in X with the
same boundary.

Remark 7.9. Note that as X is simply connected, Lemma 2.10 shows that
any singular pattern in X is two-sided. Thus the union of two oriented
partial patterns in X with the same boundary is automatically orientable.
As X has only one end, it follows that any two partial patterns in X with
the same boundary are equivalent up to change of orientation so that this
lemma does not need any reference to equivalence.

Proof. This follows from the preceding lemma because the finite pattern s
in A projects injectively into Xgn for some n.

Now we can prove the analogue of the fact that two length minimising
lines in a plane must coincide, be disjoint or intersect transversely at a single
point.

Lemma 7.10. If A,B are minimal axes, then they must coincide or be
disjoint, or cross. If they cross then they intersect in a finite graph such that
both A− (A∩B) and B− (A∩B) consist of exactly two infinite components
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each. Further, given ∈> 0, there is an ∈-isotopy of the track A/Stab0(A)
which arranges that A and B intersect transversely in finitely many points
and that both A − (A ∩ B) and B − (A ∩ B) consist of exactly two infinite
components each.

Remark 7.11. This means that minimal axes in X behave very much like
lines in the plane. Note that the lemma does not assert that A and B
intersect transversely although we have no counterexample.

Proof. We start with the case when A and B have the same end points and
hence must have a non-trivial common stabiliser H which preserves the two
sides of each. The fact that A and B must coincide or be disjoint follows
immediately by applying Lemma 7.4 to the quotient tracks A/H and B/H
in XH . For the rest of this proof we will assume that A and B do not have
the same end points.

Suppose that A and B are distinct but intersect transversely. It is auto-
matic that they intersect in a finite number of points. We will consider the
possibility of non-transverse intersection later. If the lemma fails to hold,
there must be a bounded component R of X− (A∪B). This is true whether
A and B cross or not. Such a region will be bounded by compact pieces of
A and B which will be partial patterns. In the case of lines intersecting in
a plane, one can find R such that its boundary meets each of A and B in
a connected set, but there seems no reason why this should be possible in
general. However, we can still make what is in essence the usual cut and
paste argument. We will perform cut and paste at each point of A ∩ B
which lies in the boundary of R. At each such point one locally sees four
regions exactly one of which is part of R. We choose the cut and paste which
connects this region to the opposite one. We know that cut and paste op-
erations reduce complexity but this does not mean much as both A and B
have infinite complexity. We get round this problem as follows. Let A+ and
A− denote the two infinite pieces of A− (A ∩B), and similarly for B+ and
B−. Let A1 denote the partial pattern obtained by truncating A in A+ and
A− and describe B1 similarly. Lemma 7.8 tells us that A1 and B1 are each
the shortest patterns in X with their boundary. The result of our cut and
pastes is to replace A1 and B1 by A′

1 and B′
1, where A′

1 is obtained from A1

by removing A∩R and replacing it with B∩R, and B′
1 is obtained similarly.

Now we can say that c(A′
1) + c(B′

1) < c(A1) + c(B1). This contradicts the
fact that A1 and B1 are each the shortest partial patterns in X with their
boundary, completing the proof of the lemma in the case when A and B
intersect transversely.

If A and B have non-transverse intersection, we want to apply the Meeks-
Yau trick as in the proof of Lemmas 2.7 and 2.8. If X−(A∪B) has a bounded
component, we can use this trick and the arguments of the preceding para-
graph to obtain a contradiction. Thus X − (A∪B) cannot have a bounded
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component. Recall from the discussion in the proof of Lemma 2.7 that each
extreme point of the finite graph A ∩ B is a local crossing point of A and
B. This means that any neighbourhood of such a point contains points of A
on each side of B and vice versa. If A and B do not cross, but do intersect,
the local crossing property implies that A has points on both sides of B
which in turn implies that X − (A ∪ B) has a finite component, which we
know cannot occur. We conclude that if A and B do not cross, then they
must be disjoint. If A and B do cross, the fact that there cannot be a finite
component of X− (A∪B) implies that each of A− (A∩B) and B− (A∩B)
cannot have a finite component, so that each consists of exactly two infinite
components as required.

For the last part of the statement of the lemma, we consider the finite
two-sided track A/Stab0(A) in X/Stab0(A). Denote the track by t1 and
the quotient of X by X1. As t1 is two-sided in X1, it has a neighbourhood
homeomorphic to t1 × I. This defines an isotopy of t1 which moves it to a
parallel copy, and all the nearby parallel copies will automatically be trans-
verse to the image of B in X1, so that the new version of A will intersect
B transversely in a finite set. Applying the Meeks-Yau trick again implies
that A ∩ B must separate each of A and B into exactly two infinite pieces
as required, so long as we move t1 a small enough distance.

8. Subdivisions of the boundary of X.

We consider again subdivisions of the boundary, this time with respect to
various crossing essential axes in the surface type case. We have already
noted that if A is an essential axis in X, then ∂LA, ∂RA can be described in
terms of quasi-geodesic rays from some base point x. For example, in Figure
9 below,
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Figure 9. Figure 10.
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∂LA consists of points of the boundary for which the quasi-geodesic rays
(hereafter called rays) joining them to x cross A an odd number of times and
in fact we can even find rays which cross exactly once since A is connected.
Similarly ∂RA is described as the part of the boundary for which the rays
cross an even number of times. We will use the convention that an arrow
representing a transverse orientation of A always points towards to RA. Since
X has one end we can require the rays to avoid compact sets in X. Suppose
C is a compact set in X such that A− (A∩C) has two infinite components,
(there are automatically at most two). Let these be E1, E2 with NA ∈ E1

and PA ∈ E2. If R is a ray which avoids C and joins x to a point of ∂LA,
then the intersection of R with A is in E1 ∪E2. We can now further modify
R to obtain a ray which intersects A exactly once. We next observe that
LA, RA have exactly one end each. Thus:

Lemma 8.1. We can join x to a point of ∂RA by a ray which avoids any
given compact set in X and does not intersect A. Similarly we can join x
to a point of ∂LA, by a ray which avoids a given compact set C and meets
A exactly once either in E1 or E2 as required.

Next suppose that two axes A and B cross. We can assume that PB lies
in ∂RA by changing our choice of generator of Stab 0B. Figure 10 shows the
picture for one choice of transverse orientation of B. Given this choice, we
subdivide ∂X into four sets [PA, PB], [PB, NA], [NA, NB], [NB, PA] as follows:
[PA, PB] = ∂RA ∩∂RB, (PA, PB) = (∂RA ∩∂RB)−{PA, PB} etc. Note that
if we change the transverse orientation on B, then [PA, PB] = ∂RA ∩ ∂LB.
Choose a base point x in X which lies in RA close to PA and does not lie
on B. Then (PA, PB) can be described as the set of points y in ∂X which
can be joined to x by rays which cross both A and B an even number of
times and [PA, PB] is its closure. Now join x to y by a ray r which does
not intersect A, and so lies in RA. Such a ray, if it intersects B at all, will
intersect B in the infinite component of B− (A∩B) in RA an even number
of times and thus can be replaced by a ray which does not intersect either
A or B. If y1, y2 are two points of (PA, PB), then the union of two such rays
r1, r2 is a bi-infinite path joining y1, y2 which does not intersect A∪B. Thus
(PA, PB) is in the closure of one infinite component of X − (A∪B). Hence:

Lemma 8.2. If A,B cross then X − (A∪B) has exactly four infinite com-
ponents and their closures intersect ∂X in the subsets

[PA, PB], [PB, NA], [NA, NB], [NB, PA].

Following Tukia, we sometimes denote these subsets of ∂X by I1, I2, I3, I4
in that order. See Figure 10. We next consider the situation when there is
an axis C with PC ∈ (NA, PB), NC ∈ (NB, PA) and observe that we obtain
subdivisions of ∂X as in the case of a circle. (See Figure 11 with transverse
orientations as shown.)
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We have:

Lemma 8.3. Suppose that C is an axis with PC ∈ (NA, PB), NC ∈
(NB, PA). Then we have with suitable choice of transverse orientation for
C:

(1) ∂RC ⊃ [PA, PB], ∂LC ⊃ [NA, NB],
(2) [NB, PA] = [NC , PA] ∪ [NB, NC ], [NC , PA] ∩ [NB, NC ] = {NC},
(3) [NA, PB] = [NA, PC ] ∪ [PC , PB], [NA, PC ] ∩ [PC , PB] = {PC}.

Proof. We now take a base point x near PA in LA and a ray R joining x to a
point of (PA, PB). We assume that R avoids all the intersections of A,B,C
and does not meet B and meets A exactly once near PA. If R meets C an
odd number of times, we modify R near the ends of C to R′ so that R′ meets
C near PC or NC and still intersects A once and does not meet B. Since R′
crosses A, R′ must meet C near NC . This means that NC is in RA and it
is in RB since R′ does not meet B. Hence NC should be in RA ∩RB which
contradicts the hypothesis that NC is in (NB, PA). This proves that [PA, PB]
is on one side of C. Similarly we conclude that [NA, NB] is also on one side
of C. We now choose transverse orientation on C so that [NA, NB] ⊂ ∂LC

and [PA, PB] ⊂ ∂RC . Since ∂LC ∩ [PA, PB] = ∅, we have

∂LC = (∂LC ∩ [NA, NB]) ∪ (∂LC ∩ (NA, PB)) ∪ (∂LC ∩ (NB, PA))
= [NA, NB] ∪ (∂LC ∩ (NA, PB)) ∪ (∂LC ∩ (NB, PA)).

Since (NA, PB) is in ∂LB, we have

∂LC ∩ ∂RB = (∂RB ∩ [NA, NB]) ∪ (∂LC ∩ (NB, PA)) = (∂LC ∩ [NB, PA)).
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Hence [NB, NC ] ⊂ [NB, PA). Since (PA, PB) ⊂ ∂RC , we have [NA, PC ] =
∂LC ∩ ∂RA = ∂LC ∩ [NA, PB]. Thus [NA, PC ] ⊂ [NA, PB]. The other
inclusions of Lemma 8.3 are proved similarly.

We note a consequence of the above lemma. Let g ∈ Stab 0A so that
PA is the attractive fixed point for g. We must have the end points of
gB in ∂(RB). For otherwise, let C = gB. If C is as in Lemma 8.3, we
see that g[NA, PB] = [NA, PC ] so that gi(PB) ∈ [NA, PB] for all positive i
contradicting the assumption that PA is the positive fixed point of g. If C =
gB crosses B in the other direction, i.e., PC ∈ (PA, PB), NC ∈ (NA, NB), we
can interchange the roles of B and C, and again arrive at a contradiction.
Thus:

Corollary 8.4. If A,B are essential axes which cross and if g ∈ Stab 0A,
then the end points of gB are in ∂(RB), the half containing PA, the positive
fixed point of g.

Up to this point, we have discussed only one choice of configuration for
crossing axes A and B as shown in Figures 10 and 11. If B equals hA, and
we choose a transverse orientation for A and the induced one for B, then
there are four possible configurations as shown in Figures 12a, 12b, 12c and
12d.
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Figure 12.a. Figure 12.b.
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Figure 12.c. Figure 12.d.

Note that configurations 12c and 12d can be obtained from 12a and 12b
by interchanging A and B and replacing h by h−1, so that we need only
consider the configurations in 12a and 12b. We will say that hA crosses
A in an orientation preserving fashion in case 12a and in an orientation
reversing fashion in case 12b. More formally, in the first case {PB, NA} (or
{PA, NB} in case 12c) is on the right or positive side of both A and B and
in the second case {PB, PA} (or {NB, NA} in case 12d) is on the positive
side of both A and B. We will use the abbreviations o.r. and o.p. We want
to show that if the crossing is o.p. then h is o.p. Let Ah denote an axis for
h. First observe that the fixed points of h must be in I2 ∪ I4 as each must
lie on the positive side of both A and hA or on the negative side of both. If
Ah is not an essential axis, then h is o.p. by definition. So we may assume
that Ah is essential. If both the fixed points of h lie in I2 or if both lie in
I4, then the endpoints of A and B lie on one side of Ah, so that h does not
interchange the sides of Ah and h must be o.p. If one of the fixed points is
in I2 and the other in I4, then Ah crosses A. Since Ah is an essential axis,
crossing is symmetric so that A crosses Ah. If h is o.p., the above corollary
shows that B = hA cannot cross A, a contradiction. If h is o.r., we also
have a contradiction as PA and PB = hPA lie on the same side of Ah. Thus:

Lemma 8.5. If hA crosses A in an o.p. fashion, then h is o.p. and the
fixed points of h are in [NA, PB]∪ [NB, PA]. If h has an essential axis, then
the fixed points of h are in either [NA, PB] or in [NB, PA] (that is, I2 or I4).

We will prove later on (the main difficulty lies in showing that h has an
essential axis) that if the crossing is o.r. then h is o.r. For the moment we
will prove the following lemma.
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Lemma 8.6. If hA crosses A in an o.r. fashion, then the fixed points of h
are in I1 ∪ I3, one in I1 and the other in I3.

Proof. The fixed points of h must lie in I1 ∪ I3, because if one of them is on
the positive (negative) side of A it must lie on the negative (positive) side
of hA. We consider the action of h on ∂X. The sets [NA, NB] and [NB, NC ]
must be one contained in the other. Thus h or h−1 sends one of these sets into
itself and so this set must contain one of the fixed point of h. In particular
h has a fixed point in I3. Similarly h must have a fixed point in I1.
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Now we consider another axis D which, like C in Lemma 8.3, has ND ∈
(NB, PA) and PD ∈ (NA, PB). See Figure 13. Then Lemma 8.3 tells us that

[NB, PA] = [NB, NC ] ∪ [NC , PA] = [NB, ND] ∪ [ND, PA].

If ND ∈ (NC , PA), then ND is above C as in Figure 13. If both endpoints
of D lie above C then clearly [NB, NC ] ⊂ [NB, ND]. In this case we use the
notation [NC , ND] for the closure of [NB, ND] − [NB, NC ]. If D crosses C,
then replacing A by D in Lemma 8.3, we see that again we have [NB, NC ] ⊂
[NB, ND]. Similar statements hold if we reverse the roles of PD and ND.
Thus:

Lemma 8.7. If Di, 1 ≤ i ≤ n are a finite number of axes with one end
point in [NB, PA] and the other in [NA, PB], then there is a Di nearest to
PA in the sense that [Vi, PA] does not contain any of the end points of the
other Di’s, where Vi denotes the end point of Di which lies in [NB, PA].

Remark 8.8. We apply the above lemma in the following situation. If
B = gA and A,B cross, we consider translates D of A with one end point
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in (NB, PA) and the other in (NA, PB). Freden [7] and Tukia [24] proved
that G acts as a convergence group on ∂X. It follows as in Tukia [23] that
there are only finitely many such D.

Following Tukia, we call any translate of A an A-axis. We also introduce
the notion of canonical triple. We look at the situation when A and an
A-axis B cross. Suppose that B = gA and that the configuration is as in
Figures 12a or 12b. Then C = gB and B cross. We can vary g by an element
in Stab0B so that B is unchanged but C = gB is moved up and down. As
PB lies in ∂RA, it follows that PC lies in ∂RB. Whether C crosses A or
not we can talk of the region [NA, PC ] in the first case and [NA, NC ] in the
second case after moving the appropriate end point of C above A. We call
the triple (A,B = gA,C = gB) a canonical triple if [NA, PC ] (or [NA, NC ]
in the o.r. case) does not contain the end point of any hC for h ∈ Stab0B.
See Figures 14a and 14b.
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Figure 14.a. Figure 14.b.

We can always change g by an element of Stab0B to achieve this, by using
Lemma 8.7 above. We call a canonical triple a good canonical triple if in
addition C is disjoint from A. (See Figures 15a and 15b.)
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We will show that if an axis crosses its translates, then we can obtain
good canonical triples starting with that axis. To handle the o.r. case, we
need a lemma which will be proved in the next section.

Lemma 8.9. If gA crosses A for some g, then there is a good canonical
triple (A,D,E).

Proof. We proceed much as in Tukia [23]. Let B = gA such that the triple
(A,B, gB) is a canonical triple. If gA crosses A in an o.r. fashion, then
Lemma 9.3 in the next section implies that g is o.r. and that an axis for g
must cross A. Now Corollary 8.4 implies that g2A and A must be disjoint,
so that (A,B, gB) is good, and the lemma follows.

Otherwise gA crosses A in an o.p. fashion and we consider translates
D of A such that ND lies in [NB, PA] and PD lies in [NA, PB]. Note that
gB is one such. Lemma 8.7 tells us that we can take such a D for which
ND is nearest to PA. This means that there is h in G such that D = hA
and (A,D = hA,E = h2A) is a canonical triple. If h is o.p., then PE ∈
[NA, PD] ⊂ [NA, PB] and by the choice of D, NE cannot be in [ND, PA].
Thus (A,D,E) is a good canonical triple. If h is o.r. then as in the preceding
paragraph, E cannot cross A. Thus we again have a good canonical triple.

In the above situation if gA is o.r., then if necessary we can modify h by
gA to obtain a new h which is o.r. Thus:

Corollary 8.10. With the notation of the above lemma, if gA is o.r. we
can obtain a good canonical triple (A,D = hA, hD) for which h is o.r.
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9. Construction of axes using good canonical triples.

We now describe a combinatorial version of a crucial construction of
Tukia [23]. Tukia showed how given an element g of G such that e(X, 〈g〉) =
2 but G does not split over 〈g〉 one can find a “better” element. His im-
provement is in terms of intersection numbers. We could have adopted his
procedure; instead we use shortest tracks and the least area ideas of Freed-
man, Hass, and Scott, [8] and [9], to obtain a splitting with the first choice
of g. The proof that this works is based on Tukia’s idea of improving inter-
section numbers. The construction is also needed to show that if hA crosses
A in an o.r. fashion, then h is o.r. To have clear pictures we want axes to be
minimal (i.e., covering a shortest finite track) and by the results of §7, we
can do this in the case when the axis stabiliser is o.p. Recall from Lemma
7.10, that minimal axes in X intersect like lines. This means that if A,B
are minimal axes, then they are disjoint, or coincide, or cross. Further if
they cross then they intersect in a finite graph and both A − (A ∩ B) and
B − (A ∩B) consist of exactly two infinite components each.

We now start with an essential axis A and let gA be a generator of Stab0A.
We assume that A is minimal. Consider the situation when (A, gA, g2A)
= (A,B,C) is similar to a good canonical triple in the sense that A, gA
cross but A, g2A do not, but we do not assume that this triple is actually
canonical. If g is o.p. with transverse orientations as shown in Fig. 12a,
then PC ∈ [NA, PB] = I2 and NC ∈ [PA, NB] = I1. Recall from Lemma 8.5
that the fixed points of g lie in I2 ∪ I4. However, no fixed point can lie in
I4 as all points of I4 lie on the negative side of A and the positive side of
C. Thus both the fixed points of g must lie in I2 and in particular they lie
on the positive side of A and all its translates. Denote giA by Ai; so that
A = A0, B = A1, C = A2. We will show now that A intersects Ai if and only
if i equals 0, 1 or −1. For otherwise, let k be the least integer greater than 1
such that A intersects Ak. Then the set of all points in X which lie on the
positive side of each of A0, . . . , Ak is compact, contradicting the fact that
both the fixed points of g lie on the positive side of A and all its translates.
This allows us to construct an axis for g as follows. By the lemmas above, one
of the two infinite components of A−A∩B together with one of the infinite
components of B−A∩B bounds the infinite component of X−(A∪B) which
contains I2 in its boundary. We denote this pattern by A#B = A0#A1.
Inductively we construct (see Figure 16) A−n#...#A0#...#An = Ln, say.
Since the collection gnA is locally finite, we obtain a limit pattern Ag of Ln

such that gAg = Ag and the quotient of Ag by the action of g is a finite
pattern tg in Xg. We claim that some component of tg is an essential track,
so that, in particular, 〈g〉 has two co-ends.
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Figure 16.

Recall that we are assuming that g is o.p. Thus if no component of tg
is essential in Xg, then every component of tg bounds a compact subset of
Xg. If we remove these compact sets from Xg and take the closure Yg, then
Yg carries 〈g〉. This is because if a component of tg carries the trivial group,
then it bounds a compact subset of Xg which also carries the trivial group,
by Lemma 3.1. Thus the pre-image of Yg in X is its universal cover Y, and
the number of ends of Y and of X are the same. Recall that the pattern Ag

intersects A in the part of A between A1 and A−1. Now take a large enough
N so that gN

AAg is to the right of B. Then the portion of A between B and
gNB is compact and divides Y into two infinite parts, which contradicts the
assumption that X and hence Y has only one end. Thus we have:

Lemma 9.1. If A is a minimal essential axis, if g is o.p. and if A, gA
intersect but A, g2A do not, then 〈g〉 has two co-ends.

This is one place where the use of minimal axes seems convenient even
though the lemma itself can be formulated purely algebraically. It should
be possible to prove this lemma by more algebraic means and avoid minimal
axes completely and proceed with intersection numbers as in Tukia [23].
The case of o.r. elements is somewhat easier.

Lemma 9.2. If A is a minimal essential axis, if A and gA have o.r. cross-
ing, and if A, g2A do not cross, then g is o.r. and has fixed points in I1 and
I3, one in each.

The construction is similar, but in this case the two sides of the boundary
into whichAg separates ∂X are clearly non-empty, as they are

⋃
g2i[N−1, PA]

and
⋃
g2i+1[N−1, PA] respectively, where P−1 and N−1 denote the positive

and negative endpoints of A−1. See Figure 17.
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We use this to prove:

Lemma 9.3. If hA crosses A in an o.r. fashion, then h is o.r.

Proof. We will assume that A is minimal. As the fixed points of h in ∂X
must be distinct from the end points of A, there is a greatest power hn of
h such that hnA crosses A. If n is even, then this crossing must be o.p. As
h2nA does not cross A, Lemma 9.1 shows that hn has an essential axis. It
follows that the same is true for h. Now it follows that h must be o.r. If n
is odd, then the crossing of A and hnA must be o.r. and Lemma 9.2 shows
that hn is o.r. which also implies that h is o.r. This completes the proof of
Lemma 9.3.

We will need the following consequence in the next section. This easily
follows from the above since h and hence h2 has an essential axis.

Corollary 9.4. If A is a minimal essential axis and hA crosses A in an
o.r. fashion, then h2A is disjoint from A.

Whether A is minimal or not, as long as it is essential, by replacing A by
a minimal axis with the same end points we conclude:

Corollary 9.5. If A is an essential axis and hA crosses A in an o.r. fash-
ion, then the end points of h2A are on the same side of A.

10. Proof of the annulus theorem in the surface type case.

We start on the proof of the annulus theorem in the surface type case. We
first consider the case when G has o.r. elements and prove the following
special case of the annulus theorem.
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Lemma 10.1. Let G be a torsion free hyperbolic group with one end and
suppose that G is of surface type. If G contains an o.r. element, then there
is an o.r. element g of G such that G splits over 〈g2〉 as an amalgamated
free product with 〈g〉 as one of the two factor groups.

Proof. We choose g to be an o.r. element of G such that c(g) is minimal,
where c(g) is the complexity of a shortest one-sided track s in Xg. Note that
g will be indivisible. Let S denote the corresponding axis of g. Also let t be a
shortest essential track in Xg2 , and recall from Lemma 7.6 that 2c(g) ≥ c(g2)
where c(g2) is the complexity of t. Let A denote the axis of g2 corresponding
to t. Note that S and A are both stabilised by g2 and so have the same end
points in ∂X. Also g stabilises S but may not stabilise A, and A is minimal
but S need not be minimal. If S and its translates never cross, then Theorem
5.1 shows that G must split over a subgroup commensurable with 〈g〉, and
one can then show that G has the required splitting over 〈g2〉. However, as G
is of surface type, we can use the properties of minimal axes to give a much
simpler proof. As S and its translates never cross, the same holds for A and
its translates. As A is minimal, Lemma 7.10 shows that A is disjoint from or
coincides with each translate. It follows that A covers a finite track u in XG

which must carry 〈g〉 or 〈g2〉. If u carries 〈g〉 then g stabilises A. In this case,
the projection of A into Xg must be a one-sided track so that u also must
be one-sided. We replace u by the boundary of a regular neighbourhood
in XG. This will be a two-sided track v carrying 〈g2〉 and v separates XG

into two pieces one of which is a regular neighbourhood of u and so carries
〈g〉. It follows at once that G has the required splitting. Now suppose that
u carries 〈g2〉. Thus u lifts to Xg2 and projects to an embedded two-sided
track in Xg which we denote by u′. The region of Xg2 between u and its
translate under the covering involution projects to a compact connected
subset Z of Xg which carries 〈g〉 and is bounded by u′. We claim that Z
projects into XG by a homeomorphism so that u bounds a copy of Z in XG.
Again this implies that G has the required splitting. To prove the claim, let
p : Xg → XG denote the covering projection and consider p−1(u) ∩ Z. This
consists of u′ and possibly other finite covers of u, contained completely in
Z. Let v denote a finite cover of u contained in Z. It must carry 〈gn〉 for
some positive n and its pre-image in X must be a translate kA of A which
is stabilised by 〈gn〉. It follows that kg2k−1 equals gn or g−n. This is only
possible if n = 2 and k is a power of g, as G is word hyperbolic. This
implies that v equals u′, so that p−1(u) ∩ Z = u′. Let Σ denote the subset
{z ∈ Z : ∃y ∈ Z, y �= z, p(y) = p(z)} of Z. Then Σ must be disjoint from u′.
It follows that Σ is open and closed in Z, and hence equals Z or is empty.
The fact that Σ is disjoint from u′ implies that Σ must be empty, so that Z
must project into XG by a homeomorphism as claimed.
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Now we consider the case where some translate of A crosses A. We will
also assume that the intersection of any two translates of A is transverse.
The general case can again be handled by using the Meeks-Yau trick. Some
translate of S must also cross S, so that Corollary 8.10 tells us that there is a
good canonical triple (S, hS, h2S) with h o.r. It follows that there is a good
canonical triple (A,D = hA, hD) with h o.r. This means that there is no
translate E of A having PE ∈ (ND, PA) and NE ∈ (NA, PD). In particular
the axes (g2m

D )hD do not cross A, for any value of m, where gD = hgh−1.
Choose m to be the least value such that the end points of (g2m

D )hD lie
above A and replace h by (g2m

D )h. This does not change D, so we obtain a
new triple (A,D = hA, hD) and hD still does not cross A. We have the end
points of hD above A and now the end points of g−2

D hD lie below A (see
Figure 18).

hD

D=hA

A

-2 hD(g   )D

Figure 18.

Let k denote g−2
D h and consider the triples (A,D, hD) and (kD,D,A).

The second triple is also like a good canonical triple since k−1D = A, but
it need not be canonical. Also kD and D cross o.r. so that k must be o.r.
If D1 denotes the portion of D between A and hD and D2 the portion of
D between g−2

D hD and A, we have c(D1) + c(D2) = c(g2
D) = c(g2). Note

that the proof of Lemma 9.2 implies that the image of D1 in Xh contains
a one-sided track carrying 〈h〉, and the image of D2 in Xk contains a one-
sided track carrying 〈k〉. Thus either c(h) or c(k) is, by rounding off corners,
strictly less than half of c(g2). This contradicts our choice of c(g). It follows
that the translates of A cannot cross, so that G splits over 〈g2〉 as claimed.
This completes the proof of the Annulus Theorem when G contains o.r.
elements.
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In order to complete our proof of the Annulus Theorem, we consider the
case when G has no orientation reversing elements. In this case we choose
an element g of G such that c(g) is minimal among all elements of G with
two co-ends, and let A denote the corresponding minimal essential axis for
g. If hA intersects A for some h, then by the results of §8, we can choose
h so that (A, hA, h2A) is a good canonical triple. (See Figure 19. This is
similar to Figure 5 in Tukia [23].)

A

C
B

D

NB

PB

PC
NC

N
A

PA

PD

N D

Figure 19.

Note that h is automatically o.p. Now consider g−1
B C = D. Since

(A,B,C) is a good canonical triple g−1
B PC = PD is automatically below

A. If ND is also below A, we can argue as in the proof of Lemma 10.1, that
either c(h) or c(g−1

B h) is strictly less than c(g), contradicting the choice of g.
If ND is above A we arrive at a contradiction as follows. Consider the fixed
points of g−1

B h. Since B = hA = g−1
B hA, the fixed points of g−1

B h should be
in [NA, PB]∪ [NB, PA], by Lemma 8.5. Similarly, since D = g−1

B C = g−1
B hB,

the fixed points of g−1
B h should be in [PD, NB]∪ [ND, PB]. But these sets are

disjoint and this contradiction completes the proof of the annulus theorem
in the surface type case.
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