
A well-intentioned query and the Halloween
Problem

The history of computer software is replete with cau-
tionary tales meant to impart wisdom or convey a warn-
ing from one generation of hackers and programming
managers to the next. Famous tales in software develop-
ment include Fred Brooks’ experience with OS/360 devel-
opment (“Adding manpower to a late software project
makes it later ...”1) and Andy Tanenbaum’s shootout with
Linus Torvalds over Linux (“I still maintain the point that
designing a monolithic kernel in 1991 is a fundamental
error. Be thankful you are not my student. You would not
get a high grade for such a design”2). The New Hacker’s
Dictionary abounds with admonitions drawn from cau-
tionary tales.3

The cautionary tale is not unique to computer science
and allied disciplines. It is a staple of all storytelling, but
it certainly has been facilitated by the open-ended nature
of this profession, which prizes and finds distinction in
nontraditional or alternative methods of communication
and education, independence of thought and action, and
a perpetual spirit of reinvention.4 This may also be why
the IEEE Annals Anecdotes column has remained such a
strong and vibrant institution.

Perhaps the most famous cautionary tale in database
circles is the Halloween Problem. The Halloween Problem
emerged in the context of structured query language opti-
mization in relational database research. The relational
database was the brainchild of Ted Codd,5 an IBM
researcher working in the late 1960s who felt that the nav-
igational model of database design had many faults hin-
dering its effective implementation. The navigational
model represents information in terms of the presence of
connections (or pointer-paths) between individual records.
Programs written in specialized languages are necessary to
navigate these connections, and exceptional burdens are
placed on the database user to precisely specify the query
process.6 This process is further complicated, however,
because the algorithm developed by the user in making the
query wholly depends on the immediate underlying data
structure, which may change as the database grows. This
is especially true when a database is shared between many
users, as in a time-sharing environment.

In a series of papers published between 1970 and 1972,
Codd showed that a more explicit focus on data inde-
pendence, which his colleague Chris Date succinctly
defined as “immunity of applications to change in stor-
age structure and access strategy,”7 coupled with a high-
level relational query language might be just the tonic the
database community needed to make the technology
more accessible to everyone. The cornerstone of Codd’s
work is the relation, where each piece of data and every
relationship is defined as a record. No other connections
are needed. As Date put it, “In a relational database, the
only essential data construct is the relation itself.”8

Codd’s ideas came to partial fruition in System R,9 a
prototype relational database management system devel-
oped at the IBM San Jose Research Laboratory (later
renamed the IBM Almaden Research Center), nestled in
Santa Teresa County Park. Many IBMers at the San Jose
Lab came to share Codd’s passion for user-friendly data-
bases including Ralph Gomory, Jim Gray, and Don
Chamberlin. Gomory, head of IBM’s Research Division,
believed in taking substantial risks despite the potential
for failure. Gray would eventually accept a Turing prize
for fundamental contributions to transaction processing.
Chamberlin later became an ACM Fellow for his role in
designing SQL (Structured Query Language) for System R
and the popular product DB2.

System R and the multiuser relational model required
several new or revised approaches. A theory of normal-
ization was developed to reduce redundancy and logic
conflicts in the data. New buffer management algorithms
were introduced to control the flow of pages between ran-
dom access disks and main memory. And new definitions
of the underlying properties of transactions had to be for-
mulated: atomicity, consistency, durability, and isolation.
The model also inspired serializability, where transactions
executed in parallel are executed in the database envi-
ronment in a particular order.

Most importantly for our story here, System R researchers
spent a great deal of time developing the theory and
method of query optimization. A query is simply a request
for information to be gleaned from the database. For
instance, an SQL query to retrieve a list of names of employ-
ees making less than $20,000 per year might be written

86 IEEE Annals of the History of Computing 1058-6180/02/$17.00 © 2002 IEEE

Anecdotes
Anne Fitzpatrick, Editor
Los Alamos National Laboratory

Philip L. Frana’s description of the Halloween Problem demonstrates
the role of cautionary tales in the history of computing. Laurie
Robertson traces the lineage of the DEC software to the present day.
Elaborating on the MESM development, Anne Fitzpatrick and Boris N.
Malinovsky take a look at Sergei Alexeevich Lebedev’s early career
and work in the Ukraine.

SELECT FIRST_NAME, LAST_NAME
FROM EMPLOYEE [employee database table]
WHERE SALARY < 20,000

A relational query optimizer chooses from
several alternative strategies in determining an
efficient access path to the “right” data set based
on the request of the database user. In effect, it
automates the expert programmer’s responsi-
bility for developing a retrieval plan. Query
optimizers make the mapping of connections—
a staple of the navigational model—invisible
and facilitate the creation of a user-friendly
interface where a high-level query language (in
this case SQL) replaces the painstaking building
of more complex algorithms.

Normally, a query optimizer works by meas-
uring system calls and paging requests and
applying heuristics to the entire access path
tree. Query optimization was one of the most
challenging tasks facing System R researchers
at IBM. These experiments with query opti-
mization form the milieu in which the
Halloween Problem emerged.

Queries also may be used to update appro-
priate data sets. In SQL, the command is sim-
ply called UPDATE. Thus, the query

UPDATE EMPLOYEE
SET SALARY = SALARY * 1.1

will raise the salary of each employee by 10
percent.

Two of Chamberlin’s colleagues, Pat
Selinger and Morton Astrahan, were using the
SALARY index to test a particular optimizer
when the Halloween Problem cropped up. The
SALARY index essentially is an access path for
obtaining ordered data from one field in the
EMPLOYEE table.

“If you have an index by Social Security num-
ber,” explained Chamberlin, “then it is really
easy to find a person that has a particular Social
Security number, and if you access the data using
that index, all of the entries will appear in order
by their Social Security number.”10

The most recent eyewitness account of the
Halloween Problem comes from a Charles
Babbage Institute Software History Project oral
history with Don Chamberlin10 conducted
with support from the National Science
Foundation in 2001.11 Chamberlin’s recollec-
tion is as follows:

Morton and Pat [were] working on translating
high-level queries and updates into plans that use
various access paths including indexes. Well, one
example of an update that we were playing

around with was giving raises to people. The
example said, ‘Give a ten percent raise to every-
body who earns less than twenty-five thousand
dollars.’ So Pat said, ‘Let’s imagine that we are a
query optimizer, and we are trying to figure out
some way to process this query.’ First we need to
find all the employees who earn less than twen-
ty-five thousand dollars. Well, a really good way
to do this would be to use a SALARY index,
because using that index you could scan through
the data in salary order and, of course, the first
people you come to are going to be the lowest
paid ones, so that would be very efficient. So
using the SALARY index, we’ll go and find the
first guy, he’s the guy with the lowest salary, and
if it’s less than twenty-five thousand dollars we’ll
give him a raise. Let’s suppose that he earned ten
thousand dollars. So according to this plan, the
query processor would find this guy and give him
a raise and now he wouldn’t earn ten thousand
dollars anymore, he’d earn eleven thousand dol-
lars and that would cause him to jump ahead in
the index. He would still be in the index, but he
wouldn’t be in the place he was before anymore,
he’d move ahead in salary order. So then, we’d go
along and process the next guy and the next guy
and pretty soon we’d come to the guy that we
gave a raise to already, because now he was ahead
in the order, and when we came to him again
he’d still earn less than twenty-five thousand dol-
lars, so we’d give him another raise and so on. So
this guy might jump ahead in the order of the
SALARY index several different times. In fact,
everybody that earned less than twenty-five thou-
sand dollars would get as many raises as they
needed until they earned more than twenty-five
thousand dollars. And you can see what the prob-
lem is here. That obviously was not the intention
of the update, but that’s the way that it might be
naively implemented if a SALARY index were
being used as the access path.

Another account comes from Pat Selinger,
who was responsible for creating the first cost-
based query optimizer.12 She related her version
of the story in 1995 on the occasion of the 20th
anniversary celebration for System R:13

We had exercised the ‘person who earns more
than their manager’ query to death, and finally
got to the point where the optimizer was choos-
ing indexes sometimes to implement this query
and it happened to think that the SALARY index
was a pretty good index to select for this. And
having selected the SALARY index for the first
time in us testing out the optimizer, we ended up
discovering that this query didn’t stop. Because
we were using the SALARY index to go after the

April–June 2002 87

EMPLOYEE table and we were also updating it,
Don Chamberlin kept getting more and more
raises. Which made him very happy, but it made
us optimizer folks a little bit uncomfortable. So
Morton and I sat down and discovered this and
analyzed what was going on, and came to one of
[Chamberlin’s] RDS meetings [RDS stood for
Relational Data System, at the heart of which was
an optimizing SQL processor] and it happened to
be on Halloween. So we ended up telling the
group about this and consulting the general wis-
dom to figure out what in the world we ought to
be doing about this thing.

No account appears to have been left by the
third eyewitness, Morton Astrahan, who died
in the mid-1980s.

A good cautionary tale is subject to misat-
tribution, misappropriation, and mystery. The
Halloween Problem is no exception. It is some-
times argued that the Halloween Problem is so
named because of the unnatural havoc it
wreaked on relational databases. This is not the
case. Chamberlin has noted,

Pat and Morton discovered this problem on
Halloween I remember they came into my
office and said, ‘Chamberlin, look at this. We
have to make sure that when the optimizer is
making a plan for processing an update, it
doesn’t use an index that is based on the field
that is being updated. How are we going to do
that?’ It happened to be on a Friday, and we said,
‘Listen, we are not going to be able to solve this
problem this afternoon. Let’s just give it a name.
We’ll call it the Halloween Problem and we’ll
work on it next week.’ And it turns out it has
been called that ever since.14

System R manager Mike Blasgen confirms
this view:

It’s interesting because all these odd-ball things
had names: there were phantoms, and there were
other things, and those had to do with names that
were somehow representative of what you were
observing, right? So the phantom was because it
was something that was sort of there, but not
there; the name was descriptive. And this was
called the Halloween Problem not because it sur-
prises you, or it’s spooky, or trick-or-treat or any-
thing; this is because it happened to be discovered
on Halloween day. But I think most people think
it’s the other; I think most people think it’s called
Halloween because it’s so surprising. But it’s not.15

The name Halloween Problem has also been
misappropriated in describing other nettlesome

queries. For instance, the Lost Update Problem,
where modifications to a database by one user
are overwritten because of changes made by
another user accessing the database records
simultaneously, is not equivalent to the
Halloween Problem (which instead might be
thought of as a redundant update problem).16

Then there is the mystery, Which Hal-
loween? Selinger and Chamberlin have agreed
that the Halloween Problem cropped up in
1976 or 1977. Chamberlin in particular remem-
bers Astrahan and Selinger landing in his office
on a Friday afternoon with their query update
puzzle. But 31 October 1976 was a Sunday, and
31 October 1977 was a Monday. The holiday
fell on a Friday only once during the 1970s, on
31 October 1975. Fortunately, this conundrum
does not detract from the moral of this story:
Always live within your income, even if you
have to borrow to do so.

Philip L. Frana
Charles Babbage Institute

frana003@tc.umn.edu

References and notes
1. F.P. Brooks, Jr., The Mythical Man-Month, rev. ed.,

Addison-Wesley, Reading, Mass., 1995, p. 25.
2. Andrew S. Tanenbaum to Linus Benedict

Torvalds, as quoted from the post to Usenet
group comp.os.minix: “Re: LINUX is obsolete,”
30 Jan. 1992, 13:44:34 GMT.

3. E. Raymond, The New Hacker’s Dictionary, MIT
Press, Cambridge, Mass., 1991.

4. Marvin Minsky, for instance, has argued that his
particular expertise, artificial intelligence, is con-
terminant with computer science as a whole.
Founders of various other computer science disci-
plines have argued likewise. See M. Minsky,
“Introduction,” Artificial Intelligence Memoranda,
AI Laboratory, Massachusetts Institute of Technol-
ogy, 1958–1979, Scientific DataLink, New York,
1982, pp. vi-vii. For primary sources devoted to
issues of professionalism in computer science, see
J.A. Archibald, Jr., and M. Katzper, “On the Prepa-
ration of Computer Science Professionals in Acad-
emic Institutions,” Proc. 1974 Nat’l Computer
Conf. and Exposition, AFIPS Press, Montvale, N.J.,
1974, pp. 313-319; G.F. Palmer, “Programming:
The Profession That Isn’t,” Datamation, vol. 21,
no. 4, 1975, pp. 171-173; and “The ‘Professional’
Programmer: Some Industry Opinions,” Data Pro-
cessing Magazine, vol. 12, Jan. 1970, pp. 18-21.

5. See the brief biographical sketch “Edgar F. Codd,”
by J.R. Yost in Encyclopedia of Computers and Com-
puter History, vol. 1, R. Rojas, ed., Fitzroy Dearborn
Publishers, Chicago, 2001, pp. 161-162.

6. On the navigational model for database
design, see C.W. Bachman, “The Programmer

88 IEEE Annals of the History of Computing

Anecdotes

as Navigator,” Comm. ACM, vol. 16, no. 11,
1973, pp. 635-658.

7. C.J. Date, An Introduction to Database Systems,
2nd ed., Addison-Wesley, Reading, Mass., 1977.

8. C.J. Date, “Thirty Years of Relational: Relational
Really is Different,” Intelligent Enterprise
Magazine, vol. 2, no. 7, 11 May 1999.

9. On the technical history of System R, see D.D.
Chamberlin et al., “A History and Evaluation of
System R,” Comm. ACM, vol. 24, no. 10, 1981,
pp. 632-646. On the history of database design,
generally see J. Gray, “Evolution of Data Manage-
ment,” Computer, vol. 29, no. 10, 1996, pp. 38-
46, and A. Silberschatz, M. Stonebraker, and J.
Ullman, “Database Systems: Achievements and
Opportunities,” Comm. ACM, vol. 34, no. 10,
1991, pp. 110-120. For a brief popular gloss on
System R, see S. Lohr, Go To, Basic Books, New
York, 2001, pp. 161-68.

10. See D.D. Chamberlin, OH 329. Oral history inter-
view by Philip L. Frana, 3 Oct. 2001, San Jose,
California. Charles Babbage Inst., Univ. of
Minnesota, Minneapolis,
http://www.cbi.umn.edu/oh/.

11. NSF Knowledge and Distributed Intelligence
Directorate grant #9979981.

12. Selinger became an IBM Fellow in 1994 for her
work on cost-based optimizers. Five years later,
she was elected to the National Academy of Engi-
neering. She has directed the IBM Database
Technology Institute for 13 years.

13. Selinger’s comment is transcribed in P. McJones,
The 1995 SQL Reunion: People, Projects, and Poli-
tics, SRC tech. note 1997-018, Aug. 1997,
http://www.mcjones.org/System_R/.

14. Quotation from Donald D. Chamberlin, Charles
Babbage Institute, OH 329.

15. Quotation from P. McJones, The 1995 SQL
Reunion: People, Projects, and Politics, SRC tech.
note 1997-018.

16. See Z. Qingqing, “Relational DBMS Implementa-
tion: OS vs. DBMS,” unpublished essay, Jan. 2002,
http://www.cs.toronto.edu/~zhouqq/
readings/r_OS.html. Jim Gray and Rick Cattell have
described another such update query that has
been confused with the Halloween Problem. See J.
Gray, The Benchmark Handbook, 2nd ed., Morgan
Kaufmann, San Francisco, Calif., 1993, chapter 4.

A software lineage
Computer operating systems manage com-

puter resources, control the execution of appli-
cation programs, and provide system functions
for interfacing with the central processor and
peripheral devices. Because operating systems
provide the interface between the computer
hardware architecture and computer programs

and human users, they are typically discussed
as inseparable from the underlying machine.
However, just as hardware architectures have
family genealogies, so do operating systems.
This article examines the legacy of one lineage
that survives to the present day.

The hardware legacy of the Digital Equip-
ment Corporation (DEC) is well documented.
From its humble beginnings in an abandoned
New England textile mill as a specialized
peripheral manufacturer, DEC grew to become
one of the dominant computer companies in
the 1970s and 80s. DEC engineers produced
landmark computers, such as the PDP-8, PDP-
11, and VAX. At the company’s height, DEC
hardware was synonymous with university,
engineering, and research computing, but its
machines could also be found in hospitals,
financial institutions, and offices.

The PDP-11 was DEC’s first hardware-com-
patible 16-bit computer. Prior to the introduction
of PDP-11, DEC had produced four disparate
hardware families. The PDP-11 was the start of a
family of hardware-compatible computers.1 The
PDP-11 was designed to save customers time and
money by letting them move applications easily
between machines—large or small—as their
needs changed.2 But DEC’s vision of application
transportability was complicated by the PDP-11’s
several specialized, incompatible operating sys-
tems targeted for various markets. For example,
RT-11 was a real-time operating system designed
to support laboratory applications, and RSTS-11
(Resource Sharing/Time Sharing) was a time-
sharing operating system designed to support
commercial applications.

RSX-11 (Resource Sharing Executive) was
one of the most robust PDP-11 operating sys-
tems. Designed by David Cutler, RSX-11 was
intended for industrial and manufacturing con-
trol users. It offered users a “sophisticated real-
time executive, on-line program development,
complete device handling capabilities, and
total system protection.”3 Subsequent enhance-
ments to RSX-11 included memory manage-
ment, robust communications support, and
batch programming.

By the late 1970s, DEC needed a 32-bit suc-
cessor to its 16-bit PDP-11 minicomputer.
Although the PDP-11 had been a widely suc-
cessful computer, it had four different operat-
ing systems, which supported “a variety of
incompatible languages, data management,
and transaction processing software.”4 To
solve this software chaos, DEC wanted a
machine that could provide a single, homoge-
neous, distributed computing environment.
To succeed the venerable PDP-11, DEC pro-

April–June 2002 89

duced the VAX, probably the most successful
minicomputer in history.

Known for its expandability and reliability,
the VAX enabled DEC to grow from a small,
niche hardware manufacturer into a major
worldwide computer company. As a result, DEC
engineers defined a set of standard common
attributes that enabled all VAX models to run
the same software. Although originally intro-
duced as minicomputers, the VAX product line
evolved to encompass multiprocessor super-
minicomputers and single-user workstations.
The VAX was the “ultimate complex instruc-
tion set computer (CISC)”4—the original VAX
architecture included 244 instructions, which
later grew to more than 350.5 Adding to its
complexity, the VAX included complete PDP-
11 hardware compatibility, which enabled it to
run PDP-11 user code with the same amount of
memory as the PDP-11.6

The Virtual Memory System (VMS) was the
principal operating system for the VAX.
Designed by David Cutler, VMS was a sophisti-
cated, robust operating system that exploited
the capabilities of the VAX architecture.
Drawing on many RSX features, VMS provided
multiuser time-sharing, batch, real-time, and
transaction processing capabilities as well as
supported multiprocessing, loosely coupled
clustered systems, and multivendor wide-area
networking. Furthermore, VMS ran both RSX-
11 and RSTS operating system code.
Throughout the 1980s, VAXs running VMS
dominated the minicomputer market.

In the mid-1980s, a new technology
emerged: reduced instruction set computers
(RISC). RISCs use a small, simple instruction set
optimized to perform specific functions.
Although a RISC may execute more instruc-
tions than a CISC, it does so faster and more
efficiently. RISC architectures enabled the
development of the new workstation comput-
er, usually running a variant of the Unix oper-
ating system. New companies, such as Sun, as
well as established companies, such as IBM,
raced to introduce RISC workstations.

DEC was slow to recognize the threat of the
RISC workstations. VAX sales had catapulted
DEC into the Fortune 100, so its engineers and
management focused on enhancing and refin-
ing its architecture. Only in 1990 did DEC
belatedly respond with its own RISC architec-
ture, the Alpha. For the operating system, DEC
ported VMS to the new platform and renamed
it Open VMS to signify its high degree of sup-
port for industry portability standards. But DEC
never ported VMS to non-DEC platforms. DEC
was primarily a hardware company and viewed

software as a supporting technology.
Furthermore, VMS was difficult to port. It was
written in a variety of languages7 and required
specific hardware features only available in
DEC hardware. The Alpha architecture never
caught on, and DEC’s financial situation con-
tinued to deteriorate throughout the 1990s.
Finally, in 1998, Compaq acquired DEC and
discontinued production of both the VAX and
Alpha.

Up to this point, the lineage of VMS and its
predecessor RSX are tied to DEC hardware.
With the demise of the Alpha architecture, they
became orphaned operating systems.
Surprisingly, they live on in an operating sys-
tem partly responsible for its demise—
Microsoft’s Windows NT.

Yet another David Cutler operating system,
Windows NT was designed to be “Microsoft’s
operating system for the 1990s.”8 However, like
VMS, Windows NT could not ignore
Microsoft’s previous success. It needed to run
on the same hardware (primarily Intel plat-
forms) and be compatible with existing
Microsoft operating systems, especially MS-
DOS. Cutler gave Windows NT many new and
innovative technologies, such as system
resource objects, but for its core, he modified
the proven technologies within VMS. Modified
VMS components such as the file structure, the
input/output system, and most importantly,
the kernel, provide the crucial low-level foun-
dation for Windows NT.9 Today, Windows NT
and its successors, Windows 2000 and
Windows XP, are the dominant operating sys-
tems on Intel hardware.

Although much has been written about the
genealogies of computer hardware and pro-
gramming languages, similar lineages exist
throughout computer software. From the
development of industry-wide technologies
such as transaction processors to the evolution
of company-specific computer portfolios, there
are numerous family trees yet to be document-
ed. This article has introduced just one of soft-
ware’s many genealogies.

Laurie Robertson
Titan Systems

lroberts@ieee.org

References and notes
1. C.G. Bell, J.C. Mudge, and J.E. McNamara, Com-

puter Engineering: A DEC View of Hardware System
Design, Digital Equipment Corp., Bedford, Mass.,
1978.

2. J. Pearson, Digital at Work, Digital Press, Burling-
ton, Mass., 1992, p. 60.

3. Digital Equipment Corporation: Nineteen Fifty-

90 IEEE Annals of the History of Computing

Anecdotes

Seven to the Present, Digital Equipment Corp.,
Bedford, Mass., 1978, p. 31.

4. C.G. Bell, A Retrospective on What We Have Learned
From the PDP-11: What Else Did We Need To Know
That Could Have Been Useful in the Design of the
VAX-11 to Make Alpha Easier? 1998, http://
research.microsoft.com/users/GBell/Digital/
Bell_Retrospective_PDP11_paper_c1998.htm.

5. The VAX instruction set provided special instruc-
tions for procedure call and return, saving and
restoring process context, array index computa-
tion, polynomial evaluation, character string
manipulation, and the transformation of packed
decimal strings to character strings.

6. A. Ralston and E.D. Reilly, Encyclopedia of Comput-
er Science, 3rd ed., Van Nostrand Reinhold, New
York, 1993, p. 464.

7. The Open VMS FAQ (http://www.openvms.
compaq.com/wizard/openvms_faq.html) identi-
fies 14 different component languages used in
VMS—Bliss, Macro, Ada, PLI, C, Fortan, UIL, SDL,
Pascal, MDL, C++, DCL, Message, and Document.

8. H. Custer, Inside Windows NT, Microsoft Press,
Redmond, Wash., 1993, p. 4.

9. Ibid., pp. 20, 203.

The MESM and the monastery
The first electronic digital computer in con-

tinental Europe was constructed not in
Germany or France, but in the Ukraine. In the
late 1940s, Sergei Alexeevich Lebedev began
constructing the MESM (Malaya Elektronaya
Schetnaya Mashina, or Small Electronic
Calculating Machine).

Although computer historians Gregory
Crowe and Seymour Goodman in their 1994
article trace the early career and work of Sergei
Alexeevich Lebedev and the creation of the
MESM in fine detail, many of the events and cul-
ture that surrounded this project deserve a clos-
er look.1 We will describe some of them here.

At the time of the Communist revolution—
when Lebedev was only 15 years old—the
majority of the Russian population was illiter-
ate. To his advantage, Lebedev’s father was a
school teacher from the Russian intelligentsia
and the family valued education. Also, the
Soviet Union’s leadership valued education,
believing that a functioning and effective
Communist society required a highly literate
population. By the height of the Cold War, the
Soviet Union had more scientists and specialized
engineers than any other nation in the world.2

Lebedev joined the waves of young people
studying science and engineering in the wake
of 1917. In 1923—the same year that the
Ukraine joined the Soviet Union—Lebedev

entered the Baumann Technical Institute in
Moscow and majored in the field of high volt-
age technology. He completed a diploma the-
sis on The Stability of Parallel Work of Electric
Power Stations in 1928. He then enrolled at the
Lenin State Electrical Engineering Institute and
received his doctorate in 1939 for his work on
the theory of artificial stability of power sys-
tems.3 Upon graduating, Lebedev began to
supervise the Automation Department of the
Electrical Engineering Institute, which oversaw
national power engineering projects because
Russia and the Soviet Union were gradually
electrified and industrialized.4

Almost every project in the field of power
engineering developed by the Lenin State
Electrical Engineering Institute’s scientists and
engineers required what were considered at
that time elaborate computing facilities. For
example, for the calculations on the giant
9,600-MW, 1,000-Km-long electric power
line—the Kuibyshev-Moscow hydroelectric
project—Lebedev and his colleagues had to
develop a highly automated set of powerful
inductors and capacitors that simulated the
mathematical model of the line.

World War II also sparked Lebedev’s interest
in computers. Toward the war effort, Lebedev
developed an analog computer to assist with
differentiation and integration calculations for
a tank gun stabilization system.

In 1946, Lebedev accepted a post as Director
of the Ukrainian Academy of Sciences Institute
of Energy. In a 1947 reorganization, it was split
into the Institute of Thermal energy and the
Institute of Electrical Engineering.5 Lebedev
headed the latter institute when he arrived in
Kiev in 1948.

By this time, Lebedev was already well
known, and students migrated from Russia to
the Ukraine to study and work with him.
Lebedev also brought with him to Kiev his new
idea to construct a large electronic digital com-
puter, which was a complete novelty to most of
his students.

After presenting his plans to the Ukraine
Academy of Sciences and securing funding and
workers, the Academy grudgingly gave him a
space for the project—a good distance out of
town in an area called Feofania. Kiev had been
nearly leveled by World War II, so housing and
industrial space were both at a premium.

Feofania lies about 15 Km southwest from
the Kreschatik, Kiev’s main street. Up until the
time that the Ukraine joined the Soviet Union,
Feofania was famous in the Eastern Orthodox
Church as home to the St. Panteleimon the
Healer Monastery, which was active until it was

April–June 2002 91

closed under the Soviet dictum of atheism.
The Soviet government converted the

monks’ two-story 500-square-meter red brick
dormitory into a branch of the Kiev Psychiatric
Hospital. When World War II broke out, the
building’s occupants were abandoned there. As
soon as the Wehrmacht reached Feofania in
1941, they killed all the psychiatric patients
and set up a hospital for themselves there.
(They also murdered four-fifths of Kiev’s popu-
lation.) By the time the Soviet Army liberated
Kiev in 1943, the hospital building was badly
damaged. The Ukraine Academy of Sciences
subsequently acquired it for use as a laborato-
ry. When Lebedev and his team began to work
there, they had to do much of the building
repair and maintenance themselves.

Getting to Feofania could be harrowing.
There was no public transportation that
reached that far, and from autumn to spring,
the roads were practically impassable—the
Ukraine’s notorious mud in the colder months
made for stuck vehicles. However, in summer,
Feofania became extremely pleasant. The area
was surrounded by oak trees, and all kinds of
fauna and plants flourished there. The MESM
workers frequently engaged in the favorite
Slavic cultural pastimes of gathering mush-
rooms and berries.

Given the difficulties in getting there during
the majority of the year, for convenience, many
of the scientists and engineers moved out to
Feofania, including Lebedev, his wife Larissa
Grigorievna, and their children. Most of the
MESM team lived there like one large extended
family, working and playing together. Oktobrysa
Malinovskaya (Malinovsky’s wife) lived with her
husband and young son at Feofania. She
described the environment there as friendly and
that participants truly enjoyed their jobs, creat-
ing something new and experimental.
Malinovskaya described Lebedev as a strong,
silent man who worked all the time. He expect-
ed his employees to clock in to work at the lab-
oratory at 9:00 a.m. each working day, and as
they would sign in, he rarely said a word.6

Among the workers, Lebedev’s two chief
deputy engineers were Lev N. Dashevsky, who,
along with the tough but brilliant Ekaterina A.
Shkabara, led the hardware design effort.
Another woman, Ekaterina L. Yushenko, wrote
MESM’s first programs. Her subsequent publi-
cations on programming became famous in the
Russian-speaking world.7

Lebedev and his team estimated that the
MESM would occupy about 50 square meters,
and thus the team had to remove some of the
building’s inner walls and part of the first floor

ceiling. Yet they had not considered another
consequence: when the entire unit was assem-
bled and the power turned on, the MESM’s
6,000 vacuum tubes turned the dormitory into
a sauna. Air conditioners did not exist in post-
war Soviet Ukraine, so the team cut a hole in
the building’s roof to draw off some of the
heat.8

The machine was a success in terms of its
architecture and operating capabilities. By
1950, the experimental MESM was functioning
and operated at 50 instructions per second. It
contained 63 three-address instructions and a
memory of 31 16-bit words.9 It used fixed-point
binary numerical representation. At that time,
the only other similar working machines were
Frederick Williams and Tom Kilburn’s Baby and
Maurice Wilkes’ Electronic Delay Storage
Automatic Calculator in England. However,
each British computer employed a sequential
operational arithmetic unit, while MESM
worked on parallel arithmetic units.

Other than a simple demonstration to rep-
resentatives from the Academy of Sciences, the
first actual problem MESM solved was on 25
December 1951, when it computed a probabil-
ity distribution function:

For two and a half hours, 585 values of p were
calculated to five places, requiring nearly
250,000 operations. The result provided values
for defining and increasing the accuracy of
artillery weapons.10

When word got out that there was an oper-
ating computer in the Ukraine, a steady parade
of Kiev and Moscow scientists with scientific
and defense-related problems that could not be
solved without the aid of a computer began to
head to Feofania.11 By 1952, MESM remained
the only fully operational computer in the
Soviet Union.

MESM was completely occupied with assist-
ing in the solution of the highest priority
defense-related problems and what were then
some of the hardest problems in physics: a frag-
ment of Yakov Zeldovich and Andrei
Sakharov’s thermonuclear weapon problem,
and parts of Sergei Korolev’s space flight trajec-
tory calculations.

Although nuclear weapons scientists and

−() −

=−












∑ 1 2
k

n
n k

k
n

n

C α

α

α

p

C n
n=
1

2

92 IEEE Annals of the History of Computing

Anecdotes

others used MESM initially for defense-related
projects, computing as a field was not consid-
ered a military priority in the postwar Soviet
Union and thus did not benefit from the exten-
sive espionage network that was part of the
Russian atomic bomb project, for example.
MESM was an entirely independent creation.
Although well aware of the American and
British electronic digital computer projects from
the secondary literature available, Lebedev and
his team completed MESM without primary
knowledge of foreign computer architecture.

Although Lebedev returned to Moscow in
1953 to head the Institute for Precision
Mechanics and Computer Technology to begin
work on the BESM (Bolshaya Elektronaya
Schetnaya Mashina) series of computers, he left
a thriving computer science legacy in Kiev, and
his students continued to develop remarkable
hardware and software under the leadership of
Victor M. Glushkov. The MESM remained in
operation in Feofania until 1957, when it was
disassembled and the components were given
to the Kiev Polytechnical Institute for student
use. Many Ukrainian engineering students’ first
hands-on experience with computing equip-
ment were with the MESM’s various parts.

The building at Feofania was taken over by
the Academy of Sciences Institute of Mechan-
ics in 1957 and used as a laboratory for many
years. When the Soviet Union was dissolved in
1991, the Ukraine quickly declared its inde-
pendence, and the Academy of Sciences
returned the Feofania dormitory building back
to the Orthodox Church. It is now an active
convent.

Anne Fitzpatrick
Los Alamos National Laboratory

Afitzpatrick@lanl.gov

Boris N. Malinovsky
V.M. Glushkov Institute of Cybernetics

icfcst@icfcst.kiev.ua

References and notes
1. G.D. Crowe and S. Goodman, “S.A. Lebedev and

the Birth of Soviet Computing,” IEEE Annals of the
History of Computing, vol. 16, no. 1, Spring 1994,
pp. 4-24.

2. L.R. Graham, What Have We Learned about Science
and Technology from the Russian Experience? Stan-
ford Univ. Press, Stanford, Calif., 1998.

3. B.N. Malinovsky, Istoriya Vuichislitel’noi Tekkhniki v
Litsakh [A History of Computing Technology in
Personalities], KIT, Kiev, 1995, pp. 23-27.

4. J. Coopersmith, The Electrification of Russia,
1880–1926, Cornell Univ. Press, Ithaca, N.Y., 1992.

5. G.D. Crowe and S. Goodman, p. 5.

6. Fitzpatrick personal communication with B.N.
Malinovsky and O.A. Malinovskaya, 1 May 2001,
Kiev.

7. See, for example, V.M. Glushkov, G.E. Tseitlin, and
E.L. Yushenko, Algebra, Iazyki, Programmirovanie
[Algebra, Languages, Programming], Akademiia
nauk Ukrainskoi SSR, Kiev, 1974.

8. B.N. Malinovsky, p. 37; Fitzpatrick personal discus-
sion with Zinovuiy L. Rabinovich, July 2000, Kiev.

9. S.V. Klimenko, “Computer Science in Russia: A
Personal View,” IEEE Annals of the History of Com-
puting, vol. 21, no. 3., July–Sept. 1999, pp. 16-
30; Fitzpatrick personal discussion with
Malinovsky, July 2000, Kiev.

10. B.N. Malinovsky, p. 33.
11. L.N. Dashevsky and E.A. Shkabara, Kak eto nachina-

los’ [How it Began], Znaniye, Moscow, 1981, p. 53.

April–June 2002 93

Call for Papers
Annals’ July–September
2003 Special Issue on

Historical Reconstructions
Submissions due: 30 Nov. 2002
There are an increasing number of ini-

tiatives worldwide to restore and recon-
struct historic computing devices. Such
projects are often the brainchildren of
enthusiasts, scholars, and engineers who
take up the challenge to revive, rediscov-
er, and share their appreciation of devices
and systems of special significance.

This special issue is devoted to record-
ing and recounting efforts to preserve
computing practice through physical
reconstruction, restoration, and simula-
tion. Papers, information, anecdotes, and
comments are invited on the following
topics:

� reconstruction, restoration, and
simulation projects and initiatives

� historiographical and museological
issues raised by such projects.

Contributors are encouraged to consult
the IEEE Annals of the History of Computing
Web site (http://computer.org/annals)
for guidelines to authors.

Material should be sent to Doron Swade,
Historical Reconstructions Guest Editor,
Science Museum, South Kensington,
London SW7 2DD, United Kingdom, email
d.swade@nmsi.ac.uk, fax +44 207 942
4108, phone +44 207 942 4100.

