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from Alexander Kemp joining the small quantum computation team and contributing with
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Among my senior collaborators is Vladislav Kurin, who helped a lot to answer the

question `How one-dimensional is an annular junction?'. His insight into the theory of the

relativistic motion of vortex strings in annular junctions triggered our discovery of the `whis-

pering vortices' [WUK+00, WBK+97, WFU+00]. I have also enjoyed the critic and stimulat-

ing discussion with Dietmar Kruse about his low temperature scanning electron microscope
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and has provided space for my samples on her chips. (My junctions seem to work best,

when one of Lilly's arrays with a �n-line antenna is near by.) I thank Edward Goldobin for

the inspiring collaboration with him since my �rst days in the world of Josephson junctions.

Our joint work on simulations and measurements of stacked Josephson junctions continues

to reveal interesting physics [GWTU98, GWU00]. I am grateful to Yuri Koval for fabricat-
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the institute is acknowledged. A special thank you to the head of our institute Prof. Paul

M�uller for providing an excellent environment to perform this research.
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ments. A very big thank you to Konrad Urlichs, who explored the secrets of LabView.
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to Caspar van der Wal and the Delft group for having had the opportunity to spy on a
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Part I

INTRODUCTION

Since the theoretical prediction of the Josephson e�ect in 1962 and its �rst experimental

observation by Anderson and Rowell in 1963, the physics of Josephson junctions has stimu-

lated a large amount of experimental and theoretical research, both due to their fascinating

basic physical properties and the wide range of existing and prospective applications.

One of the most intriguing properties of Josephson junctions arises from the fact that

the dynamics of the charge carriers and the electromagnetic �elds in the junction is gov-

erned by the quantum mechanical phase di�erence between the macroscopic wave functions

describing the superconducting electrons in each of the junction electrodes. In the limit

of high temperatures and large damping, the electrodynamics of the junction are purely

classical. However, at low temperatures and small damping, the quantum dynamics of the

phase di�erence is revealed. The classical and quantum mechanical properties of Josephson

junctions are examined experimentally by measuring macroscopic quantities, such as the

superconducting and normal tunnel currents 
owing across the junction barrier and the

voltage drop appearing across the junction.

A major �eld in Josephson physics is concerned with the classical non-linear electrody-

namics of small junctions, arrays of small junctions and extended junctions. The non-linear

properties of these systems arise due to the Josephson current which depends on the sine

of the phase di�erence across the junction. In extended junctions, the phase di�erence may

vary both in space and time, giving rise to the existence of collective non-linear excitations

like solitons and breathers. Of particular interest is the investigation of soliton dynamics in

quasi-one-dimensional long Josephson junctions. In such systems, one dimension is much

larger than the characteristic spatial scale of changes in the phase di�erence whereas the

other one is much smaller. Long junctions are excellent models to investigate soliton dy-

namics both theoretically and experimentally. They are a forerunner in the �eld of soliton

research and receive a lot of attention in a wide range of other �elds like non-linear optics,

laser and plasma physics.

In long Josephson junctions, solitons are created due to the quantized penetration of

magnetic 
ux into the junction. A 
ux quantum threading the junction is associated with

a vortex of the superconducting screening current and thus is frequently called a Josephson

vortex. Under certain conditions, a 
ux quantum behaves as a particle-like object with

an e�ective mass and a coordinate. Therefore it is often called 
uxon. The dynamics of


uxons { and the dynamics of the phase di�erence in long junctions in general { is accurately

described by the perturbed sine-Gordon equation. In nature, a large variety of phenomena

in di�erent physical systems can be modeled using the sine-Gordon equation, for example

the dynamics of dislocations (crystal defects) or the dynamics of domain walls in magnetic

materials.

This thesis is devoted to the investigation of the statics and dynamics of the phase

di�erence in annular long Josephson junctions. In particular the classical wave and par-
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ticle properties of Josephson vortices in wide and narrow annular junctions are studied

experimentally. Also the feasibility to observe quantum properties of Josephson vortices,

including energy level quantization, macroscopic quantum tunneling and quantum coher-

ence is investigated.

In the �rst chapter of the introductory part of this thesis, the Josephson e�ect and the

basic properties of small Josephson tunnel junctions are introduced. The fundamentals

of the physics of long Josephson junctions are reviewed in Chapter 2. The sine-Gordon

equation governing the electrodynamics of a long junction is derived and the energetics

of the junction are discussed in terms of the lagrangian and hamiltonian functions. The

fundamental electromagnetic excitations of the junction, i.e. 
uxons and plasmons, are

introduced. Finally, the basics of junction fabrication and the experimental techniques

used for measurements are presented.

In Part II, experiments investigating the classical properties of wide annular Josephson

junctions are reported. The results are interpreted in terms of the spatial and temporal

evolution of the phase di�erence across the two-dimensional junction.

In Chapter 3, the static phase distribution of annular junctions with di�erent inner and

outer radii is investigated experimentally by measuring their critical current in dependence

on the externally applied magnetic �eld. The experimental data are analyzed using exist-

ing theory which considers a linear gradient of phase across the junction induced by the

external �eld. The data are interpreted in terms of the phase-dependent interference of

the supercurrent 
owing across the junction barrier. The characteristic dependence of the

critical current on the �eld is used to uniquely identify the number of Josephson vortices

topologically trapped in the annular junction.

The dynamics of a single Josephson vortex in a wide annular junction is investigated

in Chapter 4. Experiments proving the theoretically predicted excitation of whispering

gallery-type plasmon modes by a vortex propagating at relativistic velocities along the

junction are presented. It is shown that the vortex interacts resonantly with the linear

modes of the junction giving rise to a characteristic �ne structure on the single-vortex

resonance. The resonance condition is interpreted in terms of Cherenkov radiation gener-

ated by the vortex moving with a group velocity which is larger than the phase velocity of

the plasmon modes. The exact voltage positions of the �ne structure are used to identify

the characteristic frequencies of the whispering gallery modes. The experimental data are

compared to numerical simulations and �nally the results are discussed.

The electromagnetic environment in which a Josephson junction is embedded substan-

tially modi�es its static and dynamic properties. The junction characteristics in presence

of the environment, which is also frequently called idle or passive region, is investigated ex-

perimentally in Chapter 5. The static properties are probed in measurements of the critical

current versus �eld pattern in dependence on the width of the idle region. The results are

interpreted in terms of a renormalization of the magnetic properties of the junction induced

by the inductance of the idle region. In experiments similar to those presented in Chapter 4,

the e�ect of the idle region on the whispering gallery mode spectrum is investigated. The

spectrum of the junction is shown to depend sensitively on the electrical parameters and

the size of the idle region coupled to it. The measured resonances in the current-voltage

characteristic are compared to resonance frequencies calculated considering the electrical

and geometrical properties of the junction and the idle region.

In Part III, the 
uctuation-induced escape of a Josephson vortex from a metastable state
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is investigated. The observed e�ects are explained considering the vortex as a collective

particle-like excitation with an e�ective mass and a generalized center of mass coordinate.

The observed e�ects are similar to the escape of the phase in small junctions. However,

they are special in the sense that the particle-like excitation is a soliton and the relevant

generalized coordinate has a spatial character.

In Chapter 6, the thermal escape of a Josephson vortex from a metastable state is

investigated experimentally. The metastable state is realized by spatially localizing the

vortex in a magnetic �eld induced potential well. Applying a bias current to the junction,

the height of the barrier separating the metastable localized state from the propagating

state is controlled. To analyze the thermal escape process, the distribution of the vortex

depinning currents is measured. The data are interpreted in terms of a particle which

is activated from a potential well due to thermal 
uctuations. A similar experiment is

performed considering a pinning potential induced by a microresistor implemented into the

junction barrier. The results of both experiments are well explained within the model.

The prospects of observing quantum properties of Josephson vortices by performing

measurements of the depinning current distribution are analyzed in Chapter 7. In par-

ticular, the magnetic �eld induced potential well { the depth of which can be varied in

situ { is considered. The cross-over temperature below which quantum tunneling domi-

nates thermal activation is evaluated. The requirements on the experimental setup and on

the measurement accuracy for the observation of this macroscopic quantum phenomenon

are analyzed quantitatively. The possibility to observe the energy level quantization of a

quantum vortex in a potential well is also examined.

Finally, in Chapter 8, our proposal to modify the shape of an annular junction in or-

der to design interesting types of magnetic-�eld induced vortex potentials is discussed. In

particular, a heart-shaped junction is suggested to be used to form a double-well potential

for a vortex. A method to classically determine the state of the vortex by manipulating

�elds and bias currents applied to the junction is presented. We suggest that a macro-

scopic quantum coherence experiment can be performed using a vortex in a double-well

potential. A successful experiment of this type would encourage the use of vortex states in

shaped junctions as qubits in quantum computers. Possibilities to manipulate the quantum

states of a vortex to perform single-qubit and two-qubit operations necessary for quantum

computation are indicated and decoherence is brie
y considered.
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Chapter 1

Basic Properties of Josephson

Junctions

In this introductory chapter the basic properties of Josephson junctions are brie
y reviewed.

The Josephson e�ect is introduced and the dynamics of the charges and the electromagnetic

�elds in the junction are related to the phase di�erence between the order parameters

describing the superconducting condensate in each electrode. As an introduction to the

electrodynamics of Josephson junctions, the statics and dynamics of the phase di�erence

in a single small junction are discussed.

1.1 The Josephson junction

Josephson junctions are systems in which two superconductors are weakly coupled to one

another, see Fig. 1.1. In each of the two superconductors1 the conduction electrons are

interacting with phonons of the crystal lattice. At low temperatures this e�ect gives rise to

an e�ective attractive interaction between the electrons which then form pairs of opposite

spin and angular momentum. Such pairs are called Cooper pairs and are the carriers of the

charge in the superconductor. Due to the anti-parallel combination of the spins and the

angular momenta of the electrons in each pair, the total angular momentum vanishes and

the Cooper pairs have boson character. At zero temperature, all Cooper pairs are Bose-

condensed into the electronic ground state of the superconductor. All excited quasiparticle

states (i.e. single electron states) are separated by an energy gap �, which is proportional

to the e�ective binding energy of the Cooper pair, from the superconducting ground state,

see Fig. 1.2b. The superconducting state can be described by an e�ective macroscopic wave

function with an amplitude proportional to the density of Cooper pairs nCP
i

and a phase �i

	i =
q
nCPi (~r; t) exp (i �i) : (1.1)

	 is also frequently called the superconducting order parameter.

In the region of the weak link, the amplitude of the wave function of each superconductor

is reduced from its bulk value. The two superconductors are then weakly coupled with one

another due to the small overlap of the macroscopic wave functions, see Fig.1.1b. Di�erent

types of weak links providing the coupling between the superconductors are discussed in

1A general introduction to superconductivity and the physics of Josephson junction can be found in a
number of text books. See for example Refs. [Tin96, PJFC95, Lik86, VDT81].
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1.2. THE JOSEPHSON EFFECT 5

(a)

(b)
Ψ(x)

Ψ1 Ψ2

x

superconductor superconductor
weak
link

Figure 1.1: (a) Two superconductors

weakly coupled to one another. (b) Ampli-

tude of the macroscopic wave function (or-

der parameter) of the two superconductors.

detail in the literature [Lik79]. Here, I consider the coupling of two superconductors via a

thin insulating barrier. Such a system is called a superconductor{insulator{superconductor

(SIS) tunnel junction. This realization of a Josephson weak link is the one most com-

monly used in basic research and applications because its electrical properties can be well

controlled.

A typical tunneling current-voltage characteristic of an SIS Josephson tunnel junction is

depicted in Fig. 1.2a. Four di�erent tunneling regimes can be observed in this characteristic,

see Fig. 1.2a-e. At zero voltage, Cooper pairs tunnel through the barrier (S! S), giving rise

to a non-dissipative current. At voltages 0 < V < 2�=e, quasiparticles tunnel through the

barrier giving rise to the quasiparticle subgap current (Q ! Q). The voltage Vg = 2�=e is
called the gap voltage. At voltages V � 2�=e Cooper pairs are broken up and quasiparticles
tunnel (S ! Q). All three processes follow the linear branch of normal electron tunneling

(n ! n) at voltages V > Vg.
2

1.2 The Josephson e�ect

The tunneling of Cooper pairs through the insulating barrier of an SIS type junction was

predicted by B. D. Josephson [Jos62] in 1962 and experimentally observed for the �rst time

by Anderson and Rowell [AR63] in 1963. Solving the quantum mechanical problem of the

tunneling of Cooper pairs across a potential barrier in a point like junction, Josephson

found that the local superconducting tunnel current density at zero voltage is given by

j = jc sin(�) ; (1.2)

where � = �1 � �2 is the di�erence in phase between the order parameters of the two

superconducting junction electrodes. The maximum supercurrent density jc sustained by

the junction, calculated from microscopic theory by Ambegaokar and Barato� [AB63a,

AB63b], is given by

jc =
�

4

2�(T )

� e
tanh

 
�(T )

2kbT

!
; (1.3)

where �(T ) is the temperature dependent energy gap of the superconductor and � is the

normal tunnel resistance of the junction per unit area. The electron charge is denoted

2A good description of the relevant tunneling processes is given in Ref. [PJFC95].
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I
c
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Figure 1.2: (a) Current-voltage characteristic of a Josephson tunnel junction. Di�erent tunneling

regimes are indicated. (b) Bose representation of the electron density of states of the supercon-

ductor; � is the energy gap between quasiparticle states and Cooper pair states. (c) Josephson

tunneling process S! S. (d) Quasiparticle tunneling process Q! Q. (e) Cooper pair dissociation

and tunneling into quasiparticle states S ! Q. Regular single electron tunneling is indicated by

n ! n.

as e and the Boltzmann constant as kb. Equation (1.2) is called dc Josephson equation.3

Applying a constant dc voltage to the tunnel junction, the phase di�erence � evolves in

time according to the ac Josephson equation

V =
�0

2�

d�

dt
; (1.4)

where �0 is the 
ux quantum

�0 =
h

2e
= 2:07 10�15 Wb : (1.5)

At the constant voltage V the supercurrent through the junction oscillates with the char-

acteristic frequency
d�

dt

1

2�V
=

1

�0

= 483:6 MHz=�V : (1.6)

3An elegant derivation of the Josephson equations in the Schr�odinger picture can be found in the
Feynman lectures [FLS65].
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Figure 1.3: a) Closed path across the barrier of a Josephson tunnel junction. b) Magnetic

�eld (thick line) penetration into the superconductor according to London equations. The 
ux

� = �0H�dx per unit length of the junction is given by the area under the curve. c) Critical-

current di�raction pattern of a small rectangular junction.

The Josephson equations govern the electrodynamics of Josephson junctions. In particular,

the dc-Josephson equation gives rise to the non-linear current 
ow across the junction bar-

rier and the ac Josephson equation relates the electric �eld in the junction to the evolution

of phase in time.

The magnetic �eld ~H in a Josephson junction can be related to the gauge invariant

phase di�erence � which is de�ned as (see for example Ref. [VDT81])

� = �2 � �1 +
2�

�0

Z
~A d~l ; (1.7)

where ~A is the electromagnetic vector potential. Considering an extended Josephson junc-

tion as shown in Fig. 1.3a, the di�erence in phase � between the two coordinates P and Q

chosen at di�erent points along the junction is given by

�(Q)� �(P ) =
2�

�0

"Z
P2

P1

~A(P )d~l �
Z

Q2

Q1

~A(Q)d~l
#
: (1.8)

If an external magnetic �eld ~H is applied in the plain of the junction the 
ux enclosed

in the path P 0 = Q1Q2P2P1 (see Fig. 1.3) is given by

� =
Z
S

�0 ~H d~S =
I
~A d~l (1.9)

=

Z
Q1

Q2

~A d~l +
Z

P1

Q1

~A d~l +
Z

P2

P1

~A d~l +
Z

Q2

P2

~A d~l : (1.10)

The second and fourth terms in Eq. (1.10) vanish if the horizontal parts of the path are

chosen considerably deeper in the superconductor than the London penetration depth �L,

which is the characteristic screening length of the magnetic �eld in a superconductor. Thus,

equating (1.10) and (1.8) and considering the 
ux enclosed in the di�erentially small section

dx of the junction we �nd
�(Q)� �(P )

dx
=

2�

�0

��0H ; (1.11)



8 CHAPTER 1. BASIC PROPERTIES OF JOSEPHSON JUNCTIONS

where �0 is the vacuum permeability. � = tj+2�L is the magnetic thickness of the junction

with the thickness of the tunnel barrier given by tj. ��0H is the magnetic 
ux per unit

length penetrating into a junction taking into account the screening of the magnetic �eld

due the superconductors. Thus, the gradient of � can be expressed as

r� =
2�

�0

��0 ~H � ẑ ; (1.12)

where ẑ is the normal vector perpendicular to the junction plane.

1.3 Static phase distribution of a small junction

The total supercurrent supported by a Josephson junction depends on the applied external

magnetic �eldH. According to Eq. (1.12), the �eld induces a constant gradient of the phase

di�erence across the junction. Thus, the local Josephson current oscillates sinusoidally with

the coordinate perpendicular to the �eld. The total supercurrent that can 
ow through the

junction is given by the integral

Ic =
Z
A

jc sin

�
2�
�0�Hx

�0

�
dA (1.13)

over the junction area A, where we assume a spatially homogeneous critical-current density

jc. If a rectangular junction is considered the integral (1.13) can be solved explicitly yielding
a critical current of

Ic(H) = Ic(0)
sin(��=�0)

��=�0

; (1.14)

where � = �0�Hw is the total 
ux threading the junction of length w. The expression

(1.14) is frequently referred to as the critical-current di�raction pattern of a rectangular

junction, because it resembles the Fraunhofer di�raction pattern of light passing through a

narrow rectangular slit. The sinc-type critical current di�raction pattern (1.14) of a small

rectangular junction is plotted in Fig. 1.3c.

1.4 Dynamics of a small junction

The electrodynamics of a small Josephson junction can be accurately described neglecting

the variation of the phase di�erence across the junction area. This approximation is valid,

if the lateral junction dimensions are smaller than the characteristic length scale �J of the

variation of � (see next chapter). In this regime, a small junction like the one shown in

Fig. 1.4a is accurately described by the lumped circuit model depicted in Fig. 1.4b. The

junction is modeled by a parallel connection of an ideal Josephson junction, a resistor and a

capacitor accounting for the Cooper pair, the quasiparticle and the capacitive contribution

to the total current [Ste68, McC68]. Using the Kircho� laws, the total current through the

junction is given by

I = Ic sin�+
V

R
+ C

dV

dt
: (1.15)

This model is called the resistively, capacitively shunted junction (RCSJ) model. Eq. (1.15)

can be rewritten in terms of the superconducting phase di�erence � using the Josephson
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Figure 1.4: (a) Sketch of a small Josephson junction with lateral dimensions w�w. (b) Lumped
circuit model of a small junction.

equations (1.2) and (1.4)

I = Ic sin �+
�0

2�R

d�

dt
+
�0C

2�

d2�

dt2
: (1.16)

It is important to note that this equation maps to the one describing a driven and

damped pendulum or equivalently the viscous motion of a particle in a tilted sinusoidal

potential, which is also called a washboard potential. The rich dynamics of such a system

can be investigated using Josephson junctions. If the junction is driven by the external bias

current I and damped by the resistance R, the phase � can have a complex time dependent

behavior. The time average of the evolution of phase can be monitored by measuring the

dc voltage

V = hV i =
*
d�

dt

+
�0

2�
(1.17)

across the junction. Depending on the bias conditions and the damping, the phase can either

oscillate with small amplitude � < 2�, or it can rotate over 2�. If the phase rotates a dc-
voltage drop across the junction appears, whereas the average voltage for small oscillations

of the phase is zero. The dynamics of small junctions and arrays of small junctions is a

topic of current research [GT95].

It is important to point out that the Josephson junction is an outstanding example of a

macroscopic physical system, the dynamics of which is governed by the underlying quantum

mechanical phenomena of tunneling of Cooper pairs and quasiparticles across a tunnel

barrier. The macroscopic dynamics of the junction is fully described in terms of the phase

di�erence �. It has been rigorously shown that the dynamics of all microscopic degrees of

freedom (charges and quantized �elds) is described by a single collective variable which is

the phase � across the junction [AES82, ESA84, SZ90]. At high temperatures and high

damping, the dynamics of the phase is purely classical. At low temperatures however, the

quantum nature of the dynamics of the phase becomes apparent and macroscopic quantum

phenomena can be observed. This issue is discussed in more detail in Part III of this thesis.



Chapter 2

The Physics of Long Josephson

Junctions

In a large area Josephson junction, the phase di�erence � between the top and the bottom

electrode may vary in space. Therefore, the dynamics of a large junction is much more

rich and diverse than the dynamics of a single small junction. The spatial extension of the

junction gives rise to the existence of solitons, breathers and other interesting non-linear

and linear phenomena. The characteristic length scale of the spatial variation of � is called

the Josephson length �J . If one dimension of a junction is much larger than �J while the

other dimension is much smaller than �J , the system is called a long Josephson junction.

A sketch of such a junction with length l and width w is depicted in Fig. 2.1a.

In the �rst section of this introductory chapter, the wave equation describing the elec-

tromagnetic properties of a long Josephson junction is introduced. The hamiltonian and

lagrangian functions governing the energetics of the junction are also presented. In sec-

tion 2.2, the important electromagnetic excitations of a long junction are reviewed, with

particularly focus on solitary waves. In the last section, the procedure used for junction fab-

rication is described and the basic measurement techniques employed for the experimental

investigation of long Josephson junctions are discussed.

2.1 The sine-Gordon model

Long Josephson junctions possess an extremely rich spectrum of linear and non-linear elec-

tromagnetic excitations. Their physics is very attractive and exciting because the dynamics

of a long junction can be investigated experimentally in great detail. At the same timemany

of the observed e�ects can be analyzed theoretically considering the junction as a non-linear

waveguide described by the sine-Gordon equation. The long Josephson junction is one of the

few outstanding physical systems that enable us to investigate the interesting and diverse

sine-Gordon physics.

2.1.1 The wave equation

The wave equation governing the electrodynamics of an ideal long Josephson junction can

be derived starting from the lumped circuit model shown in Fig. 2.1b. In this model,

the junction is described by a parallel connection of small RCSJ-like Josephson junctions

interconnected by a parallel connection of an inductance and a resistance. An external bias

10



2.1. THE SINE-GORDON MODEL 11

H

I

tj

l > λJ
w < λJ

E

C

L

IcR

(a)

(b)
Rsφk φk+1

... ...
IRCSJ

k+1

IRs
k+1

ILk+1

IRs
k

ILk

Ik+1Ik

Φk

∆x

Figure 2.1: (a) Sketch of a long Josephson

junction. Two planar superconducting �lms

of dimensions l and w are separated by a

tunnel barrier of thickness tj . The directions

of the electromagnetic �elds in the junction

are indicated. (b) The lumped circuit model

of a long Josephson junction. The phase dif-

ference across the junction at node k is given

by �k . The current through the RCSJ type

junction is IRCSJ . IL and IRs model the in-

ductive and resistive components of the sur-

face currents in the electrodes. �k is the

total 
ux enclosed in one cell.

current Ik is injected in each node k and the external 
ux �ext threading each cell is taken

into account. In this model, the wave equation is derived considering the 
ux quantization

�k+1 � �k =
2�

�0

�
�ext � LIL

k

�
; (2.1)

where the 
ux threading the loop k due to an externally applied �eld can be expressed as

�ext = �0H��x. The Kircho� law at the node k + 1 is given by

IRs

k
+ IL

k
+ Ik+1 = IL

k+1 + IRs

k+1 + IRCSJ
k+1 : (2.2)

Thus, considering a small section �x of the long junction we can write down the continuous

limit of the Eqs. (2.1) and (2.2)

�k+1 � �k

�x
=
@�

@x
=

2�

�0

�
�0�H � L?IL

�
(2.3)

and
@IL

@x
= j � jRCSJ � @IRs

@x
; (2.4)

with L? = L=�x, j = I=�x and jRCSJ = IRCSJ=�x. Di�erentiating Eq. (2.3) with respect

to space we �nd
@2�

@x2
=

2�

�0

 
�0�

@H

@x
� L?

@IL

@x

!
: (2.5)

Substituting Eq. (2.4) with IRs = �1=�s @V=@x and the RCSJ current density (1.15) into

Eq. (2.5) and considering a homogeneous external magnetic �eld (@H=@x = 0), we calculate

the equation
�0

2�L?

@2�

@x2
= �j + jc sin(�) +

V

�
+ C?

@V

@t
� 1

�s

@2V

@x2
; (2.6)
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where C? = C=�x, � = R�x and �s = Rs�x. Now we can express all voltages in Eq.(2.6)

via the phase as V = �0=2� @�=@t using the ac Josephson relation. The resulting one-

dimensional wave equation for the superconducting phase di�erence �(x; t) is called the

perturbed sine-Gordon equation (PSGE)

�0

2�

1

L?

@2�

@x2
� �0

2�
C?
@2�

@t2
� jc sin(�) = �j + �0

2�

1

�

@�

@t
� �0

2�

1

�s

@3�

@x2@t
; (2.7)

where �0 is the magnetic 
ux quantum, L? the speci�c inductance of the junction, C?

the speci�c capacitance, jc the critical-current density, j the bias current density, � the

quasiparticle resistance per unit length, and �s the surface resistance of the superconduct-

ing electrodes per unit length. The electric and magnetic �elds are related to the phase

di�erences � in the following way:

E =
V

tj
=

1

tj

�0

2�

@�

@t
; (2.8)

H =
1

L?

�0

2�

@�

@x
: (2.9)

The speci�c inductance and capacitance of the junction are given by

L? = �0d
0 ; (2.10)

C? =
�0�j

tj
; (2.11)

where �j is the relative dielectric constant of the junction barrier, tj is its thickness and d
0

the magnetic thickness. In the limit of thick electrodes (d > �L), d
0 is given by [Wei69]

d0 = 2�L + tj : (2.12)

Dividing Eq.(2.7) by jc and introducing the Josephson length �J and the plasma fre-

quency !p

�J =

s
�0

2�L?jc
; (2.13)

!p =

s
2�jc

�0C?
; (2.14)

Eq. (2.7) can be expressed as

�2
J
�xx �

1

!2
p

�tt � sin(�) = � j

jc
+

1

!2
p
C?�

�t �
�2
J
L?

�s
�xxt ; (2.15)

where the short notation �� has been used for the partial derivative @�=@�. From the �rst

two terms of the wave equation (2.15), it is easy to see that the phase velocity of linear

waves in this system is given by

c0 = !p�J = c

s
tj

�jd0
: (2.16)

c0 is termed the Swihart velocity [Swi61] and c is the velocity of light in vacuum. In long

Josephson junctions the Swihart velocity is typically only a few percent of c because the
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magnetic �eld penetrates into the superconductor on a length scale d0, whereas the electric

�eld is localized only in the junction barrier of thickness tj � d0.

It is often useful to express the sine-Gordon equation in coordinates normalized with

respect to the characteristic time and space scales !p and �J according to

~t = !pt; (2.17)

~x =
1

�J
x: (2.18)

In the normalized perturbed sine-Gordon equation

�~x~x � �~t~t � sin� = �
 + ��~t � ��~x~x~t : (2.19)

all physical quantities are of order 1. In particular the Swihart velocity is equal to unity.

The perturbation terms on the right hand side of Eq. (2.19) are de�ned as


 =
j

jc
; (2.20)

� =

s
�0

2�jc�2C?
=

1

�C?!p
; (2.21)

� =

vuut2�jcL?2

�0C?�2
s

=
!pL

?

�s
; (2.22)

where the �rst term is the normalized bias current, the second is the damping term due to

quasiparticle resistance and the third term corresponds to the damping due to the surface

impedance of the superconducting electrodes.

Limitations of the 1D description

As mentioned in the introduction to this section, a long Josephson junction is considered

quasi-one-dimensional if its width w is less than �J . If w < �L however, non-local e�ects

may become important [IS90, Gur92]. The non-local dependence of the magnetic �eld on

the phase in very narrow junctions made of thin �lms is actively discussed in literature

[AS93a, AS93b, GV95, Alf95, AOSU95, Min97] and contains interesting physics by itself.

For Josephson junctions prepared in Nb/Al-AlOx/Nb technology, non-local e�ects are only

relevant for the most narrow long Josephson junctions [KWF+99] fabricated until now.

On the other hand, long Josephson junctions may display two-dimensional properties even

though their width is less or equal to �J . These e�ects are frequently neglected. One of the

main aims of this work is to investigate both the properties of e�ectively two-dimensional

and narrow long Josephson junctions and to discuss their intriguing physics.

2.1.2 Lagrangian and hamiltonian functions

Having established a wave equation which describes the dynamics of a long Josephson

junction, it is useful to introduce the lagrangian and hamiltonian functions to calculate

its energy. To determine the lagrangian, the energies of the electromagnetic �elds and the

Josephson coupling are to be considered. For now the contribution of the perturbations to

the total energy of the junction are neglected. Combining the kinetic energy Tkin associated
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with the energy density of the electric �eld and the potential energy Upot associated with the

energy density of the magnetic �eld and the Josephson coupling, we obtain the lagrangian

L = Tkin � Upot by integrating over the junction volume V

L =

Z
V

�
1

2
�0�jE

2 � 1

2
�0�rH

2 � Æ(z)
�0

2�
jc (1 � cos�)

�
dV : (2.23)

Expressing the electromagnetic �elds by the phase di�erence � according to Eqs. (2.8) and

(2.9) and rewriting their coeÆcients in terms of �J and !p we �nd

L =

Z
l

0

Z
w

0

( Z
tj=2

�tj=2

2
41
2

j2
c

�0�j

 
1

!2
p

�t

!2
3
5 dz � Z

d
0
=2

�d0=2

�
1

2
�0�rj

2
c

�
�2
J
�x
�2�

dz

��0

2�
jc (1� cos �)

)
dy dx : (2.24)

Upon rearranging the coeÆcients and performing the integration over the width of the

junction w (y-coordinate) and perpendicular to the junction plane (z-coordinate) and con-

sidering the di�erent penetration depths of the electric and magnetic �elds into the junction

barrier, we �nd the lagrangian

L =
�0

2�
jcw

Z
l

0

"
1

2

1

!2
p

�2
t
� 1

2
�2
J
�2
x
� (1� cos �)

#
dx : (2.25)

The normalized lagrangian

~L =
L
E0

=
Z

`

0

�
1

2
�2~t �

1

2
�2~x � (1 � cos�)

�
d~x ; (2.26)

with the characteristic energy scale of the Josephson junction

E0 =
�0

2�
jcw�J (2.27)

is found by introducing the normalizations (2.17) and (2.18) for time and space. Here

` = l=�J is the normalized junction length.

Making use of the lagrangian formalism [Gol91], the sine-Gordon equation is obtained

by calculating the equation of motion for the continuous variable �

d

dt

@L
@�t

+
d

dx

@L
@�x

� @L
@�

: (2.28)

The hamiltonian, determining the total energy of a long Josephson junction, is given by

~H = ~HSG + ~HP ; (2.29)

where

~HSG =
Z

`

0

�
1

2
�2~x +

1

2
�2~t + 1� cos �

�
d~x (2.30)

is the unperturbed sine-Gordon energy. Obviously, the sine-Gordon (SG) part of the hamil-

tonian contains the magnetic �eld energy (/ �2~x), the electric �eld energy (/ �2~t ) and the

Josephson coupling energy (/ 1 � cos �). The contributions of the di�erent perturbations
~HP , i.e. bias current, microresistors and microshorts, external magnetic �eld etc., to the

total energy are discussed in Chapter 6.
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2.2 Fluxons, breathers and plasmons: Excitations of

the sine-Gordon system

In a sine-Gordon system, a large variety of linear and in particular non-linear excitations,

like plasmons, solitons, anti-solitons and breathers does exist. The long Josephson junc-

tion, being well described by the sine-Gordon equation, supports many of these excitations

and allows for their detailed experimental investigation. In the following, di�erent Joseph-

son junction geometries and their various excitations are discussed, pointing out those of

particular importance for this work.

2.2.1 Linear long Josephson junctions

To identify the di�erent types of excitations that exist in long Josephson junctions, I �rst

consider a linear in�nitely long quasi-one-dimensional junction. The electrodynamics of

such a junction can be modeled by the perturbed sine-Gordon equation (2.15) with the

boundary conditions

�~xj~x=�1 = 0 : (2.31)

Using the assumption of an in�nite junction, several simple analytic solutions to the sine-

Gordon equation can be found. Neglecting all perturbations on the right hand side of

Eq.(2.19) the exact solution

�f(~x; ~t) = 4 arctan

"
exp

 
� ~x� u~t� ~x0p

1� u2

!#
(2.32)

to the unperturbed sine-Gordon equation

�~x~x � �~t~t � sin � = 0 (2.33)

is obtained. Depending on the sign (�), �f describes a kink (or anti-kink) in the phase

di�erence � moving at a normalized velocity 0 � u � 1. For illustration, the phase

distribution (2.32) is plotted in Fig. 2.2b. The kink corresponds to a jump of � from 0 to

2� (or 2� to 0, for an anti-kink). Obviously, the supercurrent distribution (sin�) associated
with this excitation changes sign around the center of the kink, see Fig. 2.2c. Moreover,

�f is associated with a localized magnetic 
ux distribution (�~x), as shown in Fig. 2.2d. In

this way, the kink in � generates a vortex of the supercurrent creating a 
ux identical to

a single 
ux quantum �0, as indicated in Fig. 2.2d. Therefore, this excitation is called a

Josephson vortex or 
uxon.

Kinks in sine-Gordon systems have all properties of solitons. Solitary waves exist in

systems in which dispersion, which leads to the spreading of the energy of the waveform in

space, and non-linear e�ects compensate each other. As a result, a stable solitary wave may

propagate in a non-linear medium while its energy remains localized in space.1 The kink

in a sine-Gordon system is a topological soliton. There are no dynamical restrictions on its

existence. This is in contrast to dynamical solitons, which have to have a certain energy for

the dispersion to be balanced with the non-linearity. Hence there are dynamical restrictions

on the existence of this type of solitons. An example are light pulses propagating in glass

�bers, which only display solitary properties if their intensity is suÆciently high to stimulate

non-linear e�ects in the �ber.

1For a review on di�erent types of solitons in various physical systems, see Refs. [KM89, Abd94].
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In a long Josephson junction, the Josephson vortex (i.e. the kink) can be driven by

external forces, for example by a bias current applied to the junction. The bias current

gives rise to a Lorentz-Magnus force acting on the charge carriers of the vortex, resulting

in the propagation of the vortex along the junction. Due to the presence of dissipation,

the driving force and the damping forces are balanced for a certain vortex velocity, leading

to a steady motion of the kink. In the fundamental work by McLaughlin and Scott, it

was pointed out that in this case the dynamics of the vortex can be described in lowest

order perturbation theory [MS78]. In this approximation, the e�ect of the perturbations is

assumed to in
uence only the dynamics of the center of mass coordinate q(t) of the vortex,
but not its shape �f . Hence, an equation of motion is derived considering the balance

between the energy gain of the vortex due to the bias current and the loss due to damping.

Substituting �f into the sine-Gordon hamiltonian (2.30), we �nd the normalized energy

of a vortex propagating at velocity u

~HSG(�f) =
8p

1 � u2
: (2.34)

At u = 0, the rest energy equals to 8, which is identi�ed with the normalized rest mass ~mf

of the vortex. The change of the vortex energy with time is given by

d

dt
~HSG(�f ) = ~mf

u

(1� u2)3=2
du

dt
: (2.35)

The rate of energy supplied to or extracted from the junction due to the perturbations is

identical to
d

dt
~HP (�) = �

Z 1

�1

�

�~t + ��2~t + ��2~x~t

�
d~x ; (2.36)

where the �rst term in Eq. (2.36) corresponds to the power supplied to the junction through

the bias current (
�t / I V ), the second and third terms correspond to the power extracted

from the system due to the quasiparticle losses (��2~t / V 2=R) and the surface impedance

losses (��2
~x~t
/ I2

s
Rs). Substituting �f into Eq. (2.36), we calculate the change of vortex

energy per unit time in dependence on the vortex velocity

d

dt
~HP (�f) = 2�
u� ~mf�

u2p
1� u2

� ~mf

�

3

u2

(1� u2)3=2
: (2.37)

Finally calculating the energy balance by equating Eqs.(2.35) and (2.37), we �nd the equa-

tion of motion for the vortex in presence of bias current and damping

~mf

du

dt
+ ~mf�u(1 � u2) + ~mf

1

3
�u+ 2�


�
1� u2

�3=2
= 0 : (2.38)

Because of the ac Josephson e�ect (1.4), the motion of the vortex, being associated with

a change of the phase di�erence � in time, generates a voltage drop across the junction,

which is proportional to the vortex velocity u. This mechanism allows the experimental

investigation of kink dynamics in long Josephson junctions by means of electrical transport

measurements. Neglecting the surface damping (� = 0), we �nd the solution

u =

2
41 +

 
4�

�


!2
3
5
�1=2

; (2.39)
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Figure 2.2: (a) Normalized bias current - vortex velocity (
-u) dependence. Indicated are the

two bias points, for which plots (b-d) are presented. (b) Phase distribution of a kink centered

at ~x0 = 0 for two di�erent kink velocities u. (c) Sine of the phase being proportional to the

supercurrent across the junction. (d) Gradient of the phase being proportional to the magnetic

�eld threading the junction. The total 
ux (shaded area) associated with the kink in the phase is

identical to �0.

to the equation of motion (2.38) which determines the vortex velocity in dependence on the

bias current and damping. In Fig. 2.2a, a typical normalized current-voltage (driving force -

vortex velocity) characteristic is plotted. The characteristic is linear for small bias currents.

Further increasing the current, the vortex velocity approaches the maximum velocity of

light in the junction.2 Thus, by means of the bias current, the Josephson vortex can be

accelerated to velocities close to the maximum velocity and relativistic e�ects are observed,

e.g. the Lorentz-contraction of the vortex. This e�ect is illustrated in Fig.2.2d, where the

reduction in the width of the 
ux distribution with increasing vortex velocity is depicted.

This phenomenon is understood noting that the sine-Gordon equation is Lorentz-invariant.

The relativistic contraction of the Josephson vortex has been experimentally veri�ed in long

Josephson junctions [LDL+95].

By now we have identi�ed the Josephson vortex as an excitation of an in�nite long

Josephson junction, but did not consider how it is created. Since kinks are topological

excitations, it is important to note that in an in�nite system, only pairs of vortices and

anti-vortices may be created and annihilated if the required energy is supplied. In junctions

2In normalized units, this velocity is unity.
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Figure 2.3: Normalized continuous (dis-

crete) plasmon spectrum for an in�nite
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of �nite size these excitation may also be generated at the boundary, as discussed later.

The nucleation and annihilation of kinks in sine-Gordon systems with large damping have

been investigated in detail theoretically and discussed quite controversially in literature

[BL79, BL81, BHL83, B�ut89, HMS88, BC95, CB98]. One of the few systems in which these

processes may be investigated experimentally is the long Josephson junction.

Under certain conditions kinks and anti-kinks may form bound pairs , so called breathers.

Breathers are unstable with respect to perturbations and decay after some transient time.

This type of excitation in continuous long Josephson junctions with open boundary condi-

tions is discussed in Ref. [CPS+78].

In a long Josephson junction also linear, small amplitude excitations of � do exist. These
can be modeled by the linearized sine-Gordon equation (2.33)

�~x~x � �~t~t � � = 0 (2.40)

which has linear wave solutions of the form

� = �0 exp(i~k~x� i~!~t) (2.41)

with a spectrum

~!(~k) =

q
1 + ~k2; (2.42)

where ~k is the wave number of the mode and ~! is its frequency. The continuous spectrum

(2.42) for an in�nite length junction is plotted in Fig. 2.3. Obviously, there is a gap of

�~! = 1 (corresponding to the plasma frequency !p in SI units) in the excitation spectrum.

These linear excitations of the long Josephson junction are called plasmons.

2.2.2 Linear long Josephson junctions in external magnetic �eld

A Josephson junction of normalized length ` = l=�J , subject to a homogeneous external

magnetic �eld H applied in the plane of the tunnel barrier and perpendicular to the long
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Figure 2.4: (a) Sketch of a linear long Josephson junction and (b) an annular long Josephson

junction. The current distribution associated with a Josephson vortex is indicated by arrows.

dimension of the junction (see Fig. 2.4a) is described by the perturbed sine-Gordon equation

with the boundary condition

�~xj~x=0;` = ~H : (2.43)

Equation (2.43) is deduced from the dependence (2.3) of the phase gradient on the normal-

ized magnetic �eld ~H = H 2��0��J=�0. In this system, all of the linear and non-linear

excitations discussed in the previous section can be studied. Additionally, the dependence

of the boundary conditions on the external magnetic �eld allows to control the nucleation of

vortices at the boundaries. The interaction of vortices with the boundaries excites plasmons

in the junction. As shown in Fig 2.3, the plasmon spectrum of the junction is discrete due

to its �nite length.

In linear long Josephson junctions, three major regimes of 
uxon motion can be ob-

served.

Zero-Field Resonances. In zero external magnetic �eld, Josephson vortices are nucleated

at the boundary of the junction. An applied bias current drives the vortices through the

junction, which are re
ected under a change of polarity (
uxon $ anti-
uxon) at its ends.

This process gives rise to so-called zero-�eld steps in the current-voltage characteristic of

the junction. A detailed discussion of zero-�eld resonances can be found in Ref. [Ped82].

Fiske Resonances. At magnetic �elds larger than a certain threshold value, vortices nu-

cleate at one end of a long current biased junction and annihilate at the other end. In

the process of annihilation, plasmons are emitted, which resonate with the junction cavity.

This process gives rise to so-called Fiske resonances [Fis64, Kul67, GJC94].

Flux{Flow Resonance. In high magnetic �elds, vortices are nucleated at a high rate at one

end of the junction and 
ow viscously in a dense chain to the other end, where they leave

the junction. This process is termed 
ux-
ow [NEIY83, NEYI84, NEYI85].

A more detailed discussion of these dynamical regimes is found in the vast literature on

long junctions. A good starting point are the reviews [Ust98, PU95, Par93].

2.2.3 Annular long Josephson junctions

The annular geometry is of particular importance for the experimental and theoretical

investigation of non-linear properties of long Josephson junctions. An annular Josephson

tunnel junction is formed by two ring shaped superconducting electrodes separated by a thin

tunnel barrier, as shown in Fig. 2.4b. The electrodynamics of a junction with circumference
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` is described by the perturbed sine-Gordon equation with the periodic boundary conditions

�(~x = 0) = �(~x = `) � 2�n ; (2.44)

@�

@~x
(~x = 0) =

@�

@~x
(~x = `) : (2.45)

The number of kinks n initially present in the annular junction is conserved due to the

closed topology, which is expressed by the boundary condition (2.44). The condition (2.45)

enforces the continuity of the magnetic �eld along the junction. Similar to the in�nite

system, kink excitations can only be nucleated in pairs of kinks and anti-kinks. Due to the

�nite length of the annular junction, the plasmon excitation spectrum is discrete.

Experimentally, annular junctions are prepared in states with n topologically trapped

Josephson vortices by cooling the junction from the normal to the superconducting state

in a small applied �eld. The required magnetic �eld can be generated either by using an

external coil or by biasing the junction with a small current. Alternatively, vortices may be

trapped in the junction by locally heating up one of its electrodes in an external �eld using

an electron or laser beam in a low temperature scanning microscope [UDH+92]. Dynamic

states of an annular junction with n vortices trapped are called n-vortex states. In an

n-vortex state, all 
ux quanta thread one junction loop and the junction barrier, but not

the other. Additional vortex anti-vortex pairs can be nucleated in the junction under the

appropriate bias conditions. These states are called n+�n-vortex states, where �n is the total

number of anti-vortices. The di�erent states can be clearly identi�ed by the dependence

of the critical current of the junction on the external �eld (see Chapter 3) and by their

current-voltage characteristics (see Chapter 4).

2.3 Basic experimental techniques

Long Josephson junctions are almost ideal physical realizations of a sine-Gordon system.

They can be fabricated with high quality and high reproducibility. Their non-linear and

linear excitations can be studied experimentally in great detail and with a good accuracy

by performing electrical transport measurements at low temperatures.

2.3.1 Sample preparation

Josephson tunnel junctions are formed by bringing two superconducting �lms into con-

tact via a thin insulating tunnel barrier. The most reliable and widespread fabrication

technology for high quality junctions is based on niobium (Nb) as the superconductor and

aluminum oxide (AlOx) to form the tunnel barrier. These materials are employed in the

so-called Nb{Al/AlOx{Nb trilayer technology [KHN+97] to form tunnel junctions for both

basic research and applications. The experiments presented in this work were done with

samples prepared using techniques identical or similar to the ones described in the following

paragraphs.

Nb{Al/AlOx{Nb trilayer tunnel junctions are typically fabricated on thermally oxidized

silicon (Si) wafers. Each wafer can carry a number of chips, typically of size 0:25 to 1 cm2,

with a number of tunnel junctions on each chip. In a �rst step, the Si wafer is coated

with a thin �lm (about 1:5 �m) of photoresist which is subsequently exposed using optical

lithography to de�ne the areas of the chip on which the trilayer is to be deposited. After

development of the photoresist (PR), the �rst Nb layer is sputtered onto the wafer. In
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Figure 2.5: Selected fabrica-

tion steps of a Josephson junc-

tion (cross-sectional view). (a)

Trilayer deposition. (b) Reac-

tive ion etching for de�nition of

junction area. (c) Junction in-

sulation by deposition of insu-

lator. (d) Deposition of wiring

layer.

the sputter process, a polycrystalline Nb �lm of several tens to some hundreds of nm is

deposited in a plasma discharge glowing between the sample and the target in the vacuum

chamber of the deposition system. Next a thin �lm (3�5nm) of aluminum is sputtered onto

the wafer and subsequently oxidized in an oxygen atmosphere within the sputter chamber

to form an AlOx tunnel barrier of 2�3 nm thickness. The thickness and the morphology of

the aluminium oxide layer crucially determine the critical-current density, the quasiparticle

resistivity and the speci�c capacitance of the junction. The trilayer is completed by the

deposition of the niobium �lm forming the top electrode of the junction. In Fig. 2.5a, a

cross-section through the junction area at this stage of fabrication is shown.

After the deposition of the trilayer a lift-o� [YKN87], removing the trilayer from the

parts of the wafer covered with photoresist, is performed. The e�ective junction area is

de�ned by reactive ion etching (RIE) through a mask of photoresist de�ned in a second

photolithographic process. The etching process is stopped at the AlOx tunnel barrier, see

Fig. 2.5b. The sides of the Josephson junction are subsequently electrically insulated by

deposition of silicon oxide (SiOx) to avoid shorting out the tunnel junction by a direct

contact between the top and bottom electrodes, see Fig. 2.5c. Alternatively, the junction

can also be insulated using anodic oxidization of the junction edges [HG85, KGS91]. In

the �nal lithographic step, the top electrode of the junction is contacted by depositing a

�lm of Nb (see Fig. 2.5d) onto a mask of photoresist and performing a lift-o�. The bottom

electrode of the sample is contacted using a part of the bottom Nb �lm which extends

outside the junction area.

With standard photolithographic techniques, Josephson junctions of sizes of approxi-

mately 3� 3�m2 are prepared regularly. With extra e�ort, sizes down to 1� 1�m2 can be

reached. If smaller sample features are required, electron beam lithography techniques have

to be employed and the fabrication process has to be optimized to provide the necessary

accuracy in alignment and junction insulation. Recently, we have developed techniques

[KWF+99] to prepare Josephson junction based on the trilayer technology with feature

sizes down to smaller than 0:3�m. Independently similar techniques have been elaborated

by other groups.
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2.3.2 Typical junction parameters

The material properties of sputtered polycrystalline niobium and aluminum �lms can be

rather well controlled and reproduced. A few important characteristic properties of high

quality �lms are listed in Table 2.1. These parameters are rather constant and can hardly be

modi�ed to in
uence the junction parameters. Instead the thickness tj and the properties

of the tunnel barrier can be very well controlled in order to change the critical-current

density jc / exp(�tj), the quasiparticle tunnel resistance � / exp(�tj) per unit area and

the speci�c capacitance C? / 1=tj of the junction. Obviously these parameters cannot be

changed independently. The range of attainable electrical parameters is quoted in Table 2.1.

The electrical properties of a Josephson tunnel junction are not solely depending on the

properties of the tunnel barrier itself, but are also in
uenced by the electrical properties of

the surrounding area. Of particular importance is the region in which the top and bottom

junction electrodes overlap outside of the tunnel barrier, see Section 2.3.1. This part of the

junction is often called idle region or window, to contrast it to the (active) tunnel region

of the junction. As pointed out in later chapters, this idle region needs to be considered

to quantitatively understand the static and the dynamic properties of the long annular

Josephson junctions which have been examined experimentally in this work.

2.3.3 Basic measurement technique

Josephson tunnel junctions are cooled below their critical temperature Tc to investigate

their superconducting properties. By emersing the sample directly into liquid helium or

into the vapor above the helium surface, temperatures down to 4:2K can be reached. To

achieve lower temperatures and/or better temperature stabilization, the sample is mounted

in the vacuum chamber of a cryostat. Depending on the lowest temperatures that are

required, either a pumped 4He (down to 1.4 K), a pumped 3He cryostat (down to 260 mK)

or a 3He-4He dilution refrigerator (down to 10 mK) is used [Pob95].

Since the spatial distribution of the phase of a long Josephson junction depends sen-

sitively on the magnetic �eld, the sample is magnetically shielded in a cylindrical high

permeability container. Magnetic �elds up to 40 gauss can be applied in the plane of the

junction barrier, using a cylindrical superconducting coil which is energized with currents

up to 100 mA.

The sample is current biased using a custom-made battery-powered analog current

source with current ranges adjustable between 100 mA and 100 nA. Likewise, the volt-

Table 2.1: Characteristic electrical parameters of Josephson junctions fabricated in Nb{Al/AlOx{

Nb trilayer technology.

quantity unit value meaning

Tc Nb [K] 9:2 critical temperature

�L Nb [nm] 90 London penetration depth

Tc Al [K] 1:2 critical temperature

�L Al [nm] 50 London penetration depth

jc [A=cm2] 10 � 5000 critical-current density

C? [fF=�m2] 10 � 100 speci�c capacitance

� [k
�m2] 0:01 � 10 quasiparticle sheet resistance
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the basic measurement setup
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age across the junction is measured using a custom-made battery-powered bipolar or FET

preampli�er circuit with adjustable low-pass �lters. The sample is connected to the ana-

log electronics using shielded and/or twisted pairs of wires. The wires are �ltered with

commercial �-type LC �lters at room temperature and cold RC �lters at liquid helium

temperature to avoid interference due to electromagnetic pick up from the environment. A

four-point measurement technique is employed to avoid wiring and contact resistances in

the measurements.

The bias current through the sample and the coil are controlled using 12-bit D/A con-

verters. The voltage across the sample is monitored using 12-bit A/D converters. All

elements of the data-acquisition are software controlled. The software Gold-exi [Gol] is

used to measure the current-voltage characteristics and the dependence of the critical cur-

rent on the external magnetic �eld. A schematic layout of a typical measurement setup is

shown in Fig. 2.6.

In addition to dc measurements, the electromagnetic radiation emitted from a Joseph-

son junction can be measured to gain information about the temporal evolution of the

electromagnetic �elds inside the junction [KSF+96, KSF+97]. Spatially resolved but time

averaged electromagnetic properties of junctions can be measured using low tempera-

ture scanning electron microscopy [GK94] or low temperature scanning laser microscopy

[SZTD96, SZT+94].





Part II

TWO-DIMENSIONAL

ANNULAR JOSEPHSON JUNCTIONS

The annular Josephson junction is ideal to investigate the dynamics of solitons in a

quasi-one-dimensional sine-Gordon system. Due to the periodic boundary conditions, the

dynamics of the 
uxon is not perturbed by collisions with the junction ends. The �rst

measurements of single 
uxons in annular junctions were reported by Davidson et al.

[DDKP85]. Using perturbation theory [MS78], the 
uxon dynamics in the annular junc-

tion was analyzed quantitatively, allowing the determination of the losses in the junction

[DPP86, UDH+92].

Initially, the controlled trapping of single and multiple vortices in the junction be-

came possible using a low temperature scanning electron microscope (LTSEM) [UDH+92].

Imaging the collisions between a vortex and an anti-vortex trapped in an annular junc-

tion using the LTSEM, the Lorentz contraction of the vortex was veri�ed [LDL+95]. The

static properties of annular junctions in the presence of an external �eld were investigated

both theoretically and experimentally [MMS, MM96b, MM96a]. In the initial works, the

junction was considered as quasi-one-dimensional. The �nite width of the junction was

�rst taken into account theoretically in Ref. [Nap97]. The bunching of multiple vortices

was examined [VLS+96] and the dynamics of vortex{anti-vortex pairs was investigated

[MSM96]. The pinning of 
uxons by an external magnetic �eld applied in the plane of

the junction was analyzed experimentally, measuring critical current versus �eld patterns

[VKT+97, VKT+96] and by imaging spatially the static vortex con�guration in the junc-

tion [KVL+96]. The dynamics of the vortex in a �eld-induced harmonic potential well was

analyzed [UT97, Ust99], also considering the depinning from the potential well and the re-

trapping into the well [UMT97]. Later it was found that the vortex may experience pinning

also at the junction leads [MDP+98]. Recently, we have started to investigate the process

of the vortex escape from such pinning potentials in more detail. We have examined the

thermal activation of the vortex [WKL+00, FCC+00] and are planning to observe quantum

tunneling [KI96, WKL+00].

Recently, large area annular junctions have been proposed as radiation and particle

detectors [NC97]. In these junctions, vortices may be used to e�ectively suppress the

critical current [NCL98, CEF+99] which is required to operate the junction as detector.

In this part of the thesis, I consider the static and dynamic properties of wide annular

Josephson junctions. The observed e�ects are analyzed and explained speci�cally consider-

ing the junction width and the idle region coupled to it. First, the static phase distribution

of annular junctions subject to an external �eld is examined by measuring their critical cur-

rent. In particular, the dependence of the critical-current di�raction pattern on the inner

and outer junction radius is considered [FWU00b]. Then, I present experiments, proving

the theoretically predicted [KYSV98] excitation of whispering gallery modes by a vortex

propagating at relativistic velocities in a wide annular junction [WUK+00]. Finally, the

e�ect of the electromagnetic environment on the static and dynamic properties of annular

junctions which are embedded in striplines of various widths is investigated by measuring

the critical current versus �eld patterns [FWU00a] and single vortex resonances [WFU+00].
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Chapter 3

Critical-Current Di�raction Patterns

in Annular Josephson Junctions

Systematic measurements of the critical current versus magnetic �eld patterns of annular

Josephson junctions in a wide magnetic �eld range are reported. A modulation of the

envelope of the pattern, which depends on the junction width, is observed. The data are

compared with theory and good agreement is found.1

Large area Josephson junctions are intriguing objects for performing experiments on

non-linear electrodynamics. In particular, the propagation of solitons, also called Josephson

vortices or 
uxons, in long Josephson junctions has attracted a lot of attention and has been

studied in detail [Ust98]. In an annular Josephson junction, magnetic 
ux quanta threading

one superconducting loop but not the other, can be trapped and stored in the junction

due to the 
uxoid quantization [DDKP85]. This property of the system o�ers the unique

possibility to study 
uxon dynamics in the absence of collisions with boundaries [MS78].

The number and the con�guration of Josephson vortices trapped in an annular junction

can be determined accurately by measuring the dependence of its critical current on the

external �eld, which is related to the static spatial distribution of the phase di�erence in the

junction. The detailed knowledge of the static phase con�guration in annular Josephson

junctions with and without trapped vortices is important both for the basic understanding

of the vortex states of the junction and for their use in applications.

Recently large area Josephson junctions have been proposed as eÆcient radiation and

particle detectors [EFPB96, NC97, CEF+99]. The detection mechanism relies on the ex-

citation of quasiparticles in the superconductor by the incoming electromagnetic radiation

or particles. Such detectors have a high energy resolution due to the small energy gap �

of the superconductor resulting in a large number n = E=� of quasiparticles generated

per incident particle of energy E. To e�ectively detect these quasiparticles, the junction

is biased in the subgap region. To do so, the critical current is suppressed either by an

external magnetic �eld or more eÆciently by trapping Josephson vortices in an annular

1Parts of this chapter have been accepted for publication in `Physical Review B'.
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Figure 3.1: (a) Schematic drawing of the annular Josephson junction biased in the Lyngby-

geometry [DDKP85]. The wide leads attached to the junction shall guarantee a homoge-

neous distribution of the bias current. (b) The junction dimensions: inner radius ri, outer
radius re, junction width w. The external �eld H is applied at an angle � with respect to

the x-axis. The phase di�erence is expressed in polar coordinates �(r; ').

junction as proposed in Refs. [NC97, CEF+99].

Here, I present systematic measurements of the critical current of annular Josephson

junctions in dependence on the externally applied in-plane magnetic �eld (see Fig. 3.1).

The critical current Ic of a junction without trapped 
uxons is at maximum in zero �eld.

In the presence of a magnetic �eld, the critical current is reduced. Magnetic �elds can

be due to the bias current applied to the junction (self-�elds), due to 
ux trapped in the

junction itself or its leads (Josephson or Abrikosov vortices, respectively), or they can be

applied externally. The modulation of the critical current with the external �eld is often

called a critical-current di�raction pattern [MBCF85]. We investigate these patterns for

annular junctions of various dimensions in a wide range of magnetic �elds.

3.1 State of the art

Critical-current di�raction patterns of annular junctions have been actively investigated

experimentally and theoretically [MM96a, MM96b, Nap97]. The qualitative understanding

of their features is rather complete, however a number of open problems remain. In this

chapter, I address the �eld dependence of the critical current on the exact junction geometry.

In particular, new results in the large-�eld regime are presented allowing a more precise

comparison between theory and experiment.

Several theoretical approaches to predict and explain the critical current di�raction pat-

terns of annular Josephson junctions can be found in literature [KVL+96, MM96a, MM96b,

VKT+96, VKT+97, Nap97]. Mainly, two di�erent cases have been considered so far, i.e.

the long annular Josephson junction with a circumference 2�r larger than the Josephson

length �J and the small annular Josephson junction with 2�r < �J . Here r = (ri + re)=2
is the mean radius of the junction. In these approaches, the dependence of the pattern on

the junction geometry is treated approximately, which results in quantitatively inaccurate

interpretation of experimental data.

The most complete and mathematically exact analytical description of the critical-

current di�raction pattern Ic(H) of a small annular junction with arbitrary number of

trapped 
uxons n is presented by Nappi in Ref. [Nap97]. In this work the �nite width of

the junction is considered exactly. Using the results of Nappi and the results of our measure-
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ments in the high-�eld limit, the quantitative understanding of experimental critical-current

di�raction patterns can be improved.

In Ref. [Nap97] the critical-current di�raction pattern of a small annular junction is

calculated from the dependence of the phase � on the external �eld (see Section 1.2) 
~nr

@

@r
+ ~n'

1

r

@

@'

!
� =

2��0�

�0

~H � ~nz : (3.1)

In Eq. (3.1) (~nr@=@r + ~n'1=r @=@') is the gradient in polar coordinates (see Fig. 3.1b) and

� is the magnetic thickness of the junction. With the external magnetic �eld expressed in

polar coordinates

Hr(') = H cos(�� ') ;

H'(') = H sin(� � ')

Eq. (3.1) separates into two di�erential equations for the coordinates r and '. Both equa-

tions can be integrated yielding the same result

�(r; ') =
2�

�0

r�0�H sin(�� ') + �0 ; (3.2)

where �0 is the phase di�erence in the junction along the direction of the magnetic �eld

(' = �). The critical current Ic of the junction at the �eld H is found by integrating the

Josephson current density over the junction area

Ic(H) = jcmax
�0

�Z 2�

0

Z
re

ri

sin

�
2�

�0

r�0�H sin(� � ') + �0

�
dr d'

�
(3.3)

and maximizing the expression with respect to �0. Here jc is assumed to be homogeneous

across the whole junction.

In Ref. [Nap97], the critical current is also calculated for vortices being trapped in the

junction. Assuming that the �eld generated by n vortices is distributed homogeneously

along the junction length, the �eld

H = n
�0

2�r�0�
(3.4)

is to be added to the radial component of H. This additional �eld gives rise to an extra

term �n' in the equation for the 2D phase distribution (3.2). Hence, the dependence of

the critical current Ic on the magnetic �eld H (3.3) for an arbitrary number n of trapped

vortices is calculated as

Ic(H) = Ic(0)

���� 2

1 � Æ2

Z 1

Æ

xJn

�
x
H

H0

�
dx

���� ; (3.5)

where Jn is the n-th Bessel function of integer order. Æ = ri=re is the ratio of the in-

ner junction radius ri to the outer radius re and Ic(0) = jc�(r
2
e
� r2

i
) is the maximum

superconducting current at zero �eld. The characteristic magnetic �eld

H0 = �0=(2�re�0�) (3.6)

is proportional to the �eld at which one 
ux quantum penetrates the magnetic cross-section

2re � of the junction.
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Maximizing the critical current (3.3), the phase �0 for an odd number n of vortices is

found to be

�0 =

8<
:

0 for
R 1
Æ
xJn

�
x H

H0

�
dx � 0

� for
R 1
Æ
xJn

�
x H

H0

�
dx � 0

(3.7)

and

�0 =

8<
:

�

2
for

R 1
Æ
xJn

�
x H

H0

�
dx � 0

��

2
for

R 1
Æ
xJn

�
x H

H0

�
dx � 0

(3.8)

for zero or an even number of vortices trapped in the junction.

For n = 0, the two extreme cases Æ ! 1 (see Ref. [MM96a]) and Æ ! 0 (see Ref. [BP82])

of Eq. (3.5) have been discussed in the literature. The predictions of Eq. (3.5) have also

been compared to experiments in a relatively small magnetic �eld range [CEF+99, MM96b,

NCL98]. To our knowledge, there has been no systematic comparison of this theory with

experimental data for di�erent junction widths in a large �eld range. The intention here is

to perform such a comparison.

3.2 Experimental results and comparison with theory

Experimental data on �ve annular Josephson junctions with the same external radius re =
50�m but di�erent inner radii ri ranging from 30 to 47 �m are presented. Their width

w = re � ri varies between 3 and 20�m. The junction geometry is shown in Fig. 3.1b

and the sample dimensions are listed in the second and third columns of Table 3.1. All

junctions have been prepared on the same chip using Hypres technology [Hyp] with a

nominal critical-current density of jc = 100A=cm2. Accordingly, the Josephson length is

approximately 30�m at 4.2 K.

3.2.1 Di�raction patterns without trapped 
uxons

In Fig. 3.2 the critical-current di�raction patterns of the two junctions B and D, being
representative for the set of measured samples, are shown. A strong dependence of the

pattern on the junction width is clearly observed. As expected, the critical current at zero

�eld scales with the junction size as Ic = jc�(r
2
e
�r2

i
). Measuring the di�raction patterns in

a wide range of magnetic �eld, two characteristic modulation scales of the critical current

are observed. The pattern, having a small magnetic �eld period �H, has an envelope of

the larger period �H 0 which depends strongly on the junction width, compare Figs. 3.2a

and b.

The observed patterns can be qualitatively understood in the following way: the mod-

ulation of the critical current with the period �H is due to the penetration of magnetic


ux into the junction in the direction perpendicular to the external magnetic �eld. This

period is inversely proportional to the junction diameter �H / 1=(2re) [compare to the

characteristic �eld (3.6)]. This is analogous to the standard linear junction case, where

�H is proportional to the reciprocal junction length in the direction perpendicular to the

magnetic �eld [BP82]. The minima of the modulation with the period �H 0 occur when

the magnetic 
ux penetrates the junction strongly also along the width of the junction.

Therefore, the period �H 0 of the second modulation is proportional to 1=w. Calculating

the ratio
�H 0

�H
=

2re

w
(3.9)
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Figure 3.2: Critical-current di�raction patterns of (a) junction B and (b) junction D at 4:2K.

Dots are experimental data, the solid line is theory according to Eq. (3.5). For better visibility the

low current region is also plotted on an enlarged scale. The two �eld modulation periods �H and

�H 0 are indicated in each plot. The insets I and II of plot (b) display the supercurrent distribution

in junction D at the magnetic �elds indicated by arrows; light (dark) regions correspond to current

in positive (negative) direction.
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Table 3.1: Geometrical parameters and �tted values of the measured annular Josephson junctions.

# ri [�m] Æ = ri=re �H 0=�H 2re=w ~Æ �r [�m] ~H0 [Oe] ~H0=H0
~� [nm]

A 47 0.94 - - 0.96 0.5 0.319 0.65 208
B 45 0.9 22.9 20.0 0.92 0.5 0.346 0.703 193
C 42 0.84 13.2 12.5 0.88 1.0 0.321 0.646 210
D 35 0.7 6.5 6.7 0.72 0.6 0.405 0.821 165
E 30 0.6 4.8 5.0 0.62 0.5 0.376 0.765 177

for the di�erent junctions, this simple prediction is quantitatively compared with exper-

iment. As can be seen from the forth and �fth columns of Table 3.1, Eq. (3.9) is quite

accurately ful�lled for our junctions.2

The described e�ect is illustrated in Fig. 3.2b by plotting the supercurrent density

js = jc sin(�) at di�erent magnetic �elds versus the junction coordinates using Eq. (3.2)

and taking into account �0 as given by Eq. (3.8). At H = 3:25Oe < �H 0, approximately

two and a half 
ux quanta have penetrated into the junction cross section 2re, as shown in

the inset I of Fig. 3.2b. At the larger �eldH = 12:2Oe > �H 0, more than one 
ux quantum

threads the width cross section of the junction (see inset II). Thus, after each period �H 0,

one additional 
ux quantum is threading the width of the junction. We note here that

the spatial distribution of the supercurrent density can also be measured in experiment

[KVL+96].

In Fig. 3.2, the experimental data are �tted to Eq. (3.5). In the �tting procedure the

values of both H0 and Æ are determined. Subsequently, the quantities acquired from the

�ts are labeled by a tilde ( ~H0, ~Æ). For the �t, the initial value of ~Æ is calculated from

the designed geometry of the junction; the initial ~H0 is calculated according to Eq. (3.6)

assuming the reasonable value of 200 nm for the magnetic thickness �. Then, the best �t

is found by iteratively adjusting ~H0 and ~Æ. The value of ~H0 predominantly determines

the small period of the critical-current modulation �H, whereas ~Æ determines the large

modulation scale �H 0. This fact is in agreement with the qualitative discussion above. As

can be seen from Fig. 3.2, excellent agreement between theory and experiment is found.

The parameters ~Æ and ~H0 determined from the best �ts to the data of junctions A to E are

quoted in Table 3.1.

Comparing the values of Æ and ~Æ in Table 3.1, we �nd that ~Æ > Æ for all junctions.

The small but systematic di�erence can be explained by considering a symmetric deviation

�r of the junction radii from their designed dimensions, e.g. due to the photolithographic

procedure during the preparation. Using this assumption, ~Æ can be expressed as

~Æ =
ri +�r

re ��r
: (3.10)

From the �ts we �nd that �r varies between 0:5 and 1:0�m, see Table 3.1. This size

correction can also be explained as due to a slight over-etching of the trilayer during sample

fabrication, which results in a small reduction of the junction size. The obtained values of

�r agree with the size tolerance quoted by Hypres [Hyp].

2For junction A, �H0 could not be evaluated due to its small width. The �eld necessary to observe the
�rst minimum of the envelope of the di�raction pattern was above the maximum range of our experimental
setup.



32 CHAPTER 3. CRITICAL-CURRENT DIFFRACTION PATTERNS

Figure 3.3: Critical-current

di�raction patterns of junction

B at 4:2 K. The qualitatively

similar curves correspond to

di�erent number m of 
ux quanta

threading both junction loops,

see inset. Arrows indicate the

tendencies in the o�set and in the

rescaling in H for patterns with

di�erent m. For better visibility

each curve is o�set by 0:5 mA

with respect to the other.
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According to the theory, the quantity H0 depends only on the outer junction radius re
and hence should be identical for all junctions measured. From the �ts however, we �nd

values of ~H0 that slightly di�er from junction to junction, see Table 3.1. Using Eq. (3.6), the

magnetic thickness ~� is calculated from ~H0 for each junction, see last column of Table 3.1.

The average magnetic thickness is ~� = 191 � 18 nm, yielding a London penetration depth

of �L � 95 nm which is in good agreement with typical values of �L (� �=2) found for

niobium �lms.

The scatter observed in ~H0 (or, equivalently, in ~�) may be due to a small number m
of 
ux quanta threading the holes of both junction electrodes simultaneously, see inset of

Fig.3.3. Cooling the junction a large number of times from the normal to the supercon-

ducting state in a small residual magnetic �eld and measuring the resulting critical current

versus magnetic �eld, we �nd di�erent di�raction patterns. Focusing on the low �eld range,

three such reproducibly generated di�raction patterns labeled by di�erent m are shown in

Fig. 3.3. The patterns are very similar in their qualitative features, but di�er quantitatively

depending on m. They show a slight o�set in �eld and a large rescaling in the low �eld range

depending on the index m, see arrows in Fig.3.3. These e�ects may be due to self-�elds

generated by the trapped 
ux-induced screening currents circulating in the junction loops.

For a perfectly symmetric junction (i.e. one without bias leads), the screening currents

should not contribute to the pattern, but for the junction geometry used here (see Fig. 3.1)

they may not be negligible. In this particular measurement, we have only observed three

di�erent di�raction patterns, despite repeating the described procedure a large number of

times. This strongly suggests that quantized magnetic 
ux is threading the junction loop

perpendicular to the substrate.

The e�ective local �eld at the junction may be slightly di�erent from the externally

applied �eld because of a small misalignment between the junction and the �eld. This

misalignment may vary between di�erent measurement runs. Moreover, the superconduct-

ing environment of the junction, due to the presence of other circuits on the same chip,

may change the e�ective local �elds. Both e�ects may give rise to small variations of the

characteristic �eld values H0 found in experiment.

At small �elds, we observe a systematic deviation of the calculated patterns from the

experimental ones. In particular, the �rst minimum of the critical current appears at larger
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Figure 3.4: Critical-current

di�raction patterns of junction

B at temperatures between 4 K

and 8:5 K. Dots are experimental

data, solid line is theory. In the

inset the normalized external

junction radius re=�J is plotted

versus temperature.

�eld than predicted by the theory. Moreover, the critical current at the �rst minimumdoes

not fall to zero. Both facts are to be expected for junctions that are not really small in

comparison with �J . Indeed, the dimensions of our junctions are slightly larger than �J .
This leads to a nonlinear penetration of the magnetic �eld into the junction at low �elds,

resulting in an increase of the �eld at which the �rst minimum of the pattern is observed.

The analogous e�ect is observed in conventional long Josephson junctions [BP82, PRS91].

At higher temperatures, the Josephson length �J increases[BP82] and, hence, the e�ec-

tive size of the junction decreases. In the inset of Fig. 3.4, the normalized external junction

radius re=�J is plotted versus temperature, taking into account the temperature dependence

of both the critical-current density jc(T ) and the London penetration depth �L(T ) [BP82].
At T > 7:8K the normalized radius drops below unity. Therefore, at higher temperatures,

a better agreement between experimental data at low �elds and theory is expected. This is

illustrated in Fig. 3.4, where the experimental critical-current di�raction pattern of junc-

tion B is plotted together with a �t for the temperatures T = 4:0; 7:0; 8:5K. The data

are �tted keeping ~Æ constant for all T and adjusting ~H0. At elevated temperatures, both

the position of the �rst minimum and the modulation depth of the critical current at small

�elds show better agreement with the theoretical prediction.

3.2.2 Di�raction patterns with trapped 
uxons

We have also measured all junctions with a single vortex trapped in the junction barrier.

As an example, the critical-current di�raction pattern of junction B at 4.2 K with n = 1 is

shown in Fig. 3.5. The most prominent feature of the pattern is the strong suppression of

the critical current at small �elds. The zero �eld value of the critical current in this state is

reduced by more than a factor of 100 in comparison with the 
ux-free junction. Taking the

same �tting parameters as for n = 0, we �nd as good agreement between the theory and the

experimental data. The high-�eld part of the patterns show the same geometry dependence

as without trapped vortices. The slight di�erences between the �t and the experimental

data at low �elds are, again, due to the dimensions (re > �J ) of the junction. Moreover,

the assumption that the magnetic �eld associated with the vortex is homogeneously spread

along the junction circumference is not good enough to describe the low �eld features of the
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Figure 3.5: Di�raction pattern

of junction B with one trapped


uxon at 4:2K. Dots are exper-

imental data, solid line is theory.

The inset displays the supercur-

rent distribution in the junction at

the magnetic �eld indicated by the

arrow.
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pattern correctly. In the inset of Fig. 3.5, the supercurrent distribution in junction B at

H = 4:21Oe calculated according to Eq. (3.5) is shown. Evidently, at this �eld a number

of vortex anti-vortex pairs have penetrated into the junction but the width of the junction

is not fully penetrated, compare Fig. 3.2b, inset II. Also note that the symmetry of the

current distribution in the junction is broken due to the presence of the trapped vortex.

Similar current distributions in the presence of trapped vortices have also been observed in

experiment [KVL+96].

3.3 Conclusion

We have systematically measured the critical-current di�raction patterns of a number of

annular junctions of di�erent width, with and without trapped 
uxons, in a wide magnetic

�eld range and at di�erent temperatures. The experimental data show a pronounced width

dependence that is explained accurately using the existing theory. In particular, a mod-

ulation of the envelope of the critical-current di�raction pattern is observed for junctions

of large width. The period of this modulation depends very sensitively on the normal-

ized junction size described by the parameter Æ. Analyzing the experimental data at large

�elds, it is possible to determine the contribution of the geometry dependent parameter

Æ and the magnetic �eld penetration dependent parameter H0 independently and consis-

tently, allowing for a quantitatively accurate comparison between experiment and theory.

The data analysis is accurate enough to detect a small reduction of the junction size due to

the fabrication process. The dependence of the critical current on the �eld in the low �eld

range can be used as one of the important characteristic criteria to determine the number

of Josephson vortices trapped in the junction.

It is worth pointing out that good agreement between theory and experiment in the

large �eld range is found for junctions of a diameter substantially larger than �J . At low
�elds, the theory [Nap97] describes well the experiments for re < �J , as con�rmed by our

measurements at high temperatures. Thus, the magnetic properties of the junction are

determined rather by the junction radius than by the junction circumference, as already

pointed out in Ref. [MMK+98].



Chapter 4

Whispering Gallery Resonances in

Annular Long Josephson Junctions

Experiments indicating the excitation of whispering-gallery-type electromagnetic modes by

a vortex moving in an annular Josephson junction are reported. At relativistic velocities

the Josephson vortex interacts with the modes of the superconducting stripline resonator

giving rise to novel resonances on the current-voltage characteristic of the junction. The

experimental data are in good agreement with analysis and numerical calculations based

on the two-dimensional sine{Gordon model.1

Whispering gallery modes are universal linear excitations of circular and annular res-

onators. They have �rst been observed in form of a sound wave traveling along the outer

wall of a walkway in the circular dome of St. Paul's Cathedral in London, see Fig 4.1, and

were investigated by Lord Rayleigh [Ray14] and others [Wal78]. In the 2 meter wide walk-

way, which forms a circular gallery of 38 meter diameter about 40 meters above the ground

of the cathedral, the whispering of a person can be transmitted along the wall to another

person listening to the sound on the other side of the dome. The investigations by Rayleigh

led to the conclusion that the whisper of a person excites acoustic eigenmodes of the circular

dome which can be described using high order Bessel functions. This acoustic phenomenon

lends its name \whispering gallery mode" to a number of similar, mostly electromagnetic

excitations in circular resonators. Whispering gallery modes are of strong interest in micro-

resonators used for ultra small lasers [MLS+91]. Most recently, circular resonators with

small deformations, in which chaotic whispering gallery modes were observed, attracted

a lot of attention [GCN+98]. Here, we describe the experimental observation of electro-

magnetic whispering gallery modes excited by a vortex moving in an annular Josephson

junction with a diameter of about 100�m.

Annular long Josephson junctions are intriguing systems for the experimental study of

1Parts of this chapter have been published in `Physical Review Letters 84, 151 (2000)'.

35



36 CHAPTER 4. WHISPERING GALLERY RESONANCES

Figure 4.1: Whispering gallery

of St. Pauls cathedral, London,

Great Britain.

solitons. The interest in this particular system stems from the possibility to fabricate annu-

lar junctions of width w < �J and consider their dynamics as quasi-one-dimensional with

periodic boundary conditions, which allows their description by an 1D sine-Gordon model.

Only recently, the relevance of the �nite width of the junction for its static [Nap97, MM96a]

and dynamic properties [WBK+97, KYSV98, NCL98] was started to be considered in ex-

perimental and theoretical work. The detailed theoretical consideration of the dynamics of

Josephson vortices in e�ectively two-dimensional annular junctions and the prediction of

new physical phenomena by Kurin et al. [KYSV98] stimulated the work presented here.

In the �rst section, I introduce the basic idea of the generation of whispering gallery type

plasmon modes by a vortex moving in a wide annular junction. This system is modeled by

the 2-D sine-Gordon equation in polar coordinates. The geometry and the basic properties

of the annular junctions used for experiments in this work are presented in Section 4.2. The

measured single vortex resonances indicating the resonant interaction between the vortex

and the junction plasmon modes are presented in Section 4.3. The renormalization of the

resonance voltages due to the idle region is considered speci�cally. In Section 4.4, the reso-

nance condition between the vortex motion and the whispering gallery modes, the spectrum

of which is calculated in Section 4.5, is derived. The experimental results are compared

qualitatively and quantitatively to results of numerical simulations in Sections 4.6 and 4.7.

Finally, I conclude and point out possible directions for future work on the investigation of

whispering gallery type plasma modes in annular junctions.

4.1 The idea and the model

In Reference [KYSV98] Kurin considers the Josephson vortex trapped in a wide annular

Josephson junction as a soliton string that propagates along the junction with an angular

velocity 
 under the action of the external bias current, as shown in Fig 4.2. Because the
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Figure 4.2: Top view of an annular junc-

tion with large width. The Josephson vortex

string (indicated by a large arrow) moves at

the average angular velocity 
. The angular

coordinates r and ' are also indicated.

Josephson vortex is a topological soliton, the vortex string moves (almost) rigidly along the

junction. Obviously, the linear velocity v = ve = 
 re of the string at the outer edge of the

junction is higher than at the inner edge v = vi = 
 ri. At a certain threshold value 
thr,

the velocity ve of the vortex at the outer junction edge exceeds the (Swihart) velocity of

light c0 of the junction. For 
 > 
thr, an outer fraction of the rigid vortex string moves

at a velocity larger than the phase velocity of linear waves c0. This e�ect gives rise to a

Cherenkov-like interaction between the string and the linear electromagnetic modes of the

junction [KM88]. Due to the annular junction geometry, the traveling linear waves are

predicted to be Bessel-type eigenmodes of the resonator, which are also termed whispering

gallery modes.

The Cherenkov e�ect is not observed in homogeneous, one-dimensional junctions be-

cause the vortex always moves at velocities smaller than the linear mode phase velocity

c0. However, if the junction is e�ectively two-dimensional, contains inhomogeneities or is

coupled to other stripline resonators, the linear wave spectrum can be changed, such that

the vortex group velocity may be higher than the phase velocity of the lowest linear mode.

Similar e�ects have recently been observed experimentally in arti�cially and intrinsically

stacked Josephson junctions [HKUM97, GWTU98, GWU00].

Theoretically, the electrodynamics of a wide annular Josephson junction is described

by the perturbed sine-Gordon equation (PSGE) for the superconducting phase di�erence

�, see Section 2.1.1. The Josephson vortex string corresponds to a twist over 2� in �,

which is localized in space. The vortex carries a magnetic 
ux equal to the magnetic


ux quantum �0 = h=2e = 2:07 10�15 Vs. Physically, this 
ux is induced by a vortex of

the screening current 
owing across the junction barrier. The linear excitations in this

system are Josephson plasma waves that account for small amplitude oscillations in � (see

Section 2.2). The maximum phase velocity of electromagnetic waves in such a junction is

the Swihart velocity given by c0 = �J !p, where �J is the Josephson length and !p the

plasma frequency (see Section 2.1.1). In zero external magnetic �eld, the normalized PSGE

for an annular Josephson junction of width w < �J is found by extending Eq. (2.19) to two

dimensions and using the polar coordinates (~r, ')

 
~r2 � @2

@~t2

!
�� sin� = �
 + �

@�

@~t
� � ~r2@�

@~t
: (4.1)

In Eq. (4.1), ~r2�@2=@~t2 is the D'Alembertwave operator, sin� is the non-linear term due to

the phase-dependent Josephson current and 
 is the normalized bias current. The damping

terms �@�=@~t and � ~r2@�=@~t are inversely proportional to the quasiparticle resistance
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across the junction barrier and to the quasiparticle impedance of the electrodes, respectively.

The boundary conditions are �xed by the continuity of the phase in the junction Eq. (2.45)

and by the radial ~H~r and tangential components ~H' of the normalized external magnetic

�eld

~H' =
@�

@~r
;

~H~r =
1

~r

 
@�

@'
+ n

!
;

where ~H is normalized to the characteristic �eld H0 = �0=(2�re�0�) and n is the number

of vortices trapped in the junction (also see Chapter 3). The zero �eld boundary conditions

( ~H' = ~H~r = 0) are appropriate if no external magnetic �eld is applied and the self-�eld

of the bias current can be neglected. For the junctions of width w < �J considered here,

a homogeneously distributed bias current 
 as in Eq. (4.1) is justi�ed. In contrast, for

junctions with w > �J , the bias current may contribute to the boundary conditions of

Eq. (4.1) [MM96a].

Solving Eq. (4.1) in a perturbation approach, assuming negligible curvature of the vortex

string and small linear wave amplitudes, Kurin predicted in Ref. [KYSV98] that the vortex

interacts resonantly with the whispering gallery modes of the junction. If the group velocity

of the vortex coincides with the phase velocity of the linear mode, the resonance condition

is ful�lled. These predictions have been veri�ed in numerical simulations [KYSV98]. In

the original work however, Kurin et al. did not observe any indication for the excitation of

whispering gallery modes on the current-voltage characteristic of the junction. The interpre-

tation of their results relied on the analysis of the spatial distribution of the electromagnetic

�elds in the junction.

In the experiments presented here, we make use of the same Josephson vortex for both

exciting and detecting the whispering gallery mode. This is possible because the vortex,

steadily moving at a velocity u driven by the Lorentz force due to the bias current 
,
generates a voltage V / u across the Josephson junction. At low damping the resonant

interaction between the vortex moving at relativistic velocities and the whispering gallery

modes results in a novel �ne structure on the current-voltage characteristic of the junc-

tion. Our experiments are consistent with the theory developed by Kurin et al.[KYSV98].

Numerical calculations based on the 2D sine-Gordon model considering the experimental

junction parameters show good agreement with experiments.

4.2 The samples

In contrast to many experiments focusing on quasi-one-dimensional annular Josephson junc-

tions, we investigate comparatively wide, e�ectively two-dimensional junctions. We have

prepared a set of 5 annular Josephson junctions (A : : : E) with the ratio Æ = ri=re between
the inner radius ri and the �xed outer radius re = 50�m being varied between Æ = 0:94

and Æ = 0:60, see Fig. 4.3b and Table 4.1.

The junctions have been fabricated at Hypres Inc. [Hyp] using Nb-Al/AlOx-Nb trilayer

technology with a nominal critical-current density of jc = 100 A/cm2. The junction is

formed using a trilayer of thickness dtri � 200 nm. The top and bottom electrodes are of

identical thickness dtj = dbj � 100 nm separated by an AlOx tunnel barrier of thickness
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Table 4.1: Geometrical parameters of the annular Josephson junctions used in experiment. The

outer radius of every junction is re = 50�m. wj = re � ri is the junction width.

junction A B C D E

ri [�m] 47 45 42 35 30

wj [�m] 3 5 8 15 20

Æ = ri=re 0.94 0.90 0.84 0.70 0.60

� = c0=�c0 0.70 0.78 0.85 0.91 0.94

tj � 2 nm. The dielectric constant of this barrier is typically �j � 10. The junction is

de�ned in an etching process after which the bottom electrode extends about wp � 2�m
outside of the active Josephson tunneling region, see Fig. 4.3c. The junction is insulated

by a tp = 200 nm thick SiOx layer which has a dielectric constant of �p � 4. The electrical

contact to the top electrode is made by etching through the insulating SiOx layer with

a minimum distance of approximately 0:5�m from the junction edge. For the wiring a

dw � 300 nm thick Nb layer is used. This layer also extends outside the junction area

forming, in combination with the bottom electrode, a passive region of width wp � 2�m
around the junction, see Figs. 4.3b, c. This passive region acts as a small stripline in parallel

to the junction, but with electrical parameters di�erent from the junction itself.

The passive region has a considerable e�ect on the phase velocity of electromagnetic

waves in the Josephson junction [Lee91, LB92, TUK+95], which is frequently neglected

in the discussion of experimental results obtained with long junctions. Most Josephson

junctions fabricated in Nb-Al/AlOx-Nb trilayer technology have a passive region, due to

the need of insulating the junctions e�ectively and simultaneously providing a reliable

wiring contact. The geometrical parameters and the electrical properties of the passive

region might vary considerably depending on the fabrication process. In the evaluation of

our experimental data, we take into account the e�ect of the passive region according to

Lee et al. [Lee91, LB92].

We use two wide leads attached to the electrodes to apply the bias current homoge-

neously to the junction, see Fig. 4.3a. This standard biasing scheme is frequently called

the Lyngby geometry [DDKP85]. All presented measurements have been done using a well

shielded low noise measurement setup. Measurements at T = 4:2K are done by emersing

the sample stage of a dipstick into the liquid helium bath of a storage dewar, measurements

at all other temperatures are performed in a temperature-controlled sample in vacuum

cryostat. The sample is electrically connected to a current source and a preampli�er using

twisted pairs which are fed through high frequency �lters at room temperature. The sample

was mounted in a cryoperm magnetic shield and a coil was used to apply a magnetic �eld

of up to 40 gauss at 100 mA coil current in the plane of the junction, see Section 2.3.3 for

more details.

In a �rst set of measurements, the current-voltage characteristics of all samples were

acquired up to about twice the gap voltage and the critical-current di�raction patterns

were measured with the magnetic �eld applied in parallel to the bias leads. All junctions

were typically found in a state with no trapped 
uxons and free of parasitic 
ux in the

superconducting electrodes, which could be inferred from the modulation of the critical

current with the magnetic �eld (see Chapter 3). All samples have a homogeneous bias

current distribution, inferred from the large value of the vortex-free critical current at zero
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Figure 4.3: (a) Three-dimensional sketch of the annular Josephson junction. The direction of the

angular velocity 
 of the vortex (�0) under the action of the bias current is indicated. (b) Top

view of the junction. The active junction region (inner radius ri, outer radius re) and the passive

region (inner radius rip = ri � wp, outer radius rep = re + wp) are indicated. (c) Cross-sectional

view of the junction along the dashed line in Fig. (b). Layer thicknesses and overlap between

electrodes are indicated.

�eld, which is close to the theoretical Ambegaokar-Barato� limit [AB63a, AB63b]. The

critical-current density is jc � 160A=cm2 (deviating somewhat from the projected value

of 100 A/cm2) and the London penetration depth is determined as �L � 95 nm at 4:2K,

see Chapter 3. Using the magnetic �eld penetration depth � � 2�L + tj, the characteristic
parameters are estimated as �J � 30�m and �p = !p=2� � 50GHz.

4.3 Single-vortex resonances

We could realize single and multiple vortex states reproducibly in any of the junctions.

Vortices were trapped by applying a small bias current during cooling down from the normal

to the superconducting state.2 Single-vortex states are identi�ed as the lowest quantized

voltage step observed on the current-voltage characteristic. Also, a characteristic change of

the critical-current modulation with magnetic �eld, as discussed in some detail in Chapter 3

2We achieved good results by choosing the current such that the voltage drop across the junction in the
resistive state was about the voltage of the 
uxon resonance to be observed in the superconducting state.
Usually several (about 2 to 5) cycles of cooling were suÆcient to prepare the junction in the wanted state.
The current applied to the junction was chosen large enough to generate a 
ux threading the junction loop
that is close to one 
ux quantum.
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Figure 4.4: (a) Critical-current di�raction patterns of junctions A through E with a single 
uxon

trapped. (b) Current-voltage characteristics of single 
uxon states in junctions A through E. In

both plots each characteristic is o�set by �I = 0:5mA for better visibility.

and reported earlier [VKT+97], was observed when a vortex was trapped in the junction,

see Fig. 4.4a. At zero �eld, the critical current is suppressed by a factor of more than 100

if a vortex is present in the junction.

The low voltage part of the current-voltage characteristics of junctions A to E with a

single trapped 
uxon are plotted in Fig. 4.4b. Each curve is o�set by 0:5 mA in current

with respect to the other, else the resonances are plotted as acquired. The most important

and initially unexpected feature of the characteristics is a �ne structure on the resonances

of the widest junctions D and E, which is not observed for the more narrow junctions

A, B and C. Such width-dependent features have not been noticed on the single-vortex

characteristics of annular Josephson junctions before.3

Before focusing on the �ne structure, some general properties of the samples charac-

teristics are discussed and the raw data are normalized according to those results. Then,

in the remainder of this chapter, I analyze these data and explain their features using the

model discussed in Section 4.1.

4.3.1 Normalization

In Fig. 4.4b, di�erent maximum currents (step heights) of the single-vortex resonances of

di�erent junctions are observed. This feature is well accounted for by the distinct critical

currents, due to the di�ering junction areas. Dividing the current scale of each individual

resonance by the critical current of the corresponding junction results in an almost equal

step height of all resonances, as shown in Fig. 4.6.

More important, we observe a strong non-monotonic dependence of the maximum volt-

age of the resonances on the junction width w. From very general assumptions, we would

3A similar �ne structure has been observed independently in low temperature measurements of very
long annular Josephson junctions by Martuciello et al. [MMK+98], though no convincing explanation of
its origin was presented.
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Figure 4.5: The normalized ve-

locity of light c0=�c0 [see Eq. (4.6)]

in our junctions with a �xed width

of passive region wp and identical

electrical parameters vs. the junc-

tion width wj .
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expect a scaling of the maximum 
uxon step voltage Vmax with an e�ective junction length

Le� according to

Vmax = �0

vmax

Le�

; (4.2)

where vmax is the maximum velocity of the vortex. The e�ective length of an annular

junction is usually estimated from its mean radius

Le� = 2�
re + ri

2
: (4.3)

For junctions of �nite width, there are corrections to be taken into account [WBK+97],

which are usually neglected in literature. Based on these simple assumptions, Vmax should

monotonically increase with the decrease of Le� , i.e. with a decrease of the inner radius ri
at a �xed external junction radius re. Our junctions obey this geometrical property, but

the experimental results di�er strongly from that expectation.

This feature of our experimental data can be explained by taking into account the

passive region enclosing the junction. This region, which is directly connected in parallel to

the common electrodes of the Josephson junction, acts as a transmission line with a speci�c

inductance and capacitance di�erent from the junction itself. In the limit of a small idle

region, this e�ect can be taken into account by introducing an e�ective capacitance and

an e�ective inductance for the whole system, i.e. the Josephson junction coupled to the

stripline.

Accordingly, the phase velocity �c0 of a long Josephson junction with a stripline coupled

in parallel was �rst calculated by Lee et al. [Lee91, LB92]

�c0 = c

0
@ wj�j

tj
+

2wp�p

tp

wj

�j

+
2wp

�p

1
A
�1=2

; (4.4)

where c is the velocity of light in vacuum and �j;p are the magnetic thicknesses of the

junction in the active Josephson (j) and in the passive insulation region (p) respectively.

The other parameters are the width wj;p, the thickness tj;p and the dielectric constant �j;p of
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Figure 4.6: Experimental normalized current-voltage characteristics of single-vortex states in

junctions A to E. An enlargement of the high voltage region of the resonances in junctions D and

E is shown in the inset.

the barrier. For the samples considered here, the magnetic thickness �j;p was approximated

in the thick �lm limit [Wei69] as

�j;p = 2�L + tj;p : (4.5)

Using the geometrical and electrical parameters of the di�erent samples, we have calculated

the renormalization factor

� =
limwp!0 �c0

�c0
=
c0

�c0
; (4.6)

see Table 4.1. Multiplying the voltage scale of each individual resonance with the respective

factor �, we e�ectively restore the characteristic of a bare junction, i.e. one without idle

region. In Fig. 4.5, � is plotted versus the junction width wj for �xed width (wp = 2�m)
and electrical parameters of the idle region, see Section 4.2. It is clearly seen from the

�gure that the increase of the phase velocity in a junction with a low-capacitance and high-

inductance stripline coupled to it can be substantial. For the junctions considered here, the

correction with respect to the bare junction are as big as 30% for the most narrow junction

(A). Still, for the widest junction measured (E) the correction is bigger than 5% and hence

cannot be neglected. The values of � found for the experimental data are shown by solid

circles. As an additional check for consistency, we have performed numerical simulations for

junctions without idle region but otherwise identical to the geometry used in experiment.

The maximum voltages found from simulations have been compared to the renormalized

data shown in Fig. 4.6 and excellent agreement has been found.

Using the normalization of both the current and the voltage axis, as discussed above,

the single-vortex characteristics of the junctions A to E are plotted in Fig. 4.6.
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4.3.2 The �ne structure

After understanding the general properties of the single-vortex characteristics, I now focus

on the novel feature noticed already in Fig. 4.4b, i.e. the �ne structure which appears on the

vortex resonance of wide junctions. The �ne structure is most clearly visible for the widest

junction E (see inset of Fig. 4.6), where steps well separated in voltage by approximately

�V � 1:0�V are observed. In the more narrow junction D, a somewhat less pronounced

�ne structure with a period of about �V � 0:7�V is observed. However, at T = 4:2K, a

similar feature is not noticed for any of the more narrow junctions.

The �ne structure is reproducible and also robust against small perturbations, for ex-

ample induced by an external magnetic �eld. Varying the �eld between H = 0 and the

�rst maximum of the critical-current di�raction pattern (see Fig. 4.4a), the positions of the

�ne structure steps in voltage do not change. However, the onset and the current height of

individual �ne structure steps can be tuned by the �eld. In the well resolved current-voltage

characteristic of junction E, hysteresis is observed between jumps from one step of the �ne

structure to the other.

In the following sections, I argue that the observed �ne structure is well explained by the

resonant interaction of the moving vortex with linear whispering gallery modes [KYSV98].

4.4 Resonant interaction between soliton strings and

plasmons

As pointed out in the introduction, the Josephson vortex string is predicted to excite

plasmon modes of the annular junction by a Cherenkov-radiation-like mechanism if it moves

at a velocity higher than a certain threshold value. The vortex is expected to interact

resonantly with these self-generated plasmons. The resonance condition for this process

can be found by considering the dispersion of the 
uxon mode and the dispersion of the

linear modes.

Fourier decomposing in time the voltage or magnetic �eld associated with a 
uxon

moving in an annular junction at the angular velocity 
, one �nds that the spectrum

contains only multiplesm
 of the fundamental frequency of rotation 
. This is due to the

geometric quantization of the electromagnetic waves in the annular system. The same result

is found decomposing the 
uxon in space, where only multiples mk of the fundamental

spatial Fourier component are found. Considering these two features, it is obvious that the

vortex can be represented in a dispersion diagram by a straight line 
(k) = 
k. Thus,

the angular group velocity of the vortex is given by vg = @ (
k) =@k which is identical

to its angular velocity 
. Therefore, the vortex shows no dispersion which is a universal

property of a soliton. The spectrum of the 
uxon, being a non-linear excitation, contains

high harmonic Fourier components, the amplitudes of which decrease exponentially with

increasing wave number k. Thus, the high harmonics of the vortex interact with large

wave number and high-frequency linear modes !(k) of the resonator. To �nd the resonance

frequencies, the spectrum !(k), i.e. the dispersion, of the linear modes for a given resonator

has to be determined, see Section 4.5.

Plotting both the dispersion of the vortex mode and of the linear modes into a common

dispersion diagram (Fig. 4.7), one �nds that resonance occurs if the vortex dispersion

line crosses one of the discrete modes !k of the plasmon spectrum. Mathematically this
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Figure 4.7: Dispersion diagram for two 
uxon modes with di�erent resonant angular velocities 
k

and 
k�1 (open circles) and linear modes (solid squares) of the annular junction. The di�erence

in frequency �! between two neighboring (�k = 1) linear modes and the di�erence in vortex

velocity �
 = 
k�1 � 
k are indicated.

condition is expressed as


 =
!k

k
; (4.7)

which was found in a rigorous calculation in Ref. [KYSV98]. Equation (4.7) states that

resonance occurs, if the vortex group velocity vg = 
 is identical to the linear mode phase

velocity vph = !k=k.
Thus, in an annular junction, a vortex moving at the angular frequency 
 may come

into resonance with a whispering gallery mode of wave number k. Alternatively speaking,

a harmonic of the vortex-rotation frequency locks to the oscillation frequency of the linear

mode. If the spacing in 
 between the resonances for di�erent k is large enough and the

width of the resonances is narrow, this e�ect can be observed as a �ne structure on the

single-vortex current-voltage characteristic. Since the locking is stable in a certain current

range, it leads to step-like resonances. The step height depends on the damping and the

frequency separation of di�erent resonances. The strength of the damping (� and � terms)

determines the quality factor Q of the resonator. The spectral width of the linear modes

scales inversely proportional to Q. Therefore, the resonance condition is not strict but is

also ful�lled in a range around the center frequency of the resonance. If the damping is high

(e.g. due to large temperature) and the resonances are closely spaced in frequency (e.g. for

a narrow junction), the resonances strongly overlap and the individual �ne-structure steps

cannot be resolved.

The resonant interaction between the vortex and the linear modes can be observed on the

current-voltage characteristic because the voltage drop across the junction is proportional

to the vortex rotation frequency (see Section 2.2)

hV i =
�0

2�
h@�
@t
i (4.8)
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=
�0

2�

n2�v

l
; (4.9)

where n is the number of vortices trapped in the junction, v is the linear vortex velocity

and l is the junction length. Using the fact that v = 
r and l = 2�r for any r, we can
express Eq. (4.9) as

V =
�0

2�
n
 ; (4.10)

which is more appropriate for annular junctions since the linear velocity of the vortex v as

used in Eq. (4.9) is not well de�ned in this case. Using the resonance condition (4.7) the

voltage of a �ne structure step is given by

V =
�0

2�
n
!k

k
: (4.11)

Increasing the vortex (angular) velocity 
 by increasing the bias current (i.e. increasing

the slope of the vortex dispersion line), a resonance with another linear mode of lower k may

be established, see Fig. 4.7. The decrease of the excited wave number k with increase of the

vortex velocity is a characteristic feature of the interaction between the Josephson vortex

and the whispering gallery modes of the junction. This property is clearly demonstrated in

our numerical calculations presented in Section 4.6.

4.5 The plasmon spectrum of an annular junction

The plasmon spectrum of a Josephson junction is determined by both its geometrical and

its electrical parameters. If the junction geometry is annular, its eigenmodes are of the

whispering gallery type. The plasmon spectrum needs to be known precisely to predict the

voltages at which the whispering gallery resonances appear. In normalized units, the linear

modes of an annular junction are solutions to the inhomogeneous D'Alembert equation in

the polar coordinates (~r; ') 
1

~r

@

@~r
~r
@

@~r
+

1

~r2
@2

@'2
� @2

@~t2
� 1

!
�(lin) = 0; (4.12)

which is found from Eq. (4.1) neglecting all perturbations (
, � @=@~t, � ~r2@�=@~t) and

approximating the non-linearity as sin� � � to take into account the gap in the plasmon

excitation spectrum. In zero external magnetic �eld, the solutions to Eq. (4.12) have to

ful�ll the boundary conditions

@�(lin)

@~r
(~r = ~ri; ~re) = 0 : (4.13)

In terms of the electromagnetic waves in the junction, Eq. (4.13) corresponds to a total

internal re
ection condition.

The partial di�erential equation (4.12) is separable, therefore its solutions can be ex-

pressed in the form

�(lin) = R(~r)�(') � (~t) ; (4.14)

where R(~r) is the radial component, �(') the angular component and � (~t) the temporal

component. The solutions to the temporal and the angular part are obviously given by

� (~t) = exp(i�!~t) ; (4.15)

�(') = exp(ik') ; (4.16)
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where �! =
p
~!2 � 1. The general solution to the radial part R(~r) of Eq. (4.12) is a linear

combination of the Bessel functions of the �rst (J) and second (Y ) kind

R(~r) = [AJk(�!~r) +B Yk(�!~r)] : (4.17)

k is the angular wave number, �! the angular frequency of the mode, and A and B are

constants determined by the boundary conditions (4.13). Thus, the general solution to

Eq. (4.12) is given by

�(lin)(~r; '; ~t) = [AJk(�!k;�~r) +B Yk(�!k;�~r)] exp(ik') exp(i�!~t) : (4.18)

Applying the boundary conditions (4.13) to the solution (4.18), we �nd a set of equations

AJ 0
k
(�!~ri) +B Y 0

k
(�!~ri) = 0

AJ 0
k
(�!~re) +B Y 0

k
(�!~re) = 0

; (4.19)

which has non-trivial solutions for����� J
0
k
(�!~ri) Y 0

k
(�!~ri)

J 0
k
(�!~re) Y 0

k
(�!~re)

����� = J 0
k
(�!~ri)Y

0
k
(�!~re)� J 0

k
(�!~re)Y

0
k
(�!~ri) = 0 : (4.20)

The set of solutions �!(k; �) � �!k;� to Eq. (4.20) is characterized by the angular and radial

wave numbers k and �. They determine the linear mode spectrum, i.e. the dispersion, of

the annular resonator. Substituting the characteristic mode frequencies �!k;� into Eq. (4.18),

the solution satisfying the boundary conditions (4.13) is of the form

�k;�!k;�(~r; '; ~t) = A

"
Jk(�!k;�~r)� Yk(�!k;�~r)

J 0
k
(�!k;�~re)

Y 0
k
(�!k;�~re)

#
exp(ik') exp(i �!k;�~t) (4.21)

with the free amplitude parameter A.

No exact analytical solutions to Eq. (4.20) determining the mode spectrum �!k;� exist.
Therefore, an approximate solution in the limit of vanishing inner junction radius ~ri is

discussed �rst. Then, Eq. (4.20) is solved numerically exact for junctions with �nite inner

radius. The resulting spectra are discussed.

4.5.1 The circular resonator approximation

If the internal radius ~ri of the junction is much smaller than its external radius ~re, i.e.
Æ � 1, the annular junction can be essentially treated as a disc-shaped resonator with

respect to its linear modes, as pointed out in Ref. [KYSV98]. Thus, Eq. (4.20) simpli�es

to the problem of �nding �! = �!k;� such that

J 0
k
(�!~re) = 0 : (4.22)

An approximate, but suÆciently accurate, analytical solution to Eq. (4.22) is given by

[JEL60]

�!k;� =
k + ��k

1

3

~re
; (4.23)

where �� is a numerical constant characterizing the radial mode �.

In Fig. 4.8, the numerical solutions of Eq. (4.22) for the �rst three radial modes (� =

0; 1; 2) are plotted together with the analytical approximation (4.23) for � = 0 with �0 =



48 CHAPTER 4. WHISPERING GALLERY RESONANCES

Figure 4.8: Numerically calcu-

lated dispersion (open symbols)

for ~re = 1 and ~ri = 0. For compar-

ison the analytical approximation

of the fundamental radial mode

(dashed line) is also plotted.
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0:808. Evidently, for angular wave numbers k � 1, the analytical approximation is accurate.

In Fig. 4.8, we also observe that the higher-order radial modes have substantially higher

characteristic frequencies. Considering the resonance condition (4.7), it is easy to see that,

at a �xed vortex velocity, the wave number of any excited higher-order radial mode is much

larger than the one of the fundamental mode � = 0. Since the interaction strength between

the vortex and the whispering gallery mode decreases exponentially with increasing k, the
e�ect of the higher order modes can be safely neglected in this discussion.

In the limit ~ri ! 0, the solutions (4.21) can be approximated as

�
(lin)

k;�
(~r; '; ~t) = AJk(�!k;�~r) exp(ik') exp(i�!k;�~t) ; (4.24)

where �!k;� is the angular frequency associated with the mode k; � satisfying the boundary
condition (4.13) at the external radius only. To visualize the structure of the whispering

gallery modes, we plot the spatial part of the solutions �
(lin)

k
(~r; '; ~t = 0) for the fundamental

radial mode (� = 0) and the angular modes k = 13; 7; and 4 in Fig. 4.9. In each sub�gure,

the radial and the angular solutions R(~r) and �(') are plotted. The phase amplitude

is normalized, such that the total energy of the electromagnetic �eld is the same for each

mode. The angular part of each mode is a periodic function of ' with the period 2�=k. The

radial structure of the mode is coupled to the angular wave number k, and is described by

a kth order Bessel function of the �rst kind. For increasing k the radial distribution of the

phase R(~r) is increasingly peaked at the outer edge of the junction, which is a characteristic

feature of the Bessel function.

Additionally, contour plots of the phase � in the respective mode k are shown in Fig. 4.9.
The contours connect points of constant phase. Regions with a high density of contours

corresponding to a large gradient of phase are associated with a large magnetic �eld. The

whispering gallery modes are clearly recognized by their large phase gradient at the outer

edge, the small phase gradient in the inner part of the junction, and the periodic modulation

along the junction circumference. It is evident that the amplitude of the �eld is increasingly

concentrated at the outer junction edge with increasing k, whereas the �elds are almost

zero in the center of the junction, see contour plots in Fig. 4.9. Therefore, for large k, the

boundary condition at ri does not need to be considered speci�cally, Thus, the assumption

of a disc-shaped resonator works reasonably well for junctions with suÆciently small inner
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Figure 4.9: Spatial part of the phase distribution �(lin) in arbitrary units for � = 0 and (a) k = 13,

(b) k = 7 and (c) k = 4. In the left part of each �gure, R(~r) and �(') are plotted. On the right

hand side the spatial distribution of the phase is shown in a contour plot. The contours indicate

lines of constant phase �, light (dark) shades of gray correspond to large (small) values of �.
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Figure 4.10: (a) Mode spectra for junctions A to E. The plasmon gap is considered. (b)

Resonance conditions for junctions A to E.

radius.

Therefore, for large k the boundary condition at the inner junction radius does not need
to be considered speci�cally and the simpli�ed assumption of a disc-shaped resonator works

reasonably well, even for some range of junctions with ~ri 6= 0.

4.5.2 Exact annular resonator spectrum

If the whispering gallery mode spectrum of an annular junction is to be calculated exactly

for any value of k and Æ, Eq. (4.20) has to be solved numerically. We have calculated the

spectrum �!�;k for the �rst 30 radial modes and the �rst 100 angular modes for the �xed

outer radius ~re = 1:0 and the inner radii ~ri = 0:60; 0:70; 0:84; 0:90; 0:94. The spectra have

been calculated by �nding the zeros of Eq. (4.20) using Newtons method with a guessed

initial value. The spectra can be easily rescaled for any junction size by dividing �!k;� by

the external radius ~re.

Taking into account the common external radius ~re = 1:66 and the plasmon gap, the

plasmon mode spectra calculated for junctions A to E are plotted in Fig. 4.10a. Though

the di�erences in the spectra seem to be small on the �rst sight, the dispersion of the

modes changes signi�cantly with the junction width. The more narrow the junction is,

the more closely the spectrum of the fundamental radial mode resembles the one of a

narrow quasi-one-dimensional annular resonator with the simple spectrum ~!k;0 =
q
~k2 + 1.

Additionally, we observe that the characteristic frequencies of higher order radial modes are

shifted strongly to higher values with decreasing width of the resonator. Therefore, these

modes are even less relevant than in the wide junction case.

The e�ect of the junction width is more apparent when considering the resonance con-

dition, see Fig. 4.10b. Here the resonance frequencies 
 and the separation between res-

onances �
 depend strongly on the junction width. As the most important feature, we

observe that the separation in frequency between di�erent resonant modes decreases sig-
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k = 4

δ = 0 δ = 0.6 δ = 0.9

Figure 4.11: Phase pro�les for junctions with ~re = 1, Æ = 0; 0:6; 0:9 and angular wave numbers

k = 13; 7; 4. Note the squeezing of the spatial structure of the mode with increasing Æ. The e�ect

is more pronounced for modes with low k in narrow junctions.

ni�cantly with decreasing junction width. Therefore, these resonances are not resolved in

measurements of the narrow junctions A, B, and C at T = 4:2K, where the damping is

relatively high, see Fig. 4.6.

In Fig. 4.11, we compare the phase pro�les of the whispering gallery modes with the

same angular wave number k for junctions of di�erent normalized width (Æ = 0, 0.6, 0.9).

The radial squeezing of the modes in dependence on the junction width is clearly observed.

This squeezing leads to the shift of the mode frequencies to higher values. The e�ect is large

for modes with low k, which have high amplitudes at the inner boundary of the junction.

This observation stresses the importance of the �nite inner junction radius in particular for

modes with low k and junctions with large Æ.
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Figure 4.12: Numerically calculated current-voltage characteristics V (
) for junctions A to E.

In the inset the characteristics of junctions D and E are shown on an enlarged scale. Arrows

indicate the bias points used to obtain the phase pro�les shown in Fig. 4.13.

4.6 Numerical calculations

To con�rm the interpretation of our experimental �ndings, direct numerical simulations of

the full 2D perturbed sine-Gordon equation (4.1) in polar coordinates with the bound-

ary conditions (4.13) have been performed for each of the �ve junctions listed in Ta-

ble 4.1 [WUK+00]. We have calculated both current-voltage characteristics V (
) and two-

dimensional phase pro�les �(~r; '; ~t), describing the spatial and temporal �eld distributions

in the junction. The damping parameter � = 0:03 was chosen close to its estimated experi-

mental value at T = 4:2K, and � was set to 0 for a �rst qualitative analysis. The calculated

V (
) characteristics for junctions A to E are plotted in Fig. 4.12. For comparison with ex-

periment, we converted the calculated normalized vortex rotation frequency ~
 into voltage

units according to

V (
) =
�0

2�
!p~
(
) (4.25)

using a plasma frequency of !p=2� = 52:4GHz. This value of !p has been determined from

�ts to experimental data, which are discussed in Section 4.7. The similarities between the

experimental data shown in Fig. 4.6 and the numerical simulations presented in Fig. 4.12

are striking. Clearly, the �ne structure on the current-voltage characteristics of the wide

junctions D and E is very well reproduced in the simulation, see inset of Fig. 4.12. In

simulations, the �ne structure disappears with decreasing junction width, which is also

found in experiment. Additionally, a decrease of the maximum voltage of each individual

resonance with increasing inner junction radius, being in accordance with the experimental

data, is observed.

It is worth pointing out that in the initial work presented by Kurin et al. in Ref. [KYSV98]

no peculiarities were observed on the simulated single-vortex current-voltage characteris-

tics. This e�ect is attributed to the relatively large damping parameter � = 0:02 and the
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simultaneously large junction circumference ` = 6� which were chosen in their calcula-

tions (�` = 0:38). In contrast, the simulations discussed here were done for ` = 3:3� and

� = 0:03 and thus a somewhat smaller e�ective damping (�` = 0:31). At the same time,

the wave numbers of the excited whispering gallery modes in our simulations are smaller

than those discussed in the original paper by Kurin. Moreover, the numerical accuracy

of the simulations discussed above was increased in order to explicitly search for the �ne

structure which was observed in our experiments.

The phase distribution in the junctions at various bias points has been analyzed to

further investigate the origin of the �ne structure. Fig. 4.13 shows the phase pro�les at

the bias points on the subsequent �ne-structure resonances of junction E indicated by the

arrows in Fig 4.12. As before, the phase pro�les are visualized by plotting lines of constant

phase. Hence, the vortex position is easily identi�ed by the largest gradient of phase in

the position indicated by the arrows in Figs. 4.13a, b, c, and d. Most striking, a clear

whispering gallery structure, which resembles closely the analytically calculated modes, is

observed in these simulations, e.g. compare Fig.4.13a and Fig. 4.11. The whispering gallery

modes are clearly recognized by their large phase gradient at the outer edge and the small

phase gradient at the inner edge of the junction and the periodic modulation along the

junction circumference. The angular wave number of the mode is identi�ed by the number

of periods of the �eld modulation along the junction perimeter. As expected, only the

fundamental radial mode is observed.

From the analysis of the resonance condition (4.7), it has been predicted that the an-

vortex

Ω

(a) (b)

(c) (d)

Figure 4.13: Phase pro�les �(~r; ') at bias 
 equal to (a) 0:5, (b) 0:4, (c) 0:3 on the single-vortex

resonance of junction E and (d) at 
 = 0:6 for junction D. Plotted are lines of constant phase,

their high density corresponds to a large gradient of phase and hence a large magnetic �eld. The

position of the vortex is indicated by an arrow. The whispering gallery modes with angular wave

number k equal to (a) 7, (b) 8, (c) 9 and (d) 9 are observed.
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gular wave number of the mode excited by the moving vortex increases from resonance to

resonance with decreasing vortex velocity. Precisely this feature is observed in the numerical

calculations, see Figs. 4.12 and 4.13.

Considering the resonance condition Eq. (4.7) and the dispersion of the linear modes

!k, we have shown in Section 4.5 that the density of resonances in voltage and the wave

number of the lowest excited mode increase with decreasing junction width wj = re � ri.

This fact has been veri�ed in numerical calculations for junction D, where the lowest mode

number excited at the top of the resonance is k = 9, see Fig. 4.13d. At comparable bias

current, the mode excited in the more narrow junction D has a notably higher wave number

than the one excited in junction E. For very narrow rings, no �ne structure is observed

in experiment and in simulation, due to the overlapping of the closely spaced neighboring

resonances in the presence of damping.

4.7 Quantitative comparison and discussion of results

Using the resonance condition (4.7) and the proportionality between the angular frequency

of the vortex 
 and the voltage V [Eq. (4.10)], the �ne structure resonances are �tted

according to

V =
�0

2�
!p~
 =

�0

2�
!p

~!k

k
; (4.26)

with the plasma frequency !p and the mode number k as parameters. For the �ts we use the

numerically exact values of ~!k;0 calculated for the speci�c junction geometry as described

in Section 4.5.

The best �t to the experimental data of junction E, which has the most clearly resolved

�ne structure at 4:2K, is found for the plasma frequency !p=2� = 52:4GHz and the wave

number kmin = 7 for the highest voltage resonance, see Fig. 4.14a. Both the absolute voltage

of the resonance as well as the spacing between di�erent resonances are well explained by

the model. The value of kmin determined from the �t to experimental data is exactly the

one found for the highest resonance in numerical simulations, compare Fig. 4.13a. Also, the

voltages of the resonances found in simulation (Fig. 4.14b) are in excellent agreement with

the ones calculated from the dispersion relation (dotted lines). The agreement between

the calculated resonance voltages, the numerical simulations and the experimental data is

better than 1 percent, which is near the limit of the voltage resolution of 0:1�V of our

experimental setup.

In the simulations performed with � = 0:03 and � = 0, the di�erential resistance of

the individual steps of the resonances is observed to be smaller than in experiment. The

qualitative agreement of the shape of the resonances is signi�cantly improved, by considering

a non-zero surface damping and somewhat reduced quasiparticle damping in the simulation.

The simulated current-voltage characteristic of junction E with the damping parameters

� = 0:02 and � = 0:0012 is presented in Fig. 4.14b (open squares). Clearly, taking into

account the quasiparticle surface losses (/ �) leads to a larger di�erential resistance of

the resonance, which closely resembles the experimental data in Fig. 4.14a. In contrast to

simulation, the upper step with the wave number k = 6 is not present in the experimental

curve. A possible reason may be the reduced stability of the step in the presence of thermal


uctuations or small current 
uctuations induced by residual electromagnetic noise in the

experimental setup.
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Figure 4.14: (a) Upper part of the experimental single-vortex current-voltage characteristic of

junction E. (b) Simulated current-voltage characteristic of this junction for � = 0:03, � = 0 (open

circles) and � = 0:02, � = 0:0012 (open squares). The calculated resonance voltages are indicated

by vertical dotted lines and marked by the corresponding wave number k.

By investigating the dependence of the observed �ne structure on temperature, number

of trapped vortices, and external magnetic �eld, we have con�rmed that the observed e�ects

are due to the interaction of the vortex with the whispering gallery modes of the junction.

At elevated temperatures, no �ne structure is noticed in any of the samples due to

the increase of the intrinsic damping and the resulting low quality factor of the junction.

Decreasing the temperature below 4:2K, �ne structure is observed in all samples A to E;
also the di�erential resistance of the resonances decreases with temperature. As a typical

example, the measured single-vortex current-voltage characteristic of junction C is shown in

Fig. 4.15a. Obviously no �ne structure is resolved at temperatures above T = 4:2K, whereas
at lower temperature the �ne structure is clearly visible. The position of the resonance in

voltage is almost constant but the di�erential resistance of the resonance decreases with

temperature.

Moreover, we have found that the voltages of the �ne-structure resonances scale with the

number n of moving vortices. Therefore, for n > 1 the �ne structure is clearly resolved in

voltage and also more pronounced because several vortices coherently pump the whispering

gallery mode. As an example, the �rst and second 
uxon resonances of junction C are

shown in Fig. 4.15b. The voltage spacing of steps in the two 
uxon case is a factor of

2 larger than in the single 
uxon case. The step positions normalized by the number of

moving 
uxons do not exactly coincide, presumably because of the small change of the

dispersion relation due to the presence of more vortices in the junction. No dependence

of the �ne-structure voltage-step positions on small external magnetic �elds was noticed.

We have also investigated more narrow annular junctions with a wide idle region both

experimentally and theoretically [WFU+00]. In this case, the spectrum of the whispering

gallery modes (and, thus, of the �ne structure) is strongly in
uenced by the geometry and

the electrical properties of the passive region, see Chapter 5. The �ne structure recently
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Figure 4.15: (a) Current-voltage characteristic of single-
uxon resonance of junction C at tem-

peratures between T = 5:2K and T = 2:2K. (b) Current-voltage characteristics of �rst and

second vortex resonances of the same junction at T = 1:6K.

reported in Ref. [MMK+98] is consistent with our observations.

Thus, we have developed a consistent picture for the qualitative and quantitative ex-

planation of the Cherenkov-radiation-induced �ne structure in e�ectively two-dimensional

annular Josephson junctions. 4

4.8 Conclusion and outlook

We have presented detailed experimental and numerical evidence for the excitation of whis-

pering gallery modes by vortices moving in wide annular Josephson junctions. The vortices

appear to whisper (generate radiation) at frequencies between 250 and 450 GHz in the

annular whispering gallery of 100�m diameter. This novel e�ect has been observed at suf-

�ciently low damping for annular junctions in a wide range of electrical and geometrical

parameters. It is very robust with respect to small external perturbations such as variations

in bias current density, boundary conditions or junction inhomogeneities. The resonance

frequencies have been calculated and quantitative agreement with experimental data and

numerical simulations better than one percent has been reached. We have shown that the

linear spectrum of the resonator can be sensitively probed by the resonant interaction of

plasmon modes with the moving vortex.

4The remaining small deviations (on the order of one percent or less) between experiment and theory,
are possibly due to the modi�ed plasma spectrum of the junction in the presence of a vortex, the change of
the resonance spectrum due to the idle region (see Chapter 5 and [WFU+00]) other than the one already
taken into account by the rescaling according to Lee et al. [LB92, Lee91], the excitation of large amplitude
waves, for which the linearization sin� � � is not accurate enough, frequency shifts of the plasma spectrum
due to �nite damping. These e�ects could lead to small (less than one percent) corrections to the predicted
resonance voltages, but they are not essential for the understanding of the main new e�ect clearly observed
in the experimental data.
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The discovery of the �ne structure on the single-vortex characteristics of annular junc-

tions has implications for the interpretation of earlier results on Cherenkov radiation in

multi-layers [GWTU98, GWU00], 
uxon bunching [VLS+96], and the temperature depen-

dence of the damping parameters � and � [DDKP85]. In particular the Cherenkov inter-

action of the vortex with the whispering gallery modes of the junction due to the �nite

junction width leads to a similar �ne structure as the Cherenkov radiation generated in

asymmetric stacks [GWTU98, GWU00]. Therefore, the di�erent sources of �ne structure

in annular junctions have to be distinguished carefully in experiment. Also the bunching

of 
uxons [VLS+96] may need to be reconsidered in the view of Cherenkov radiation in

annular junctions. As pointed out recently in Ref. [GMU00], the bunching of vortices at

a particular inter-vortex distance is strongly in
uenced by the existence of plasma waves

in the junction. Furthermore, the determination of the temperature dependence of � and

in particular � [DDKP85], based on the �tting of the form of the single-vortex resonance

to perturbation theory, is to be reconsidered. In particular, the �ne structure e�ectively

increases the average di�erential resistance of the resonance, causing an overestimation of

the value of �.

In the future work, we plan to perform spatially resolved measurements of the whispering

gallery modes by using low temperature scanning electron microscopy (LTSEM) [GK94]

or low temperature scanning laser microscopy (LTSLM) [SZT+94, SZTD96]. Under the

in
uence of the beam, the quality factor of the junction is modi�ed locally, the e�ect of

which can be monitored by a change in the voltage response of the junction at �xed bias

current. This technique allows to image spatially the standing wave patterns in small

superconducting structures [GK94]. First promising results using this technique have been

presented [Kru98].

We also intend to perform direct measurements of the radiation generated by the res-

onant interaction of the vortex with the whispering gallery modes of the junction. The

radiation can either be detected directly using an SIS detector or measured using an SIS

mixer [KSF+96]. The major challenge here is to design a coupling circuit between the sam-

ple and the detector that is eÆcient in the frequency range of interest, i.e. 250 - 450 GHz.

By choosing the proper junction geometry, the resonance frequencies can be tuned to be

accessible with the available equipment. Such a measurement would be the �rst direct evi-

dence of the generation of Cherenkov radiation by a vortex moving in an annular Josephson

junction. Being successful, such measurements could stimulate the use of annular junctions

as radiation sources. Due to the Cherenkov-like coupling of the 
uxon modes to the linear

modes at all the external junction perimeter, the generation of radiation could be very

eÆcient.

An interesting path for future research is the investigation of the transition of whispering

gallery modes in symmetric annular junctions to chaotic modes in asymmetric junctions.

Geometries of particular interest are the so-called stadium geometry or the Bohigas an-

nular billiard, one being an oval variety of the annular junction and the other being an

annular junction where the circle de�ning the inner perimeter of the junction is o�set from

the center of the junction. The properties of electromagnetic modes in such junctions can

be investigated in detail using the techniques presented in this chapter. Chaotic modes in

micro-resonators are currently under active investigation both theoretically and experimen-

tally.



Chapter 5

Annular Junctions with Idle Region

Experiments studying the in
uence of the idle region on the static and dynamic properties

of annular Josephson junctions are reported. The dependence of the �rst critical �eld of

the junction on the width of the idle region is investigated and explained considering a

renormalized Josephson length. The excitation of whispering-gallery-type electromagnetic

modes by a vortex moving in an annular Josephson junction with large idle region is ex-

amined. We calculate analytically the spectrum of the linear modes taking into account

the electromagnetic environment of the junction. The experimental data are in good quan-

titative agreement with analysis and numerical calculations based on the two-dimensional

sine-Gordon model.1

In literature, many experiments on the static and dynamic properties of long Josephson

junctions are qualitatively explained considering the electrical and geometrical parameters

of the bare junction only. In many cases, such a simpli�ed approach suÆces to quali-

tatively explain the observations. However, in order to understand experimental results

quantitatively, the electromagnetic environment of the junction needs to be considered.

The most important contribution to the electromagnetic environment originates from

the fact that the Josephson tunnel junction is usually surrounded by an insulating region,

which separates the top and bottom electrodes from one another to avoid shorting out the

junction by a direct contact between the two. Such an insulating region is required in any

junction fabrication process (see Section 2.3.1), though its physical realization, its size and

electrical parameters can be quite diverse. The part of the Josephson junction in which the

tunneling of Cooper pairs is possible is called Josephson or active region. In contrast the

part in which tunneling is suppressed by a thick insulating barrier is called passive or idle

region. The geometry of the active region is determined by the planar dimensions of the

tunnel barrier, whereas the dimension of the idle region is determined by the overlap of the

1Parts of this chapter have been published in `Physica B 284-288, 575 (2000)' and have been accepted
for publication in `Journal of Applied Physics'.
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Table 5.1: Dimensions and e�ective Josephson lengths of two sets (I and II) of annular junctions

with mean radius r = (ri + re)=2 = 55�m and Josephson length �J � 10�m.

set I II

wj [�m] 10 6

# A B C D E F A B C D E

wp [�m] 3 5 10 15 20 30 3 5 7 12 22

wp=wj 0.3 0.5 1.0 1.5 2.0 3.0 0.5 0.83 1.17 2.0 3.67

�e�=�J 1.16 1.25 1.47 1.65 1.82 2.11 1.25 1.40 1.53 1.82 2.28

top and bottom electrodes outside the active junction region, see Fig. 4.3.

One of the �rst systematic investigations on the e�ect of the idle region on the dynamic

properties of long Josephson junctions was published by Lee et al. [Lee91, LB92]. In this

work, the dispersion of the linear modes of a long junction was calculated in dependence

on the inductance and the capacitance of the junction and the idle regions. It was found

that the Swihart velocity of a junction can be substantially increased by a usually low-

capacitance and high-inductance stripline coupled to the junction. Measurements of the

Swihart velocity are commonly used to estimate the speci�c capacitance and inductance of

the junction. To estimate those parameters from the measurements, the idle region needs

to be considered in the way suggested by Lee et al. [Lee91, LB92]. Their results have been

experimentally veri�ed for long junctions in Ref. [MCM95].2

The static properties of the phase distribution in a long Josephson junction can be

probed by measuring its critical-current di�raction pattern. The �rst experiments investi-

gating the e�ect of the idle region on such patterns are reported in Ref. [TUK+95]. At the

same time, a theory explaining the experimental observations by considering a renormal-

ization of the Josephson length was developed by Caputo et al. [Cap96], but no systematic

comparison between experimental data and theoretical predictions had been performed.

Since then, the theoretical understanding of the static properties of the junction has still

advanced and is quite complete now, see Ref. [CFK+99].

In this chapter, we present experimental results which underline the importance of

considering the idle region to understand both static [FWU00a] and dynamic properties

[WFKU00] of annular Josephson junctions. In the �rst section I introduce a model which

describes the electrodynamics of an annular junction with idle region. In Section 5.2 I

discuss the low �eld properties of critical-current di�raction patterns of junctions with

large idle region and compare the results to the theory by Caputo et al.. In Section 5.3

the dynamics of vortex anti-vortex pairs in junctions with a large idle region is considered.

In particular the excitation of whispering gallery resonances is observed (compare Chapter

4) and the modi�cation of the characteristic resonance frequencies due to the idle region

is discussed. The linear mode spectrum is calculated by considering the idle region as a

stripline resonator coupled symmetrically to the annular junction.

We have designed two sets of annular junctions with mean radius �r = (ri+re)=2 = 55�m

junction width wj = 10�m and 6�m, respectively. Within each set, junctions with a passive

region width between wp = 3�m and 30�m are studied. The available samples are listed

2The results by Lee et al. were also used in Chapter 4 to renormalize the current-voltage characteristics,
in order to reconstruct the single-vortex resonances of a bare junction, i.e. one without idle region.
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in Table 5.1. The junctions were fabricated at Hypres Inc. [Hyp] using Nb-Al/AlOx-Nb

technology with a nominal critical-current density of 1000A=cm2. The fabrication process,

the electrical parameters and the �lm thicknesses used in junction fabrication are identical

to the ones stated in Section 4.2. For reference their values are listed again in Table 5.2 .

5.1 The model

The physics of an e�ectively two-dimensional annular Josephson junction is well described

by the normalized perturbed sine-Gordon equation in polar coordinates (4.1), as discussed

in detail in Sections 2.1.1 and 4.1. Here, the idle region is considered as a stripline coupled

in parallel to the junction. Its electrodynamics is described in terms of a wave equation for

the component of the vector potential in the passive region  , which is perpendicular to

the plane of the junction  
~r2 � 1

V2

@2

@~t2

!
 = 0 : (5.1)

The factor 1=V2 is introduced to take into account the di�erent phase velocities cp and cj
in the passive and active regions of the junction, respectively. V is de�ned as

V =
cp

cj
(5.2)

with

cp;j =

vuut tj;p

�j;pd0j;p
: (5.3)

In the respective junction region the magnetic thickness d0
j;p

is given by [Wei69]

d0
j;p

= �L coth (db=�L) + �L coth (dt=�L) + tj;p ; (5.4)

where db;t are the top and bottom thicknesses of the superconducting electrodes, tj;p are
the thicknesses of the insulator and �j;p are its dielectric constants, the respective values

of which are quoted in Table 5.2. In the thick �lm limit, Eq.(5.4) can be approximated

as d0
j;p

= tj;p + 2�L. In this way the electrodynamics of both the junction region and the

passive region can be expressed in the same normalized units.

To assure the continuity of the �elds � and  at the interface between the two regions,

we require

�j~ri;~re =  j~ri;~re : (5.5)

The jump of the magnetic �eld at the boundary is proportional to the ratio of the speci�c

inductances � of the two regions

@'

@~r

�����
~ri;~re

= �
@ 

@~r

�����
~ri;~re

: (5.6)

Table 5.2: Bottom and top electrode thickness db;t, London penetration depth �L, barrier thick-

ness tj;p and dielectric constant �j;p of both active and passive junction regions.

db [nm] dt [nm] �L [nm] tj;p [nm] �j;p
junction region (j) 100 400 90 2 10

passive region (p) 100 300 90 200 3.5
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The inductance ratio � is de�ned as

� =
L?

j

L?
p

(5.7)

with the speci�c inductance L?

j;p
given by

L?

j;p
= �0d

0
j;p

: (5.8)

In zero external magnetic �eld, neglecting self-�eld contributions due to the bias current,

the boundary conditions at the outer junction edge are given by

@ 

@~r

�����
~rip;~rep

= 0 : (5.9)

Using the above equations the statics and dynamics of long Josephson junctions with

idle can be accurately described.

5.2 Critical-current di�raction patterns

The maximum possible superconducting current, that is the critical current Ic, of a Joseph-
son junction depends sensitively on the externally applied magnetic �eld [Jos64, BP82,

AR63]. In Chapter 3, it has been shown that the critical current di�raction patterns of

relatively small annular junctions ~re � 1 are well described by an analytical expression

calculated using a linear phase approximation [Nap97]. In this limit, excellent agreement

between the experimental data and the theoretical prediction was found. For much longer

junctions ~re � 1 the experimental data, in particular in the low �eld range, are not well

described in the linear phase approximation. The description of the full critical-current

di�raction pattern of long junctions in a large �eld range is a complicated problem and is

usually approached using numerical calculations [PRS91]. However, the dependence of the

critical-current on a small applied magnetic �eld can be well understood in the following

way. In weak magnetic �elds, a long junction behaves like a weak superconductor and shows

the Meissner e�ect [Sch70]. In this regime the critical current decreases proportional to the

external �eld [OS67]. This behavior exists until a critical �eld Hc1
is reached. At this �eld


ux quanta in form of Josephson vortices penetrate into the junction [OS67]. Neglecting

the idle region, the �rst critical �eld of a long linear Josephson junction is given by [Sch70]

Hc1
=

�0

���J
; (5.10)

where � = �L tanh (db=2�L) + �L tanh (dt=2�L) + tj is the e�ective magnetic thickness of

the junction [Wei69] and

�J =

vuut �0

2�jc�0d0j
(5.11)

is the Josephson length. In �rst experiments, it was qualitatively found that Hc1
of a

junction with idle region scales proportional to some e�ective Josephson length [ML97,

TUK+95]. In the following, we consider the dependence of the �rst critical �eld of a long

annular junction on the width of the idle region and compare our experimental results

[FWU00a, Fra99] to predictions by Caputo et al. [Cap96, CFK+99].
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Figure 5.1: Critical-current

di�raction patterns of junc-

tions IA (solid squares, o�-

set by �Ic = 0:5mA) and IF

(open circles). The inset il-

lustrates the de�nition of the

�rst critical �eld Hc1.
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In measurements of the critical current versus the externally applied in-plane magnetic

�eld of the annular samples listed in Table 5.1, we found a strong in
uence of the width

of the passive region wp on the pattern. The critical-current di�raction patterns of the

junction with the most narrow (junction IA) and the widest idle region (IF ) are shown

in Fig 5.1 to illustrate the e�ect. From the experimental data, the �rst critical �eld is

determined by linearly extrapolating the branch starting at the maximum zero-�eld critical

current to Ic = 0, see inset of Fig. 5.1. Obviously, we observe a large decrease of Hc1

with increasing width of the idle region wp. In Fig 5.2a, the values of Hc1
determined for

both sets of junctions are plotted versus wp. Considering the ratio of the idle width wp to

the junction width wj, we �nd that Hc1
scales universally for both sets of junctions with

this quantity, see Fig 5.2b. Moreover, a small increase of the maximum zero-�eld current

with wp is noticed. In the high-�eld range, we also observe a modulation of the pattern

with a large period, depending on the geometry and the characteristic magnetic �eld of the

junction, as discussed in detail in Chapter 3.

The observed scaling of the �rst critical �eld Hc1
can be explained by a rescaling of the

Josephson length �J in dependence on the idle width wp, as �rst pointed out by Caputo

et al. in Refs. [Cap96, CFK+99]. In his work, Caputo calculated the e�ective size of a

Josephson vortex �e� in a long junction with various geometries and sizes of the idle region.

The calculations are based on the analytical and numerical evaluation of the static limit of

Eqs. (4.1) and (5.1)

~r2�� sin� = 0 ;
~r2 = 0 ;

(5.12)

with the boundary conditions stated in Section 5.1. Considering a long linear junction

of width wj with a symmetric idle region of width wp, the size of the vortex is found

by reducing the set of 2D partial di�erential equations (5.12) to an 1D non-local integro

di�erential equation [CFK+99]. It is found that the solutions to the non-local equations can

be mapped to the solutions of a junction with an e�ective renormalized Josephson length
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�e�. In the limit of wp=�J � 5, the e�ective Josephson length is given by [Cap96]

�e� = �J

s
1 +

2wp

wj

� : (5.13)

Equation (5.13) can be interpreted by considering the e�ective inductance of the junction

given by the parallel combination of the inductances of the junction and the stripline. The

factor 2 appears because the junction is coupled symmetrically on both sides to an idle

region of width wp. The result (5.13) was veri�ed in Refs. [Cap96, CFK+99] by extensive

numerical simulations for a large range of junction parameters. The size of the vortex was

evaluated by direct numerical calculations of the phase distribution inside the junction and

also by a variation of the free energy of the vortex. Moreover, the critical-current di�raction

patterns were simulated and it was shown that Hc1
decreases inversely proportional to �e�

[CFK+99].

Therefore our measurements of the dependence of the �rst critical �eld on the width

of the passive region can be analyzed in terms of the e�ective Josephson length �e� . In

Fig. 5.3, the �rst critical �eld for the two sets of annular junctions I and II is plotted versus

the reciprocal normalized e�ective Josephson length calculated from Eq. (5.13) using an

inductance ratio of � = 0:5. Obviously, the data scales linearly with �J=�e� , proving that
the observed e�ect can be explained by an inductance-dependent renormalization of the

Josephson length as stated in Eq. (5.13). All data in Fig.5.3 �t with a relative standard

deviation of about 10% to this linear dependence.

Even though the relation (5.13) was derived in Ref.[Cap96] for linear junctions only, we

found that it describes well the data of annular Josephson junctions, as can be seen from

Fig. 5.3. The reason is that the universal scaling of the Josephson length in a quasi-one-

dimensional Josephson junction (wj < �J ) coupled to an idle region persists relentless of

the exact geometry of the junction. The increase of �e� with wp is also manifested in the

fact that the pattern shows a linear dependence of Ic on H in the low �eld range (H < Hc1
)

for small wp, whereas the feature becomes more and more rounded with increasing wp

indicating that the e�ective size of the junction becomes smaller. As predicted by Caputo

et al., we also observe a small increase of the zero-�eld critical current with increasing wp,
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Figure 5.2: (a) First crit-

ical �eld Hc1
of junctions

in set I (solid squares) and

set II (open circles) versus

the width of the idle region

wp. (b) Hc1
versus the ratio

wp=wj . The error bars indi-

cate the systematic error in

the determination of Hc1.
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Figure 5.3: First critical

�eld Hc1
versus the inverse

normalized e�ective Joseph-

son length �J=�e� (set I: solid

squares, set II: open circles).

A �t to the data is indicated

by the straight line.

0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

8

 

fir
st

 c
rit

ic
al

 fi
el

d,
 H

c 1 [O
e]

inverse norm. eff. Josephson length, λ
J
 / λ

eff

due to the more homogeneous current distribution in the junction induced by the larger

Josephson length.

In conclusion we state that the features of the measured critical-current di�raction pat-

terns of annular junctions with large idle region are well described by the theory developed

by Caputo et al. . We point out that the idle region can substantially increase the e�ective

Josephson length of the junction. The e�ect is particularly strong for narrow junctions

with large idle. For typical sample fabrication technologies and junction width wj � 3�m,

wp � 2:5�m and � = 0:6 the increase of �J is about a factor of
p
2 which is approximately

40 percent larger than the one predicted considering just the bare junction. Therefore,

the idle region has to be considered speci�cally, when describing the physics of Josephson

junctions with an 1D sine-Gordon model.3

5.3 Whispering gallery modes

In Chapter 4, the excitation of whispering gallery modes in an annular Josephson junction

due to the Cherenkov-like interaction between vortices and plasmon modes has been dis-

cussed in detail. In that chapter, junctions with a small idle region were considered. In

fact, we used a special renormalization to take into account the modi�cation of the e�ective

phase velocity in the junction due to the small idle region. The quantitative comparison

between experimental data and predictions was performed for the widest junctions, where

the e�ect of the idle is the smallest. Here, I consider annular junctions with idle regions

up to six times larger than the junction itself. These samples have been designed with

the intention to investigate the e�ect of the coupling between a linear resonator and the

junction on its whispering gallery resonances. In this case, the electrodynamic properties

of the sample are strongly in
uenced by the idle region.

As shown in Chapter 4, the resonant interaction between a vortex and the whispering

3The discussion of these e�ects considering also linear long junctions can be found in Refs. [FWU00a,
Fra99].
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Figure 5.4: Current-voltage

characteristics of vortex{

anti-vortex resonances in

junctions IA to IE at 4:2K.

In the inset the voltage

separation between the two

highest resonances is plotted

versus wp.

gallery modes is manifested by �ne-structure resonances on the current-voltage character-

istic. The resonance voltages are given by the condition [KYSV98]

V = �0

!p

2�

~!k

k
; (5.14)

where ~!k are the characteristic frequencies of the annular resonator modes. These charac-

teristic frequencies depend strongly on the geometry and the electrical parameters of the

junction and its idle region.

5.3.1 Experimental observation

We have investigated the current-voltage characteristics of vortex{anti-vortex pairs [WFKU00,

Fra99] in the two sets of annular junctions described in the introduction to this chapter.

Each junction is initially prepared in a 
ux free state, i.e. with a maximum critical current

at zero �eld. Then vortex{anti-vortex pairs are nucleated when decreasing the bias current

from the whirling state. Once a pair is generated, the two vortices of opposite polarity

propagate in opposite directions along the ring. Such a state is stable since the vortices

exchange neither momentum nor energy during collisions. The presence of the pair is mani-

fested by a resonance on the current-voltage characteristic of the junction at a voltage which

is proportional to the number of propagating vortices. As shown in Chapter 4, multiple

vortices interact with the whispering gallery modes almost independently, the main e�ect

being that the voltage separation between resonances scales with the number n of vortices.

Moreover, the amplitude of the excited whispering mode is increased proportional to the

number of vortices pumping the mode, leading to more pronounced resonances. As an ad-

ditional feature, we expect that the counter propagating vortex and anti-vortex generates a

standing wave pattern due to the superposition of whispering gallery modes with opposite

wave vector.

In both sets of samples, we have observed a clear �ne structure on the vortex{anti-

vortex resonance at 4:2 K. The current-voltage characteristics of the junctions with a �xed

junction width of wj = 10�m (set I) are shown in Fig. 5.4. Evidently, both the resonance
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voltages and their spacing depend strongly on the width of the idle region. The shift

of the asymptotic resonance voltages cannot be explained by a simple rescaling of the

e�ective phase velocity due to the idle region using the approach by Lee et al. [Lee91,

LB92]. This indicates that the characteristic frequencies of the whispering gallery modes

are sensitively dependent (in an essentially non-linear way) on both the geometry and the

electrical parameters of the junction and the idle region. In the inset the voltage di�erence

between the two highest-voltage (i.e. lowest wave number) �ne-structure steps is plotted

versus the idle region width wp, indicating the large variation (more than a factor of two)

of the separation between resonance frequencies. These observations can be explained

considering the linear modes of the junction being coupled to the idle region.

5.3.2 Whispering gallery modes in the presence of an idle region

The whispering gallery mode spectrum is calculated by linearizing the wave equations (4.1,

5.1) coupled via the boundary conditions (5.5, 5.6) between the junction regions [WFKU99].

At the external junction boundary, the zero-�eld boundary condition (5.9) is considered.

In polar coordinates the equations to study are

1

~r

@

@~r
~r
@�

@~r
+

1

~r2
@2�

@'2
� @2�

@t2
� � = 0 ; (5.15)

1

~r

@

@~r
~r
@ 

@~r
+

1

~r2
@2 

@'2
� 1

V2

@2 

@t2
= 0: (5.16)

The solutions for each individual part of the resonator can be cast in the form of linear

combinations of Bessel functions of the �rst and second kind as discussed in Section 4.5

 = c1Jk(~!~r=V) + c2Yk(~!~r=V) for ~rip � ~r < ~ri
� = c3Jk(�!~r) + c4Yk(�!~r) for ~ri � ~r � ~re
 = c5Jk(~!~r=V) + c6Yk(~!~r=V) for ~re < ~r < ~rep

(5.17)

where �! =
p
~!2 � 1 and ci are constants which are �xed by the boundary conditions.

Applying the boundary conditions to the set of solutions (5.17) we �nd a set of linear

equations

Â ~C = 0 ; (5.18)

where ~C = (c1; c2; : : : ; c6) is a vector and Â is a matrix de�ned as

Â =

0
BBBBBBBB@

J 0
k
(~!~rip=V) Y 0

k
(~!~ripV) 0 0 0 0

Jk(~!~ri=V) Yk(~!~ri=V) �Jk(�!~ri) �Yk(�!~ri) 0 0

0 0 �Jk(�!~re) �Yk(�!~re) Jk(~!~re=V) Yk(~!~re=V)
�J 0

k
(~!~ri=V) �Y 0

k
(~!~ri=V) �J 0

k
(�!~ri) �Y 0

k
(�!~ri) 0 0

0 0 �J 0
k
(�!~re) �Y 0

k
(�!~re) �J 0

k
(~!~re=V) �Y 0

k
(~!~re=V)

0 0 0 0 J 0
k
(~!~rep=V) Y 0

k
(~!~rep=V)

1
CCCCCCCCA
:

(5.19)

Non-trivial solutions to Eq. (5.18) exist for

det Â = 0 ; (5.20)

which yields the dispersion equation, i.e. the whispering gallery mode spectrum ~!(k), of

the Josephson junction with idle.
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Figure 5.5: (a) Normalized mode spectra for junctions IA to IF . Also plotted are the spectra

of a junction without idle wp = 0 (solid gray squares) and of a junction with very small idle

wp = 0:5�m (open gray squares). (b) Normalized resonance frequencies ~!=k for junctions IA to

IF . Also plotted are the resonance frequencies for a junction without idle wp = 0 (solid gray

squares) and for a junction with very small idle wp = 0:5�m (open gray squares).

Thus the mode spectrum of the system is determined by a complicated transcendental

equation (5.20). Exact analytical solutions for the variables ~! and k cannot be found and

approximate solutions are diÆcult to determine. Therefore, we have developed the following

numerical technique to calculate the mode spectrum.

Since the evaluation of det Â would result in a large polynomial of Bessel functions

which is ineÆcient to solve numerically, we �rst substitute the geometrical parameters ~rip,

~ri, ~re, ~rep and the electrical parameters �, V into the matrix Â. Then, for a �xed angular

wave number k, the elements of the matrix Â are evaluated for a discrete set of values

!i. Then the determinant is evaluated to �nd the discrete function det Âk(!i), the zeros

of which determine the characteristic frequencies of the linear modes. The function is

interpolated and its zeros are found iteratively using the Newtons method with a guessed

initial value for the zero. The �rst zero of the function det Âk(!) corresponds to the

eigenfrequency of the fundamental radial mode of the resonator. In general, the �-th zero

of det Âk(!) determines the eigenfrequency of the radial mode � with the angular wave

number k. The guessing of the initial values for the iterative procedure of determining the

zeros was automated and the convergence of the numerical method was checked. To verify

the accuracy of the procedure and to exclude errors, the mode spectrum of a junction with

arbitrary geometrical parameters of the idle region but with � = 1 and V = 1 was compared

to the results determined from the direct calculation of a spectrum of a junction without

idle, but the same outer dimensions, using the approach presented in Section 4.5. Excellent

agreement between the two methods was found.

Using the procedure described above, we have determined the normalized linear mode

spectrum for the �rst set of samples, as shown in Fig. 5.5a. The parameters � � 0:5,

V � 12 and �J � 12�m have been determined from the geometrical dimensions and
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electrical properties of the samples. Obviously, the frequencies of the modes depend on the

width of the idle region. At a �xed wave number k, the characteristic frequency !k increases

with the width of the idle region. The characteristic frequencies di�er strongly for small k

because, in this case, the modes have substantial amplitudes both in the Josephson and in

the idle region. In the limit of large k however, the characteristic mode frequencies of all

junctions converge to the same value because the modes concentrate at the outer edge of the

junction and hence, only the idle region parameters are important. For further comparison

we have also calculated the spectra for a junction without idle wp = 0 (gray solid squares)

and for a junction with very small idle wp = 0:5�m (gray open squares). Obviously, in the

limit of large k the characteristic frequencies of the bare junction are smaller than of those

of junctions with idle. Even a small idle attached to the junction (open gray squares) shifts

the characteristic frequencies to higher values because the higher order angular modes are

concentrated at the outer edge of the junction.

The normalized resonance frequencies, corresponding to the mode spectra shown in

Fig. 5.5a, are plotted in Fig. 5.5b versus the angular wave number k. Evidently, the

resonance frequencies depend on both the wave number k and the width of the idle region

of the junction. The slope, i.e. the change of the resonance frequency with the wave

number k, of the curves plotted in Fig. 5.5b is proportional to the voltage separation

between individual resonances on the current-voltage characteristics of the junction. As

can be seen, the slope of the data is the largest for the junctions with the largest idle

region and decreases with decreasing idle size. This is in qualitative agreement with the

experimental observations in Fig. 5.2, where large (small) step spacing is observed for large

(small) idle regions. These calculated resonance frequencies are used to quantitatively �t

the experimental data to the calculated mode spectrum.
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Figure 5.6: Fits to experimental data of junction IC (a) and junction IE (b). The calculated

resonance frequencies are indicated by vertical dotted lines. The minimum wave number kmin

associated with the highest voltage step and the plasma frequency �p = !p=2� used for the �t are

indicated in each plot.
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5.3.3 Results and discussion

The experimental data are �tted to the calculated resonance frequencies using Eq. (5.14). In

the �tting procedure, the plasma frequency !p=2� was chosen such that the absolute voltage

of the highest resonance is well approximated. The wave number kmin was adjusted to �t the

sequence of all the resonance steps with a good accuracy. In Fig. 5.6, the experimental data

of junctions IC and IE are compared with the calculated resonance frequencies indicated

by vertical dotted lines. For junction IC the lowest excited mode number is kmin = 19,

whereas it is kmin = 18 for junction IE. The data are �tted consistently with the same

plasma frequency !p=2� � 102GHz, the value of which is in good agreement with the one

evaluated from the critical-current density of the junction. Overall, the agreement between

the calculated step positions and the experimental �ndings is excellent. Here, we point out

that the relative accuracy of the �ts is better than 1 percent. The remaining uncertainties

are due to the e�ects already discussed in Section 4.7. As for the samples discussed in

Chapter 4, we checked the dependence of the �ne structure on temperature, number of


uxons and external �eld. The results pointed out before could be reproduced for these

samples.

Finally, we have calculated numerically the current-voltage characteristics and the phase

distributions of a junction with a geometry similar to the samples of set I, but without idle

region [WFKU00]. Similar calculations but for di�erent junction geometries have also been

presented in Section 4.6. The calculated current-voltage characteristic for this sample is

shown in Fig. 5.7a. A �ne structure is clearly visible. The phase pro�le of the junction

at the highest voltage resonance is plotted in Fig. 5.7b. The wave number of the observed

mode is approximately kmin = 18 at the highest resonance, which is in good agreement

with the results of the analysis of our experimental data. Of course, the increase of the

wave number k of the excited mode from step to step while reducing the bias current is

0.1

0.2

0.3

0.4

0.5

0.6

0.170 0.175 0.180

γ = 0,589
kmin = 18

r
i
 = 50 µm

r
e
 = 60 µm

λ
J
 = 10 µm

w
p
 = 0 µm

α = 0.03
β = 0

 

norm. vortex angular frequency, Ω

no
rm

al
iz

ed
 b

ia
s 

cu
rr

en
t, 

γ 
=

 I 
/ I

c

Ω

vortex

k=1

(a) (b)

Figure 5.7: (a) Simulated current-voltage characteristic for a bare junction. (b) Phase pro�le at

the bias point indicated in (a). The number of periods in the small amplitude phase modulation

corresponds to the wave number kmin = 18.
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also observed in these simulations.

In summary, we have shown that the linear mode spectrum of an annular Josephson

junction resonator is determined by both the properties of the junction and the idle region

surrounding the junction. The mode spectrum has been sensitively probed by studying its

interaction with Josephson vortices moving at relativistic velocities. The dependence of the

observed phenomena on the geometry and the electrical properties of the idle region has

been interpreted qualitatively. Fitting the experimental data to the theoretically expected

mode spectra, we found excellent agreement with an accuracy of better than 1 percent.

In terms of the use of an annular Josephson junction as a source of radiation [KYSV98],

we make the important observation that the spectrum of radiation generated by the moving

vortex in the junction is tunable by the idle region. Moreover, the idle region may be

speci�cally designed to achieve good impedance matching between the junction and any

coupling circuits to enhance the power of the emitted radiation.



Part III

CLASSICAL AND QUANTUM

PARTICLE PROPERTIES

OF JOSEPHSON VORTICES

In the �rst part of this thesis, I have considered the static and dynamic properties of two-

dimensional large area annular Josephson junctions. The observed e�ects were analyzed

and explained in terms of the spatial distribution of the phase di�erence in the junction

and its temporal evolution, describing both the properties of Josephson vortices (non-linear

excitations) and plasmons (linear excitations). In this second part, I examine the properties

of a Josephson vortex in quasi-one-dimensional long annular Josephson junctions. The

dynamics of a Josephson vortex can be described in terms of a particle of e�ective mass mf

with a coordinate q subject to external forces [MS78]. This approach can be used because

the Josephson vortex is a topological solitary excitation of the junction, which is stable with

respect to small perturbations. In fact the action of small external forces on the vortex,

e.g. due to the bias current or external magnetic �eld, only changes the dynamics of the

vortex, not its particle properties. Therefore, the dynamics of a soliton in a sine-Gordon

system is well described by perturbation theory [MS78].

Here, I study the dynamics of a Josephson vortex in the presence of a spatially inho-

mogeneous external force F (q), due to the bias current or the magnetic �eld applied to the

junction, or due to di�erent types of spatial inhomogeneities of the junction itself. Equiv-

alently, the vortex can be viewed as a particle of mass mf moving in a potential landscape

U(q), associated with these external forces F (q) = �@U(q)=@q. Under certain conditions,

the potential U(q) can form wells in which the vortex is spatially localized if its kinetic

energy is less than the depth of the well. Here, I focus on the study of the escape of the

vortex from such a potential well. At high temperatures, the vortex activated from the well

due to thermal 
uctuations. This process is described by the transition state theory, which

considers the transition of a system from one state into another via a potential barrier

[HTB90].

Many processes of this type exist in physics, chemistry and biology. The �eld was pio-

neered by Kramers, who considered such transitions both in the weak and in the moderate to

strong damping regime [Kra40]. A comprehensive review on reaction rate theory including

thermal activation processes is published in Ref. [HTB90]. Josephson junctions are inter-

esting experimental systems to investigate thermal activation. In long junctions and arrays

of small junctions, the height of the activation barrier, the temperature and the damping

can be changed over a wide range, which is an attractive feature for the study of thermal

activation. The study of the activation of the phase with particular focus on the transition

from discrete to continuous multi-dimensional systems is suggested in Ref. [DMS99]. The

multi-dimensional activation of the phase has already been studied for linear long junctions

[CTC+96]. Here, I consider the Josephson vortex as a collective excitation of an annular
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junction. In this limit, its dynamics can be described by a single collective coordinate. In

Chapter 6, I investigate experimentally the thermal activation of a vortex from metastable

states in potential wells of various physical origins.

In literature, the process of nucleation and annihilation of kinks in a damped sine-

Gordon chain, which is a model system for many physical nucleation processes, is ac-

tively investigated theoretically and discussed controversially [BL79, BL81, BHL83, B�ut89,

HMS88, BC95, CB98]. The thermal nucleation of kink{anti-kink pairs may also be studied

in long Josephson junctions.

In the limit of zero temperature, the thermal activation process is exponentially sup-

pressed and the Josephson vortex may tunnel through a potential barrier and thus escape

quantum mechanically from the well [KI96, SBJM97]. This process corresponds to the

macroscopic quantum tunneling of a Josephson vortex. Macroscopic quantum e�ects in

Josephson systems have been studied actively both theoretically and experimentally in the

past �fteen years. Initially, the research was inspired by the fundamental question whether

quantum mechanics is valid at the macroscopic level or not. The discussion of this issue

was largely stimulated by the works of Leggett and Garg [LG85]. The role of the damping,

inherent to any physical system, in macroscopic quantum e�ects was �rst considered by

Caldeira and Leggett [CL81, Leg84, LCD+87]. This work has substantially advanced the

understanding of these phenomena.

Experimentally, macroscopic quantum e�ects have been investigated in detail in su-

perconducting Josephson junctions and their circuits. The electronic and electromagnetic

properties of a Josephson junction are governed by the phase di�erence � between the

macroscopic wave functions of the junction electrodes. It has been shown both in a phe-

nomenological approach [CL81, Cal83] and from microscopic theory [AES82, ESA84, SZ90]

that the quantum mechanics of the charge carriers and the electromagnetic �elds in the

junction can be accurately described in terms of the collective variable �. In the limit

of low damping and small thermal 
uctuations, the quantum e�ects of the phase � are

observed for suitable system parameters [SZ90]. Quantum e�ects in Josephson junctions

are considered as being macroscopic because a large number of electrons and �eld quanta

contribute to the e�ects described by the collective variable �.

A large number of experiments, proving the quantum properties of the phase, have been

successfully performed. Macroscopic quantum tunneling (MQT) has been studied in current

biased Josephson junctions [DMC85, MDC87] and rf-SQUIDs [SSAL85, HRL96, RHL95].

Also, macroscopic energy level quantization (ELQ) has been examined experimentally

both below [MDC87] and above [SPRR97] the cross-over temperature. Experiments ob-

serving the collective quantum transport of vortices in arrays of small Josephson junc-

tions have been successfully performed, including the observation of quantum localization

[OVM96, vOM96] and of the Aharonov-Casher e�ect4 [EWSM93]. The quantum prop-

erties of single Josephson vortices in continuous long Josephson junctions have been pre-

dicted theoretically, but not observed experimentally until now. Besides the observation

of quantum tunneling [KI96, SBJM97], a number of other quantum e�ects like interfer-

ence, dephasing and resonant tunneling have been discussed theoretically in literature

[SHVBJ95, HSBJ95, SBJM97]. In Chapter 7, I discuss the state of our experimental e�orts

to observe quantum properties of Josephson vortices. I investigate the possibilities to ex-

amine macroscopic quantum tunneling from two types of potentials, a microresistor [KI96]

4The interpretation of this particular experiment in terms of the Aharonov-Casher e�ect is still adversely
discussed.
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and a magnetic-�eld induced well, and compare the two cases. Moreover, the possibility

of observing the quantization of the energy levels of the vortex in the potential well are

discussed. Possible experimental methods to observe ELQ, including the irradiation of the

junction with microwaves and the generation of a non-equilibrium thermal distribution in

the potential well, are discussed.

In the past �fteen years, large e�orts have been made to experimentally discover the

theoretically predicted macroscopic quantum coherence (MQC) [LG85] in rf-SQUIDS. Cur-

rently, there are promising new experiments searching for MQC in similar systems [CCC+99,

BHF97, MOL+99, OMT+99]. Only during the past few months �rst indications of macro-

scopic quantum coherence in systems, the dynamics of which is governed by the supercon-

ducting phase, have emerged [FPC+00]. In the charge regime, it has recently been shown

experimentally that coherent quantum e�ects can be observed in superconducting circuits.

In this regime, the dynamics of the system is determined by the number of charges on the

superconducting electrodes rather than by the phase di�erence between them. In the �rst

successful experiment of its type, the Rabi-oscillations of a Cooper pair, tunneling onto and

o� a superconducting electron box embedded in a mesoscopic circuit of Josephson junctions,

have been observed [NPT99]. This e�ect is considered a macroscopic quantum e�ect - even

though only a single Cooper pair is involved in the process - because the macroscopic wave

function describing the system is modi�ed due to the addition of a single extra Cooper pair.

Recently, the research in coherent e�ects in solid state systems has gained additional

momentum, due to the new and exciting prospects of using quantum coherent systems for

information processing in quantum computers [Llo93, DiV95b]. In Chapter 8, I discuss

our proposal [WKL+00] to use a heart-shaped Josephson junction subject to an external

magnetic �eld as a macroscopic two-state system which, in the quantum limit, can serve as

a qubit for quantum information processing.
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Chapter 6

Thermal Activation

of Josephson Vortices

Experiments indicating the thermal activation of a Josephson vortex from a potential well

are reported. We consider a pinning potential induced by the magnetic dipole interaction

between a vortex and an external magnetic �eld or by a microresistor embedded in the

junction barrier. The thermal activation process of the vortex is characterized by measuring

the distribution of the depinning currents. The measured current distributions are in good

agreement with the theory of thermal activation.1

The dynamics of a small Josephson junction is described by a single macroscopic vari-

able, which is the phase di�erence across the junction. Its dynamic equation is formally

equivalent to the equation of motion of a driven and damped particle in a sinusoidal po-

tential. Applying a bias current to the junction, metastable states of the phase are formed.

The phase can escape both by thermal activation and by quantum tunneling from these

states. The escape of the phase is associated with the switching of the junction from a

zero-voltage state to a �nite-voltage state, which allows the experimental investigation of

this process.

In a long Josephson junction, the phase di�erence across the junction has a spatial

dependence which allows the existence of particle-like collective excitations, i.e. Josephson

vortices. In this chapter, I investigate the thermal activation of Josephson vortices from

pinning potentials of di�erent physical origins. In Section 6.1, I introduce the concept of

thermal activation and then brie
y consider the thermal activation of the phase in a small

Josephson junction and relate it to the activation of a Josephson vortex in a long junction.

Di�erent physical realizations of pinning potentials for the vortex are thoroughly analyzed

in Section 6.2. The experimental techniques and the measurement setup developed to

1Parts of this chapter have been published in `Journal of Low Temperature Physics 118, 543 (2000)'
and in `Physica B 284-288, 585 (2000)'.
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perform activation measurements of Josephson vortices are discussed in Section 6.3. The

experimental results are presented in Section 6.4. Finally, the results are summarized and

a conclusion is presented in Section 6.5.

6.1 Introduction

In physics, chemistry and biology, there are a large variety of di�erent processes in which a

system makes a transition between two distinct states by traversing a potential barrier. In

many of these processes, thermal 
uctuations govern the rate at which the system overcomes

the barrier. The theory of these processes has been actively developed since the days of

Arrhenius [Arr89] with important results found by Kramers [Kra40]. The state of the art

of thermal activation and transition state theory is presented in a recent review by H�anggi

et al. [HTB90].

6.1.1 Fundamentals of thermal activation

If the dynamics of a physical system can be described by a generalized coordinate q, its

thermal activation can be modeled in terms of a particle of e�ective mass m moving in

an external potential U(q) with a metastable minimum, see Fig. 6.1a. In the classical

regime and at zero temperature, the particle cannot escape from the potential, even for

an arbitrarily small potential barrier U0. However, in the presence of thermal 
uctuations

it can be activated across a potential barrier of �nite height. At low temperatures and

low damping, the particle may also escape from the well by quantum tunneling, provided

that the potential barrier is small enough. This case is considered in Chapter 7. At

suÆciently high temperatures, the particle escapes predominantly from the well due to

thermal processes and quantum processes only lead to negligibly small corrections. This

situation is considered in detail in this chapter.

In the following, we consider a particle in the local minimumof the potential depicted in

Fig. 6.1a. The properties of the potential can be characterized by the height of the potential

barrier U0, by its curvature (@2U=@q2 = U 00) at the bottom of the well, which determines

the small amplitude oscillation frequency

!0 =

s
U 00(0)

m
; (6.1)

and by the curvature of the top of the barrier

!b =

s
�U

00(qb)

m
; (6.2)

which parameterizes the width of the potential hindering the decay process. !b is also

called the unstable barrier frequency [Wei99]. We consider the case that U0 is larger than

the thermal energy kbT and �h!0 � U0. In particular, we are interested in situations, where

the potential U(q) is smaller than U(0) for all values of q > qex, where qex is the exit point
of the particle from the potential well, see Fig. 6.1b. In this regime the escape rate of a

particle from a metastable potential well can be parameterized in the form

� = A exp(�B) ; (6.3)
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Figure 6.1: (a) A particle of mass m localized at the bottom of the metastable potential well of

depth U0. The small amplitude oscillation frequency !0 is proportional to the square-root of the

curvature of U(q) at q = 0. The particle escapes from the well by a thermally activated process.

(b) Potential U(q), with minimum at q = 0, maximum at q = qb, and exit point at q = qex. !b
characterizes the width of the potential.

where B is a dimensionless measure for the massiveness of the barrier and A characterizes

the attempt frequency of the particle towards the barrier.

At high temperatures, i.e. suÆciently large thermal 
uctuations, a particle trapped in

the potential well can escape from the well by a thermally activated process. The rate of

the process depends on the temperature T , the barrier height U0 and the damping a. From
transition state theory [HTB90], we know that the rate of thermal escape from the well is

given by

�TSTth =
!0

2�
exp

�
� U0

kbT

�
: (6.4)

Equation (6.4), being similar to the Arrhenius law, is found under the assumption that the

particle in the potential well is in thermal equilibrium and that a particle which once has

crossed the barrier top never falls back into the well (no di�usion). The form of Eq. (6.4)

can be understood considering the exponential decrease of the density of thermal states in

the well with increasing energy. The factor exp (�U0=kbT ) re
ects the fraction of states

which, at thermal equilibrium, are at an energy higher than the potential barrier height U0.

This is also the reason why Eq. (6.4) is independent of the barrier width.

Damping regimes

In his classical work, Kramers considered the e�ect of frequency-independent damping on

the thermal escape [Kra40]. The escape of a particle from the well in the presence of

damping a is determined by a Langevin equation

m�q +ma _q + U 0(q) = �(t) ; (6.5)

where �(t) is the Æ-correlated Gaussian white noise associated with a thermal reservoir at

temperature T . Considering a steady 
ux of thermalized particles from the well, the escape



6.1. INTRODUCTION 77

rate in the moderate to strong damping regime is found to be

�th = �a
!0

2�
exp

�
� U0

kbT

�
; (6.6)

where �a is the friction dependent transmission coeÆcient of the barrier

�a =

s
1 +

�
a

2!b

�2
� a

2!b
: (6.7)

In the limit a ! 0, the transition state theory result is recovered. In the limit of strong

damping, the inertia term in the Langevin equation (6.5) can be neglected and the trans-

mission coeÆcient is found as

�a =
!b

a
: (6.8)

In the limit of very weak damping, the thermal population of the well is depleted in the

range of kbT below the top of the barrier because particles decay quicker from that region

than they are resupplied due to thermalization. This e�ect gives rise to a reduced escape

rate at low damping with the transmission coeÆcient

�a =
aI

kbT

!0

2�
; (6.9)

where I is a numerical value depending on the particular potential under consideration; for

a cubic potential, I = 36U0=5!0. Using these results, it is found [Wei99] that the escape

process is well described by Kramers formula according to Eqs. (6.6) and (6.7) if

a

!b
� 5kbT

36U0

: (6.10)

In the following, the thermal activation of the phase in a small Josephson junction and

the thermal activation of a vortex are considered.

6.1.2 Activation of the phase in a small junction

In the Stewart-McCumber equivalent circuit model [Ste68, McC68], the electrodynamics

of a small junction is described by an equation of motion for the phase �, see Chapter 1.

Eq. (1.16) can be rewritten in the form

C

�
�0

2�

�2
��+

1

R

�
�0

2�

�2
_�+ Ic

�0

2�
sin(�)� I

�0

2�
= 0 : (6.11)

This is equivalent to the equation of motion

m�
��+m�

1

RC
_�+

@U�(�)

@�
= 0 (6.12)

of a particle of mass m� = C(�0=2�)
2 moving in the presence of damping (1=RC) along

the generalized coordinate � in the potential

U�(�) =
Ic�0

2�

�
� I

Ic
�� cos(�)

�
(6.13)

= EJ(�
�� cos(�)); (6.14)
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where EJ = �0Ic=2� is the Josephson coupling energy and 
 = I=Ic is the normalized bias

current, see for example Ref. [FD74]. The potential (6.14) is called a washboard potential.

At zero bias current, the potential is sinusoidal. Increasing the bias current, the potential

is tilted proportional to I and metastable wells are formed. At the current I = Ic, the

metastable well vanishes, see for example Ref. [MDC87].

At a �xed bias current 
, the rate at which the phase � is activated from the potential

well depends on the small amplitude oscillation frequency !�0 and the barrier height U�

0 .

The small amplitude oscillation frequency

!
�

0 =
q
U 00�(�0)=m� = !p

�
1 � 
2

�1=4
(6.15)

is related to the mass m� and the curvature U 00�(�0) of the potential well at its minimum

located at

�0 = arcsin (
) : (6.16)

The potential barrier height is found by calculating

U�

0 = U�(�b)� U�(�0) = 2EJ

�q
1 � 
2 � 
 arccos(
)

�
; (6.17)

where the coordinate of the maximum of the potential is given by

�b = � � arcsin (
) : (6.18)

Considering the typical experimental situation for which EJ � kbT , thermal activation is

important only for bias currents I close to the critical current Ic, or equivalently for 
 ! 1.

Thus, U�

0 can be approximated as

U�

0 = EJ

4
p
2

3
(1� 
)3=2 +O(1 � 
)5=2: (6.19)

Sometimes the cubic expansion

U�(�) = EJ

�
1

2

q
1 � 
2�2 � 1

6

�3

�
(6.20)

of Eq. (6.14) is used. We note that Eq. (6.20) is of the form

U�(�) =
1

2
m�!

�

0

2
�2 � const: �3 ; (6.21)

where the constant is proportional to the barrier height. In this approximation the height

of the potential barrier is found by evaluating Eq. (6.20) at the maximum �b

U�

0 = EJ

2

3

(1� 
2)
2=3


2
: (6.22)

In Fig. 6.2, the bias current dependence of the approximations (6.19) and (6.22) are com-

pared with the exact barrier height (6.17). For 
 close to unity, both expressions are close

to the exact value. For smaller values of 
 however, Eq. (6.19) approximates the exact

barrier height more accurately.

The third order expansion of the potential around its minimumis a useful approximation

for rate calculations in both the thermal and the quantum regime because, for the relevant
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Figure 6.2: Comparison of ex-

act potential barrier height (6.17)

[solid line] with the cubic ap-

proximation (6.22) [dashed line]

and the linearized exact expres-

sion (6.19) [dotted line] for EJ =

1.

junction parameters (see Section 6.2.3), the activation rate is only large for 
 very close to

unity. Furthermore, in the cubic approximation, the potential is symmetric in the sense

that !0 = !b, which simpli�es its analysis.

The thermal activation of the phase in a small junction has been investigated exper-

imentally by measuring the statistics of the switching currents [FD74]. Using the model

described above, the experimental data can be accurately explained.

6.1.3 Activation of a vortex in a long junction

As pointed out in Chapter 2, a long Josephson junction can be modeled by a parallel

connection of small Josephson junctions which are inductively and resistively coupled to one

another, see Fig. 2.1. If the activation of the phase in a long junction is to be investigated,

the spatial dependence �(x) has to be considered explicitly. For a junction in zero external

�eld and without trapped vortices, the activation of the phase is similar to the one for a

small junction. To qualitatively understand the important e�ects, we consider a parallel

connection of �ve junctions, see Fig. 6.3b. The thermal 
uctuations act on each individual

phase of the system independently. However, the junctions are coupled inductively to each

other. The strength of the coupling is inversely proportional to the separation between

individual junctions, to the speci�c inductance linking the junctions and to the critical-

current density. If the junctions are coupled strongly via a small inductance, the phases

can overcome the potential barrier only simultaneously. The exact dynamics of the phase

in the process of activation depends strongly on the coupling and the damping. In short

systems with only a few junctions coupled in parallel, the edges may also play an important

role. Activation processes in such systems have been recently investigated theoretically in

Refs. [DMS99, DMS00]. The case of only two coupled junctions has also been investigated

experimentally [HLL89]. In the limit of a continuous long Josephson junction, the coupling

of the phases in the lateral direction is strong. The phase is activated e�ectively as a rigid

string if the energy required to form a kink in the phase is larger than its activation energy,

see Fig. 6.3c. The activation of the phase in a linear long Josephson junction has been

investigated in dependence on the external �eld both theoretically and experimentally in
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Figure 6.3: (a) E�ective potential U(�) for the phase in a small junction. The stable coordinate

of the phase is indicated by a solid disc. (b) Potential of the phase in �ve inductively coupled

Josephson junctions. The coupling (acting like springs) between the phases is indicated by the

thick lines interconnecting neighboring phases. (c) E�ective potential U(�; x) for a long junction.

The phase is rigidly coupled.

Ref. [CTC+96].

Here, I investigate the thermal activation of a Josephson vortex trapped in an annular

junction. A Josephson vortex corresponds to a kink of 2� in the phase di�erence along

the junction. In zero external �eld and at zero bias current, the potential energy of such

a kink can be visualized as shown in Fig. 6.4a. In one half of the junction, the phase is

localized in the potential minimum at � = 0, whereas in the other half of the junction the

phase is localized at � = 2�. The rest energy of this excitation corresponds to the integral

of U(�; x) along the vortex line �(x). The dynamics of the vortex in an ideal and uniform

quasi-one-dimensional annular junction is governed by the perturbed sine-Gordon equation

(2.19) with the periodic boundary conditions (2.45). The Josephson vortex

�f(~x; ~t) = 4 arctan

"
exp

 
~x� q(~t)p
1� u2

!#
(6.23)

behaves as a topologically stable, particle-like object of mass ~mf and coordinate q(~t) moving

at a velocity u = _q under the action of external forces, see Section 2.1.1. The external forces

acting on a vortex in a homogeneous junction are modeled by the usual perturbation terms

in the sine-Gordon equation (2.19). Any other forces (e.g. due to an applied magnetic �eld)

can be cast in form of an additional general space and time dependent perturbation f(~x; ~t).
Using perturbation theory [MS78], the vortex dynamics can be described in terms of

an equation of motion for its center of mass coordinate q(~t), as pointed out already in

Section 2.1. Considering small vortex velocities, i.e. the non-relativistic limit (u = _q � 1),

the equation of motion (2.38) has the simple form

~mf �q + ~mfa _q +
@ ~U(q)

@q
= 0 ; (6.24)
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where the bias current is considered as an external potential and the two dissipative terms

in Eq. (2.38) are taken into account by a single e�ective term proportional to a = �+ �=3.

Equation (6.24) describes the damped motion of a particle of e�ective mass ~mf in the

external potential ~U (q).

The energy of a vortex in a Josephson junction is determined by the hamiltonian (2.29),

where ~HSG is the pure sine-Gordon part and ~HP describes the energy of the perturbations.

In the static case ( _q = 0), the rest energy of the vortex is ~HSG
f

= 8 which is equivalent to

the normalized rest mass of the vortex ~mf = 8. The energy of the vortex in SI units can be

found by multiplying all energies calculated in normalized units by the natural energy scale

of the long junction E0, see Eq. (2.27). E0 corresponds to the Josephson coupling energy of

the junction in the area �Jw. Thus the rest energy of the vortex in SI units is given by

HSG
f

= 8E0; (6.25)

and hence its rest mass is

mf =
8E0
c20
; (6.26)

where c0 = �J!p is the Swihart velocity. Typical scales for the energy E0 and the mass mf

of the vortex in an experimental situation are discussed in Section 6.2.3.

Any external force acting on the vortex can be expressed in terms of the potential ~U(q).

For example, the energy gain of the junction due to the bias current is calculated using the

perturbation hamiltonian

~H
 = �
Z

`

0

� d~x: (6.27)

Substituting the vortex solution (6.23) into Eq. (6.27) we �nd the equation for the con-

tribution of the bias current to the potential energy of the vortex in dependence on its

coordinate q
~U
(q) = �2�
q: (6.28)

Any other spatially inhomogeneous perturbation described by f(~x) induces a force on

the vortex and results in a pinning of the vortex in space which can be of di�erent phys-

ical origins. A pinning center for a Josephson vortex in a long junction can be realized

by introducing a microshort [MS78] or a microresistor [GF84, MU90] in the junction bar-

rier. Pinning may also occur due to the interaction of the vortex with the junction leads

[MDP+98] or its interaction with parasitic magnetic 
ux trapped in the superconducting

�lms. Alternatively, a vortex can be pinned by its magnetic dipole interaction with an

external magnetic �eld [GJLS91a, UMT97]. Here, we solely consider the microresistor (or

microshort) and the magnetic dipole interaction as the origin of the pinning.

Thus, a combination of the potential due to the bias current and any other pinning

potential allows for the existence of metastable vortex states in the junction. The activation

of the vortex from these states is observable experimentally. The potential energy of the

vortex due to di�erent types of spatial inhomogeneities f(~x) is calculated and discussed in

detail in Section 6.2.

6.2 Vortex pinning potentials

The thermal activation rate of a Josephson vortex from a metastable state in a potential

depends sensitively on the potential barrier height U0 and the characteristic oscillation
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Figure 6.4: (a) Potential

energy pro�le U(�; x) of a

long Josephson junction in

zero �eld and without applied

bias current, left. A con-

tour plot of the same poten-

tial is shown on the right,

white corresponds to high en-

ergy, black to low energy. A

vortex trapped in the junc-

tion is indicated by the thick

line. The center of mass co-

ordinate of the vortex is indi-

cated by a solid disc. (b) Po-

tential energy in the presence

of a periodic magnetic �eld.

(c) Potential energy in the

presence of a magnetic �eld

and a bias current �
 close to

unity.
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frequencies !0 and !b. In this section, I discuss properties of vortex potentials induced by

an in-plane external magnetic �eld and a microresistor in combination with a bias current

homogeneously applied to the junction. A sketch of a typical annular junction as used in

experiment is shown in Fig. 6.5.

6.2.1 Magnetic-�eld induced potential

In Section 2.1.1, we derived the sine-Gordon equation of a linear junction in a homogeneous

external �eld H and found that the magnetic �eld drops out of the equation (@H=@x = 0),

but determines the boundary conditions. In the case of an annular junction, the magnetic

�eld is e�ectively space-dependent

@H

@x
=

@

@x
H cos

�
2�x

l

�
= �H 2�

l
sin

�
2�x

l

�
; (6.29)
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where l is the circumference of the junction. Here, the coordinate x is measured counter-

clockwise around the annular junction with x = 0 = l at the point where the magnetic

�eld points in the same direction as the outward normal on the junction circumference (see

Fig. 6.5b). Reconsidering Eq. (2.5) we �nd the additional term

�H�0�

L?

2�

l
sin

�
2�x

l

�
(6.30)

on the right hand side of the sine-Gordon equation (2.6). Rewriting the sine-Gordon equa-

tion as done in Section 2.1.1, we can express the magnetic �eld dependent perturbation

term in Eq. (2.15) as

fh(x) = �2�

�0

H�0��
2
J

2�

l
sin

�
2�x

l

�
(6.31)

or in normalized units

fh(~x) = �h�2�

`
sin

�
2�~x

`

�
; (6.32)

with the normalized junction circumference ` = l=�J , and the normalized magnetic �eld

h = H=H0, where

H0 =
�0

2��0��J
: (6.33)

We have introduced the arbitrary coeÆcient � into Eq. (6.32) as a geometry dependent

magnetic �eld coupling coeÆcient [MM96a], to take into account deviations in the e�ective

�eld, e.g. due to �eld focusing or similar e�ects. From the structure of Eq. (6.32), we

see that, in the sine-Gordon equation, the magnetic �eld interaction has the character of

a spatially modulated bias current, the amplitude of which is proportional to the external

�eld. The same result, but with an ambiguous �eld normalization, has been derived before

in Refs. [GJLS91a, MM96a].2

According to the lagrangian formalism discussed in Section 2.1.2, it is easy to see the

the potential due to the magnetic �eld ~Uh is of the form

~Uh =

Z
`

0
�~x�h cos

�
2�~x

`

�
d~x : (6.34)

This magnetic-�eld induced potential in the presence of a trapped vortex is illustrated in

Fig. 6.4b in the limit of ` � 1. The magnetic �eld induces a modulation of the potential

energy of the vortex in dependence on the coordinate x along the junction. At zero bias

current, the vortex center of mass coordinate is at the minimum of the potential energy.

Substituting the vortex solution �f into Eq. (6.34) and integrating, we �nd in the limit of

`� 1

~Uh(q) = �2�sech
 
�2

`

!
�h cos

�
2�q

`

�
; (6.35)

which is the potential energy ~Uh = �~~� � ~h of the e�ective normalized magnetic moment of

the vortex
���~~���� = 2�sech (�2=`) in the normalized external magnetic �eld ~h, see Fig. 6.5b.

The factor sech (�2=`) describes the spread of the magnetic moment in space. In the limit

2Here we note that the characteristic �eldH0 is inversely proportional to �J instead of re as in Chapter 3,
where a small junction was assumed. The di�erent cases remind of the di�erence in the �rst critical �eld
of a long and a short linear junction.
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Φ0
(a) (b)

ϕ
H

x

µ

external field

0
L

Figure 6.5: (a) External magnetic �eld applied in the plane of the annular Josephson junction.

(b) Dipole interaction between the external magnetic �eld and the magnetic moment associated

with the vortex.

of �J ! 0 (or equivalently `!1), the magnetic moment of the vortex is e�ectively local

and given by
���~~���� = 2�.

Thus, the normalized potential of a vortex in an annular junction in the presence of a

bias current and an in-plane external homogeneous �eld is given by

~U
h(q) = ~U
 + ~Uh = �2�
q � 2� sech

 
�2

`

!
�h cos

�
2�q

`

�
: (6.36)

This potential is plotted in Fig. 6.4c. The applied bias current tilts the potential both

in the direction of � and in the direction of x. The energy pro�le is plotted for a bias

current close to the critical one. It can be seen that the vortex can now be activated from

the magnetic-�eld induced well by thermal 
uctuations, resulting in a propagation of the

vortex along the x-direction. For the purpose of the following analysis it is convenient to

introduce the normalizations

�q = 2�q=`; (6.37)

�h = 2�sech

 
�2

`

!
�h; (6.38)

for the vortex coordinate q and the magnetic �eld h, resulting in a simpli�ed expression for

Eq. (6.36)
~U
h(�q) = �`
�q � �h cos(�q): (6.39)

The characteristic terms of the potential (6.39) are the cos �q-like oscillating term propor-

tional to the external �eld and periodic in the circumference and the term proportional to

the bias current and linear in the coordinate. This type of potential is known as the wash-

board potential, see Sec.6.1.2. In the range of 
 < 
h
c
, the potential has distinct minima

and maxima. At the critical bias3


h
c
=

�h

`
(6.40)

the potential has a set of saddle points. For 
 > 
h
c
, these disappear and the potential

decreases monotonically with �q. The coeÆcient of the linear term in Eq. (6.39) can be

expressed in terms of 
c and we can rewrite Eq. (6.39) as

~U
h(�q) = �h (��
�q � cos(�q)) ; (6.41)

3The critical bias can be found by solving U 0(�q) = 0 and �nding the condition at which no solutions to
this equation exist.
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Figure 6.6: Potential ~U
h(�q) (6.41) for �h = 1 and �
 = 0; 0:5; 0:9; 0:99. The minimum of the

potential (i.e. the lowest energy position of the vortex) is indicated by a solid circle. In the inset,

the position of the vortex with respect to the external �eld is shown for the di�erent values of �
.

where the bias current is now expressed relative to the critical bias 
h
c
as

�
 = 
=
h
c
: (6.42)

In Eq. (6.41), �h corresponds to the normalized interaction energy between the vortex

and the external magnetic �eld. The potential (6.41) is plotted in Fig. 6.6 for �h = 1 and

�
 = 0; 0:5; 0:9; 0:99. As the bias current is increased from �
 = 0, we observe that the

washboard potential is tilted proportionally to �
. At the same time, the position of the

minimum in the potential shifts from the position where the magnetic moment of the vortex

is aligned with the �eld to the position where it is perpendicular to the external �eld �
 = 1.

For �
 � 1, the vortex is depinned and rolls down the potential surface.

We note that the equation of motion for the center of mass coordinate �q of a vortex in an

annular junction subject to an in-plane external �eld is identical to the dynamic equation

of the phase � in a small Josephson junction [GJLS91b, UMT97].

Characteristic properties of the potential

In order to calculate the thermal activation rate (6.6) of the vortex from the magnetic-�eld

induced potential (6.41), the oscillation frequency !0 at the bottom of the well and the

barrier height U0 need to be determined in dependence on the bias current.

As pointed out before, the dynamics of the phase � in a small junction and the dynamics

of a Josephson vortex described by the coordinate �q in a long annular junction subject to an

external magnetic �eld are formally equivalent. Thus, we can establish a mapping between

the two di�erent physical systems. The characteristic features of the two potentials are

compared in Table 6.1. As a result, one can use the theoretical results obtained before for

small junctions to analyze the thermal activation of a vortex in the long junction case.
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Table 6.1: Mapping between a vortex in a magnetic-�eld induced potential and the potential for

the phase in a small junction.

quantity vortex phase

generalized coordinate �q �

potential U U(�q) = �hE0 (��
�q � cos(�q)) U(�) = EJ (�
�� cos(�))

potential scale �hE0 EJ

normalized bias current �
 = I

Ic

`

�h

 = I

Ic

potential barrier height U0 = �hE0 4
p
2

3
(1 � �
)3=2 U0 = EJ

4
p
2

3
(1� 
)3=2

small oscillation frequency !0 = !p

r
�h

~mf

(1� �
2)
1=4

!0 = !p (1 � 
2)
1=4

Following the calculations in Section 6.1.2 and identifying �q ! �, �h ! EJ , ~mf ! m�,

and �
 ! 
, we �nd the small amplitude oscillation frequency of the vortex of mass ~mf = 8

at �q0 as

~!
h0 =

vuut ~U
h00

(�q0)

~mf

=

vuut �h

~mf

�
1 � �
2

�1=4
: (6.43)

Similarly, the approximated barrier height ~U
h

0 is found as

~U
h

0 � �h
4
p
2

3
(1 � �
)3=2 : (6.44)

6.2.2 Microresistor (microshort) potential

A microresistor or a microshort in a long Josephson junction is formed by a locally increased

or decreased thickness of the tunnel barrier. An increase (decrease) in the barrier thickness

tj leads to an exponential decrease (increase) of the Josephson current density j0
c
with

respect to the surrounding region with current density jc, see Fig. 6.7a. We consider the

microresistor (microshort) as one of the possibilities to construct a pinning potential for

the vortex.

In the sine-Gordon equation (2.19), the microresistor (microshort) is modeled by the

perturbation term [MS78]

f �(~x) = �Æ(~x) sin� (6.45)

where � = (j0
c
� jc)b=jc�J is the normalized strength of the inhomogeneity. � depends

on the width b=�J and on the modulation of the critical-current density (j0
c
� jc)=jc at

the microshort (j0
c
� jc > 0) or microresistor (j0

c
� jc < 0), as shown in Fig. 6.7a. The

microresistor (short) contributes to the sine-Gordon hamiltonian (see Section 2.1.2) as

~H� = �
Z

`

0
�Æ( ~x0) (1 � cos (�)) d~x ; (6.46)

where the microresistor is spatially localized at the coordinate ~x0. Substituting the vortex

solution (6.23) into Eq. (6.46) and integrating, we �nd the e�ective potential for the vortex

[MS78, Mal88, MU90]

~U �(q) = � 2�

cosh2 q
: (6.47)
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Figure 6.7: (a) Critical-

current density vs. vortex

coordinate for a junction of

normalized length ` = 10.

The critical current is sup-

pressed by �jc over a length

of b, forming a microresistor.

(b) Attractive interaction po-

tential for the vortex in a

microresistor potential with

�jc = 0:5 and b=�J = 0:5.

As an example, the potential pro�le for a microresistor potential with � = 0:5 at zero bias
current is plotted in Fig. 6.7b. We note that the width of the potential well scales with the

Josephson length. Equation (6.47) describes the vortex potential even for inhomogeneities

which are not Æ-shaped. In fact, Eq. (6.47) is a good approximation to the potential for

microresistors with b < �J , since in this limit b only changes the amplitude of the potential

but not its shape.

Characteristic properties of the potential

Again, we are interested in the properties of the potential due to the bias current and the

microresistor

~U
�(q) = ~U
 + ~U � = �2�
q � 2�

cosh2 q
; (6.48)

which has been analyzed in Ref. [KI96], with the intention to study thermal activation and

macroscopic quantum tunneling. Here, I recapitulate some of those results and introduce a

normalization, which is more convenient for the analysis of the experimental data presented

in Section 6.4.3.

The critical bias, i.e. the bias at which the minimum of the potential (6.48) vanishes,

is given4 by


�
c
=

4

3
p
3�
�: (6.49)

Introducing the normalized bias current

�
 =




�
c

; (6.50)

4First the coordinate qc at which the saddle point of the potential would appear at the critical bias
is calculated. At this position, the �rst derivative of the potential is calculated. Finally, the equation
U 0(qc) = 0 is solved for 
 resulting in the value of the critical bias 
c.
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Figure 6.8: Potential ~U
�(q)

(6.51) for � = 0:5 and �
 =

0; 0:5; 0:9; 0:99. ~U
�(q) is

plotted in the range q =

[�3; 3]. The minimum of the

potential (i.e. the lowest en-

ergy position of the vortex) is

indicated by a solid circle.
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Eq. (6.48) can be rewritten as

~U
�(q) = 2�
�
c

 
��
q � 3

p
3

4

1

cosh2 q

!
: (6.51)

In Fig. 6.8, the potential (6.51) is plotted for di�erent values of �
. At �
 = 0, the half width

of the potential is about �J . As the bias current is increased, the potential barrier to the

right of the vortex is decreased and at �
 = 1 a saddle-point is formed. Here, the center of

mass coordinate of the vortex is only shifted by �q = arcsech(
q
2=3) � 0:66 to the right as

the bias current is increased to �
 = 1, whereas for the magnetic-�eld induced potential the

vortex moves a distance of �q = `=4 before it reaches the saddle point.

A cubic approximation to Eq. (6.47) yields a potential barrier height of

~U
�

0 = �
�
c

4
p
2

3
(1� �
)3=2 (6.52)

and a small amplitude oscillation frequency of

~!
�0 =

s
�
�

cp
2
(1 � �
)1=4: (6.53)

The approximate potential barrier height (6.52) is compared to a numerically exact calcu-

lation of ~U
�

0 in Fig. 6.9. Good agreement is found for the values of �
 of interest.

Introducing the normalized parameter

�� =
4

3
p
3
� ; (6.54)

~U
�

0 has the simple form

~U
�

0 = ��
4
p
2

3
(1� �
)3=2 : (6.55)
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Figure 6.9: Approximated

potential barrier height

(6.52) [dashed line] and

exact numerical calculation

of ~U
�

0 (solid line) versus �


for � = 0:5.

Noting that 2�1=4(1� �
)1=4 � (1� �
2)1=4 for �
 ! 1 we can also rewrite the small amplitude

oscillation frequency as

~!
�0 =

s
8��

~mf

(1 � �
2)1=4 : (6.56)

Thus, comparing Eqs. (6.55) and (6.56) with Eqs. (6.44) and (6.43), we �nd that the

microshort and magnetic-�eld induced potentials have the same type of dependence on the

bias current close to �
 = 1. We note that for the microresistor !0 is a factor of
p
8 � 2:83

larger with respect to the barrier height as in comparison with the case of the magnetic-�eld

induced potential, see Eq. (6.43).

6.2.3 Scaling of parameters

The characteristic properties ~U0 and ~!0 of the di�erent pinning potentials described above

scale in a similar way with the junction parameters and the bias current. No matter what

the speci�c properties of a certain potential are, its characteristic energy scale is given by

E0 =
�0jc�Jw

2�
; (6.57)

see Section 2.1.2. From Eq. (6.57) it is evident that the height of the potential barrier
~U0E0 and the mass of the vortex 8E0=�c2 are proportional to

p
jcw, where w is the junction

width and jc the critical-current density of the junction. For typical junction parameters

(see Table 6.2), we �nd that the potential barrier height scales with E0 � w � 1:0 �
10�20 J=�m, where the junction width w is given in �m. Because we consider thermal

activation processes, it is convenient to relate this energy to the thermal energy kbT . Thus
for the parameters discussed above, E0=kb is approximately w � 900K=�m.5 For the same

junction parameters, we �nd the vortex rest mass mf = 7 � w � 10�34 kg=�m. For a

w = 0:1�m junction, mf is approximately 0.1 percent of the rest mass of a single electron.

At zero bias current, the thermal escape of the vortex is strongly suppressed at the

typical operating temperatures (T < 9:2K) of our devices due to the large energy barrier,

5An energy of 1 Kelvin corresponds to approximately 86�eV.
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Table 6.2: Typical electrical and geometrical junction parameters.

quantity unit approximate value meaning

jc [A/cm2] 100 critical-current density

C? [mF/m2] 30 speci�c capacitance

d0 [nm] 182 magnetic thickness

r [�m] 50 mean junction radius

�J [�m] 38 Josephson length

` 8:3 normalized junction length

�L [nm] 90 London penetration depth

tj [nm] 2 barrier thickness

�j 8 barrier dielectric constant

which is more than 100 times larger than the thermal energy kbT . However, by applying a

bias current to the junction, the potential barrier height can be reduced to arbitrarily small

values, such that thermal escape may be observed for bias currents close to 
c, when the

barrier height is comparable to the thermal energy.

The value of E0=kb quoted above for a long Josephson junction is identical to the Joseph-
son coupling energy EJ=kb in a small junction with the area of w � �J and electrical pa-

rameters identical to those of the long junction. Thus, the thermal activation processes are

observable in similar parameter ranges for both systems.

The small amplitude oscillation frequency

!0 = ~!0!p: (6.58)

is proportional to the plasma frequency !p, which scales the rate of the activation process

as stated in Eq. (6.6). Typically !p=2� is around 50GHz, again, calculated for the junction

parameters in Table 6.2, and scales / p
jc. In comparison to the small junction case,

the vortex attempt frequency is somewhat reduced (~!0 < 1) for typical pinning potential

parameters. The vortex attempt frequency in the narrow potential of the microresistor is

larger than for the relatively broad potential in the magnetic-�eld case. We also note that

the small amplitude oscillation frequency is independent of the junction width w. This can

be easily understood considering Eq. (6.43) and noting that both the potential and the

mass of the 
uxon depend in the same way on w, such that the e�ect of w on !0 cancels.

During sample fabrication, E0 and !0 can be adjusted by the junction width w and the

critical-current density jc. w may be varied between several microns down to 0:3�m and

jc between 10A=cm2 and 1 kA=cm2. The scaling of E0 and !0 with jc and w is discussed

above. All other electrical sample parameters in Table 6.2 are fairly constant for a given

fabrication procedure and thus, cannot be varied much.6

Besides the identical scaling of all considered potentials with E0, we also �nd a similar

scaling of the potential barrier height and the small amplitude oscillation frequency with

the normalized bias current for �
 ! 1. This is a result of the cubic approximation, which

is valid for �
 ! 1 for all potentials discussed here. The potential barrier height

~U0 = ~u0
4
p
2

3
(1� �
)3=2 (6.59)

6The capacitance and the inductance of the junction might be in
uenced in some useful way by modifying
the idle region.
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Figure 6.10: Universal de-

pendence of ~U0 (dashed line)

and ~!0 (solid line) on �
 for

~u0 = ~
0 = 1.

scales universally with �
 for both the microresistor and the magnetic-�eld induced potential

as shown in Fig. 6.10. The same scaling prevails for the potential of the phase in a small

junction. Ideally, the potential barrier ~U0 can be made arbitrarily small by biasing close

to the critical bias current (
 ! 
c). Hence, in this parameter regime, the height of the

potential barrier can be tuned in a wide range depending on ~u0, w and jc.

Also, the characteristic attempt frequency

~!0 = ~
0

�
1 � �
2

�1=4
(6.60)

scales with the bias current identically for all discussed potentials. Its dependence on the

bias current is weak for small �
 and drops sharply to zero for �
 ! 1, as can be seen in

Fig. 6.10. Thus, the thermal activation rate increases strongly towards the critical bias,

due to the reduction of the barrier height, but then falls o� again due to the reduction of

the attempt frequency.7

The major di�erences between the vortex pinning potentials are due to the prefactors

~u0 and ~
0. For the magnetic-�eld induced potential the barrier height ~uh0 = �h can be

varied in experiment by the external magnetic �eld. In practice, the lower limit may be

given by h � 0:01 because of the residual (non-magnetic �eld induced) pinning forces due

to imperfections of the junction but also due to the limited accuracy of the �eld bias.

The requirements on the current and voltage resolution of the experimental setup are also

more stringent for measurements of small depinning currents at very low �elds, setting a

practical lower limit on the values of the �elds that can be employed. The upper limit

of h for which the above analysis is valid is approximately 0:5. Above this threshold

value, the magnetic �eld penetration into the junction will lead to forces on the vortex

which are not linear in the �eld. This modi�es the simple perturbative vortex dynamics

discussed above. The microresistor potential has a maximum amplitude of � = �1 for a

completely suppressed critical current. Because the potential involves a spatial modi�cation

of the junction barrier, its amplitude cannot be modi�ed in situ in an experiment, but only

7Obviously, this statement is only true in the limits of the validity of the thermal rate calculations, see
Section 6.1.1.
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during junction fabrication. In the case of a microshort (� > 0), the potential barrier

can in principle be arbitrarily large, though in practice this type of inhomogeneity is more

diÆcult to fabricate. Comparing the calculated attempt frequencies for similar values of

the depinning current for the two discussed potentials, we �nd that !0 is somewhat larger

(typically less than a factor of 2) for the microresistor potential (also see Sec. 7.1.1). This

fact can be qualitatively understood, noticing that the potential well is more localized for

the microresistor than for the magnetic �eld case. Thus, the curvature at the bottom of

the microresistor well is larger, leading to a higher attempt frequency.

6.3 Experimental technique

The thermal activation rate of a vortex from a potential well can be determined by mea-

suring its lifetime in a metastable state at �xed bias current. With no bias current applied

to the junction, the vortex is prepared at the bottom of the well at t = 0. Then, at time t0,

the bias current is rapidly increased to the desired value I < Ic. The increase in current has

to be much faster than the typical activation rate but slower than the relaxation rate of the

vortex in the well, to assure the preparation of the vortex in the ground state. Then, the life

time �t = tsw � t0 is determined by measuring the time tsw at which the junction switches

from the zero-voltage state to a �nite-voltage state. Repeating this measurement many

times, the activation rate is determined by the inverse average value of �t. This scheme

requires a fast and accurate control of the bias current. However, the band pass of the

experimental setup is typically limited by the low-pass �ltered bias leads needed to avoid

electromagnetic interference. Therefore, we chose a method which was pioneered in mea-

surements of switching currents of small Josephson junctions [FD74, WWVF84, MDC87].

6.3.1 Measurement method

A typical current-voltage characteristic of a vortex trapped in an annular junction subject

to some pinning potential is shown in Fig. 6.11a. In this case, the vortex is not depinned

(V = 0) until the switching (or depinning) current I0 is reached. The depinning process

has a statistical nature, due to the presence of thermal 
uctuation. Therefore, one observes

a distribution of depinning currents I0 (see Fig. 6.11b) instead of a single value I0 upon

performing the measurement many times. We measure the escape of the vortex from

the potential well, by sweeping the bias current at a �xed rate dI=dt with a triangular

waveform in time, see Fig. 6.11c. In each cycle of the current sweep, the depinning current

I0 is recorded. Statistically analyzing these data, we �nd the distribution of the depinning

currents [FD74].

With this technique, the temporal rate of escape can be associated with the rate of

escape at a certain value of bias current. Thus, the experiment can be done in the current

domain instead of the time domain, which is the experimentally most feasible approach.

It can be shown [FD74] that the probability distribution of the switching currents P (I) is

related to the escape rate �(I) as

P (I) dI =

�����dIdt
�����
�1

�(I)

 
1�

Z
I

0
P (I 0) dI 0

!
dI; (6.61)

i.e. the probability of the vortex to be activated in the current interval dI centered around

the current I is given by the rate of activation at that current �(I) multiplied by the inverse
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Figure 6.11: (a) Typical experimental current-voltage characteristic of a single-vortex resonance

with pinning. The switching (depinning) current I0 is indicated. (b) Probability distribution of

the switching current I0. The counts re
ect the relative probability of the depinning current I0 in

the interval I0 � �I=2. (c) Current and voltage versus time for the characteristic shown in (a).

The bias current is a triangular waveform with period T , the voltage is in correspondence to (a).

of the current sweep rate jdI=dtj and the probability that the vortex was not already

activated at a lower current. The integral equation (6.61) can be solved explicitly for

switching-current distribution

P (I) =

�����dIdt
�����
�1

�(I) exp

0
@�

�����dIdt
�����
�1 Z

I

0
�(I 0) dI 0

1
A : (6.62)

Thus, the probability distribution P (I) is dependent only on the activation rate �(I) and the

bias current sweep rate jdI=dtj. The shape, the mean value hIi and the standard deviation

�I of the switching-current distribution are characteristic for the activation process in the

given potential. The bias current dependent activation rate �(I) can be found from a

measured P (I) distribution by inverting Eq. (6.62). The details of the calculation of a

switching-current distribution P (I) from a given rate �(I) and the inverse problem for

data analysis are discussed later in this section.
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6.3.2 Experimental setup and data acquisition

All presented measurements have been performed in an insertable He-4 cryostat [Swa86],

the temperature of which can be stabilized between the base-temperature 1:5 K of the

cryostat and well above the critical temperature Tc � 9:2K of our niobium samples. The

cooling is done by pumping on a small helium volume (10 cm3), the so-called 1K-pot, which

is mounted in the vacuum chamber of the cryostat. The 1K-pot is continuously re�lled

with a capillary with an adjusted 
ow impedance, for optimizing the cooling power. For

temperature control, a 60
 manganin wire heater is installed below the 1K-pot. The

temperature is measured using a calibrated carbon-glass resistor. Using a PID controller

[Lak], the temperature can be stabilized to better than 5mK at temperatures below 2K

and to better than 1mK at all other temperatures of interest.

The sample is mounted on the cold �nger in the inner vacuum chamber of the cryostat.

A cryoperm shield is integrated into the vacuum can to e�ectively screen residual magnetic

�elds. A superconducting coil is mounted on the 1K-radiation shield, delivering a homoge-

neous �eld of 0:05Oe=mA in the plane of the sample. All sample wires are carefully twisted

in pairs and �ltered using commercial �-�lters with a -3 dB cut-o� at 700 kHz at room

temperature. Additionally, a symmetric RC-�lter stage with a cut-o� at 30 kHz mounted

on the 1K-pot was used.

The sample is current biased using a custom-made low-noise battery-powered current

source. The current can be swept at frequencies up to 100Hz using an analog internal tri-

angular waveform generator or, alternatively, an external generator [Hew]. The measured

voltages are ampli�ed using custom-made bipolar or FET preampli�ers. The monitor sig-

nals of the analog electronics are read out di�erentially using a 100 kS/s 16-bit AD converter.

The current biasing can be controlled by 16-bit DA converters on the same board [Natb].

All measurements are done using custom-made software to control the AD-DA converters

and any other required instruments [Nata].

The switching-current measurements are performed using two di�erent measurement

schemes, one relying on triggered high resolution AD-conversion, the other one using a

time-of-
ight technique. In both schemes, the bias current is swept synchronized to a

symmetric triangular waveform of adjustable amplitude and frequency, see Fig. 6.12a. Each

switching event is recognized by feeding the preampli�ed voltage signal from the sample,

see Fig. 6.12d, to a custom-made trigger circuit with adjustable threshold and window.

The trigger detects the switching of the sample from the zero-voltage state to a �nite-

voltage state which corresponds to the activation of the vortex from the potential well, see

Fig. 6.12c. The trigger provides a TTL output signal when the switching is detected. This

TTL signal is used to trigger the AD-conversion of the current-monitor signal, yielding the

switching current of the junction. The current resolution attainable with this technique is

limited by the resolution of the AD converter. In a typical measurement of a switching-

current distribution with a mean value of hIi = 0:5mA a sweep-frequency independent

resolution of 15 nA can be achieved with a 16 bit ADC.

In the time-of-
ight technique, the time delay �� between the zero-crossing of the bias
current (Fig. 6.12b) and the TTL signal of the voltage trigger (c) is measured using a counter

with a 20 GHz stabilized clock [Sta]. Knowing the current sweep rate, the switching current

can be calculated as Ic = �� dI=dt. This technique o�ers current resolution of

�s Is 0:1
pA

mAHz
; (6.63)
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Figure 6.12: (a) Triangular

current ramp. (b) Trigger

signal on current, Vtrig = 1

for I > 0. (c) Trigger sig-

nal on voltage, Vtrig = 1 for

V > 0 (d) Measured voltage

pro�le. The time between

the two rising trigger edges

is measured to determine the

critical current in the time-of-


ight technique.

that depends on the sweep rate. The sweep frequency �s is given in Hz and the sweep

amplitude Is in mA. At a typical sweep frequency of 100 Hz and a typical sweep amplitude

of 1 mA, the maximum current resolution of 10�11A = 10pA is in principle attainable with

this technique. At 100 Hz, this resolution is 3 orders of magnitude better than the one of

the 16 bit ADC. Only at sweep frequencies above 100 kHz the resolution of the ADC is

comparable or better than that of the time-of-
ight technique.

To verify that the time-of-
ight method and the method using an AD-converter for data

acquisition give the same results, I have measured the switching-current distributions of an

annular junction with a trapped vortex at 4:2K. The acquired histograms (symbols) and

�ts to theory (solid lines) are plotted in Fig.6.13. The two distributions are virtually iden-

tical and the e�ective escape temperature Tesc and the critical current Ic determined from

these histograms (see next section) are equal to better than 0.1%, proving the feasibility of

both measurement schemes.

6.3.3 Data evaluation: probability distributions, activation rates

and escape temperature

To determine the probability distribution P (I), N individual switching currents fIig =

fI1; I2; : : : ; INg are measured. Typically, 104 to 106 current values are acquired. Using

these data, a histogram is calculated by dividing the current range of interest between Imin

and Imax inM intervals of width �I and counting the number of switching events n in each

current interval (bin). A typical histogram is shown in Fig. 6.13.

To achieve the best possible resolution for the histogram based on a given data set fIig,
the bin width �I is chosen to be an integer multiplem of the discretization ÆI of the data

�I = mÆI: (6.64)
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Figure 6.13: The same switching-current dis-

tribution acquired with AD-converter (solid

squares) and with the time-of-
ight technique

(open circles). Solid lines are �ts to theory. For

better visibility the second set of data is o�set by

0:2�A�1.
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The discretization ÆI is due to the digital data acquisition system, which discretizes the

analog data either using an AD-converter or a counter. The minimumvalue of ÆI depends on
the maximum resolution of the AD-converter or equivalently, the time base of the counter,

as pointed out in the previous section.

Each bin j of the histogram is labeled by the current value corresponding to the middle

of the interval �I that the bin spans. The number of events nj in each bin is normalized by

the total number of counts in the histogram, re
ecting the relative probability of an event

occurring in the current interval �I. It is useful to normalize this quantity by the width

of the bin �I, giving the probability of a switching event occurring in an arbitrary current

interval dI

P (I) dI =
nj

N �I
dI: (6.65)

Thus, the probability distribution P (I) is normalized such that
R
P (I) dI = 1.

The activation rate �(I) is related to P (I) as

�(I) =
dI=dt

�I
ln

R1
I
P (I 0)dI 0R1

I+�I
P (I 0)dI 0

; (6.66)

which is found by solving Eq. (6.62) for �(I) [FD74]. Thus, the activation rate at the

bias current I can be calculated from the measured discrete probability distribution P (I)

according to

�(Ik) =
dI=dt

�I
ln

P
j�k Pj�IP

j�k+1 Pj�I
: (6.67)

The experimentally determined dependence of the activation rate (6.67) on the bias current

can then be compared to the theoretical predictions for the rate of the process under

consideration.

The nature of an escape process can be e�ectively characterized by assuming that it is of

thermal origin and calculating its e�ective escape temperature Tesc. According to Eq. (6.6),

the thermal escape rate of a 
uxon from a potential well of depth ~U0E0 is given by

�th = �a
~!0!p

2�
exp

 
�

~U0E0
kbTesc

!
: (6.68)
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Table 6.3: Parameters relevant for the calculation of histograms.

quantity unit description

N total number of switching currents

dI=dt [A=s] sweep rate of current

Ii [A] ith individual switching current

P (I) probability distribution of switching currents

�I [A] width of bin in P (I) histogram

Pj probability for jth interval of histogram

Knowing the dependence of ~U0 and ~!0 on the bias current I, any two experimentally relevant

parameters can be determined from the data with good accuracy. All other parameters have

to be supplied to the model and should be con�rmed independently in experiment. Usually,

the e�ective escape temperature Tesc and the critical current in absence of 
uctuations Ic
are determined from the measured switching current distribution P (I).

For the purpose of the experimental data analysis, we transform Eq. (6.68) to the form

ln
2��

�a~!0!p
=

E0
kbTesc

~U0: (6.69)

Substituting the approximated potential barrier height

~U0 = ~u0
4
p
2

3
(1� �
)3=2 (6.70)

into Eq. (6.69), we �nd an expression for the activation rate which is to �rst order linear

in �


 
ln

2��

�a~!0!p

!2=3

=

 
E0

kbTesc
~u0
4
p
2

3

!2=3

(1 � �
) : (6.71)

The dependence of the left hand side of Eq. (6.71) on the bias current is only logarithmically

weak and can be neglected in the �rst approximation. Hence, the left hand side of Eq. (6.71)

is evaluated using the data �(I) calculated from the measured probability distribution P (I)

and the dependence of ~!0!P on the bias current using an estimated value of Ic.
8

In a next step, the experimental data obtained in that way can be �tted to the right

hand side of Eq. (6.71), which is a linear function of the bias current. Using a �tting

function of the type f(�
) = cconst � clin�
, both Tesc and Ic can be determined as

Tesc =
1

c
3=2

lin

E0
kb
~u0; (6.72)

Ic = jcA
c =
cconst

clin
: (6.73)

Using the calculated value of Ic, we recursively iterate the �tting procedure starting with

the calculation of the left hand side of Eq. (6.69) to improve the accuracy of the �t. Due

to the weak dependence of the procedure on Ic, the iterations converge quickly to the �nal

8E.g. Ic can be approximated by hI0i in the �rst iteration.
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10 µm

5 µm

Figure 6.14: 5 � 5�m2 square Josephson junc-

tion with 2:5�m wide idle region and 10�m wide

bias lines.

accurate value. If the experimental data are appropriate, the determined Tesc is identical

to the thermal bath temperature T .

For the purpose of data analysis, a program has been implemented [Wol] which calculates

histograms from raw data and determines current dependent activation rates from them.

Moreover, the experimental data can be �tted to extract any two relevant parameters, e.g.

Tesc and Ic. It is also possible to calculate thermal and quantum switching-current distri-

butions on the basis of supplied junction parameters and the temperature. The program

has been adjusted to work with data for the activation of the phase in a small junction, of

a vortex from a �eld induced potential and of a vortex from a microresistor potential.

6.4 Experimental results

First, I present experimental results on the thermal activation of the phase in a small

square Josephson junction and prove that the newly developed experimental setup, the

measurement technique and the data analysis provide reliable results. Next, the thermal

activation measurements of vortices are presented and the results are discussed in detail.

6.4.1 Small junction

The switching-current distributions of a 5� 5�m2 square Josephson junction fabricated at

Hypres Inc. [Hyp] with a nominal current density of jc = 1kA=cm2 have been measured

at temperatures between 1:6 and 7:5 Kelvin. The sample geometry is shown in Fig. 6.14.

Due to the fabrication technology, the junction is surrounded by a symmetric 2:5�m wide

idle region. The general geometrical and electrical properties of this junction and its idle

region correspond to those discussed already in detail in Section 4.2. The sample is biased

via two long superconducting lines of 10�m width.

Sample properties

To electrically characterize the sample, its current-voltage characteristics have been mea-

sured at temperatures between 1:6 and 10 Kelvin, see Fig 6.15a. From these data, we have

evaluated the critical current Ic,
9 the current jump at the gap Ig, the normal resistance Rn

and the subgap resistance Rsg according to the procedure described in Ref. [DEK+99]. In

Fig. 6.15b, the dependence of Ic (solid squares) and Ig (open circles) on the temperature

are plotted. The critical current can be �tted well to the Ambegaokar-Barato� dependence

[AB63a, AB63b] with Tc � 8:55K and Ic � 310�A. The current jump at the gap voltage

also follows well the Ambegaokar-Barato� dependence with Tc � 8:75K and Ig � 474�A,

though there are small deviations in the intermediate temperature range. These devia-

tions are due to the modi�ed quasiparticle density of states at the gap, which is a result

9In these measurements, a single realization of the switching current I0 is identi�ed with the critical
current Ic.
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Figure 6.15: (a) Current-voltage characteristic of a 5� 5�m2 square Josephson junction in the

temperature range between T = 1:6 K and T = 10 K. (b) Experimental critical current Ic (solid

squares) and gap current Ig (open circles) vs. temperature. The solid lines are �ts according

to the Ambegaokar-Barato� theory [AB63a, AB63b]. Crosses indicate the ratio Ic=Ig. (c) Gap

voltage Vg (solid squares) and �t according to theory [M�uh59] (solid line). (d) Normal resistance

Rn (open circles) and subgap resistance Rsg (solid squares) on a logarithmic scale.

of the proximity induced superconductivity in the non-oxidized aluminum of the barrier

[GHG+95, ZLZ+99]. This is also well seen from the double-gap structure in the current-

voltage characteristics at 7, 8, and 8:5 K in Fig. 6.15a. Also plotted in Fig 6.15b is the

ratio Ic=Ig, which for low temperatures is approximately 0:66 indicating a good junction

quality and no (or only a small) reduction of the critical current due to trapped 
ux or self-

�elds. The dependence of the gap voltage Vg on temperature also �ts well the theoretical

expectations [M�uh59], see Fig. 6.15c.

The subgap and the normal resistance are determined from the current-voltage charac-

teristics. The subgap resistance needs to be known in order to estimate the in
uence of
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Figure 6.16: (a) Measured switching-current distributions (symbols) and �ts (solid lines) at
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in dependence on the reduced bias current I � Ic. Fits to the experimental data are indicated by

solid lines.

damping on the thermal activation of the phase. In Fig. 6.15d, both Rn (open circles) and

Rsg (solid squares) are plotted vs. temperature on a logarithmic scale. In good approxima-

tion Rsg decreases exponentially with temperature from about 660
 at 2 Kelvin to 6:6

at 8:5 Kelvin re
ecting the exponential suppression of the quasiparticle tunnel current with

decreasing T , whereas Rn � 6:6
 is temperature independent as expected.

Thermal activation of the phase

At each of the temperatures T =1.66, 1.91, 2.87, 3.95, 5.11, 6.18, and 7.45 K, we measured

104 switching currents with a bias current sweep rate of dI=dt = 0:16A=s. The data

were digitized using a 12-bit AD-converter10 and histograms were calculated using the

discretization of the data acquisition as bin width. The measured normalized switching-

current distributions are plotted in Fig. 6.16a. With increasing temperature, the width

of the distributions increase while the maximum current decreases. This observation is in

agreement with the qualitative expectations.

Using the analysis described in Section 6.3.3, the e�ective temperature Tesc of the ther-
mal escape and the critical current Ic in absence of thermal 
uctuations are determined.

The thermal activation rate of the phase from the potential (6.14) close to the critical

10For these initial measurements, no higher resolution ADC or counter was available in our lab.
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current Ic is given by

�(I) = �a
!
�

0 (I)

2�
exp

 
�U

�

0 (I)

kbT

!
; (6.74)

which is evaluated by substituting the expressions (6.15) and (6.19) into Kramers formula

(6.6). According to the scheme outlined in Section 6.3.3, we �rst calculate the quantity

�norm(I) =

 
ln
2��exp(I)

�a!
�

0 (I)

!2=3

(6.75)

using the rate �exp(I) (6.67) determined from the probability distribution P (I) of the

measured data. We use the mean value of the switching-current distribution hI0i as a

�rst estimate of Ic to calculate the current-dependent small amplitude oscillation frequency

!�0 (Ic; I). For the calculation of the plasma frequency !p(Ic; C), the total capacitance of

the junction is determined as C = 2pF.11 The e�ect of the exact value of C on the

experimental results is discussed in some detail later. Additionally, we set �a = 1 and

consider the damping dependence of the activation at the end of this section. The resulting

experimental �norm(I) data are plotted with a current o�set of �Ic in Fig. 6.16b. As a �rst
observation, we �nd that the data are approximately linear in the bias current. Thus, we

conclude that the cubic approximation of the potential is valid for this experiment. Next,

the experimental data �norm(I) are �tted to the expression

 
EJ

kbTesc

4
p
2

3

!2=3
1

Ic
(Ic � I) : (6.76)

The solid lines in Fig. 6.16b are linear �ts of the form f(I) = cconst � clinI to the data

(symbols). From the two �t parameters cconst and clin, we determine Ic and Tesc as

Ic =
cconst

clin
; (6.77)

Tesc =
1

kb

�0

2�

4
p
2

3

1

c
1=2
constclin

: (6.78)

The resulting escape temperatures for di�erent bath temperatures T are plotted in Fig. 6.17a

(solid squares). For comparison, the curve Tesc = T (solid line) is also plotted in the same

�gure. The error bars associated with Tesc are calculated from the root mean squared statis-

tical error of the �t to the experimental data. Obviously, we �nd good agreement between

the physical bath temperature T and the experimentally determined escape temperature

Tesc.

In Fig. 6.17b, the mean value of the switching current hI0i (solid squares) is compared

to the �tted value of the critical current Ic (open triangles). Clearly, the value of Ic cor-

responding to the value of current at which the potential barrier disappears (for T = 0) is

larger than hI0i due to the presence of the thermal 
uctuations. Both sets of data �t well to

the Ambegaokar-Barato� temperature dependence with Tc = 8:7K and I(0)
c

= 320�A for

the critical current Ic and Tc = 8:55K and hI0i(0) = 310�A for the mean switching current

11The total junction capacitance was estimated from the maximumvoltages of single-vortex resonances in
long junctions on the same chip. This is one of the most accurate techniques to determine C [Lee91, LB92].
Hypres Inc. [Hyp] quotes a speci�c capacitance C? = 38 fF=�m2 for their samples, which is in good
agreement with our measurements that give C? = 40 fF=�m2.
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Figure 6.17: (a) Fitted escape temperature Tesc (squares) vs. thermal bath temperature Tbath.

The solid line indicates the expected dependence Tesc = T . (b) Mean switching current hI0i
(solid squares) and critical current Ic (open triangles) vs. temperature. Solid lines are �ts to the

Ambegaokar-Barato� dependence of the critical current on the temperature. In the inset hI0i=Ic
is plotted vs. T .

hI0i. Moreover, we observe that the ratio hI0i=Ic plotted in the inset of Fig. 6.17b is close

to unity for all temperatures, which is another evidence for the validity of the cubic ap-

proximation to the activation potential. A clear suppression of the mean switching current

hI0i with respect to the 
uctuation-free critical current Ic is observed. The suppression is

stronger for higher temperatures.

To cross-check the data evaluation procedure, the values of Tesc and Ic determined from

the �ts have been used to calculate the switching-current distribution P (I) by numerically

integrating Eq. (6.62) using the rate (6.74). The resulting calculated distributions are shown

in Fig. 6.16a by solid lines. Excellent agreement between data and simulations is found.

Here, we note that the only parameters supplied to the self-consistent evaluation of Tesc
and Ic are the total junction capacitance C and the current sweep rate dI=dt. The latter

is accurately controlled in experiment. To check the in
uence of the capacitance C on the

result, we have repeated the data analysis doubling and dividing by two the value of C

quoted above. We �nd that, due to the logarithmically small e�ect of the value of C on the

normalized rate (6.75), the resulting changes in Tesc or Ic are less than 1 % at all measured

temperatures and thus, can be neglected with respect to the other experimental errors.

Finally, we consider the damping dependence of the transmission coeÆcient �a, which

was initially neglected. We note that, similar to the in
uence of the capacitance, it has

only a logarithmically weak e�ect on Eq. (6.75). For a worst case estimate, we consider the

highest temperature, i.e. the highest damping a = 1=RsgC, and the attempt frequency at

the most frequent switching current !�0 (hI0i).12 We estimate �a � 0:86 using Eq. (6.7). For

the lowest temperature T = 1:66 K, the transmission coeÆcient �a � 0:998 is almost unity.

The correction resulting from transmission coeÆcients 0:85 < �a < 1 to the quantities of

12!b = !0 in the cubic approximation.
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interest here is much smaller than 1% and thus, is neglected in this analysis.

In summary, the switching-current distributions of a small junction have been evalu-

ated self-consistently to �nd the critical current Ic and the e�ective temperature Tesc of

the thermal escape of the phase. The parameters dI=dt and C have been accurately deter-

mined in separate measurements, allowing for a data analysis with no free parameters. The

determined escape temperatures are, within the experimental errors, identical with the re-

spective thermal bath temperatures. At low temperatures (< 3K), a small deviation of Tesc
to larger values is observed, possibly indicating the existence of residual electromagnetic

noise.

Thus, we have shown that our measurement setup and our data analysis scheme are well

suited for switching-current measurements (in the range of a few 100�A) in the thermal

activation regime.

6.4.2 Magnetic-�eld induced vortex potential

We have performed measurements of the thermal activation of a single vortex trapped in

an annular Josephson junction subject to an in-plane external �eld. The magnetic dipole

interaction of the vortex with the external �eld giving rise to an e�ective pinning potential

is described in detail in Section 6.2.1. We have performed systematic measurements on

the most narrow junction (A) of the set of samples listed in Table 4.1, which have been

examined with respect to their static and dynamic properties in Chapters 3 and 4.

Sample properties

We consider sample A, which has a mean radius of �r = 48:5�m and a width of w =

3�m. The current-voltage characteristics and the critical-current di�raction patterns of the

junction without trapped 
ux are plotted in Figs. 6.18 a and b at temperatures between

1:66 and 8:5 Kelvin. The critical-current di�raction pattern is regular and symmetric

indicating a good junction quality and a homogeneous bias current distribution. From the

di�raction patterns, we have determined the magnetic thickness of the junction as � �
200 nm, see Chapter 3. The normal resistance of the junction Rn � 0:65
 is temperature

independent and its subgap resistance scales exponentially with T , see Fig. 6.18c. The low
subgap resistance indicates good barrier quality and small quasiparticle damping at low

temperatures. In Fig. 6.18d, the critical current Ic of the junction13 at zero �eld (solid

squares) is plotted versus temperature. Good agreement with the theoretically expected

Ambegaokar-Barato� dependence (solid line) is found with Tc = 9:05K and I(0)
c

= 1:53mA.

We have estimated the critical-current density of the sample as jc = Ic=A � 1:6�102A=cm2,

with the junction area given by A = 2��rw. The current jump at the gap Ig, evaluated

according to Ref. [DEK+99], is indicated in the same plot by open circles. Its temperature

dependence is not well described by the Ambegaokar-Barato� dependence, probably due

to a strong proximity e�ect [GHG+95, ZLZ+99] which is consistent with the large knee-

structure observed at the gap-voltage in Fig. 6.18a. In the full temperature range, the ratio

Ic=Ig (stars in Fig. 6.18d) is comparable to the value found for the small junction in the

previous section. This indicates that the critical current is not substantially reduced by

self-�eld e�ects or trapped 
ux.

13In these measurements, a single realization of the switching current I0 is identi�ed with the critical
current Ic.
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Figure 6.18: (a) Current-voltage characteristic of sample A at di�erent temperatures. (b) Critical-

current di�raction patterns at the same temperatures. (c) Normal resistance Rn and subgap

resistance Rsg vs. temperature. (d) Critical-current Ic and gap current Ig vs. temperature. Solid

lines are comparison to Ambegaokar-Barato� theory. Stars indicate the ratio Ic=Ig.

As shown in Chapter 4, the junctions can be prepared in a single-vortex state, which

is identi�ed by its current-voltage characteristic and critical-current di�raction pattern.

The single-vortex resonances at zero �eld are plotted in Fig. 6.19a for the same set of

temperatures. The maximum voltage of the step is Vmax � 85�V at low temperatures,

from which we estimate an approximate speci�c junction capacitance of C? � 25 fF=�m2.

From the shape of the current-voltage characteristic, the e�ective damping parameters �

and � can be deduced by a �t to perturbation theory, see Section 2.2. The critical-current

di�raction patterns in Fig. 6.19b are further evidence for a single vortex being trapped in

the junction, see Section 3.2.2.

In the following, I analyze the switching-current distributions of this junction with a

trapped vortex for �elds smaller than 0:5 Oe, i.e. in the regime in which the critical current
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Figure 6.19: (a) Single-vortex current-voltage characteristic of sample A at di�erent tempera-

tures. (b) Critical-current di�raction patterns at the same temperatures.

depends approximately linearly on the external �eld, see Fig. 6.19b. In this regime, the

switching of the junction from zero voltage to �nite voltage is associated with the activation

of the vortex from the �eld induced potential well.

Thermal activation measurements

We have performed switching-current measurements at the temperatures T = 2, 4 and 6 K

in an in-plane external �eld between 0.058 and 0.464 Oe aligned parallel to the junction bias

leads, see Fig. 6.5a. The �eld was generated with a current biased cylindrical coil with a

�eld coeÆcient of 0:058Oe=mA. At each temperature and �eld value, 104 switching currents

were measured using the technique described in Section 6.3. The data were acquired using a

16-bit AD converter, resulting in a substantially better current resolution as in comparison

with the measurements described in the previous section.

As a typical set of data, the switching-current distributions P (I) for H = 0:232Oe at

T = 2, 4 and 6 K are plotted in Fig. 6.20. The histograms have been calculated from the

raw data grouping switching currents into bins of width �I = 120 nA, which corresponds

to m = 4 times the intrinsic data discretization of ÆI � 30 nA. In Fig. 6.20 a to c, the

distributions are plotted in a range of 5�A around the maximum of the distribution, to

allow a qualitative comparison of the histograms. The narrowing of the distribution with

decreasing temperature due to the reduced thermal 
uctuations is clearly observed, while

the area under the histogram corresponding to the total switching probability
R
P (I)dI = 1

is conserved.

For further data evaluation, the normalized activation rate

�norm(I) =

 
ln
2��exp(I)

�a~!

h

0 !p

!2=3

(6.79)

is calculated using the same procedure as discussed in the last section, but considering the

attempt frequency ~!
h0 which is speci�c for the magnetic-�eld induced vortex potential. In
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Figure 6.20: Measured switching-current distributions (symbols) atH = 0:23Oe and (a) T = 6K,

(b) T = 4K and (c) T = 2K. Experimental normalized activation rates �norm(I) (open symbols)

and �ts (dashed lines) to extract the escape temperature Tesc and the depinning current Ihc . The

calculated probability distributions P (I) are indicated by solid lines.

Fig. 6.20, we observe a linear dependence of �norm(I) on the bias current indicating the

validity of the cubic approximation of the potential. We note that the slope of the data

depends on the bath temperature T . Linear �ts to �norm(I) are indicated by dashed lines

in the same plots. The data were �tted using the square root of the number of events nj
registered in each bin as weighting factors, re
ecting the Poisson statistics of the probability

distribution. From the �ts, both the constant and linear term including the errors associated

with the �t are determined. Obviously, at high temperatures, the data are �tted well. At

the lowest however instead, we observe a deviation of the data from the linear dependence

at low and at high bias currents. This deviation indicates an excess of switching current

events at these bias currents. This e�ect can be explained by a gaussian broadening of

the switching-current distribution due to spurious non-thermal electromagnetic noise in the

measurement setup.

Comparing the data extracted from the �ts to the expected dependence of the normal-

ized activation rate on the current given by

 
E0

kbTesc
`
h

c

4
p
2

3

!2=3 
1� I

Ic
hc

!
; (6.80)
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we can extract both the escape temperature Tesc and the depinning current Ih
c
= Ic


h

c
,

where Ic is the critical current of the junction at zero �eld and without trapped 
ux. Using

the constant and linear coeÆcients (see previous section) determined from the �ts to the

data, we �nd both quantities as

Ih
c

=
cconst
clin

; (6.81)

Tesc =
1

kb

�0

2�

4
p
2

3

1

c
1=2
constclin

; (6.82)

where we have substituted the de�nitions of E0, ` and 
h
c
. The determined expressions

are identical to those found for the small junction but with the reduced critical current

Ih
c
= 
h

c
Ic, see Section 6.4.1. The attempt frequency !


h

0 can be rewritten as

!
h0 =

s
�0

2�

Ic
hc
C

vuut `

~mf

0
@1�

 
I

Ic
hc

!2
1
A
1=4

: (6.83)

We notice the reduction of the attempt frequency by the factor
q
`= ~mf in comparison

with the small junction case with reduced critical current Ih
c
. Thus, for the accurate data

analysis, not only the junction capacitance C but also the Josephson length �j (inductance

L?, current density jc) and the junction geometry are parameters to be supplied to the

model. All other parameters can be determined self-consistently from the data.

The escape temperatures calculated from the experimental data according to Eq. (6.82)

are shown in Fig. 6.21a for the di�erent bath temperatures and magnetic �elds in the

range of H = 0Oe to 0:5Oe. The error bars indicate the uncertainty in the value of Tesc
calculated from the errors in cconst and clin. We observe a clear scaling of Tesc with the

bath temperature T . At high temperatures 4 and 6 Kelvin, the experimentally determined

values of Tesc are within 0:5K of the thermal bath temperatures T (indicated by dashed

horizontal lines) for all values of the magnetic �eld. The measured escape temperature

corresponds to the thermal bath temperature with a relative accuracy of about 10 %. At

the lowest temperature however, the �tted Tesc is notably higher than the bath temperature.

As noticed already in Fig. 6.20c, the measured current distribution is not as well described

by the theory at 2 Kelvin as it is at the higher temperatures. One of the reasons is the

residual electromagnetic noise in the biasing circuits of the junction, which is broadening the

switching-current distributions. This e�ect is noticed in the more narrow distributions at

low temperatures and at small �elds. Thus, the experimental setup used in this particular

measurement allows for accurate analysis of switching-current distributions with a full width

of approximately 0:5�A at half of the maximum height of the probability distribution.

Better results should be achieved with improved �ltering and analog electronics.

At every bath temperature, we observe a systematic increase of the escape temperature

with decreasing magnetic �eld. These e�ects suggest a dependence of the escape process

on the potential barrier height. They may possibly be explained by a change of the vortex

shape due to the external �eld, which is not taken into account in the collective coordinate

model. In the model, we have considered the e�ect of the magnetic �eld in terms of a

perturbation, which only acts as an external force on the rigid vortex but does not change

its shape.

Another possible reason for the observed increase in the e�ective escape temperature

may be the existence of an additional magnetic-�eld independent pinning force acting on the
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Figure 6.21: (a) Escape temperatures Tesc (open symbols) and (b) depinning current Ihc (closed

symbols) in dependence on the externally applied magnetic �eld at temperatures T = 2 (triangles),

4 (squares), and 6 (circles) K. In (a) the respective bath temperatures are indicated by dashed

horizontal lines.

vortex. A possible origin of such a force could be the interaction of the vortex with the bias

leads. We are planning experiments in which the coordinate at which the vortex is depinned

may be changed by varying the angle at which the magnetic �eld is applied to the sample.

In this way, the pinning of the vortex at the edges of the bias leads may be avoided. The

pinning at the junction edges was analyzed qualitatively using low temperature scanning

electron microscopy [MDP+98].

Recently, we have shown theoretically [FCC+00] that a localized magnetic-�eld inde-

pendent contribution to the pinning potential can lead to an e�ective enhancement of the

activation rate at low �elds. In this regime, the modi�ed escape temperature is given by

T ?

esc = Tesc

 
1� 2

3

I?
c
(0)

Ih
c
(H)

!�1
; (6.84)

where I?
c
(0) is the depinning current of the vortex in zero �eld. For an ideal junction

I?
c
= 0. For I?

c
6= 0 however, the e�ective escape temperature is increased at low H. In

Fig. 6.22, the measured escape temperatures at 4 and 6 Kelvin are �tted to Eq. (6.84)

considering a residual critical current of 20 percent of the critical current at the lowest

measured �eld. Thus, the residual �eld-independent pinning may explain the increase of

the measured escape temperature at low �elds. The data for the lowest temperature is not

well explained by this model, strengthening the suggestion that electromagnetic noise has

in
uenced those measurements.

The depinning currents Ih
c
(H) are plotted versus the magnetic-�eld in Fig. 6.21b. The

dependence is qualitatively similar to the one shown in Fig. 6.19b, however the Ih
c
values are

clearly larger than the mean switching currents hI0i. Calculating the ratio hI0i=Ihc we �nd
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Figure 6.22: Escape temperatures at

T = 4 K (open squares) and 6 K (open

circles) with �t (solid lines) according

to Eq. (6.84).

values between 0:96 for high temperatures and low �elds up to 0:99 for low temperatures

and high �elds. As for the small junctions, the reduction of the transmission coeÆcient

�a due to damping can be neglected. The worst case analysis for temperatures close to Tc
yields a reduction of �a to about 0:85. For lower temperatures, �a quickly approaches unity

for the high subgap resistance samples used here. Nevertheless, an experiment may be set

up to observe the e�ect of the damping, e.g. by decreasing �a to values smaller than 0:5,
by working in the high temperature limit or with junction speci�cally prepared to have a

low subgap resistance.

6.4.3 Vortex in a microresistor potential

In the set of measurements described in this section, we observe the thermal activation of a

vortex pinned at a microresistor. The properties of the potential well considering an ideal

microresistor are discussed in Section 6.2.2.

Sample properties

We have designed annular Josephson junctions with a width of 3�m and a mean radius of

�r = 18:5�m. The junction contains a microresistor in the location indicated in Fig. 6.23a.

The microresistor is realized by a b = 3�m wide break in the upper trilayer electrode which

is then �lled by depositing tp = 200 nm SiOx [GF84, VDKS88]. The whole ring is covered

by the wiring layer. In Fig. 6.23b, a cross-section along the length of the junction is plotted

in the region of the microresistor.

The current-voltage characteristics of the sample without trapped 
ux are plotted in

Fig. 6.24 at di�erent temperatures. Also shown are the critical-current di�raction pat-

terns which were acquired with the �eld applied in parallel to the junction bias leads, see

Fig. 6.23a. The critical-current patterns are regular and symmetric. No observable change

in the patterns due to the microresistor is noticed. From the patterns, we determine a

magnetic-�eld penetration depth of � � 200 nm.
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Figure 6.23: (a) Top view of an annular junction with a microresistor realized by a break in the

top trilayer electrode in the position indicated by an arrow. (b) Cross-section along the junction

length in the region of the microresistor.

Using the usual methods, we have determined the critical current Ic, the gap cur-

rent Ig, the normal resistance Rn and the subgap resistance Rsg from the current-voltage

characteristics. As observed for all other samples, the Ic(T ) dependence �ts well to the

Ambegaokar-Barato� theory with I(0)
c

= 3:4mA and Tc = 9:05K, see Fig. 6.25a. The ratio
Ic=Ig is approximately 0:6 indicating good junction quality and no, or only negligible, sup-

pression of the critical current by trapped 
ux or self-�eld e�ects. Considering the junction

area A = w(2��r � b), we �nd a critical-current density of jc � 1:00 kA=cm2. The normal

resistance of the sample is approximately Rn � 0:53
. The subgap resistance changes

exponentially with temperature between Rsg = 75
 at 2K and Rsg = 0:85
 at 8:5K.

Single vortices could be trapped reproducibly in the junction. The low-current and

low-voltage part of the junction characteristics with a single trapped vortex are plotted

in Fig. 6.26a. At low temperatures, we observe a rich �ne structure on the single-vortex

resonances. In the dynamic state, the vortex generates plasma excitations in the junction

due to the interaction with the microresistor. The high-voltage part of the �ne structure

may be explained by the geometric whispering gallery resonances of junction [WUK+00].

The lower voltage resonances are similar to those discussed in Ref. [Ust96, UT97]. From

the maximum voltage of the single-vortex resonance Vmax � 187�V, we have estimated the

e�ective capacitance of the junction as C? = 40 fF=�m2.

In comparison with the critical-current di�raction pattern without trapped vortex (see

Fig. 6.24b), the pattern with a single trapped vortex is drastically modi�ed. As usual, the

critical current around zero �eld is suppressed in the presence of the vortex. However, we

observe a peculiar dependence of the depinning current Ic on H at very small �elds. In the

positive �eld direction Ic is reduced, whereas in the negative direction Ic is increased. This

e�ect can be understood qualitatively by considering the sum of the magnetic-�eld induced

potential and the microresistor potential. For one �eld direction, the depth of the well is

increased whereas for the other one, the depth is e�ectively decreased leading to a change

of the depinning current. The dependence of the depinning current on the magnetic-�eld

amplitude and on the direction is to be studied further. Here, we only consider the H = 0

case.
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Figure 6.24: (a) Current-voltage characteristics of the sample at temperatures between 2.0 and

8.5 Kelvin. (b) Critical-current di�raction patterns without trapped 
ux at the same temperatures

as in (a).
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Figure 6.25: (a) Critical current Ic (open circles), gap current Ig (open squares) and the ratio Ic=Ig
(stars) vs. temperature. The solid lines are �ts to the Ambegaokar-Barato� Ic(T ) dependence.

(b) Normal Rn (open circles) and subgap resistance Rsg (solid squares) on a logarithmic scale vs.

temperature.
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Figure 6.26: (a) Current-voltage characteristics of single-vortex resonances at various tempera-

tures. (b) Critical-current di�raction patterns with trapped vortex.

Thermal activation measurements

We have measured the thermal activation of a single vortex from the microresistor potential

in the sample discussed above at temperatures between 2 and 8 Kelvin. At each tempera-

ture, 104 switching currents have been acquired using the time-of 
ight technique discussed

in Section 6.3. The current sweep rate was adjusted to 0:8A=s. Two typical switching-

current distributions at T = 2K and at T = 6K are plotted in the lower part of Fig. 6.27.

As before, we observe the broadening of the switching-current distribution with increasing

temperature. For a quantitative analysis we calculate the normalized activation rate

�norm(I) =

 
ln
2��exp(I)

�a~!

�

0 !p

!2=3

; (6.85)

using the measured switching-current distributions. The experimentally found dependence

of �norm(I) is plotted in the upper part of Fig. 6.27. Again, we observe that �norm(I) is
linear in the bias current I, indicating that the cubic approximation of the microresistor

pinning potential is valid. Fitting these data linearly, we determine the two coeÆcients

clin and cconst. Comparing the �t to the expected current dependence of the normalized

activation rate

�norm(I) =

 
E0

kbTesc
�
�

c

4
p
2

3

!2=3 
1� I

Ic
�c

!
; (6.86)

we have determined the depinning current I�
c
= Ic


�

c
and the escape temperature Tesc as

I�
c

=
cconst

clin
; (6.87)

Tesc =
1

kb

�0

2�

�

`

4
p
2

3

1

c
1=2
constclin

: (6.88)
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Figure 6.27: Normalized

activation rate �norm(I)

and switching-current dis-

tributions P (I) at T = 2K

(circles) and T = 6K

(squares). Solid lines are �ts

to the data.

In Fig. 6.28a, the depinning current I�
c
is plotted versus the bath temperature . Due to

the temperature dependence of the pinning potential �, I�
c
follows well the expression

I�
c
(T ) / jc(T )


�

c
(T ) / jc(T )

3=2
q
�L(T ) (6.89)

with Tc = 9:4 K and I�
c
(T = 0) = 692�A, see solid line in Fig. 6.28a. The error bars

indicate the statistical error of I�
c
which is determined from the �t to �norm(I). The value

of the mean switching current hI0i with respect to I�
c
is plotted in Fig. 6.28. We clearly

observe a reduction of hI0i=I�c with increasing temperature due to the increasing thermal


uctuation.

The e�ective escape temperature Tesc calculated from the data according to Eq. (6.88)

is in good approximation linear in the bath temperature T . However, we �nd from our

measurements that Tesc is systematically about 65 % smaller than the bath temperature

of the cryostat. To compare the escape temperature with the bath temperature we have

multiplied Tesc by a constant factor of t? = 1:55. The resulting dependence is plotted in

Fig. 6.28b. The error bars represent the statistical errors due to the �t and the uncertainty

in the normalized junction length `, see Eq. (6.88). Considering the renormalized escape

temperature t?Tesc the agreement with the bath temperature is satisfactory. At low tem-

peratures, we observe a slight increase of t?Tesc, due to residual electromagnetic noise in the

bias circuitry. This e�ect was observed also in the measurements described in the previous

sections. At high bath temperatures, we also observe a slight increase of t?Tesc with re-

spect to the expected values. Here, we point out that the analysis of the switching-current

distributions in this large temperature range is less accurate because the strong tempera-

ture dependence of the superconducting parameters jc(T ) and �L(T ) has to be considered.

We have implemented these temperature dependencies into the data analysis. However, at
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Figure 6.28: (a) The 
uctuation-free depinning current I�c versus T . The solid line is a �t to

Eq.(6.89); also plotted is hI0i=I�c . (b) Escape temperature t?Tesc versus bath temperature T . The

dependence t?Tesc = T is indicated by a solid line. Also plotted is the di�erence t?Tesc� T versus

T .

high temperatures (T > 6K) the errors in the estimated parameters are larger than at low

temperatures.

In the remainder of this section, I discuss possible reasons for the reduced Tesc as deter-

mined from the measured data. According to Eq. (6.88), Tesc is proportional to 1=` / �J .
Thus, a bad estimation of �J may result in an incorrect value of Tesc. In the calculations

discussed above, we have neglected the e�ect of the idle region on �J (compare Chapter

5). Considering the renormalized Josephson length �e� as in Eq. (5.13) with 2wp=wj � 1:7

and an inductance ratio � � 0:5 (see Eq. 5.7), we �nd �e� � 1:4�J . The phenomenological

factor t? � 1:55 is close to the factor of the enhancement of the e�ective Josephson length,

due to the presence of an idle region. Thus, the renormalization of �J due to the idle region
does partially explain the observed e�ect.

Moreover, we note that in our samples the microresistor is realized by a 200 nm thick

SiOx layer deposited on top of the tunnel barrier to suppress the critical current. The model

discussed in Section 6.2.2 considers solely this local suppression of jc. However, this par-

ticular realization of a microresistor also modi�es the e�ective inductance and capacitance

of the junction. The junction inductance is increased at the microresistor by the factor

L?

p
=L?

j
= (2�L + tp)=(2�L + tj) � 2, which increases the magnetic energy of the junction.

The e�ective potential for the vortex due to the inductance change can then be expressed

as

~UL(q) = �
Z

`

0
�LÆ( ~x0)

1

2
�~x(~x� q)2 d~x = 2�L

1

cosh2 q
; (6.90)
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Figure 6.29: E�ective static vortex potential U(q) due to an ideal microresistor with � = �1
(dotted line) and an ideal inductance change (dashed line) with �L = 0:5. The solid line is the

sum of the two potentials.

where �L = (L?

p
=L?

j
� 1)b=�J is the strength of the `microinductor '. For the junction pa-

rameters considered here, the depth of the pure microresistor vortex-potential is e�ectively

reduced due to the increase of the magnetic energy of the junction at the resistor. To

illustrate the e�ect, the pure microresistor potential and the same potential including the

inductance change are plotted in Fig. 6.29 for � = �1 and �L = 0:5. Due to the iden-

tical shape of the pure microresistor potential and the pure microinductor potential, the

combined potential can be described as a localized potential with the e�ective strength

�e� = �+ �L. Thus, within this consideration, the modi�cation of the potential due to the

microinductor can be treated consistently in our model by considering �e� instead of �.

In addition, at the microresistor the junction capacitance is reduced by a factor of 100

due the 200 nm thick SiOx barrier. The capacitance decrease results in an increase of the

e�ective plasma frequency by a factor of 10 at the microresistor. Thus, the attempt fre-

quency of the vortex may be strongly enhanced, depending on the average distance between

the vortex and the microresistor. In a crude approximation, assuming an increased average

attempt frequency, one expects a reduction of the width of the switching-current distri-

bution, which is in qualitative agreement with the experimental observation of a reduced

escape temperature.

The modi�cations in the vortex potential due to the inductance and capacitance change

in the region of the microresistor may be taken into account quantitatively. However, this

would involve a more complicated data analysis. In the future, we plan experiments in

which both the width of the resistor and the thickness of the insulator are to be varied in

order to quantify the observed e�ects for di�erent parameters of the microresistor potential.

6.5 Summary and conclusion

I have investigated experimentally the thermal activation of a single Josephson vortex from

a metastable state. An experimental setup has been developed to measure the switching-

current distributions of Josephson junctions at temperatures between 1:5K and 9:2K. A

data analysis scheme to extract the characteristic quantities of the thermal escape process

from the switching-current distributions has been implemented. The setup and the data
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analysis have been tested successfully by measuring the thermal activation of the phase in a

small Josephson junction. Within the experimental accuracy, the measured escape temper-

ature is identical to the thermal bath temperature for these samples. No free parameters

are used in the data analysis.

The thermal escape of a single Josephson vortex from a magnetic-�eld induced and a

microresistor induced potential has been considered. The dynamics of the Josephson vor-

tex in the potential well has been described in terms of a quasiparticle of mass mf with

generalized coordinate q. The characteristic properties of the potentials in dependence on

the bias current and the electrical and geometrical parameters of the samples have been

investigated. The measured switching-current distributions are well described considering

the thermal activation of the vortex from a metastable state. The activation from the

magnetic-�eld induced potential has been analyzed self-consistently, without any free pa-

rameter. For the microresistor however, an additional �tting parameter is required to relate

the e�ective escape temperature to the bath temperature. Within the experimental errors

the e�ective vortex escape temperature is identical to the bath temperature, indicating that

the escape process is well described by the used models.

In future experiments, the activation of vortices is to be investigated for a variety of

pinning potentials. The characteristics of the potential can be modi�ed by shaping the

junction in an external �eld (see Chapter 8) and by implementing di�erent types of mi-

croresistors and microshorts or other local modi�cations of the junction properties. Using

the measurement technique discussed in this chapter, we intend to investigate the activa-

tion of the phase considering the transition from discrete Josephson junction arrays with

varying inter-junction coupling to continuous long junctions. Such experiments allow to

systematically examine the multi-dimensional activation of the phase as suggested in Ref.

[DMS99]. Only few experiments on such systems have been performed until now [CTC+96].

Moreover, we intend to perform activation measurements of vortices at lower tempera-

tures. Using a newly acquired 3He cryostat, temperatures between 2 K and 250 mK can be

achieved. In this temperature range, the 
uctuation-free critical current of Nb Josephson

tunnel junctions is almost temperature-independent allowing for a more accurate analysis

of data. Performing similar measurements at even lower temperatures in a 3He-4He dilution

refrigerator, we intend to observe the quantum properties of Josephson vortices as discussed

in Chapters 7 and 8.



Chapter 7

Quantum Properties of Josephson

Vortices in Annular Junctions

The main objective of our experiments with Josephson vortices in annular junctions is

the observation of macroscopic quantum e�ects. As suggested in theoretical works [KI96,

SBJM97], the Josephson vortex may tunnel through a potential barrier out of a metastable

state. Here, we propose to form the pinning potential for the vortex using the external mag-

netic �eld [WKL+00]. In contrast to the microresistor pinning potential suggested earlier in

literature [KI96], our approach allows to modify the cross-over temperature between quan-

tum and thermal regime in situ during experiment. We discuss the important experimental

conditions to observe macroscopic quantum tunneling of the vortex and show that these

can be met using the experimental setup developed for vortex activation measurements.

We also discuss the feasibility of observing the energy level quantization of vortex states in

the potential well.

7.1 Macroscopic quantum tunneling

The thermal activation of a vortex from a potential well is exponentially suppressed as the

thermal bath temperature T is decreased, see Eq. (6.6). At low temperatures, the quantum

tunneling through the potential barrier becomes the dominating process. The theory of

macroscopic quantum tunneling of a single Josephson vortex from a microresistor potential

has been recently developed in Refs. [KI96, SBJM97]. Here, we adopt this theory to discuss

the case of a vortex in a magnetic-�eld induced potential well. The magnetic-�eld induced

potential has the considerable advantage that the potential barrier may be varied in situ

during the experiment.

The rate of escape of a particle of massm from a metastable state in a potential well U(q)
can be calculated in the quasi-classical Wentzel-Kramers-Brillouin (WKB) approximation

[LL79] as

�qu = const: !0

�
U0

�h!0

�1=2
exp

�
�2

Z qex

q0

1

�h

q
2m(U(q)� E0) dq

�
; (7.1)

where q is the particle coordinate, q0 is the entrance point into the potential barrier and qex
the exit point, de�ned by the intersection between the ground-state energy level E0 of the

particle in the well and the potential, see Fig. 7.1. For suÆciently simple potentials, e.g.

117
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Figure 7.1: Sketch of a potential well. The

energy of the ground state of the particle

is E0; the entrance and exit points of the

particle in the potential barrier are indicated

by q0 and qex.

 U
(q

)

qqbq0

E0

qex
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0

quantum
tunneling 

the quadratic plus cubic potential in Eq. (6.21), the WKB approximation (7.1) is explicitly

solved [Leg84]

�qu = !0

�
60U0

�h!0

�1=2�18
5�

�1=2
exp

�
�36

5

U0

�h!0

�
: (7.2)

The tunneling of the particle in the presence of damping can be described using the

Caldeira-Leggett theory [CL81, Cal83, Leg84]. In this approach, the damping is phe-

nomenologically modeled as a coupling of the particle degree of freedom to an in�nite

number of harmonic oscillators in the environment. It was shown [CL81, Cal83, Leg84]

that the quantum mechanical tunneling rate of a particle out of a cubic potential in the

presence of the damping a can be expressed as

�qu = A exp(�B) (7.3)

with

A =
p
60!0

�
B

2�

�1=2
(1 +O(a)); (7.4)

B =
36U0

5�h!0
(1 + 1:74a +O(a2)); (7.5)

where the damping has been considered up to the �rst order in the exponent. According

to Eq. (7.3), the quantum tunneling rate is reduced due to the increase of the exponential

factor B in dependence on the normalized damping coeÆcient a.
This model can be adopted to describe the quantum tunneling of a vortex out of a

magnetic-�eld induced potential well. It is useful to consider the WKB approximation in

the normalized units of the sine-Gordon equation. Rewriting Eq. (7.1), we �nd

�qu = const: ~!0!p

 
E0
�h!p

~U0

~!0

!1=2

exp

 
�2

Z qex

q0

E0
�h!p

q
2 ~mf(~U(q)� ~E0) dq

!
; (7.6)

where we can identify �h!p=E0 as the normalized Planck constant [KI96]

g2 =
�h!p

E0
= �f16�

 
d0t

w2�j

!1=2

; (7.7)

with �f = e2=(4��0�hc) = 1=137 being the �ne structure constant. The quantum char-

acter of the vortex scales with g2, being inversely proportional to the junction width w
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Table 7.1: Typical electrical and geometrical junction parameters.

quantity unit approximate value meaning

jc [A/cm2] 100 critical-current density

C? [fF/�m2] 30 speci�c capacitance

d0 [nm] 200 magnetic thickness

�r [�m] 50 mean junction radius

w [�m] 3:0; 0:3 junction width

and proportional to the square root of the magnetic thickness d0 and the inverse junction

capacitance tj=�j. Since the junction capacitance and its magnetic thickness are mainly de-

termined by the material properties, the remaining crucial parameter is the junction width

w. Thus, quantum e�ects of vortices should be more pronounced in narrow long junctions

than in wide ones. For a junction of width w = 3�m and typical electrical parameters (see

Table 7.1), the normalized Planck constant is g2 � 1:0 � 10�3. We also note that g2 is

proportional to the inverse ratio of the vortex energy and the plasmon energy.

7.1.1 Calculated switching-current distributions: Cross-over from

thermal activation to quantum tunneling

Quantum tunneling of a vortex from the magnetic-�eld induced potential well may be

detected by measuring the switching-current distribution at low temperatures. With de-

creasing temperature, the thermal activation is exponentially suppressed and the P (I) dis-
tribution is dominated by quantum e�ects. To estimate the possibility to observe quantum

tunneling, we have calculated numerically switching-current distributions. In the calcu-

lations, we have used sample parameters (see Table 7.1) similar to those of the thermal

activation experiments presented in Section 6.4.2. In particular, I discuss two di�erent

junction widths, i.e. w = 3:0�m which can still be fabricated using standard photolitho-

graphic techniques, and w = 0:3�m which is the most narrow high quality long Josephson

junction ever fabricated [KWF+99].

Using the expressions for the magnetic-�eld induced barrier height ~U
h

0 (6.44) and the

small amplitude oscillation frequency ~!
h0 (6.43), the switching-current distributions in the

thermal regime are calculated by evaluation of Eq. (6.62) with the rate (6.6). For sim-

plicity, we have used a transmission coeÆcient of �a = 1. The probability distributions

are calculated for a w = 0:3�m wide junction in a normalized �eld of �h=2� = 0:4 of in-

termediate strength at a current sweep rate of dI=dt = 0:04A=s. The current sweep rate

corresponds to approximately 4 jc2�rw� 100Hz. In practice, the amplitude of the current

sweep should not be increased substantially above the critical current of the junction due

to the increased probability of trapping 
ux at large currents. The calculated switching-

current distributions are plotted in Fig. 7.2 for bath temperatures between 500mK and

10mK.1 As expected we observe a strong reduction of the distribution width with decreas-

ing temperature. At the same time, the mean switching current hI0i approaches Ihc due to

the decrease of thermal 
uctuations. The P (I) distribution for the escape of the vortex

from the well due to quantum tunneling at zero temperature is shown in the same plot. The

rate expression (7.3) with vanishing damping a = 0 was used for the calculation. For better

1Experimentally, temperatures in this range can be achieved with 3He-4He dilution refrigerator technol-
ogy [Pob95].
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Figure 7.2: (a) Simulated thermal escape probability P (I) for di�erent thermal bath temperatures

T . The quantum escape P (I) distribution at T = 0 is shown with an o�set of 50�A�1. (b)

Variance �I of the thermal distribution in dependence on T for w = 3:0�m (open circles) and

w = 0:3�m (solid squares). The variance of the temperature-independent quantum distributions

are shown by horizontal dashed lines. The cross-over temperature T ? for the narrow junction

is indicated by an arrow. The shaded area indicates the region in which quantum tunneling

dominates.

visibility, the distribution is o�set by 50 units in P (I). Obviously, the quantum probability

distribution is similar to the thermal distribution at about 100mK. Thus, at temperatures

below 100mK we expect a substantial broadening of P (I) due to quantum tunneling of the

vortex out of the metastable state.

In Fig. 7.2b, the standard deviation �I of P (I) is plotted versus temperature for both the

temperature-dependent thermal activation (solid squares) and the temperature-independent

quantum tunneling (dashed horizontal line). The intersection between the two corresponds

to the cross-over temperature T ?. For these particular sample parameters (w = 0:3�m),

this external �eld and this current sweep rate, we �nd a cross-over temperature of about

80mK. At temperatures T > T ?, the switching-current distribution is dominated by ther-

mal activation, whereas for T < T ? quantum tunneling is the main escape process. In

experiment, this cross-over should be observable as a saturation of the width �I of the

switching-current distribution at low temperatures. Equivalently, this corresponds to a sat-

uration of the escape temperature Tesc at small T . Similar experiments have been performed

considering the quantum tunneling of the phase in point-like junctions [MDC87].

Additionally, the distribution widths �I are plotted in Fig. 7.2b for a 3�m wide junction

(open circles). For this junction width T ? = 50mK, which is substantially lower than

for the more narrow junction. This is expected because the normalized Planck constant,

determining the quantum character of a vortex, is smaller for wide junctions. We also note

that the cross-over appears at an approximately twice larger absolute distribution width

�I . At the same time, the mean value of the switching current is roughly proportional

to the junction width, such that the relative current resolution �I=hI0i required for an
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Figure 7.3: Cross-over temperature T ? in

dependence on the external �eld for the

junction widths w = 0:3�m (upper data set)

and w = 3:0�m (lower data set). The data

calculated from Eq. (7.8) are indicated by

stars, the data found from numerically cal-

culated P (I) curves are indicated by open

symbols. Both curves are compared to a
p
�h

dependence (solid lines).

experiment with a wider junction is higher. Varying the junction width w, we can adjust

the temperature range in which quantum escape dominates, see shaded area in Fig. 7.2b.

The more narrow the junction, the smaller is �I and the higher is T ?.

Analytically, the cross-over temperature can be de�ned as the temperature at which the

thermal and the quantum escape rates are equal. Neglecting the prefactors but considering

damping, the cross-over temperature for a cubic potential is given by [HGIW85]

T ? =
�h!0

2�kb

�p
1 + a2 � a

�
; (7.8)

where a is the damping constant. The in
uence of the damping parameter a on the quan-

tum switching-current distribution has been considered. For temperatures below 1K the

damping parameter a is typically2 less than 10�2. In this regime, the reduction of the

tunneling rate, leading to a narrowing of the switching-current distribution due to ohmic

dissipation, is negligibly small. However, in an experiment, the e�ective dissipation may be

substantially larger due to 
uctuations in the environment [TLvdW+99].

Substituting the attempt frequency ~!
h0 !p into Eq. (7.8) with a = 0, we �nd

T ? =
�h!p

2�kb

vuut �h

~mf

2
41�

 
I

Ih
c

!2
3
5
1=4

; (7.9)

where we identify three di�erent contributions to the cross-over temperature. First, the

cross-over temperature is proportional to the plasma frequency !p / j1=2
c

, the value of

which is determined during fabrication. Second, T ? is proportional to the square root of

the external �eldH which can be modi�ed easily during experiment. Finally, T ? depends on

the ratio of I=Ih
c
. This e�ect can be estimated by considering the most probable switching

current hI0i and calculating the expression [1� (hI0i=Ihc )2]1=4, the bias current dependence
of which is plotted in Fig. 6.10.

We have evaluated the cross-over temperature T ? from numericallydetermined switching-

current distributions in dependence on the external �eld for the junction parameters dis-

cussed above, see Fig. 7.2. We compare those values (open squares) to the ones calculated

2See, for example, Master's thesis of A. Franz [Fra99].
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Figure 7.4: Vortex escape cross-over temperature T ? in dependence on the depinning current Ih
c

and I�c for the magnetic-�eld induced potential (circles) and the microresistor potential (squares).

The corresponding potential parameters H=H0 = h and � are quoted on the top axes. The
q
Ih
c

and
p
I�c are indicated by solid lines. (a) Data for w = 0:3�m. (b) Data for w = 3:0�m.

analytically (stars) from Eq. (7.8) using the same parameters and the mean switching

current hI0i. The data are shown in Fig. 7.3 for w = 0:3�m (upper data set) and for

w = 3:0�m (lower data set). Good agreement is found between the analytical and numer-

ical calculations. In particular the increase of the cross-over temperature with the applied

magnetic �eld is well described by Eq. (7.9). The data are compared to the expected
p
�h

dependence, see solid lines in Fig. 7.3, and good agreement is found.

We note that the cross-over temperature T ? is substantially smaller for the wider junc-

tion than for the more narrow one. The increase in w leads to a larger barrier height due

to the increase of E0. At the same time, the activation takes place at currents closer to

the critical current, i.e. hI0i=Ihc is closer to unity. Thus, the attempt frequency !0 is re-

duced, resulting in a smaller tunneling rate and, hence, a smaller cross-over temperature,

see Eq. (7.9). Thus it is most likely to observe the quantum escape of a vortex from a

magnetic-�eld induced potential well, using narrow junctions and large �elds.

Additionally, we have compared the cross-over temperature of the escape from the

magnetic-�eld induced potential to the one from the microresistor potential. To perform the

comparison, we have numerically calculated switching-current distributions in the quantum

regime adjusting the potential depth (parameterized by h and �, respectively), such that

the 
uctuation-free depinning currents Ih
c
and I�

c
are identical for both potentials. Then,

T ? was estimated according to Eq. (7.8), using the numerically found mean depinning cur-

rent hI0i. The resulting values of T ? are shown in Fig. 7.4 for the sample parameters

quoted in Table 7.1. At the same depinning current (Ih
c
= I�

c
), the cross-over temperature

is substantially larger for the escape from the microresistor potential than for the escape

from the magnetic-�eld induced potential, see Fig. 7.4. This is understood noting that the
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small amplitude oscillation frequency of the vortex is higher in the spatially more localized

potential. For the wider junctions (w = 3:0�m) however, the di�erence in the cross-over

temperature is smaller because in this regime T ? is governed by the factor hI0i=Ic, which
is closer to unity for wider junctions, see Fig. 7.4b. All data obey with good accuracy a

scaling according to
q
Ih
c
or
q
I�
c
respectively, see solid lines in Fig. 7.4.

In conclusion, the higher cross-over temperatures can be realized using microresistor

potentials. In the magnetic-�eld induced potential however, the dependence of the cross-

over temperature on the magnetic �eld allows to verify the quantum nature of the saturation

of the switching-current distribution more directly because the dependence of T ? on H

can be tested experimentally using a single sample. In this way, electromagnetic noise

(being independent of H) can be excluded as the origin of a broadened switching-current

distribution. To perform the same tests for the microresistor potential, the cross-over

temperatures of di�erent samples with di�erent strengths of the microresistor have to be

compared.

7.1.2 Experimental requirements

To experimentally observe the quantum tunneling of a vortex, the sample has to be cooled

to temperatures of approximately 100mK or below. These temperatures can be achieved

using a 3He-4He dilution refrigerator. Since the cooling power of a dilution-refrigerator is

small at these temperatures, constraints on the possible critical current and resistance of

the sample do exist. In Fig. 7.5a, the cooling power of an `Oxford 300' bottom loading

dilution refrigerator is plotted versus temperature. Obviously, the available cooling power

decreases strongly with decreasing temperature according to a power law. For comparison,

the power dissipated in an annular Josephson junction with jc � 160A=cm2 and w = 3�m
at T = 2K is plotted on a logarithmic scale versus bias current in Fig. 7.5b. If the junction

is biased on the 
uxon resonance, the dissipated power is below 0:1�W which can be easily

handled by the dilution refrigerator at base temperature. As the junction switches to the

gap voltage, the dissipated power increases suddenly to above 1:0�W and continues to

increase to about 20�W in the normal state. Biased at the gap voltage, a junction of

these parameters dissipates more power than the refrigerator can support at 10mK. At

50mK the dissipated power is balanced with the cooling power of the cryostat. Both axis in

Fig. 7.5b scale linearly with the critical-current density jc and the junction width w. Thus,

reducing w e�ectively reduces dissipation, whereas increasing jc to increase the cross-over

temperature is only possible at the cost of increased dissipation.

Above we have considered an in�nitely large heat conductance between the sample and

the cryostat. However, the sample is usually prepared on an insulating SiOx wafer which

has a poor thermal conductivity. The heat generated in the sample should be small enough

to allow for suÆcient cooling through the substrate and wiring. This can be achieved by

biasing the junction only at currents which generate voltages across the junction identical to

or smaller than the maximum voltage of the single-vortex resonance. This is only possible

for the �eld range in which the junction switches from V = 0 to the vortex resonance. For

larger �elds (approximately h > 0:5), the junction switches directly to the gap voltage. To

avoid extra heating in this situation, a circuit which reduces the bias current immediately

after the junction has switched to a �nite voltage state [MDC87] and, thus, minimizes the

dissipated power, has to be used. Alternatively, the junction may be thermalized by setting

the bias current to 0 for a certain time after each switching event. Thus, one has to choose
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Figure 7.5: (a) Cooling power P versus temperature T for an `Oxford 300' dilution refrigerator.

(b) Dissipated power P in dependence on the bias current I for a typical 3�m wide junction

with a trapped 
uxon. The vertical line indicates the average power dissipated in a cycle with a

constant current sweep rate.

sample parameters such that the cross-over temperature is large enough to be measured

conveniently and, at the same time, assuring a proper thermalization of the sample after

each switching event.

Another important issue is the attainable current resolution. As estimated in numerical

simulations, one needs to properly resolve a quantum switching-current distribution with

�I � 0:02�A for a 0:3�m wide junction. The equipment limited current resolution using

the time-of-
ight techniques is conservatively estimated approximately to 100 pA. However,

the most narrow distributions measured accurately for a 3�m wide junctions has a �I of

0:5�A. With the currently available setup described in Section 6.3, we expect to attain

a well resolved switching-current distributions with �I down to 0:05�A for 0:3�m wide

junctions, since the relative accuracy of our measurement setup scales with the current

range required. To attain even better resolution, we need to avoid interference due to

electromagnetic pickup in the sample wires and decrease the noise in the current read-out

electronics. Measures to be implemented include:

� installation of current sources and preampli�ers at room-temperature on the top of

the cryostat to avoid external wiring

� use of isolation ampli�ers to decouple current-control and voltage-readout from the

sample bias circuit

� better grounding

An electrically hermetic sample holder, acting as a Faraday-cage, has been designed and

fabricated. Its function is to shield the sample from high frequency radiation in the en-

vironment. The biasing leads are fed into the sample box through custom-made in-wall

low-pass �lters. We have tested the performance of di�erent �lter technologies including

copper powder �lters [MDC87] and miniature coaxial lines [Zor95]. For both types of �lters,
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Figure 7.6: Quadratic approximation to en-

ergy levels in a cubic potential. Applying

external radiation of frequency ! = �E=�h

excites the vortex from the ground state to

the excited state.

we have measured an attenuation of approximately -50 dB in the frequency range between

2 and 20 GHz.3 Thin-�lm on-chip circuits may also serve as e�ective �lters [VOJ+95].

Using these techniques, we are optimistic to achieve the current resolution required to

perform a quantum tunneling experiment with a Josephson vortex in the near future.

7.2 Energy level quantization

The energy levels of a quantum particle trapped in a potential well are quantized. If at

low temperatures the lifetime-broadened width of an individual energy level is smaller than

the energy separation between neighboring levels, the discrete energy levels of the particle

may be observed in an experiment. The energy level quantization has been observed in

small junctions [MDC87, SPRR97] and in rf-SQUIDs [RHL95]. We expect to observe the

quantization of the energy levels of a Josephson vortex trapped in a magnetic-�eld induced

metastable state in an annular junction.

We consider the vortex trapped in a potential well as depicted in Fig. 7.6. We assume

that the barrier separating the ground state from the continuum is large enough to suppress

quantum tunneling and small enough to allow thermal activation. At low temperatures and

in thermal equilibrium, the vortex occupies the ground state of the well with the largest

probability. The population of higher levels is exponentially suppressed. Using a harmonic

approximation of the well around its classical minimum, the energy levels in the well are

determined by

En = (n+
1

2
)�h!0 ; (7.10)

where n is the quantum number of the harmonic oscillator with the characteristic frequency

!0. Considering the vortex in the magnetic-�eld induced potential, the separation in energy

3The network analyzer used for the characterization of �lters has a frequency band between 45MHz and
20GHz.
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between individual levels is determined by the small amplitude oscillation frequency

!0 =

vuutU 00(0)
mf

(7.11)

of the vortex at the minimum of the well, see Eq. (6.43). Thus the energy level spacing is

given by

�E = �h!p

vuut �h

~mf

2
41�

 
I

Ih
c

!2
3
5
1=4

: (7.12)

Obviously, the energy level separation is proportional to the plasma frequency of the junc-

tion and to the square-root of the external �eld H. Moreover, it depends on the relative

bias current I=Ih
c
= �
 as shown in Fig. 6.10. We note that the energy level separation

is independent of the junction width. The number n of energy levels in the well can be

estimated within the harmonic approximation by calculating the quantity U0=�h!0. For the
vortex in a magnetic-�eld induced potential, the number n of levels is given by

n � 1

g2
16

3

q
�h

1

21=4

 
1� I

Ih
c

!5=4

: (7.13)

The energy level quantization can be observed by measuring the thermal activation of

the vortex from a quantized energy level. At low temperatures and in thermal equilibrium,

the vortex occupies the ground state of the well. Excited states have a small occupation

if the energy level separation is larger than the thermal energy. To observe the activation

from di�erent energy levels for �E > kbT , a non-equilibrium distribution of vortex-states

in the well is required. This can be achieved by irradiating the vortex with a microwave,

which induces the resonant transition of the vortex from the ground state to the �rst excited

state. Due to the inharmonic potential well, the electromagnetic radiation is only resonant

with a single pair of energy levels. Depending on the bias current, the probability of the

vortex to be activated is large if its energy level is close to the top of the barrier and

small if it is far away from the barrier giving rise to a modulation of the P (I) distribution.

Experiments observing this e�ect have been performed successfully for small Josephson

junctions [MDC87].

Here, we consider a vortex trapped in a typical annular junction (see Table 7.1) of

width 0:3�m in order to estimate the experimental parameters required for the observation

of energy level quantization. At temperatures T < 1K, the thermal activation of the

vortex from a well induced by a magnetic �eld of h � 0:5 takes place in the current range of

0:95 < I=Ih
c
< 1:00. For these bias currents, less than 10 levels are present in the well. We

�nd a level separation �E on the order of a few 100mK, which corresponds to a required

excitation frequency between 10 and 20 % of the junction plasma frequency of 50GHz.

Alternatively, a non-thermal distribution of states can also be realized by using very

high current-sweep rates [SPRR97]. If the activation rate of the vortex from an excited

state is larger than the relaxation rate from level to level, a non-thermal distribution of

states is realized. Again, this distribution of states can be measured by performing an

activation measurement in which the quantized energy levels lead to a modulation of the

P (I) distribution. Such experiments have been performed with small Josephson tunnel

junctions, where the energy level quantization well above the cross-over temperature has

been observed [SPRR97].
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As pointed out before, to resolve the di�erent energy levels in experiment, the widthWif

of the transition between the initial state i and the �nal state f has to be less than the level

spacing �Eif = Ef �Ei. The width �Ej of each individual level j is inversely proportional

to the lifetime �j of that state. According to Refs. [EDM86, MDC87], the lifetime �j at

low temperatures can be estimated accurately by considering the ground-state 
uctuations

of the e�ective resistance of the junction. As pointed out in the same reference, the ratio

W01=�E01 is proportional to the damping a of the oscillation in the well. According to that

approximation, it should be possible to resolve the energy levels of the vortex, since the

ohmic contribution to a is less than 10�2 at T < 4:2K for typical samples. However, the

e�ective damping a may be strongly modi�ed by the external biasing circuitry [EDM86].

7.3 Summary and conclusion

We have considered the macroscopic quantum tunneling of a Josephson vortex from a �eld

induced potential well. By varying the magnetic �eld, we can conveniently modify the

pinning potential for the vortex during experiment. We expect that the quantum tunneling

of the vortex from the potential well should dominate thermal activation at temperatures

below 100mK, depending on the magnetic �eld amplitude and the width of the junction.

To achieve a high cross-over temperature, it is favorable to use narrow junctions which

have already been developed in our group [KWF+99]. In general, the measurement setup

developed for vortex activation measurements is suitable to observe quantum tunneling of

the vortex. However, we still need to reduce electromagnetic interference by improving the

�ltering and shielding of the sample. A number of �lter designs have been realized and tested

for this purpose. If the quantum tunneling of the vortex is not substantially suppressed by


uctuation-induced dissipation, we are optimistic to observe this e�ect in experiments in

the near future. As an intermediate step, we plan to observe the energy level quantization

of the vortex in the magnetic-�eld induced potential well. This quantum e�ect is easier

to observe experimentally because it can be investigated by measuring switching-current

distributions of a non-equilibrium population of vortex states in the thermal regime.



Chapter 8

A Vortex in a Double-Well Potential:

A Path towards Macroscopic Quantum Coherence

and Quantum Computation

A method for engineering a magnetic-�eld induced double-well potential for a Josephson

vortex by shaping a long junction is discussed. The two lowest energy states of the vortex

in the double-well potential can be identi�ed by performing a depinning current measure-

ment. In the quantum limit, the vortex states in the double-well potential may serve as a

macroscopic quantum mechanical two-state system. An experiment to observe the coher-

ent oscillation of the vortex between the two states is suggested. Such a coherent two-state

system may be used as a qubit in a quantum computation scheme.1

8.1 Introduction

The quest for new quantum coherent two-state systems has been stimulated by the ideas of

using quantum mechanical systems to perform computation [Llo93, DiV95b]. In quantum

computers, quantum mechanical variables such as spins, photons or atoms are used to store

and process information.2 The basic unit of information in a quantum computer is called

a qubit [Sch95]. In contrast to a classical bit, a qubit can also be in a quantum mechani-

cal superposition of its two basis states 0 and 1, thus storing the information much more

eÆciently. In a quantum computer, information is processed by coherent interactions be-

tween di�erent qubits. It has been shown theoretically that a quantum computer can solve

certain computationally complex problems [Cle99] much more eÆciently than any classical

1Parts of this chapter have been published in `Journal of Low Temperature Physics 118, 543 (2000)'
2For recent reviews on the theoretical foundations of quantum computing, see Refs. [BD00, Ste97].

128
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computer, the most prominent example being the factoring of large numbers [LP92]. Most

of today's secure communication schemes rely on encryption of data using protocols like

RSA, in which a product of two large prime numbers is used to encode the data. The

security of the RSA scheme is due to the fact that the product of two prime numbers is

very diÆcult to factorize by any classical computer. In fact, it can be shown that the

time needed to do this calculation depends exponentially on the size of the number. On

a quantum computer however, this calculation can be done with an exponential speed-up

in comparison with a classical computer, using the Shor algorithm [Sho94]. A number of

other algorithms, including searching entries in a data-base [Gro97], have been developed.

Moreover, it has been shown that any task that can be solved on a classical computer can

also be solved on a quantum computer [DiV95b]. The �rst very basic quantum algorithms

have been implemented and tested experimentally and the principle of their operation has

been demonstrated [CVZ+98, JMH98]. In these experiments, the possibility to solve certain

tasks more eÆciently than on a classical computer has been demonstrated. Thus, quantum

computing may be a useful means to process information.

By now, qubits have been implemented in di�erent physical systems including cavity

electrodynamics [THL+95], ion traps [MMK+95] and spins [GC97]. Also �rst algorithms

have been shown to perform well in quantum computers containing a small number of

qubits [CVZ+98, JMH98]. However, most experimental realizations proposed so far rely

on the use of microscopic quantum systems as the quantum variable. These systems have

the advantage that they can be isolated e�ectively from the environment, thus reducing

decoherence. On the other hand, the physical properties of microscopic systems are given

by nature and, therefore, the design of a prospective quantum computer is less 
exible.

Macroscopic quantum systems however are interesting candidates to design a quantum

computer.

The macroscopic systems proposed for use as qubits are based on nano-structured elec-

tronic circuits using either quantum dots or tunnel junctions as their basic elements. All

macroscopic systems su�er from the drawback that they are more diÆcult to isolate from

the environment and therefore they are more prone to decoherence. On the other hand, the

fact that they can be designed and implemented in a chip-based technology using modern

lithography techniques creates more 
exibility in the design and the scaling of the quantum

computer. At the same time, these macroscopic systems are much closer in fabrication and

operation to conventional computers than any of the microscopic realizations, which is a

considerable advantage.

The use of superconductors in the design of macroscopic qubits has two main advan-

tages: the coherence of the superconducting condensate and the reduced number of degrees

of freedom in the superconducting state. The �rst will help to design qubits and the second

to reduce decoherence. Superconducting qubits proposed so far fall into two main classes,

i.e. charge qubits and 
ux qubits [Ave00]. In charge qubits, the charge states of an electron

box [BVJ+98] are used as the basis states of the qubit. The superposition of states and the

existence of coherent Rabi-oscillations of such a qubit have been recently veri�ed experimen-

tally in a ground-breaking experiment [NPT99, NT00]. Moreover, schemes to couple and

operate this type of qubit have been devised [MSS99]. In 
ux qubits, circuits of somewhat

larger Josephson junctions are used to design two-state systems, the dynamics of which is

governed by the superconducting phase di�erence across the junction rather than by the

charge. The rf-SQUID qubit [BHF97] follows the classical approach of using a SQUID as

a macroscopic quantum coherent system [LCD+87]. Even though the quantum mechanical
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properties of the rf-SQUID are thoroughly investigated [SSAL85, RHL95, HRL96, HRL00],

its coherent oscillation between two states could not be veri�ed experimentally until now

[BvWdBO83, Tes90, Col95]. The failure of observing the macroscopic quantum coherence in

rf-SQUIDs is attributed to the insuÆcient decoupling of the system from the environment.

A proposal trying to circumvent parts of these problems is the persistent current qubit

[MOL+99, OMT+99]. In this proposal, the qubit is implemented using a loop of three junc-

tions, in which two opposite circulating currents are the basis states. Due to the design of

the system using three junctions, it is predicted theoretically that it may be much less prone

to decoherence than the rf-SQUID [OMT+99]. The principles of operation of the persistent

current qubit in a quantum computer are developed [OMT+99] and decoherence is consid-

ered in some detail [OMT+99, TLvdW+99]. Other proposals using multi-junction loops are

under development. In particular the use of �-junctions [WvHL+93], which have an un-

conventional current phase relation, may be interesting to design qubits [IGF+99, BGI99].

The combination of conventional and �-junctions in a single circuit allows to design new

types of qubits, which are decoupled more e�ectively from the environment [IGF+99].

Our interest in this subject is related to the possibility of using macroscopic quantum

states of Josephson vortices for quantum computation. We suggest that two distinct states

of a 
uxon trapped in a �eld-controlled double-well potential inside a narrow long junction

can be used for designing a qubit [WKL+00]. We propose that by varying the external

magnetic �eld and the junction shape, one is able to form an arbitrarily-shaped potential

for a 
uxon in a junction [WKL+00]. The amplitude of this potential can be varied in

experiment by tuning the magnetic �eld. Under suÆcient decoupling from the environment

and provided that the temperature and dissipation in the junction are low enough, the

superposition of two macroscopically distinct quantum states is expected to be observed,

also see Ref. [KI96]. The superposition of the states may be observed by measuring the

energy splitting of the degenerate ground state of the system. We propose a scheme to

measure the coherent transition, i.e. the Rabi-oscillation of the vortex between the two

degenerate states in the time domain. The preparation of the initial state for a quantum

coherence measurement may be achieved by turning the magnetic �eld in the plane of

the junction, and the �nal state of the vortex can be read out by performing an escape

measurement [WKU00].

In Section 8.2, we introduce the idea to engineer the magnetic dipole potential of a

vortex by shaping the junction. The basic quantum mechanics of a Josephson vortex in

a double-well potential are discussed in Section 8.3. We point out in Section 8.4 how

the vortex states may be manipulated classically by adjusting the bias current and the

�eld applied to the junction . How to use these ideas to perform a macroscopic quantum

coherence measurement is presented in Section 8.5. In the last two sections of this chapter,

we discuss how to manipulate states of our vortex-qubit to perform computation and point

out relevant decoherence mechanisms.

8.2 Engineering the vortex potential

As pointed out already in Section 6.2.1, the magnetic dipole energy of a vortex in an external

magnetic �eld depends on the angle between its magnetic moment, which is essentially

perpendicular to the junction perimeter, and the external �eld. In the simple case of an

annular junction, the potential is sinusoidal, see Eq. (6.35). By shaping the junction, it is

possible to form magnetic-�eld induced potentials which are more complex and therefore
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w Figure 8.1: Arbitrary junction geometry in a homo-

geneous external �eld ~H . The angle Æ between ~nJ and
~H determines the potential energy of the vortex.

more interesting [WKL+00]. In principle, long Josephson junctions can be fabricated in any

shape allowing to form almost arbitrary 
uxon potentials by simply varying the junction

geometry, see Fig. 8.1.

However, we note that there are constraints on the shape of the potential that can be

generated in this way because the geometry-dependent part of the potential is e�ectively

averaged over the vortex size (/ �J ). Thus, for an arbitrary but closed junction shape, the

vortex dipole energy is given by

~Uh(q) =
Z

`

0
��~x(~x� q)~nJ(~x) � ~h d~x ; (8.1)

where ~nJ is the unit vector normal to the junction perimeter and �~x(~x�q) is the normalized

magnetic �eld associated with the vortex. ~h = ~nhh is the normalized external �eld, � is the

coupling coeÆcient between �eld and vortex, and ` is the normalized junction circumference.

For the explicit calculation of ~Uh, it is useful to note that Eq. (8.1) is a convolution of the

vortex magnetic �eld pro�le �~x(~x�q) with the junction shape ~nJ(~x)�~nh. Since a convolution
corresponds to a multiplication in Fourier space, ~Uh is given by

~Uh(q) = �hFT �1 fFT [�~x(~x)] � FT [~nh � ~nJ(~x)]g (q) ; (8.2)

which can be solved either analytically or numerically, depending on the junction geometry.

Since the vortex size scales with �J , we note that all features of the potential disappear for
�J !1 or equivalently for `! 0. Thus, we have to properly choose the junction geometry

and �J to design the wanted potential.

The challenging goal in our experiments with quantum 
uxons is the demonstration of

macroscopic quantum coherence. To realize a coherence experiment, one needs to design

a suitable two-state system. A possible realization of a macroscopic two-state system is a

vortex in a double-well potential. We suggest to use a heart-shaped Josephson junction like

the one shown in Fig. 8.2a for this purpose [WKL+00]. If the magnetic �eld ~H is applied

along the symmetry axis of the junction, two stable potential minima are formed for the


uxon at locations `l' (left) and `r' (right). At these two positions, the vortex magnetic

moment ~� is parallel to ~H minimizing the vortex dipole energy, see Fig 8.2b. The barrier

height between the wells can be conveniently controlled by the �eld amplitude and its angle

with the symmetry axis of the junction. The corresponding potential pro�le at h = 1,

calculated from Eq. (8.1) for the junction shape shown in Fig. 8.2a and the normalized

junction length ` � 27, is plotted in units of E0 in Fig. 8.2c. If the barrier separating

the two states is suÆciently large, the vortex is classically localized in one of the potential

minima. It should be possible to detect the vortex in either of those states by measuring

its position using a SQUID as a 
ux meter or by performing an activation measurement,

as discussed in Section 8.4.
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Figure 8.2: (a) Photograph of a 0:3�m wide heart-shaped junction fabricated in Nb-AlOx-Nb

technology. (b) Sketch of a heart-shaped junction with magnetic �eld applied along its symmetry

axis. Two energetically identical vortex states are indicated by arrows in positions `l' and `r'. (c)

Normalized magnetic �eld interaction potential ~Uh(q) at h = 1 calculated according to Eq. (8.1).

First experiments with samples of the geometry shown in Fig. 8.2 have been performed

[WKL+00]. We have shown that it is possible to trap single Josephson vortices in these

junctions. From the current-voltage characteristics of the samples, we infer a high junction

quality. The critical-current di�raction patterns show some geometry-dependent peculiari-

ties which are to be investigated in more detail [Kem00]. To further investigate the classical

dynamics of Josephson vortices, a new sample design was developed, which allows to engi-

neer double-well potentials [Kem00]. The junction design is based on three joined sections

of circles with two di�erent radii R and r, see inset of Fig. 8.3. The centers of the circles are
on the same baseline and the two small sections are joined forming an angle of 2� between

the respective tangents. For a �xed H, the barrier height U0 and the spatial separation �q

of the classical states of the vortex can be varied smoothly by changing r, R and �J in the

sample design. A typical sample geometry is shown in Fig. 8.3.

Cooling a heart shaped Josephson junction to suÆciently low temperatures, we expect

that the vortex is observed to tunnel back and forth between the two equivalent states `l'

and `r' depicted in Fig. 8.2c. The rate �a=s of the transition depends on the massiveness

of the barrier (i.e. its height and its width), which can be tuned by the external magnetic

�eld. In the quantum limit, the two distinct 
uxon states in the double-well potential form

a degenerate two-state system.

We discuss the quantum mechanics of a 
uxon in the double-well potential of a sample

of the type shown in Fig. 8.3. We choose a radius R = 70�m and an angle � = 37Æ

to �x the junction geometry. The total length of the junction is then l = 413�m. To

keep the Josephson energy low, the junction width is set to w = 0:3�m. The critical-

current density jc = 500A=cm2, the magnetic thickness d0 = 182 nm and the speci�c

capacitance C? = 30mF=m2 are chosen close to expected junction fabrication parameters.

The characteristic �eld is H0 � 1Oe. The resulting potential for an externally applied

normalized magnetic �eld h = 1 is plotted in Fig. 8.3. The potential barrier height is

U0 � 1K and the distance between the minima is �q � 1:5�J .
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Figure 8.3: Double-well po-

tential U(q)=kb (at h = 1)

for the junction geometry

sketched in the inset.

8.3 The quantum mechanics of a Josephson vortex

in a double-well potential

The transition rate �a=s for a particle of mass m from one minimum of a generic double-well

potential to the other is calculated in the quasi-classical WKB approximation as [LL79]

�a=s = const: !0 exp

�
�
Z q1

q0

1

�h

q
2m(U(q)� E0) dq

�
; (8.3)

where !0 is the small amplitude oscillation frequency in one of the wells, U(q) is the potential
energy of the particle in dependence on its coordinate q and the constant is of the order

of one.3 The integral is evaluated between the entrance q0 and the exit point q1 of the

particle in the potential barrier, determining the massiveness of the barrier, see shaded

area in Fig. 8.4a. q0 and q1 are de�ned by the intersection of the ground state energy

level E0 = �h!0=2 of the particular well with the potential U(q). The quasi-classical WKB

approximation Eq. (8.3) is valid if the condition U0 > �h!0=2 is satis�ed [Lik86].

Using a quadratic approximation of U(q) around U0, we can explicitly integrate Eq. (8.3).

Considering the case of a Josephson vortex and using the same normalization as in Sec-

tion 7.1, we �nd

�a=s = const: ~!0!p exp

 
� E0
�h!p

�

4
2 ~mf(~U(q)� ~E0)�q

!
; (8.4)

where �q = q1�q0 is the width of the potential barrier and ~U0 is its height. From Eq. (8.4),

we can determine the approximate height and width of the potential barrier to achieve an

experimentally observable transition rate �a=s between the two states as

( ~U0 � ~E0)�q =
�h!p
E0

2

� ~mf

ln

 
~!0!p
�a=s

!
: (8.5)

3Note the di�erence of a factor of 2 in comparison with Eq. (7.1).
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Figure 8.4: (a) Double-well potential for the sample geometry shown in Fig 8.3. E0 is the ground

state energy of the individual well. The two states are separated by a barrier of height U0 and of

width �q = q1�q0. �a=s is the transition rate between the two states. (b) Numerically calculated

wave functions for the four lowest energy eigenstates j0i : : : j3i of the potential. The energy of each
state is indicated by a dashed horizontal line. The splitting �Ea=s of the ground state energies

due to the coupling is indicated.

With values of ( ~U0 � ~E0)�q � 10�2 to 10�3, we can realize transition rates �a=s between

several 100 kHz to close to the plasma frequency of several 10GHz for the sample parameters

discussed above. Typically the distance �q between the two states is of the order of unity.
Therefore, we are able to tune the transition rate freely in this range by controlling the

barrier height with the external �eld.

The tunnel coupling between the ground states of the individual wells lifts the degen-

eracy and leads to a splitting of the ground state energy level into a symmetric j0i =

2�1=2(jli+ jri) and an anti-symmetric j1i = 2�1=2(jli� jri) one, as shown in Fig. 8.4b. The

energy splitting is proportional to the transition rate

�Ea=s = �h�a=s: (8.6)

In terms of temperature, the level splitting is �Ea=s=kb = �a=s�h=kb = 7:610�12 �a=sK, e.g.

at a transition rate of �a=s = 1GHz, a splitting of the ground level of about 7:6mK would

appear.

To support the analytical calculations of the transition rates, we have also solved nu-

merically the quantum mechanical problem of a vortex in a double-well potential. The

system is described by the stationary Schr�odinger equation

Ĥ j = Ej j (8.7)
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�a=s calculated analytically

using the WKB approach

(solid line) and solving the

Schr�odinger equation numer-

ically (solid squares) for the

discussed junction geometry.

with the hamiltonian Ĥ which we solve numerically for its eigenvalues Ej and eigenfunctions

 j, see Appendix A. In Fig. 8.4b, the wave functions for the �rst four eigenstates of the

potential are plotted. Each wave function is o�set by the corresponding eigenenergy of the

state. The two lowest symmetric and anti-symmetric eigenstates are separated by an energy

corresponding to �Ea=s. Theses states can be viewed as a symmetric and anti-symmetric

combination of the eigenstates of each individual well which are weakly coupled via the

tunneling transition between the wells. The two spatially localized states jli and jri can be

viewed as a linear combination of the energy eigenstates j0i and j1i.
For the potential plotted in Fig. 8.4, we have analyzed the dependence of the transition

rate on the magnetic �eld amplitude. Using the WKB approximation, we have calculated

analytically the quantum transition rate �a=s of the vortex between the two states. For the

junction parameters described above, the calculated rate (solid line) is plotted versus the

normalized external �eld in Fig. 8.5. We �nd that for these parameters we can tune the

transition rate by roughly four orders of magnitude between 10 kHz and 100 MHz when

varying the external �eld in the range of h = 0:01 : : : 0:50.

In Fig. 8.5, the WKB calculation is compared to the results of a direct numerical solution

of the stationary Schr�odinger equation (solid squares). The agreement between the two

independent approaches is good. In both calculations, we have set the constant prefactor

in Eq. (8.3) to unity.

In Figs. 8.6a-c, the numerically calculated eigenenergies and eigenfunctions of the hamil-

tonian are plotted for di�erent values of the magnetic �eld. From this set of �gures, a

number of further features can be extracted. We note that the potential U(q) scales with

the magnetic �eld amplitude. As a result, not only the barrier height U0 separating the two

states but also the attempt frequency !0 changes with h. Also the energies of the excited
sates scale with h. As shown in Figs. 8.6a-c, the excited states (j2i; j3i) move closer to the

two low energy states as the barrier height is lowered by the magnetic �eld. If the sepa-

ration between the excited states and the ground states is comparable or smaller than the

bath temperature, these states will be thermally populated. If an ideal two-state system is

to be considered, the excitation of higher energy states leads to decoherence of the ground

state.
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Figure 8.6: Eigenenergies

Ej and eigenfunctions  j
plotted for di�erent values

of the magnetic �eld h =

0:05; 0:1; 0:5. The eigenfunc-

tions are normalized and lev-

eled at the energy of the cor-

responding state. The poten-

tial for each magnetic �eld is

also shown.
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8.4 Manipulation of a 
uxon in a double-well

Up to now, we have discussed the potential energy of a vortex at zero bias current and with

a magnetic �eld applied parallel to the symmetry axis of the junction. Both tilting the

magnetic �eld and applying a bias current will change the potential energy of the vortex.

First, we discuss purely classical e�ects of changing the potential. The quantum mechanical

implications are considered in Sections 8.5 and 8.6, where we propose a measurement scheme

to perform a macroscopic quantum coherence experiment with a single Josephson vortex

[WKU00]. Using appropriate manipulations of the bias current and of the magnetic �eld,

the classical state of the vortex (either `l' or `r') can be determined by measuring its

depinning current.

In the classical regime, we consider the case where the potential barriers separating

di�erent vortex states are large. Therefore, quantum tunneling of the vortex is suppressed.

We also consider small thermal 
uctuations such that the vortex is e�ectively localized at

the minimum of its potential well.
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Figure 8.7: Vortex poten-

tial U(q) in dependence on

the angle of the external mag-

netic �eld (a) �h = 0, (b)

�h = 90Æ and (c) �h =

180Æ. The coordinate axis is

normalized by the length `

of the junction. The stable

and metastable vortex posi-

tions are indicated by a solid

(`l'-state) and an open disc

(`r'-state). The locations of

the vortices in space are in-

dicated in a sketch for the

di�erent directions of the ap-

plied �eld.

Magnetic �eld angle

The magnetic dipole potential of the vortex in dependence on the angle �h of the applied

�eld with respect to the symmetry axis of the junction is discussed here �rst. The double-

well potential is perfectly symmetric, as discussed in the previous sections, only if the

external magnetic �eld is aligned to the symmetry axis of the junction, see Fig. 8.7a. In

this case, the vortex potential has two minima, which we identify with the possible classical

states `l' and `r' of the vortex. The two states are indicated by a solid and an open disc,

see Fig. 8.7. The spatial location of a vortex in either state `l' (solid arrow) or state `r'
(open arrow) in the junction for �h = 0 is indicated in the sketch (a) of Fig. 8.7.

As the �eld is turned, both the position and the energy of the potential minima change.

For small angles �h, both minima shift to the right, while the energy of state `l' remains

almost constant and the energy of state `r' is slightly increased. As the �eld angle is further
increased, a vortex in state `l' is pinned at the cusp of the heart. To overcome the cusp,

the magnetic moment of the vortex would need to turn with respect to the external �eld,

which is energetically not favorable. In contrast, a vortex in state `r' can freely adjust its

position as to align its magnetic moment in parallel to the external �eld, see sketch (b)

of Fig. 8.7. Further increasing the angle �h leads to a larger misorientation angle of the

pinned `l'-state vortex with respect to the �eld, e�ectively increasing its potential energy,

see the potential energy pro�le for �h = 90 (curve b) in Fig. 8.7. Moreover, we note that

the potential barrier height, separating the metastable state `l' from the state `r', increases

in amplitude to a maximum value as �h approaches 90 degrees. In contrast, the state-'r'
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vortex is perfectly aligned to the external �eld and rests in a deep potential well (open disc

on curve b).

Turning the �eld to �h = 180Æ leads to an inversion of the potential with respect to the

�h = 0 case. Due to the smooth change of the �eld , the `l'-state vortex now is a metastable

state at high energy, whereas the `r'-state vortex is at the lowest potential energy. In the

position indicated by the solid arrow in Fig. 8.7c, the magnetic moment of the vortex is

locally reduced due to the averaging along the junction. Shifting the vortex to the left or to

the right from that position would increase its energy. Thus by turning the �eld, we have

separated the two equivalent states of the double-well potential into a metastable state and

a stable state at diametrically opposite locations in the junction.

Bias current

As discussed in Section 6.2.1, the vortex potential is e�ectively tilted proportional to the

bias current applied to the junction. Here, we discuss the depinning of the vortex from the

two metastable states `l' and `r' in dependence on the bias current and the direction of the

external �eld.

In absence of thermal 
uctuations and quantum tunneling, the depinning current is

proportional to the maximum slope of the potential barrier separating the initial vortex

state from other states. Obviously, the depinning current depends on the direction of the

applied bias current. Thus, the vortex in state `l' is depinned at a lower bias current than

the vortex in state `r', see Fig.8.8a. This is true for any angle of the applied magnetic �eld.

The vortex will be retrapped in a lower energy state if the potential barrier separating that

state from the running state is larger than the potential energy of the vortex in the moment

of the escape. In such a case, a vortex initially prepared in state `l' can only switch to the

running state via state `r'. Thus, only a single depinning current would be measured in

experiment. If however the kinetic energy of the vortex is large enough to overcome the

potential barrier of state `r', two distinct depinning currents, depending on the initial state

of the vortex, should be observable in experiment.

Since we would like to distinguish the vortex states `l' and `r' by measuring the depinning

current, we have to construct a potential for which the vortex will not be retrapped in a

lower energy potential minimum. Such a potential can be realized by turning the magnetic

�eld to a suÆciently large angle, after having prepared the vortex in either the `l' or the

`r' state. Here, we consider the depinning of a vortex from the potential for �h = 90Æ in

the heart-shaped junction discussed before. In Fig. 8.8, the potential pro�les for di�erent

values of applied bias current are plotted. At zero bias current, the `l'-state is metastable

and the `r'-state is stable (curve a). Increasing the bias current, the potential is tilted and

the vortex is �rst activated from the `l'-state (curve b). The vortex is not retrapped in the

lower potential well because its potential energy is suÆciently high to overcome the barrier.4

At a substantially higher bias current, the vortex in the `r'-state would also escape from

the well (curve c). For all three bias currents, the positions of the vortex at the moment of

activation are indicated in the sketches of the heart-shaped junction in Fig. 8.8.

Due to the large di�erence in depinning current, it is possible to distinguish the states

`l' and `r' by a depinning measurement. Experiments to prove the feasibility of this scheme

for distinguishing vortex states are currently in progress [Kem00].

4Only in the case of very high damping, the vortex could be retrapped in a neighboring metastable
minimum.
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tial U
h(q) for �h = 90Æ and

di�erent values of bias cur-

rent. The coordinate axis

is normalized by the length
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8.5 A macroscopic quantum coherence experiment

In this section, I describe our scheme to perform a macroscopic quantum coherence mea-

surement with a Josephson vortex in a heart-shaped Josephson junction. The idea is based

on a time resolved measurement of the Rabi-oscillation [CTDL99] of a Josephson vortex

between the two degenerate states of the double-well potential. The measurement scheme

consists of four steps: the preparation of the state, the coherent oscillation, the freezing of

the state and the readout.

In the �rst step, we prepare the vortex in either state `l' or `r' by applying a large

o�-axis �eld to the junction. The large �eld amplitude suppresses the tunneling of the

vortex and the �eld direction distorts the potential such that one of the states is at lower

energy. Then, the �eld is aligned to the axis of the junction forming a perfectly symmetric

double-well potential, but with the vortex being localized in one known state.

In the next step, the �eld is reduced at time t = 0 to allow the quantum mechanical

coupling between the two states jli and jri. The size of the barrier determines the coupling

and, thus, the oscillation frequency of the vortex between the two states. At time t = t1,

the state of the vortex is frozen by increasing the magnetic �eld and thus, suppressing

the quantum tunneling between the two states. This constitutes the measurement of the

quantum mechanical superposition state of the vortex at time t = t1. The probability to
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Figure 8.9: Single-qubit operations: (a) idle state, (b) phase shift and (c) amplitude shift. The

�rst row shows the e�ective vortex-potential for the �eld amplitude and direction shown in the

sketches of the second row.

�nd the vortex in either state `l' or state `r' is determined by the oscillation frequency �a=s
and the time t1. The �nal state of the vortex can be determined in an escape measurement

as described in the previous section.

By varying the time t1, it should be possible to measure the probability of the vortex

ending up in state `l' or `r' versus time. To observe Rabi-oscillations [CTDL99], the quantum

mechanical system has to evolve coherently in time. The coherence time �coh has to be much
larger than the period of the expected oscillations. If �coh is much smaller than 1=�a=s, the
vortex would be observed in either one of the states with equal probability P = 1=2 all

the time. Therefore, a measurement of the Rabi-oscillation implies a measurement of the

macroscopic quantum coherence.

8.6 Quantum computation using the vortex-qubit

In this section, I lay out the general principles to operate a vortex-qubit in the ways neces-

sary to perform quantum computation. We note that the general operations that need to be

performed on the qubits are identical for any physical realization of a quantum computer.

Only the implementation of the operations di�ers strongly for di�erent physical systems.

In general, it is necessary to address an individual qubit and control its state, measure the

qubit for reading out its state, couple qubits to each other and decouple all of them from

the environment to perform calculations.

It has been shown [DiV95b] that the functions necessary to perform quantum compu-

tation can be separated in two classes: single-qubit and two-qubit operations. Single-qubit

operations include the preparation of the qubit state, the generation of superposition states,

the adjustment of the phase di�erence between states and reading out the state. Two-
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Figure 8.10: Coupling of two vortex-qubits via an

inductive loop.

qubit operations can be realized by an arbitrary interaction between any two qubits. It

was pointed out in Ref. [Llo95] that any interaction between two qubits and the possibility

to perform arbitrary single qubit operations suÆce to construct a universal quantum logic

gate.

All required single-bit operations can be realized in the vortex qubit in the following

way. In the idle state (see Fig. 8.9a), a large magnetic �eld is applied in parallel to the

symmetry axis of the junction. The ground states of both wells are decoupled because of the

large �eld-controlled energy barrier between them. Both states jli and jri evolve according
to their energy as jl; ri / exp iEl;rt=�h with no phase shift in time. To induce a phase shift

between the two states, we keep the magnetic �eld at a high level to suppress tunneling

and tilt it. The tilting results in a relative shift in energy between the two ground states

of the well, see Fig. 8.9b. The two states now evolve in time accumulating a phase shift

proportional to the energy di�erence �E = Er � El between the two states. Finally, an

amplitude shift between the two states can be induced by decreasing the external magnetic

�eld and, thus, lowering the barrier as to induce the coupling between the two states.

The vortex starts to oscillate back and forth at the rate �a=s, see Fig. 8.9c. Increasing

the barrier again after an appropriate time �t, an amplitude shift between the states jli
and jri is induced. Using these operations one can perform an arbitrary transformation

of the single-qubit state. Naturally, any of these operations requires the coherence of the

quantum mechanical system. These single-qubit operations can be expressed in terms of

Pauli-matrices, e�ectively treating the vortex-qubit in analogy to a spin 1/2 system, see

for example [IGF+99]. After any number of operations, the qubit may be read out using a

switching current measurement of the type described in detail in Section 8.4.

As pointed out before, any interaction between two qubits may be used to form a

universal quantum logic gate. Similar to previous proposals for superconducting qubits, we

suggest to use inductances to couple individual qubits. By placing a superconducting loop

close to two neighboring vortex-qubits in the way depicted in Fig. 8.10, one can achieve a

coupling between two qubits. In this case, the 
ux coupled into the superconducting loop

depends on the state of qubit 1, i.e. more 
ux is coupled in state jri than in state jli.
The 
ux coupled into the loop leads to a magnetic �eld coupling to qubit 2 via the loop.

The magnetic �eld changes the e�ective vortex potential of qubit 2, modifying its quantum

mechanical state.

Thus, in the quantum limit, a vortex trapped in a heart-shaped Josephson junction can

serve as a qubit in a quantum computation scheme. The major open question is the e�ect

of the environment on the coherence of this quantum two-state system.
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8.7 Decoherence

The degree of coherence of a quantum system is characterized by the coherence time �coh.

For times t < �coh, any two-state quantum system prepared in a superposition state remains

in the same state with a large probability. Due to decoherence, the quantum state decays

into an incoherent mixed state after the average time �coh.

The ratio of �coh to the typical time to perform a single or a two-qubit operation �op is the

�gure of merit in practical quantum computation [DiV95a]. The larger this ratio, the more

operations can be performed before the qubit is decohered and all information are lost. Error

correction schemes have been developed to allow the operation of a quantum computer in

the presence of weak decoherence [Ste99]. To use these schemes, the quality factor5 �coh=�op
of the system has to be on the order of 105 or larger. Consequently, decoherence is the most

important issue in realizing a useful quantum computer [Ste99].

The coherence of any macroscopic quantum two-state system is strongly a�ected by

both dissipation and 
uctuations. A general approach to calculate the coherence time is

to estimate the decay of a pure quantum state into a mixed state in the presence of a

perturbation due to the environment, see for example Ref. [TLvdW+99]. In general, any

degree of freedom in the environment can couple to the qubit, leading to decoherence. The

characteristic coherence time for a speci�c interaction with the environment depends on the

strength of the coupling. Various decoherence mechanisms have been discussed in detail for

the persistent current qubit [TLvdW+99]. The decoherence due to charge 
uctuations in

the environment, quasiparticle tunneling in the junctions (ohmic dissipation), interaction

with nuclear spins, spontaneous emission of radiation, and spurious interactions with other

qubits discussed in Ref. [TLvdW+99] is generally relevant for any realization of a magnetic-


ux qubit. Thus, all of these e�ects need to be considered for the vortex-qubit. Since up

to now, no speci�c calculations for the vortex-qubit have been performed, we only discuss

the relative importance of the di�erent sources of decoherence mentioned above.

The decoherence of the vortex-qubit due to quasiparticle damping in the junction can

be estimated in the framework of the Caldeira-Leggett theory for macroscopic two-state

quantum systems [LCD+87]. The case of a vortex in a double-well potential formed by two

nearby microresistors has been treated in Ref. [KI96]. Within the limits of the Caldeira-

Leggett theory, it was found that it should be possible to observe macroscopic quantum

coherence in that system. Here, we adopt the samemethods to the case of the magnetic-�eld

induced potential of heart-shaped junctions.

The e�ect of dissipation on the coherent quantum mechanical oscillation of a particle

in a double-well potential is described by the dissipation amplitude

K = ~mfa
(�q)2

2�g2
; (8.8)

where a is the damping coeÆcient, �q is the spatial separation between the two states and

g2 is the normalized Planck constant [LCD+87]. The conditions to observe macroscopic

quantum coherence are then given by [LCD+87, LG85]

K � 1 ; (8.9)

kbT � �h�a=s

K
: (8.10)

5The quality factor is de�ned as the number of operations that can be performed within the coherence
time of the system.
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For a typical magnetic-�eld induced double-well potential, we have estimated �q � 1 and

g2 � 10�2 for a 0:3�m wide junction and a conservatively estimated intrinsic damping

parameter of a � 10�3, resulting in a value of K � 0:1 which is marginally within the range

of the criterion Eq. (8.9). From the second criterion, we �nd the condition T < 80mK for

a transition rate of � = 1GHz, which is possible to maintain in a real experiment. Since

K depends quadratically on the spatial distance between the states �q, we can drastically

increase the possibility to observe quantum coherence by designing a sample with a smaller

value of �q. The damping due to quasiparticle tunneling may also be substantially smaller

at millikelvin temperatures. A reduction of the parameter K by proper design of the

experimentmay facilitate the observation of macroscopic quantum coherence in this system.

As pointed out in Ref. [TLvdW+99], the 
uctuations of the charges and of the nuclear

magnetic moments in the environment (substrate, electrodes, etc.) may lead to additional

dissipation. These e�ects can be considered in the framework of the Caldeira-Leggett

model using the 
uctuation-dissipation theorem. The vortex-qubit may also decohere due

to the spontaneous emission of radiation during the oscillation of the vortex magnetic dipole

between the two states of the qubit. The decoherence time is inversely proportional to the

spontaneous emission rate. Rough estimates show that for the heart-shaped junctions the

coherence time has an upper bound due to spontaneous emission of about approximately

one second, which is very safe with respect to other decoherence mechanisms.

8.8 Summary and conclusions

We have pointed out the possibilities of using a vortex trapped in a double-well potential

as a macroscopic quantum coherent two-state system. We have shown how to manipulate

the states of the vortex and how these manipulations may be used to perform quantum

computation. Possible decoherence mechanisms in this system have to be investigated

theoretically and experiments trying to observe the coherent oscillation of a vortex between

the ground states of a double-well potential need to be performed.

It is important to note that, up to now, there has been only a single experiment that

has succeeded in observing the coherent phenomenon of Rabi-oscillations in a solid state

environment [NPT99]. The various mechanisms of decoherence in solid state systems are

not well understood and only relatively few experiments probing these phenomena have

been performed until now. Therefore, it is an interesting and challenging task to further

investigate quantum coherent e�ects in solid state systems.

The research directed towards the realization of a quantum computer currently leads to

many new insights into the physics of coherent quantum systems. The e�orts to manipulate

and control quantum states are common to the rather new and exciting interdisciplinary

�eld of physics called quantum information processing. Eventually, the knowledge gained

about the manipulation of quantum systems may pioneer fascinating new applications like

the quantum computer.





Appendix A

Numerical solution of the stationary

Schr�odinger equation

The hamiltonian of a particle in a potential can be written as

Ĥ =
p̂2

2mf

+ Û (A.1)

= � �h2

2mf

@2

@q2
 + U(q) (A.2)

with the momentumoperator p̂ = �i�h@=@q and the potential Û = U(q). The eigenfunctions
 j and the eigenenergies Ej of Ĥ are determined according to a procedure similar to the

one described in Ref. [PFTV86]. Accordingly, the wave function is discretized on an equally

spaced grid of size N . The hamiltonian Ĥ is discretized on the same grid, resulting in a

N �N matrix. Discretizing Û results in a matrix with the potential evaluated at the grid-

points on the diagonal and no other non-zero values. The momentumoperator is discretized

using the well-known four-point �nite di�erence method to calculate the second derivative

of  

 00 =
 i�1 � 2 i +  i+1

�x2
: (A.3)

As a result, Ĥ can be written as a tri-diagonal matrix

Ĥ =

0
BBBBBBBBB@

U0 � 2

2m�2
x

1

2m�2
x

0 : : : 0

1
2m�2

x

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

2m�2
x

0 : : : 0 1
2m�2

x

UN � 2
2m�2

x

1
CCCCCCCCCA
; (A.4)

the eigenvalues Ej and eigenvectors  j of which can be easily determined with standard

techniques.1

1Calculations have been performed using Mathematica [Wol].
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List of symbols

symbol description

physical constants

e electron charge

�0 vacuum permittivity

�h Planck constant

kb Boltzmann constant

�0 vacuum permeability

�0 magnetic 
ux quantum

arabic letter symbols

a damping constant

A junction area
~A vector potential

b width of microresistor

c0 Swihart velocity

�c0 Swihart velocity considering idle region

C total junction capacitance

C? speci�c capacitance

dt;b electrode thickness, top, bottom

d0 magnetic thickness

E electric �eld

EJ Josephson coupling energy

Ei; Ef initial, �nal state energy

E0 ground state energy

Ej jth energy eigenvalue of hamiltonian

E0 long junction energy scale

g2 normalized Planck constant

h normalized magnetic �eld
�h renormalized magnetic �eld

H; Hr; H� magnetic �eld, radial and angular components

H0 characteristic magnetic �eld of annular junction

Hc1 �rst critical �eld

Ĥ hamiltonian operator
~H normalized hamiltonian
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symbol description

HSG
f

unperturbed vortex rest energy
~HSG normalized unperturbed sine-Gordon hamiltonian
~HP normalized perturbation hamiltonian
~H
 normalized bias current perturbation hamiltonian

I bias current

Ic critical current

Ih
c
; I�

c
depinning current in magnetic-�eld,microresistor poten-

tial

hIi mean value of switching current distribution

I0 single switching current

dI=dt bias-current sweep rate

j bias current density

jc critical current density

Jk Bessel function of the �rst kind of order k

k angular wave number
~k normalized wave vector

K dissipation amplitude for quantum tunneling

l length of a long junction

` normalized length of long junction

Le� e�ective annular junction length

L inductance

L? speci�c inductance

L; ~L lagrangian, normalized lagrangian

mf ; ~mf vortex rest mass, normalized vortex rest mass

nCP Cooper pair density

n; �n number of vortices, antivortices trapped in the junction

~nr; ~n�; ~nz radial normal vector, angular normal vector, normal vec-

tor on the junction plane

P (I) switching-current probability distribution

q normalized vortex center of mass coordinate, generalized

coordinate

�q renormalized vortex coordinate

q0; qb; qex coordinate of potential minimum, maximum and exit

point from the potential

r radius of annular junction

ri inner junction radius

re external junction radius

�r mean junction radius

r; ' polar coordinates

~r; ' normalized polar coordinates

R junction resistance

Rn normal junction resistance

Rsg subgap junction resistance

Rs electrode surface resistance

t; �t time, normalized time

tj;p barrier thickness in junction and passive region
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symbol description

T temperature

Tc critical temperature of superconductor

Tesc e�ective thermal escape temperature

T ? cross-over temperature

Tkin kinetic energy

u normalized vortex velocity

U� potential for the phase in small junction

U
�

0 potential barrier height for the phase in small junction
~U
 ; ~Uh; ~U � normalized vortex potential due to bias current, due to

magnetic �eld, due to microshort
~U
h; ~U
� normalized magnetic-�eld induced, microresistor poten-

tial with bias current

Upot potential energy

v linear vortex velocity

V voltage

Vg gap voltage

Vmax maximum single-vortex resonance voltage

V ratio of Swihart velocities in active and passive region

w width of a long junction

x; y; z; ~x; ~y; ~z spatial coordinates, normalized spatial coordinates

Yk Bessel function of the second type of order k

greek letter symbols

� normalized quasiparticle damping coeÆcient

�f �ne structure constant

�� numerical constant in analytical approximation to whis-

pering gallery mode frequencies

�h angle of magnetic �eld vs. symmetry axis of junction

� normalized surface impedance coeÆcient

Æ ratio of inner to outer junction radius

� superconducting energy gap

�Ea=s energy splitting of ground state in double-well potential

� normalized strength of microresistor

�� renormalized strength of microresistor

�j;p relative dielectric constant, junction and passive region


 normalized bias current


h
c
; 
�

c
normalized depinning current in magnetic-�eld induced

or microresistor potential

�
 relative normalized depinning current

� escape rate

�th thermal activation rate

�qu quantum escape rate

�a=s tunnel rate in double-well potential

� ratio of magnetic thicknesses of active and passive junc-

tion region

�e� e�ective Josephson length considering the idle region

�J Josephson length
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symbol description

�L London penetration depth

� magnetic thickness

�p Josephson plasma frequency

~! normalized angular frequency

�! renormalized angular frequency

!p angular Josephson plasma frequency

!�;k; !k frequency of whispering gallery mode with angular wave

number k and radial wave number �, same for � = 0

!0; !
�

0 ; !
h

0 ; !
�

0 small amplitude oscillation frequency, for the phase in

small junction, for a vortex in magnetic-�eld induced,

or microresistor potential

!b unstable barrier frequency


; ~
 angular vortex rotation frequency, the same quantity

normalized

� superconducting phase di�erence

�f 
uxon solution of sine-Gordon equation

� magnetic 
ux

 j jth eigenfunction of hamiltonian

	 superconducting macroscopic wave function, order pa-

rameter

� junction resistance per unit length

�s electrode surface resistance per unit length

�a transmission coeÆcient

�I standard deviation of switching-current distribution

� superconducting phase

� ratio of Swihart velocities without and with idle
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Summary

Fluxon Dynamics in Annular Josephson Junctions:

From Relativistic Strings to Quantum Particles

In this thesis, the fascinating and diverse dynamics of Josephson vortices in annular Joseph-

son junctions is investigated experimentally. Annular Josephson junctions consist of a ver-

tical stack of two micron-size annular superconducting electrodes weakly coupled by a thin

tunnel barrier. Due to the quantum properties of the superconducting charge carriers,

magnetic �eld penetrates into these structures in a quantized fashion. The dynamics of

the charge carriers and of the �elds in the junction is described in terms of the spatial

and temporal evolution of the phase di�erence between the wave functions describing the

superconducting condensate. The non-linear dynamics of the phase di�erence is explained

using a sine-Gordon model. The annular Josephson junction can be prepared in a state

in which a single magnetic 
ux quantum is topologically trapped between the two super-

conducting electrodes threading only one of them. A magnetic 
ux quantum, also called

Josephson vortex or 
uxon, trapped in the junction has the character of a solitary wave

which propagates along the non-linear waveguide formed by the junction. The dynamics of

the soliton is controlled by applying a bias current and external �elds to the junction and

are investigated by performing transport measurements. In di�erent experimental situa-

tions, the dynamics of the vortex displays either wave or particle character. The intention

of this work is to study properties of the Josephson vortex in these two di�erent regimes.

In e�ectively two-dimensional wide annular junctions, the vortex behaves as a spatially

extended solitary wave. In the limit of narrow long junctions, the vortex displays particle

character.

The static properties of the spatial distribution of the phase di�erence across the junc-

tion is investigated experimentally. Measurements of the maximum supercurrent supported

by the junction in dependence on the externally applied in-plane magnetic �eld show inter-

esting features depending on the exact junction geometry. The measured critical-current

di�raction patterns are explained in terms of the �eld-dependent interference of the su-

percurrent, which is formally equivalent to a multi-beam optical di�raction pattern. The

experimental data are in excellent quantitative agreement with theoretical expectations.

The structure of the pattern is shown to depend sensitively on the �eld distribution in the

junction. In this way, the state of the junction with a single trapped vortex is uniquely

identi�ed.

In a second experiment, it is observed that a Josephson vortex revolving at relativis-

tic velocities around a wide annular junction excites linear electromagnetic modes of the
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whispering gallery type in the junction. It is demonstrated experimentally that the vortex

moves with a group velocity larger than the phase velocity of the linear modes, hence gen-

erating radiation in a way that is similar to the Cherenkov mechanism. This radiation is

detected by its resonant interaction with the vortex leading to a characteristic �ne struc-

ture on the current-voltage characteristic of the junction. The dependence of the linear

mode frequency spectrum of the junction on the electrical and geometrical parameters of

the sample is measured quantitatively by analyzing the resonance voltages.

The e�ect of the electromagnetic environment on the statics and dynamics of an an-

nular junction is investigated by coupling an annular resonator in parallel to the junction.

It is shown that the characteristic frequencies and the length scales of the electromagnetic

phenomena in the junction are strongly a�ected by the resonator. The observed e�ects are

explained accurately by considering the coupling between a non-linear and a linear waveg-

uide. In particular, the whispering gallery frequency spectrum of the coupled resonators

is determined from the �ne structure on the current-voltage characteristic induced by the

resonant interaction between the vortex and the linear modes.

In the second part of the work, the particle properties of single Josephson vortices are

investigated in the non-relativistic regime. Making use of the magnetic dipole interaction

between the magnetic moment associated with the vortex and a magnetic �eld applied

in the plane of the junction, the vortex is spatially con�ned in a potential well. The

escape of the vortex from the well due to thermal 
uctuations is investigated by measuring

the statistical distribution of the vortex depinning currents. The experimental results are

explained describing the vortex in terms of a particle with an e�ectivemass and a generalized

center of mass coordinate, which is thermally activated from the potential well. From the

experimental data, the e�ective temperature of the escape process is determined and good

agreement with the thermal bath temperature is found. Similar results are found for a

potential well induced by a microresistor implemented into the junction barrier.

Based on the results of the experiments performed on the thermal escape of a single

Josephson vortex from a metastable state, the feasibility of observing the quantum escape

is quantitatively analyzed. It is suggested that the quantum tunneling of a vortex from

a magnetic-�eld induced potential dominates the thermal escape at temperatures below

100mK if sub-micron wide annular junctions are employed. Improvements in the current

experimental setup are suggested for the future observation of quantum tunneling and

energy level quantization of a Josephson vortex in a potential well.

The need for the experimental investigation of decoherence mechanisms in macroscopic

quantum systems and the search for coherent two-state systems in relation to applications

in quantum computation inspired a proposal of our group presented in this thesis. It

is suggested to use quantum vortices in shaped long junctions to investigate macroscopic

quantum coherence. A measurement scheme to observe Rabi-oscillations of a vortex relying

on the manipulation of a double-well potential by the external �eld and the bias current is

described. Means to manipulate the quantum states of a vortex in a double-well potential

are pointed out and decoherence is considered within existing models.



Curriculum Vitae

Andreas Joachim Wallra�

April 29, 1971 Born in Bonn, Germany

1981 - 1990 Abitur, Bisch�o
iches Pius Gymnasium, Aachen

1990 - 1991 Zivildienst, Marienhospital Aachen

1991 - 1997 Studiengang Diplom Physik at

Rheinisch-Westf�alische Technische Hochschule (RWTH) Aachen

and

Imperial College of Science and Technology,

London, United Kingdom

October 1994 Imperial College International Diploma in Physics

1995-1996 Graduate research at

Institut f�ur Schicht- und Ionentechnik,

Forschungszentrum J�ulich

in the `Low Temperature Superconductivity' group of

Prof. A. Braginsky under supervision of Dr. A. V. Ustinov

subject: Fluxon Dynamics and Radiation Emission in Twofold

Long Josephson Junction Stacks.

March 1997 Diplom in Physik, RWTH Aachen

1997 - 2000 PhD research at

Physikalisches Institut III,

Friedrich-Alexander Universit�at Erlangen-N�urnberg

in the group of Prof. A. V. Ustinov

subject: Fluxon Dynamics in Annular Josephson Junctions:

From Relativistic Strings to Quantum Particles

165



List of Publications

1. A. Wallra�, E. Goldobin, and A. V. Ustinov, `Numerical Analysis of the Coherent

Radiation Emission by Two Stacked Josephson Flux{
ow Oscillators', Journal of

Applied Physics 80, 6523 (1996)

2. A. Wallra�, D. Bolkhovsky, V. Kurin, N. Thyssen, and A.V. Ustinov, `E�ective length

of annular long Josephson junctions with �nite width: theory and experiment.' In-

stitute of Physics Conference Series No 158, 531 (1997) (Proceedings of European

Conference on Applied Superconductivity EUCAS'97)

3. E. Goldobin, A. Wallra�, B. A. Malomed, and A. V. Ustinov, `Delocking of 
ux-
ow

states in dc-driven magnetically coupled Josephson junctions', Physics Letters A 224,

191 (1997)

4. E. Goldobin, A. Wallra�, A. V. Ustinov, and N. Thyssen, `Cherenkov radiation in

coupled long Josephson junctions', Proceedings of the 6th International Supercon-

ductive Electronics Conference (ISEC) 1997, Berlin, Germany, Vol. 3, p. 219 (1997)

published by: Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, ISBN

3-9805741-0-5

5. A. V. Ustinov, E. Goldobin, G. Hecht�scher, N. Thyssen, A. Wallra�, R. Kleiner,

and P.M�uller, `Cherenkov radiation from Josephson 
uxons', Festk�orperprobleme /

Advances in Solid State Physics 38 521, (1998)

6. E. Goldobin, A. Wallra�, N. Thyssen, and A.V. Ustinov, `Cherenkov radiation in

coupled long Josephson junctions', Physical Review B 57, 130 (1998)

7. Yu. Koval, A. Wallra�, M. Fistul, N. Thyssen, H. Kohlstedt, and A.V. Ustinov,

`Narrow Long Josephson Junctions', IEEE Transactions on Applied Superconductivity

9, 3957 (1999)

8. A. Wallra�, A. V. Ustinov, V. V. Kurin, I. A. Shereshevsky, and N. K. Vdovicheva,

`Whispering Vortices', Physical Review Letters 84, 151 (2000)

9. A. Wallra�, Yu. Koval, M. Levitchev, M. V. Fistul, and A. V. Ustinov, ` Annular

Long Josephson Junctions in a Magnetic Field: Engineering and Probing the Fluxon

Interaction Potential', Journal of Low Temperature Physics 118, 543 (2000)

10. A. Wallra�, A. Franz, A. V. Ustinov, V. V. Kurin, I. A. Shereshevsky, and N. K.

Vdovicheva, `Observation of whispering gallery resonances in annular Josephson junc-

tions', Physica B 284-288, 575 (2000) (Proceedings of LT22, Helsinki, Finland, 1999)

166



11. M. V. Fistul, M. G. Castellano, M. Cirillo, G. Torrioli, A. Wallra�, and A. V. Ustinov

`Escape of a Josephson vortex trapped in an annular Josephson junction', Physica B

284-288, 585 (2000) (Proceedings of LT22, Helsinki, Finland, 1999)

12. E. Goldobin, A. Wallra�, and A. V. Ustinov, `Cherenkov radiation from a 
uxon in a

stack of coupled long Josephson junctions', Journal of Low Temperature Physics 119,

589 (2000)

13. A. Franz, A. Wallra�, and A. V. Ustinov, `Measurements of the critical current di�rac-

tion patterns in annular Josephson junctions', Physical Review B 62, 119 (2000)

14. A. Franz, A. Wallra�, and A. V. Ustinov, `Magnetic �eld penetration in a long Joseph-

son junction embedded in a wide stripline', accepted for publication in Journal of

Applied Physics (June 2000)


