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Theory of graphical models like Bayesian networks has become an essential
area in probabilistic reasoning. One way to introduce a model of this type is
to give a list of conditional independence constraints. An interesting question
coming originally from the work of J. Pearl (cf. [1]) is the problem of prob-
abilistic representability, i.e. for which conditional independence constraints
(here called independence model) there exists a random vector satisfying these
and only these conditional independencies.

It was proved by M. Studený in [2] that there is no finite complete ax-
iomatic characterization of representable independence models. Therefore, the
only hope to find such characterization is to restrict the number of random
variables. F. Matúš characterized models that are representable by a vector of
four discrete variables in a series of papers [3], [4] and [5]. Later on, F. Matúš
and R. Lněnička found all models representable by a regular Gaussian distri-
bution over three and four variables (cf. [6] and [7], respectively).

In this paper, an alternative approach to the representability by a regular
Gaussian vector over four variables is presented. In comparison with [7] it
lacks mathematical beauty but it is much more straightforward. Moreover, the
result is generalized to representations by general (=not necessarily regular)
Gaussian distribution. For the reader’s convenience definitions and lemmas
related to Gaussian distribution and independence models are recalled in the
first section. Several open problems can be found at the end of the paper.

The hope is that in the long run this approach could be utilized to make
a model selection of Bayesian networks more effective. Classical model selec-
tion algorithms rely on the faithfulness assumption that data are generated
from a distribution satisfying only the independencies given by some Bayesian
network model. However, e.g. in the case of four variables there are only 25
different Bayesian networks while there are 18300 independence models repre-
sentable by a discrete distribution (cf. [8], pp. 63). Estimating of independen-
cies among quartets of variables instead of triplets as in PC algorithm (cf. [9],
pp. 542) could better approximate the distribution by a Bayesian network.
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1 Preliminaries

A Gaussian distribution of a random vector ξ = (ξ1, . . . , ξn)′ is a proba-
bility distribution specified by its characteristic function

ϕξ(t) = E exp(it′ξ) = exp

(

it′µ−
t′Σt

2

)

,

where the vector µ and the symmetric positive semi–definite matrix Σ are
mean and variance parameters, respectively. If Σ is regular, the distribu-
tion is called regular Gaussian distribution. Note all regular Gaussian
distributions have finite multiinformation1 and a density with respect to n–
dimensional Lebesgue measure. For non-regular distributions (a part of ξ can
be written as a linear combination of the rest) this generally does not hold.

Let us partition random vector ξ into two components

ξ =

(

ϕ

ψ

)

.

And let the variance matrix be partitioned accordingly into blocks as follows

Σ =

(

Σϕ Σϕ,ψ
Σψ,ϕ Σψ

)

.

Lemma 1. Marginal and conditional distributions of a Gaussian distribution
are also Gaussian:

i) The marginal distribution ϕ is Gaussian distribution with the variance
matrix Σϕ.

ii) The conditional distribution of ϕ given ψ = x is Gaussian distribution

with the variance matrix Σϕ|ψ = Σϕ−Σϕ,ψΣ
−
ψΣψ,ϕ, where Σ−

ψ is any
generalized inverse of Σψ.

iii) Moreover, if Σ is regular then the variance matrices Σϕ and Σϕ|ψ are
also regular.

Proof. See [10], pp.256. ⊓⊔

Lemma 2. Let x and y be distinct elements of {1, . . . , n} and Z equals
{1, . . . , n} \ {x, y}:

i) The random variables ξx and ξy are independent (denoted by ξx⊥⊥ξy or
ξx⊥⊥ξy|∅) if and only if the element of Σ in the row x and column y is
zero.

ii) Provided the variance matrix of ξZ is regular: the random variables ξx

and ξy are independent given ξZ (denoted by ξx⊥⊥ξy|ξZ) if and only if
a determinant of the matrix resulting from Σ by deleting the row x and
column y is zero.

1 that is Kullback–Leibler divergence, or relative entropy, between a joint distrib-
ution and a product of its marginals, cf. [8] pp. 24.
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Proof. The first part is a well known fact (cf. [10], pp.257). It is possible to
evidence the second part by an expansion of the determinant mentioned above
and Lemma 1 ii). ⊓⊔

Note just the variance matrix Σ is used for determining conditional in-
dependencies. In addition a marginalization and Lemma 1 can be applied to
judge the validity of independence statements such that Z is a proper subset
of {1, . . . , n} \ {x, y}. Provided ξZ is not regular, ξx⊥⊥ξy|ξZ if and only if
ξx⊥⊥ξy|ξZ∗ where Z∗ is any subset of Z such that ξZ∗ is regular and Z∗ is
maximal with respect to the relation ”⊆”.

An independence model I over a finite set N is a set of triples 〈xy|Z〉
where x, y are different elements of N and Z is a subset of N \ {x, y}. An in-
dependence model I(ξ) associated with a random vector ξ = (ξ1, . . . , ξn)′ is
an independence model over N = {1, . . . , n} defined as follows

I(ξ) = {〈xy|Z〉; ξx⊥⊥ξy|ξZ} .

An independence model I is said to be generally/regularly representable2

if there exists a general/regular Gaussian distribution ξ such that I = I(ξ).
Let us emphasize that an independence model I(ξ) uniquely determines also
all other conditional independencies among subvectors of ξ (cf. [11]).

Two independence models I and J over N are permutably equivalent
if there exists a permutation π of N such that

〈xy|Z〉 ∈ I ⇔ 〈π(x)π(y)|π(Z)〉 ∈ J,

where π(Z) stands for {π(z); z ∈ Z}.
It is easy to see that models of a class of the permutation equivalence are

either all representable or none of them is representable. Consequently, we can
classify the entire class as representable or non-representable.

Example 1. There are 5 regularly representable permutation classes of inde-
pendence models over N = {1, 2, 3} :

I1 = ∅

I2 = {〈12|∅〉}

I3 = {〈12|{3}〉}

I4 = {〈12|∅〉, 〈12|{3}〉, 〈23|∅〉, 〈23|{1}〉}

I5 = {〈12|∅〉, 〈12|{3}〉, 〈23|∅〉, 〈23|{1}〉, 〈13|∅〉, 〈13|{2}〉}

In addition there are two generally representable permutation classes that are
not regularly representable:

I6 = {〈12|{3}〉, 〈23|{1}〉}

I7 = {〈12|{3}〉, 〈23|{1}〉, 〈13|{2}〉}

The proof is not extremely complicated and is left to the reader (or cf. [6]).

2 In this paper,representable means Gaussian representable unless stated otherwise.
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An independence model I over a set N after marginalizing out k ∈ N
is an independence model I [k over a set N \ k containing triples of I where k
is not involved; that is

I [k = {〈xy|Z〉 ∈ I; k 6∈ ({x, y} ∪ Z)} .

An independence model I over a set N after conditioning on l ∈ N is
an independence model I [

l
over a set N \ l containing triples of I where l is

a part of the condition. More formally,

I [
l
= {〈xy|Z〉; 〈xy|Z ∪ {l}〉 ∈ I} .

Independence models I [k and I [l are called minors of I.

Lemma 3. If an independence model I is generally/regularly representable,
then all its minors are generally/regularly representable.

Proof. The representation of a minor is obtained by the corresponding mar-
ginalization or conditioning of the representation of I. ⊓⊔

2 Regular Gaussian Representations

In this section, all classes of permutation equivalence of regularly representable
independence models over N = {1, 2, 3, 4} will be enumerated. Let us recall
that the problem was originally solved in [7] in a slightly different way.

Every regularly representable model must have regularly representable mi-
nors3 (Lemma 3). Using a computer it was found out that there are 58 classes
of permutation equivalence with regularly representable minors (see Appen-
dix, M1 – M58).

The next step is a computer search for as many representations as possible.
All integer symmetric positive definite matrices4 with diagonal elements less
or equal 24 were examined as a variance matrix and 53 regular representations
were found (see Appendix, M1 – M53).

The remaining 5 classes cannot be representable because they do not fulfill
rules derived from ”independence implication”. This is a complex inference
tool based on so called structural imsets5 and is beyond the scope of this
short paper (cf. [8], pp. 114). It is possible to take advantage of ”independence
implication” by means of the java applet

http : //staff.utia.cas.cz/studeny/VerifyView.html .

Moreover, in the next section it will be proved that these 5 classes are neither
generally representable.

3 See Example 1 for a list of possible minors.
4 Some trivial symmetries were used to shorten the computation time.
5 =integer vectors representing conditional independence relationships
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3 General Gaussian Representation

In this section, all classes of permutation equivalence of (generally) repre-
sentable independence models over N = {1, 2, 3, 4} will be found. This is the
main result of the paper. The following two lemmas seem to be crucial.

Lemma 4. If an independence model I is representable I = I(ξ), then there
exists its representation ξ∗ = (ξ∗1 , . . . , ξ∗4)′ such that

Var ξ∗x = 1, x = 1, . . . , 4.

Proof. First, let us interchange each zero variance variable ξx and a new unit
variance variable independent to a vector of remaining variables. After that
just take

ξ∗ =
(

(Var ξ1)
−

1

2 · ξ1, (Var ξ2)
−

1

2 · ξ2, (Var ξ3)
−

1

2 · ξ3, (Var ξ4)
−

1

2 · ξ4

)

′

. ⊓⊔

Lemma 4 enables us to restrict our focus on distributions with a variance
matrices of the following form

Σ =









1 a b c
a 1 d e
b d 1 f
c e f 1









.

If two variables ξx and ξy are functionally dependent ξx = ±ξy (denoted by
ξx ≃ ξy), then an element ofΣ in the row x and column y is ±1 and ξx⊥⊥ξu|ξy ,
ξy⊥⊥ξu|ξx, ξx⊥⊥ξu|ξ{y,v} and ξy⊥⊥ξu|ξ{x,v}.

Lemma 5. Let I be a representable independence model.

i) If {〈12|{3}〉, 〈13|{2}〉} ⊆ I then either {〈12|∅〉, 〈13|∅〉} ⊆ I or ξ2 ≃ ξ3.
ii) If {〈12|{3, 4}〉, 〈13|{2, 4}〉} ⊆ I, then either {〈12|{4}〉, 〈13|{4}〉} ⊆ I or

〈14|{2, 3}〉 ∈ I or ξ2 ≃ ξ3.

Proof. The required conditional independencies ξ1⊥⊥ξ2|ξ3 and ξ1⊥⊥ξ3|ξ2 are
equivalent to a = bd and b = ad following either a = b = 0 (ξ1⊥⊥ξ2 and
ξ1⊥⊥ξ3) or |d| = 1 (ξ2 ≃ ξ3). The proof of the second part is analogous. ⊓⊔

There are 178 classes of permutation equivalence with representable mi-
nors. Lemma 5 allows us to show that 90 of them cannot be represented.

Exhaustive computer search for variance matrices found 79 representations
and 1 more was found later without use of computer (see Appendix, M1–M53
and M59–M85).

The remaining 8 classes (M54–M58 and M86–M88) of permutation equiv-
alence are not representable as proved in the following lemma.
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Lemma 6. If an independence model I is permutably equivalent to one of the
following models I1, . . . , I8

i) I1 = {〈34|{1}〉, 〈14|{2}〉, 〈24|{3}〉}
ii) I2 = {〈12|{3}〉, 〈34|{2}〉, 〈24|{1}〉, 〈13|{4}〉}
iii) I3 = {〈34|∅〉, 〈12|{3}〉, 〈24|{1}〉, 〈13|{2, 4}〉}
iv) I4 = {〈34|∅〉, 〈12|{3}〉, 〈12|{4}〉, 〈34|{1, 2}〉}
v) I5 = {〈12|∅〉, 〈34|∅〉, 〈13|{2, 4}〉, 〈24|{1, 3}〉}
vi) I6 = {〈12|{4}〉, 〈23|{4}〉, 〈13|{4}〉, 〈12|{3, 4}〉, 〈23|{1, 4}〉, 〈34|{1, 2}〉,

〈13|{2, 4}〉}
vii) I7 = {〈12|{4}〉, 〈23|{4}〉, 〈13|{4}〉, 〈12|{3, 4}〉, 〈23|{1, 4}〉, 〈34|{1, 2}〉,

〈14|{2, 3}〉, 〈13|{2, 4}〉, 〈24|{1, 3}〉}
viii) I8 = {〈12|{4}〉, 〈23|{4}〉, 〈13|{4}〉, 〈12|{3}〉, 〈24|{3}〉, 〈14|{3}〉, 〈12|{3, 4}〉,

〈23|{1, 4}〉, 〈34|{1, 2}〉, 〈14|{2, 3}〉, 〈13|{2, 4}〉, 〈24|{1, 3}〉}

then it is not representable.

Proof. i) The required conditional independencies follow f = bc, c = ae and
e = df . Therefore, either c = e = f = 0 or ξ1 ≃ ξ2 ≃ ξ3. ii) In an analogical
way it easily follows either a = b = e = f = 0 or ξ1 ≃ ξ4 and ξ2 ≃ ξ3. iii)
Substituting f = 0, a = bd and e = ac into the equation for 〈13|{2, 4}〉 results
in b((1−d2)+c2d2(1−b2)) = 0 and thus either b = 0 or ξ2 ≃ ξ3 or ξ2 ≃ ξ4. iv)
Substituting f = 0, a = bd and e = a

c
into the equation for 〈34|{1, 2}〉 results

in b
c
(c2(1 − d2) + d2(1 − b2)) = 0 and thus either b = 0 or c = 0 or ξ1 ≃ ξ3

or ξ1 ≃ ξ2. v) Unless ξ1 ≃ ξ4 or ξ2 ≃ ξ3 the substitution a = f = 0 into
equations corresponding to 〈13|{2, 4}〉 and 〈24|{1, 3}〉 gives b − be2 + ecd = 0
and e − eb2 + bcd = 0. Substraction of the first equation multiplied by e and
the second one multiplied by b results in (b − e)(b + e) = 0. Thus b = 0 or
e = 0 or b = ±e and, similarly, c = ±d yielding ξ1 ≃ ξ3. vi)-vii) Unless
ξx ≃ ξy for distinct x and y, the substitution a = ec, d = ef and b = cf
into equations for other independencies results in either ξ1 ≃ ξ2 or ξ1 ≃ ξ4 or
ξ2 ≃ ξ4 yielding a contradiction. viii) If ξ3 ≃ ξ4 then the conditions ξ1⊥⊥ξ2|ξ3

and ξ3⊥⊥ξ4|ξ{1,2} results in ξ1 ≃ ξ3 or ξ2 ≃ ξ3. Otherwise, the argument from
part vi) yields a contradiction. ⊓⊔

4 Conclusion and Open Problems

In this paper we have characterized all Gaussian representable independence
models over four variables. A natural question arises whether it is possible
to do the same for five variables. There are 366177 permutation equivalence
classes with regularly representable minors. However, for most of them neither
a representation nor the proof of its non-existence is known.

All numbers in variance matrices of representations in Appendix are ratio-
nal, the only exception is a model M85. The question whether every Gaussian
representable model is ”rationally” representable remains open.
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Last question is the relation between models representable by Gaussian
and by categorical or binary distributions. It is easy to construct a model
which is binary representable but not Gaussian representable. On the other
hand, model M71 in Appendix is not categorically representable but it is gen-
erally (not regularly!) Gaussian representable. However, no regularly Gaussian
independence model without a binary or categorical representation is known.

This research was supported by the grant GA ČR n. 201/05/H007.
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Appendix

Independence models mentioned in the text are plotted (accompanied with a
variance matrix of the representation) in Figure 1 on the next page. Notation
is adopted from [7]. Vertices of each square are numbered clockwise starting
in the top left corner. A triple 〈xy|∅〉 is visualized by a line between vertices
x and y, a triple 〈xy|{u}〉 by a line between x and y with a small line in
the middle pointing to u–direction. If both relations 〈xy|{u}〉 and 〈xy|{v}〉
take place then only one line with two small lines is plotted. Finally, a triple
〈xy|{u, v}〉 is coded by a brace between x and y. E.g., a model M57 is

{〈12|∅〉, 〈34|{1}〉, 〈34|{2}〉, 〈12|{3, 4}〉}.
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Fig. 1. List of independence models M1–M88 and their representations


